opener-opinion-detector-base 2.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/README.md +101 -0
- data/bin/opinion-detector-base +19 -0
- data/core/annotation.cfg.erb +9 -0
- data/core/packages/KafNafParser-1.4.tar.gz +0 -0
- data/core/packages/VUA_pylib-1.5.tar.gz +0 -0
- data/core/python-scripts/LICENSE +339 -0
- data/core/python-scripts/README.md +226 -0
- data/core/python-scripts/classify_kaf_naf_file.py +499 -0
- data/core/python-scripts/cross_validation.py +634 -0
- data/core/python-scripts/generate_folds.py +134 -0
- data/core/python-scripts/models.cfg +10 -0
- data/core/python-scripts/my_templates/README +33 -0
- data/core/python-scripts/my_templates/templates_exp.only0.txt +6 -0
- data/core/python-scripts/my_templates/templates_exp.pol0.txt +10 -0
- data/core/python-scripts/my_templates/templates_exp.red.txt +7 -0
- data/core/python-scripts/my_templates/templates_exp.txt +10 -0
- data/core/python-scripts/my_templates/templates_holder.only0.txt +11 -0
- data/core/python-scripts/my_templates/templates_holder.red.txt +9 -0
- data/core/python-scripts/my_templates/templates_holder.txt +10 -0
- data/core/python-scripts/my_templates/templates_target.only0.txt +11 -0
- data/core/python-scripts/my_templates/templates_target.red.txt +9 -0
- data/core/python-scripts/my_templates/templates_target.txt +10 -0
- data/core/python-scripts/run_all_experiments.sh +49 -0
- data/core/python-scripts/run_basic.py +20 -0
- data/core/python-scripts/run_experiment.sh +42 -0
- data/core/python-scripts/scripts/__init__.py +1 -0
- data/core/python-scripts/scripts/config_manager.py +314 -0
- data/core/python-scripts/scripts/crfutils.py +215 -0
- data/core/python-scripts/scripts/extract_feats_relations.py +295 -0
- data/core/python-scripts/scripts/extract_features.py +376 -0
- data/core/python-scripts/scripts/feats_to_crf.exp.py +105 -0
- data/core/python-scripts/scripts/lexicons.py +44 -0
- data/core/python-scripts/scripts/link_entities_distance.py +77 -0
- data/core/python-scripts/scripts/relation_classifier.py +250 -0
- data/core/python-scripts/train.py +566 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/PKG-INFO +10 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/SOURCES.txt +22 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/dependency_links.txt +1 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/installed-files.txt +47 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/top_level.txt +1 -0
- data/core/site-packages/pre_build/KafNafParser/KafNafParserMod.py +390 -0
- data/core/site-packages/pre_build/KafNafParser/KafNafParserMod.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/__init__.py +14 -0
- data/core/site-packages/pre_build/KafNafParser/__init__.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/constituency_data.py +125 -0
- data/core/site-packages/pre_build/KafNafParser/constituency_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/coreference_data.py +52 -0
- data/core/site-packages/pre_build/KafNafParser/coreference_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/dependency_data.py +78 -0
- data/core/site-packages/pre_build/KafNafParser/dependency_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/entity_data.py +59 -0
- data/core/site-packages/pre_build/KafNafParser/entity_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/external_references_data.py +41 -0
- data/core/site-packages/pre_build/KafNafParser/external_references_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/__init__.py +2 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/__init__.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/constituency.py +205 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/constituency.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/dependency.py +309 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/dependency.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/features_data.py +131 -0
- data/core/site-packages/pre_build/KafNafParser/features_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/header_data.py +127 -0
- data/core/site-packages/pre_build/KafNafParser/header_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/opinion_data.py +211 -0
- data/core/site-packages/pre_build/KafNafParser/opinion_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/references_data.py +23 -0
- data/core/site-packages/pre_build/KafNafParser/references_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/span_data.py +63 -0
- data/core/site-packages/pre_build/KafNafParser/span_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/term_data.py +111 -0
- data/core/site-packages/pre_build/KafNafParser/term_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/term_sentiment_data.py +42 -0
- data/core/site-packages/pre_build/KafNafParser/term_sentiment_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/text_data.py +99 -0
- data/core/site-packages/pre_build/KafNafParser/text_data.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/PKG-INFO +10 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/SOURCES.txt +14 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/dependency_links.txt +1 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/installed-files.txt +23 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/top_level.txt +1 -0
- data/core/site-packages/pre_build/VUA_pylib/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/common/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/common/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/common/common.py +28 -0
- data/core/site-packages/pre_build/VUA_pylib/common/common.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/google_web_nl.py +156 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/google_web_nl.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/feature_file.py +121 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/feature_file.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/lexicon.py +72 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/lexicon.pyc +0 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/PKG-INFO +10 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/SOURCES.txt +7 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/dependency_links.txt +1 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/installed-files.txt +11 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/top_level.txt +1 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafDataObjectsMod.py +165 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafDataObjectsMod.pyc +0 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafParserMod.py +439 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafParserMod.pyc +0 -0
- data/core/site-packages/pre_build/VUKafParserPy/__init__.py +7 -0
- data/core/site-packages/pre_build/VUKafParserPy/__init__.pyc +0 -0
- data/core/vendor/src/crfsuite/AUTHORS +1 -0
- data/core/vendor/src/crfsuite/COPYING +27 -0
- data/core/vendor/src/crfsuite/ChangeLog +103 -0
- data/core/vendor/src/crfsuite/INSTALL +236 -0
- data/core/vendor/src/crfsuite/Makefile.am +19 -0
- data/core/vendor/src/crfsuite/Makefile.in +783 -0
- data/core/vendor/src/crfsuite/README +183 -0
- data/core/vendor/src/crfsuite/aclocal.m4 +9018 -0
- data/core/vendor/src/crfsuite/autogen.sh +38 -0
- data/core/vendor/src/crfsuite/compile +143 -0
- data/core/vendor/src/crfsuite/config.guess +1502 -0
- data/core/vendor/src/crfsuite/config.h.in +198 -0
- data/core/vendor/src/crfsuite/config.sub +1714 -0
- data/core/vendor/src/crfsuite/configure +14273 -0
- data/core/vendor/src/crfsuite/configure.in +149 -0
- data/core/vendor/src/crfsuite/crfsuite.sln +42 -0
- data/core/vendor/src/crfsuite/depcomp +630 -0
- data/core/vendor/src/crfsuite/example/chunking.py +49 -0
- data/core/vendor/src/crfsuite/example/crfutils.py +179 -0
- data/core/vendor/src/crfsuite/example/ner.py +270 -0
- data/core/vendor/src/crfsuite/example/pos.py +78 -0
- data/core/vendor/src/crfsuite/example/template.py +88 -0
- data/core/vendor/src/crfsuite/frontend/Makefile.am +29 -0
- data/core/vendor/src/crfsuite/frontend/Makefile.in +640 -0
- data/core/vendor/src/crfsuite/frontend/dump.c +116 -0
- data/core/vendor/src/crfsuite/frontend/frontend.vcxproj +129 -0
- data/core/vendor/src/crfsuite/frontend/iwa.c +273 -0
- data/core/vendor/src/crfsuite/frontend/iwa.h +65 -0
- data/core/vendor/src/crfsuite/frontend/learn.c +439 -0
- data/core/vendor/src/crfsuite/frontend/main.c +137 -0
- data/core/vendor/src/crfsuite/frontend/option.c +93 -0
- data/core/vendor/src/crfsuite/frontend/option.h +86 -0
- data/core/vendor/src/crfsuite/frontend/readdata.h +38 -0
- data/core/vendor/src/crfsuite/frontend/reader.c +136 -0
- data/core/vendor/src/crfsuite/frontend/tag.c +427 -0
- data/core/vendor/src/crfsuite/genbinary.sh.in +15 -0
- data/core/vendor/src/crfsuite/include/Makefile.am +11 -0
- data/core/vendor/src/crfsuite/include/Makefile.in +461 -0
- data/core/vendor/src/crfsuite/include/crfsuite.h +1063 -0
- data/core/vendor/src/crfsuite/include/crfsuite.hpp +555 -0
- data/core/vendor/src/crfsuite/include/crfsuite_api.hpp +400 -0
- data/core/vendor/src/crfsuite/include/os.h +61 -0
- data/core/vendor/src/crfsuite/install-sh +520 -0
- data/core/vendor/src/crfsuite/lib/cqdb/COPYING +28 -0
- data/core/vendor/src/crfsuite/lib/cqdb/Makefile.am +21 -0
- data/core/vendor/src/crfsuite/lib/cqdb/Makefile.in +549 -0
- data/core/vendor/src/crfsuite/lib/cqdb/cqdb.vcxproj +86 -0
- data/core/vendor/src/crfsuite/lib/cqdb/include/cqdb.h +524 -0
- data/core/vendor/src/crfsuite/lib/cqdb/src/cqdb.c +587 -0
- data/core/vendor/src/crfsuite/lib/cqdb/src/lookup3.c +976 -0
- data/core/vendor/src/crfsuite/lib/crf/Makefile.am +46 -0
- data/core/vendor/src/crfsuite/lib/crf/Makefile.in +721 -0
- data/core/vendor/src/crfsuite/lib/crf/crf.vcxproj +216 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d.h +353 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_context.c +705 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_encode.c +943 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_feature.c +352 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_model.c +994 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_tag.c +550 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crfsuite.c +492 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crfsuite_internal.h +236 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crfsuite_train.c +272 -0
- data/core/vendor/src/crfsuite/lib/crf/src/dataset.c +106 -0
- data/core/vendor/src/crfsuite/lib/crf/src/dictionary.c +118 -0
- data/core/vendor/src/crfsuite/lib/crf/src/holdout.c +80 -0
- data/core/vendor/src/crfsuite/lib/crf/src/logging.c +91 -0
- data/core/vendor/src/crfsuite/lib/crf/src/logging.h +48 -0
- data/core/vendor/src/crfsuite/lib/crf/src/params.c +335 -0
- data/core/vendor/src/crfsuite/lib/crf/src/params.h +80 -0
- data/core/vendor/src/crfsuite/lib/crf/src/quark.c +172 -0
- data/core/vendor/src/crfsuite/lib/crf/src/quark.h +46 -0
- data/core/vendor/src/crfsuite/lib/crf/src/rumavl.c +1107 -0
- data/core/vendor/src/crfsuite/lib/crf/src/rumavl.h +160 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_arow.c +408 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_averaged_perceptron.c +242 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_l2sgd.c +507 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_lbfgs.c +338 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_passive_aggressive.c +435 -0
- data/core/vendor/src/crfsuite/lib/crf/src/vecmath.h +341 -0
- data/core/vendor/src/crfsuite/ltmain.sh +8413 -0
- data/core/vendor/src/crfsuite/missing +376 -0
- data/core/vendor/src/crfsuite/swig/Makefile.am +13 -0
- data/core/vendor/src/crfsuite/swig/Makefile.in +365 -0
- data/core/vendor/src/crfsuite/swig/crfsuite.cpp +2 -0
- data/core/vendor/src/crfsuite/swig/export.i +32 -0
- data/core/vendor/src/crfsuite/swig/python/README +92 -0
- data/core/vendor/src/crfsuite/swig/python/crfsuite.py +329 -0
- data/core/vendor/src/crfsuite/swig/python/export_wrap.cpp +14355 -0
- data/core/vendor/src/crfsuite/swig/python/export_wrap.h +63 -0
- data/core/vendor/src/crfsuite/swig/python/prepare.sh +9 -0
- data/core/vendor/src/crfsuite/swig/python/sample_tag.py +52 -0
- data/core/vendor/src/crfsuite/swig/python/sample_train.py +68 -0
- data/core/vendor/src/crfsuite/swig/python/setup.py +44 -0
- data/core/vendor/src/crfsuite/win32/stdint.h +679 -0
- data/core/vendor/src/liblbfgs/AUTHORS +1 -0
- data/core/vendor/src/liblbfgs/COPYING +22 -0
- data/core/vendor/src/liblbfgs/ChangeLog +120 -0
- data/core/vendor/src/liblbfgs/INSTALL +231 -0
- data/core/vendor/src/liblbfgs/Makefile.am +10 -0
- data/core/vendor/src/liblbfgs/Makefile.in +638 -0
- data/core/vendor/src/liblbfgs/NEWS +0 -0
- data/core/vendor/src/liblbfgs/README +71 -0
- data/core/vendor/src/liblbfgs/aclocal.m4 +6985 -0
- data/core/vendor/src/liblbfgs/autogen.sh +38 -0
- data/core/vendor/src/liblbfgs/config.guess +1411 -0
- data/core/vendor/src/liblbfgs/config.h.in +64 -0
- data/core/vendor/src/liblbfgs/config.sub +1500 -0
- data/core/vendor/src/liblbfgs/configure +21146 -0
- data/core/vendor/src/liblbfgs/configure.in +107 -0
- data/core/vendor/src/liblbfgs/depcomp +522 -0
- data/core/vendor/src/liblbfgs/include/lbfgs.h +745 -0
- data/core/vendor/src/liblbfgs/install-sh +322 -0
- data/core/vendor/src/liblbfgs/lbfgs.sln +26 -0
- data/core/vendor/src/liblbfgs/lib/Makefile.am +24 -0
- data/core/vendor/src/liblbfgs/lib/Makefile.in +499 -0
- data/core/vendor/src/liblbfgs/lib/arithmetic_ansi.h +133 -0
- data/core/vendor/src/liblbfgs/lib/arithmetic_sse_double.h +294 -0
- data/core/vendor/src/liblbfgs/lib/arithmetic_sse_float.h +298 -0
- data/core/vendor/src/liblbfgs/lib/lbfgs.c +1371 -0
- data/core/vendor/src/liblbfgs/lib/lib.vcxproj +95 -0
- data/core/vendor/src/liblbfgs/ltmain.sh +6426 -0
- data/core/vendor/src/liblbfgs/missing +353 -0
- data/core/vendor/src/liblbfgs/sample/Makefile.am +15 -0
- data/core/vendor/src/liblbfgs/sample/Makefile.in +433 -0
- data/core/vendor/src/liblbfgs/sample/sample.c +81 -0
- data/core/vendor/src/liblbfgs/sample/sample.cpp +126 -0
- data/core/vendor/src/liblbfgs/sample/sample.vcxproj +105 -0
- data/core/vendor/src/svm_light/LICENSE.txt +59 -0
- data/core/vendor/src/svm_light/Makefile +105 -0
- data/core/vendor/src/svm_light/kernel.h +40 -0
- data/core/vendor/src/svm_light/svm_classify.c +197 -0
- data/core/vendor/src/svm_light/svm_common.c +985 -0
- data/core/vendor/src/svm_light/svm_common.h +301 -0
- data/core/vendor/src/svm_light/svm_hideo.c +1062 -0
- data/core/vendor/src/svm_light/svm_learn.c +4147 -0
- data/core/vendor/src/svm_light/svm_learn.h +169 -0
- data/core/vendor/src/svm_light/svm_learn_main.c +397 -0
- data/core/vendor/src/svm_light/svm_loqo.c +211 -0
- data/ext/hack/Rakefile +17 -0
- data/ext/hack/support.rb +88 -0
- data/lib/opener/opinion_detectors/base.rb +112 -0
- data/lib/opener/opinion_detectors/base/version.rb +7 -0
- data/lib/opener/opinion_detectors/configuration_creator.rb +86 -0
- data/lib/opener/opinion_detectors/de.rb +7 -0
- data/lib/opener/opinion_detectors/en.rb +7 -0
- data/lib/opener/opinion_detectors/it.rb +7 -0
- data/lib/opener/opinion_detectors/nl.rb +6 -0
- data/opener-opinion-detector-base.gemspec +35 -0
- data/pre_build_requirements.txt +3 -0
- metadata +374 -0
@@ -0,0 +1,242 @@
|
|
1
|
+
/*
|
2
|
+
* Online training with averaged perceptron.
|
3
|
+
*
|
4
|
+
* Copyright (c) 2007-2010, Naoaki Okazaki
|
5
|
+
* All rights reserved.
|
6
|
+
*
|
7
|
+
* Redistribution and use in source and binary forms, with or without
|
8
|
+
* modification, are permitted provided that the following conditions are met:
|
9
|
+
* * Redistributions of source code must retain the above copyright
|
10
|
+
* notice, this list of conditions and the following disclaimer.
|
11
|
+
* * Redistributions in binary form must reproduce the above copyright
|
12
|
+
* notice, this list of conditions and the following disclaimer in the
|
13
|
+
* documentation and/or other materials provided with the distribution.
|
14
|
+
* * Neither the names of the authors nor the names of its contributors
|
15
|
+
* may be used to endorse or promote products derived from this
|
16
|
+
* software without specific prior written permission.
|
17
|
+
*
|
18
|
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
19
|
+
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
20
|
+
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
21
|
+
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
22
|
+
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
23
|
+
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
24
|
+
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
25
|
+
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
26
|
+
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
27
|
+
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
28
|
+
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29
|
+
*/
|
30
|
+
|
31
|
+
/* $Id$ */
|
32
|
+
|
33
|
+
#ifdef HAVE_CONFIG_H
|
34
|
+
#include <config.h>
|
35
|
+
#endif/*HAVE_CONFIG_H*/
|
36
|
+
|
37
|
+
#include <os.h>
|
38
|
+
|
39
|
+
#include <stdio.h>
|
40
|
+
#include <stdlib.h>
|
41
|
+
#include <time.h>
|
42
|
+
|
43
|
+
#include <crfsuite.h>
|
44
|
+
#include "crfsuite_internal.h"
|
45
|
+
#include "logging.h"
|
46
|
+
#include "params.h"
|
47
|
+
#include "vecmath.h"
|
48
|
+
|
49
|
+
/**
|
50
|
+
* Training parameters (configurable with crfsuite_params_t interface).
|
51
|
+
*/
|
52
|
+
typedef struct {
|
53
|
+
int max_iterations;
|
54
|
+
floatval_t epsilon;
|
55
|
+
} training_option_t;
|
56
|
+
|
57
|
+
/**
|
58
|
+
* Internal data structure for updating (averaging) feature weights.
|
59
|
+
*/
|
60
|
+
typedef struct {
|
61
|
+
floatval_t *w;
|
62
|
+
floatval_t *ws;
|
63
|
+
floatval_t c;
|
64
|
+
floatval_t cs;
|
65
|
+
} update_data;
|
66
|
+
|
67
|
+
static void update_weights(void *instance, int fid, floatval_t value)
|
68
|
+
{
|
69
|
+
update_data *ud = (update_data*)instance;
|
70
|
+
ud->w[fid] += ud->c * value;
|
71
|
+
ud->ws[fid] += ud->cs * value;
|
72
|
+
}
|
73
|
+
|
74
|
+
static int diff(int *x, int *y, int n)
|
75
|
+
{
|
76
|
+
int i, d = 0;
|
77
|
+
for (i = 0;i < n;++i) {
|
78
|
+
if (x[i] != y[i]) {
|
79
|
+
++d;
|
80
|
+
}
|
81
|
+
}
|
82
|
+
return d;
|
83
|
+
}
|
84
|
+
|
85
|
+
static int exchange_options(crfsuite_params_t* params, training_option_t* opt, int mode)
|
86
|
+
{
|
87
|
+
BEGIN_PARAM_MAP(params, mode)
|
88
|
+
DDX_PARAM_INT(
|
89
|
+
"max_iterations", opt->max_iterations, 100,
|
90
|
+
"The maximum number of iterations."
|
91
|
+
)
|
92
|
+
DDX_PARAM_FLOAT(
|
93
|
+
"epsilon", opt->epsilon, 0.,
|
94
|
+
"The stopping criterion (the ratio of incorrect label predictions)."
|
95
|
+
)
|
96
|
+
END_PARAM_MAP()
|
97
|
+
|
98
|
+
return 0;
|
99
|
+
}
|
100
|
+
|
101
|
+
void crfsuite_train_averaged_perceptron_init(crfsuite_params_t* params)
|
102
|
+
{
|
103
|
+
exchange_options(params, NULL, 0);
|
104
|
+
}
|
105
|
+
|
106
|
+
int crfsuite_train_averaged_perceptron(
|
107
|
+
encoder_t *gm,
|
108
|
+
dataset_t *trainset,
|
109
|
+
dataset_t *testset,
|
110
|
+
crfsuite_params_t *params,
|
111
|
+
logging_t *lg,
|
112
|
+
floatval_t **ptr_w
|
113
|
+
)
|
114
|
+
{
|
115
|
+
int n, i, c, ret = 0;
|
116
|
+
int *viterbi = NULL;
|
117
|
+
floatval_t *w = NULL;
|
118
|
+
floatval_t *ws = NULL;
|
119
|
+
floatval_t *wa = NULL;
|
120
|
+
const int N = trainset->num_instances;
|
121
|
+
const int K = gm->num_features;
|
122
|
+
const int T = gm->cap_items;
|
123
|
+
training_option_t opt;
|
124
|
+
update_data ud;
|
125
|
+
clock_t begin = clock();
|
126
|
+
|
127
|
+
/* Initialize the variable. */
|
128
|
+
memset(&ud, 0, sizeof(ud));
|
129
|
+
|
130
|
+
/* Obtain parameter values. */
|
131
|
+
exchange_options(params, &opt, -1);
|
132
|
+
|
133
|
+
/* Allocate arrays. */
|
134
|
+
w = (floatval_t*)calloc(sizeof(floatval_t), K);
|
135
|
+
ws = (floatval_t*)calloc(sizeof(floatval_t), K);
|
136
|
+
wa = (floatval_t*)calloc(sizeof(floatval_t), K);
|
137
|
+
viterbi = (int*)calloc(sizeof(int), T);
|
138
|
+
if (w == NULL || ws == NULL || wa == NULL || viterbi == NULL) {
|
139
|
+
ret = CRFSUITEERR_OUTOFMEMORY;
|
140
|
+
goto error_exit;
|
141
|
+
}
|
142
|
+
|
143
|
+
/* Show the parameters. */
|
144
|
+
logging(lg, "Averaged perceptron\n");
|
145
|
+
logging(lg, "max_iterations: %d\n", opt.max_iterations);
|
146
|
+
logging(lg, "epsilon: %f\n", opt.epsilon);
|
147
|
+
logging(lg, "\n");
|
148
|
+
|
149
|
+
c = 1;
|
150
|
+
ud.w = w;
|
151
|
+
ud.ws = ws;
|
152
|
+
|
153
|
+
/* Loop for epoch. */
|
154
|
+
for (i = 0;i < opt.max_iterations;++i) {
|
155
|
+
floatval_t norm = 0., loss = 0.;
|
156
|
+
clock_t iteration_begin = clock();
|
157
|
+
|
158
|
+
/* Shuffle the instances. */
|
159
|
+
dataset_shuffle(trainset);
|
160
|
+
|
161
|
+
/* Loop for each instance. */
|
162
|
+
for (n = 0;n < N;++n) {
|
163
|
+
int d = 0;
|
164
|
+
floatval_t score;
|
165
|
+
const crfsuite_instance_t *inst = dataset_get(trainset, n);
|
166
|
+
|
167
|
+
/* Set the feature weights to the encoder. */
|
168
|
+
gm->set_weights(gm, w, 1.);
|
169
|
+
gm->set_instance(gm, inst);
|
170
|
+
|
171
|
+
/* Tag the sequence with the current model. */
|
172
|
+
gm->viterbi(gm, viterbi, &score);
|
173
|
+
|
174
|
+
/* Compute the number of different labels. */
|
175
|
+
d = diff(inst->labels, viterbi, inst->num_items);
|
176
|
+
if (0 < d) {
|
177
|
+
/*
|
178
|
+
For every feature k on the correct path:
|
179
|
+
w[k] += 1; ws[k] += c;
|
180
|
+
*/
|
181
|
+
ud.c = 1;
|
182
|
+
ud.cs = c;
|
183
|
+
gm->features_on_path(gm, inst, inst->labels, update_weights, &ud);
|
184
|
+
|
185
|
+
/*
|
186
|
+
For every feature k on the Viterbi path:
|
187
|
+
w[k] -= 1; ws[k] -= c;
|
188
|
+
*/
|
189
|
+
ud.c = -1;
|
190
|
+
ud.cs = -c;
|
191
|
+
gm->features_on_path(gm, inst, viterbi, update_weights, &ud);
|
192
|
+
|
193
|
+
/* We define the loss as the ratio of wrongly predicted labels. */
|
194
|
+
loss += d / (floatval_t)inst->num_items;
|
195
|
+
}
|
196
|
+
|
197
|
+
++c;
|
198
|
+
}
|
199
|
+
|
200
|
+
/* Perform averaging to wa. */
|
201
|
+
veccopy(wa, w, K);
|
202
|
+
vecasub(wa, 1./c, ws, K);
|
203
|
+
|
204
|
+
/* Output the progress. */
|
205
|
+
logging(lg, "***** Iteration #%d *****\n", i+1);
|
206
|
+
logging(lg, "Loss: %f\n", loss);
|
207
|
+
logging(lg, "Feature norm: %f\n", sqrt(vecdot(wa, wa, K)));
|
208
|
+
logging(lg, "Seconds required for this iteration: %.3f\n", (clock() - iteration_begin) / (double)CLOCKS_PER_SEC);
|
209
|
+
|
210
|
+
/* Holdout evaluation if necessary. */
|
211
|
+
if (testset != NULL) {
|
212
|
+
holdout_evaluation(gm, testset, wa, lg);
|
213
|
+
}
|
214
|
+
|
215
|
+
logging(lg, "\n");
|
216
|
+
|
217
|
+
/* Convergence test. */
|
218
|
+
if (loss / N < opt.epsilon) {
|
219
|
+
logging(lg, "Terminated with the stopping criterion\n");
|
220
|
+
logging(lg, "\n");
|
221
|
+
break;
|
222
|
+
}
|
223
|
+
}
|
224
|
+
|
225
|
+
logging(lg, "Total seconds required for training: %.3f\n", (clock() - begin) / (double)CLOCKS_PER_SEC);
|
226
|
+
logging(lg, "\n");
|
227
|
+
|
228
|
+
free(viterbi);
|
229
|
+
free(ws);
|
230
|
+
free(w);
|
231
|
+
*ptr_w = wa;
|
232
|
+
return ret;
|
233
|
+
|
234
|
+
error_exit:
|
235
|
+
free(viterbi);
|
236
|
+
free(wa);
|
237
|
+
free(ws);
|
238
|
+
free(w);
|
239
|
+
*ptr_w = NULL;
|
240
|
+
|
241
|
+
return ret;
|
242
|
+
}
|
@@ -0,0 +1,507 @@
|
|
1
|
+
/*
|
2
|
+
* Online training with L2-regularized Stochastic Gradient Descent (SGD).
|
3
|
+
*
|
4
|
+
* Copyright (c) 2007-2010, Naoaki Okazaki
|
5
|
+
* All rights reserved.
|
6
|
+
*
|
7
|
+
* Redistribution and use in source and binary forms, with or without
|
8
|
+
* modification, are permitted provided that the following conditions are met:
|
9
|
+
* * Redistributions of source code must retain the above copyright
|
10
|
+
* notice, this list of conditions and the following disclaimer.
|
11
|
+
* * Redistributions in binary form must reproduce the above copyright
|
12
|
+
* notice, this list of conditions and the following disclaimer in the
|
13
|
+
* documentation and/or other materials provided with the distribution.
|
14
|
+
* * Neither the names of the authors nor the names of its contributors
|
15
|
+
* may be used to endorse or promote products derived from this
|
16
|
+
* software without specific prior written permission.
|
17
|
+
*
|
18
|
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
19
|
+
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
20
|
+
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
21
|
+
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
22
|
+
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
23
|
+
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
24
|
+
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
25
|
+
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
26
|
+
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
27
|
+
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
28
|
+
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29
|
+
*/
|
30
|
+
|
31
|
+
/* $Id$ */
|
32
|
+
|
33
|
+
/*
|
34
|
+
SGD for L2-regularized MAP estimation.
|
35
|
+
|
36
|
+
The iterative algorithm is inspired by Pegasos:
|
37
|
+
|
38
|
+
Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro.
|
39
|
+
Pegasos: Primal Estimated sub-GrAdient SOlver for SVM.
|
40
|
+
In Proc. of ICML 2007, pp 807-814, 2007.
|
41
|
+
|
42
|
+
The calibration strategy is inspired by the implementation of sgd:
|
43
|
+
http://leon.bottou.org/projects/sgd
|
44
|
+
written by Léon Bottou.
|
45
|
+
|
46
|
+
The objective function to minimize is:
|
47
|
+
|
48
|
+
f(w) = (lambda/2) * ||w||^2 + (1/N) * \sum_i^N log P^i(y|x)
|
49
|
+
lambda = 2 * C / N
|
50
|
+
|
51
|
+
The original version of the Pegasos algorithm.
|
52
|
+
|
53
|
+
0) Initialization
|
54
|
+
t = t0
|
55
|
+
k = [the batch size]
|
56
|
+
1) Computing the learning rate (eta).
|
57
|
+
eta = 1 / (lambda * t)
|
58
|
+
2) Updating feature weights.
|
59
|
+
w = (1 - eta * lambda) w - (eta / k) \sum_i (oexp - mexp)
|
60
|
+
3) Projecting feature weights within an L2-ball.
|
61
|
+
w = min{1, (1/sqrt(lambda))/||w||} * w
|
62
|
+
4) Goto 1 until convergence.
|
63
|
+
|
64
|
+
This implementation omit the step 3) because it makes the source code
|
65
|
+
tricky (in order to maintain L2-norm of feature weights at any time) and
|
66
|
+
because the project step does not have a strong impact to the quality of
|
67
|
+
solution.
|
68
|
+
|
69
|
+
A naive implementation requires O(K) computations for steps 2,
|
70
|
+
where K is the total number of features. This code implements the procedure
|
71
|
+
in an efficient way:
|
72
|
+
|
73
|
+
0) Initialization
|
74
|
+
decay = 1
|
75
|
+
1) Computing various factors
|
76
|
+
eta = 1 / (lambda * t)
|
77
|
+
decay *= (1 - eta * lambda)
|
78
|
+
gain = (eta / k) / decay
|
79
|
+
2) Updating feature weights
|
80
|
+
Updating feature weights from observation expectation:
|
81
|
+
delta = gain * (1.0) * f(x,y)
|
82
|
+
w += delta
|
83
|
+
Updating feature weights from model expectation:
|
84
|
+
delta = gain * (-P(y|x)) * f(x,y)
|
85
|
+
w += delta
|
86
|
+
4) Goto 1 until convergence.
|
87
|
+
*/
|
88
|
+
|
89
|
+
|
90
|
+
#ifdef HAVE_CONFIG_H
|
91
|
+
#include <config.h>
|
92
|
+
#endif/*HAVE_CONFIG_H*/
|
93
|
+
|
94
|
+
#include <os.h>
|
95
|
+
|
96
|
+
#include <float.h>
|
97
|
+
#include <stdio.h>
|
98
|
+
#include <stdlib.h>
|
99
|
+
#include <string.h>
|
100
|
+
#include <time.h>
|
101
|
+
#include <math.h>
|
102
|
+
|
103
|
+
#include <crfsuite.h>
|
104
|
+
#include "crfsuite_internal.h"
|
105
|
+
|
106
|
+
#include "logging.h"
|
107
|
+
#include "params.h"
|
108
|
+
#include "crf1d.h"
|
109
|
+
#include "vecmath.h"
|
110
|
+
|
111
|
+
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
112
|
+
|
113
|
+
typedef struct {
|
114
|
+
floatval_t c2;
|
115
|
+
floatval_t lambda;
|
116
|
+
floatval_t t0;
|
117
|
+
int max_iterations;
|
118
|
+
int period;
|
119
|
+
floatval_t delta;
|
120
|
+
floatval_t calibration_eta;
|
121
|
+
floatval_t calibration_rate;
|
122
|
+
int calibration_samples;
|
123
|
+
int calibration_candidates;
|
124
|
+
int calibration_max_trials;
|
125
|
+
} training_option_t;
|
126
|
+
|
127
|
+
static int l2sgd(
|
128
|
+
encoder_t *gm,
|
129
|
+
dataset_t *trainset,
|
130
|
+
dataset_t *testset,
|
131
|
+
floatval_t *w,
|
132
|
+
logging_t *lg,
|
133
|
+
const int N,
|
134
|
+
const floatval_t t0,
|
135
|
+
const floatval_t lambda,
|
136
|
+
const int num_epochs,
|
137
|
+
int calibration,
|
138
|
+
int period,
|
139
|
+
const floatval_t epsilon,
|
140
|
+
floatval_t *ptr_loss
|
141
|
+
)
|
142
|
+
{
|
143
|
+
int i, epoch, ret = 0;
|
144
|
+
floatval_t t = 0;
|
145
|
+
floatval_t loss = 0, sum_loss = 0;
|
146
|
+
floatval_t best_sum_loss = DBL_MAX;
|
147
|
+
floatval_t eta, gain, decay = 1.;
|
148
|
+
floatval_t improvement = 0.;
|
149
|
+
floatval_t norm2 = 0.;
|
150
|
+
floatval_t *pf = NULL;
|
151
|
+
floatval_t *best_w = NULL;
|
152
|
+
clock_t clk_prev, clk_begin = clock();
|
153
|
+
const int K = gm->num_features;
|
154
|
+
|
155
|
+
if (!calibration) {
|
156
|
+
pf = (floatval_t*)malloc(sizeof(floatval_t) * period);
|
157
|
+
best_w = (floatval_t*)calloc(K, sizeof(floatval_t));
|
158
|
+
if (pf == NULL || best_w == NULL) {
|
159
|
+
ret = CRFSUITEERR_OUTOFMEMORY;
|
160
|
+
goto error_exit;
|
161
|
+
}
|
162
|
+
}
|
163
|
+
|
164
|
+
/* Initialize the feature weights. */
|
165
|
+
vecset(w, 0, K);
|
166
|
+
|
167
|
+
/* Loop for epochs. */
|
168
|
+
for (epoch = 1;epoch <= num_epochs;++epoch) {
|
169
|
+
clk_prev = clock();
|
170
|
+
|
171
|
+
if (!calibration) {
|
172
|
+
logging(lg, "***** Epoch #%d *****\n", epoch);
|
173
|
+
/* Shuffle the training instances. */
|
174
|
+
dataset_shuffle(trainset);
|
175
|
+
}
|
176
|
+
|
177
|
+
/* Loop for instances. */
|
178
|
+
sum_loss = 0.;
|
179
|
+
for (i = 0;i < N;++i) {
|
180
|
+
const crfsuite_instance_t *inst = dataset_get(trainset, i);
|
181
|
+
|
182
|
+
/* Update various factors. */
|
183
|
+
eta = 1 / (lambda * (t0 + t));
|
184
|
+
decay *= (1.0 - eta * lambda);
|
185
|
+
gain = eta / decay;
|
186
|
+
|
187
|
+
/* Compute the loss and gradients for the instance. */
|
188
|
+
gm->set_weights(gm, w, decay);
|
189
|
+
gm->set_instance(gm, inst);
|
190
|
+
gm->objective_and_gradients(gm, &loss, w, gain);
|
191
|
+
|
192
|
+
sum_loss += loss;
|
193
|
+
++t;
|
194
|
+
}
|
195
|
+
|
196
|
+
/* Terminate when the loss is abnormal (NaN, -Inf, +Inf). */
|
197
|
+
if (!isfinite(loss)) {
|
198
|
+
logging(lg, "ERROR: overflow loss\n");
|
199
|
+
ret = CRFSUITEERR_OVERFLOW;
|
200
|
+
sum_loss = loss;
|
201
|
+
goto error_exit;
|
202
|
+
}
|
203
|
+
|
204
|
+
/* Scale the feature weights. */
|
205
|
+
vecscale(w, decay, K);
|
206
|
+
decay = 1.;
|
207
|
+
|
208
|
+
/* Include the L2 norm of feature weights to the objective. */
|
209
|
+
/* The factor N is necessary because lambda = 2 * C / N. */
|
210
|
+
norm2 = vecdot(w, w, K);
|
211
|
+
sum_loss += 0.5 * lambda * norm2 * N;
|
212
|
+
|
213
|
+
/* One epoch finished. */
|
214
|
+
if (!calibration) {
|
215
|
+
/* Check if the current epoch is the best. */
|
216
|
+
if (sum_loss < best_sum_loss) {
|
217
|
+
/* Store the feature weights to best_w. */
|
218
|
+
best_sum_loss = sum_loss;
|
219
|
+
veccopy(best_w, w, K);
|
220
|
+
}
|
221
|
+
|
222
|
+
/* We don't test the stopping criterion while period < epoch. */
|
223
|
+
if (period < epoch) {
|
224
|
+
improvement = (pf[(epoch-1) % period] - sum_loss) / sum_loss;
|
225
|
+
} else {
|
226
|
+
improvement = epsilon;
|
227
|
+
}
|
228
|
+
|
229
|
+
/* Store the current value of the objective function. */
|
230
|
+
pf[(epoch-1) % period] = sum_loss;
|
231
|
+
|
232
|
+
logging(lg, "Loss: %f\n", sum_loss);
|
233
|
+
if (period < epoch) {
|
234
|
+
logging(lg, "Improvement ratio: %f\n", improvement);
|
235
|
+
}
|
236
|
+
logging(lg, "Feature L2-norm: %f\n", sqrt(norm2));
|
237
|
+
logging(lg, "Learning rate (eta): %f\n", eta);
|
238
|
+
logging(lg, "Total number of feature updates: %.0f\n", t);
|
239
|
+
logging(lg, "Seconds required for this iteration: %.3f\n", (clock() - clk_prev) / (double)CLOCKS_PER_SEC);
|
240
|
+
|
241
|
+
/* Holdout evaluation if necessary. */
|
242
|
+
if (testset != NULL) {
|
243
|
+
holdout_evaluation(gm, testset, w, lg);
|
244
|
+
}
|
245
|
+
logging(lg, "\n");
|
246
|
+
|
247
|
+
/* Check for the stopping criterion. */
|
248
|
+
if (improvement < epsilon) {
|
249
|
+
ret = 0;
|
250
|
+
break;
|
251
|
+
}
|
252
|
+
}
|
253
|
+
}
|
254
|
+
|
255
|
+
/* Output the optimization result. */
|
256
|
+
if (!calibration) {
|
257
|
+
if (ret == 0) {
|
258
|
+
if (epoch < num_epochs) {
|
259
|
+
logging(lg, "SGD terminated with the stopping criteria\n");
|
260
|
+
} else {
|
261
|
+
logging(lg, "SGD terminated with the maximum number of iterations\n");
|
262
|
+
}
|
263
|
+
} else {
|
264
|
+
logging(lg, "SGD terminated with error code (%d)\n", ret);
|
265
|
+
}
|
266
|
+
}
|
267
|
+
|
268
|
+
/* Restore the best weights. */
|
269
|
+
if (best_w != NULL) {
|
270
|
+
sum_loss = best_sum_loss;
|
271
|
+
veccopy(w, best_w, K);
|
272
|
+
}
|
273
|
+
|
274
|
+
error_exit:
|
275
|
+
free(best_w);
|
276
|
+
free(pf);
|
277
|
+
if (ptr_loss != NULL) {
|
278
|
+
*ptr_loss = sum_loss;
|
279
|
+
}
|
280
|
+
return ret;
|
281
|
+
}
|
282
|
+
|
283
|
+
static floatval_t
|
284
|
+
l2sgd_calibration(
|
285
|
+
encoder_t *gm,
|
286
|
+
dataset_t *ds,
|
287
|
+
floatval_t *w,
|
288
|
+
logging_t *lg,
|
289
|
+
const training_option_t* opt
|
290
|
+
)
|
291
|
+
{
|
292
|
+
int i, s;
|
293
|
+
int dec = 0, ok, trials = 1;
|
294
|
+
int num = opt->calibration_candidates;
|
295
|
+
clock_t clk_begin = clock();
|
296
|
+
floatval_t loss = 0.;
|
297
|
+
floatval_t init_loss = 0.;
|
298
|
+
floatval_t best_loss = DBL_MAX;
|
299
|
+
floatval_t eta = opt->calibration_eta;
|
300
|
+
floatval_t best_eta = opt->calibration_eta;
|
301
|
+
const int N = ds->num_instances;
|
302
|
+
const int S = MIN(N, opt->calibration_samples);
|
303
|
+
const int K = gm->num_features;
|
304
|
+
const floatval_t init_eta = opt->calibration_eta;
|
305
|
+
const floatval_t rate = opt->calibration_rate;
|
306
|
+
const floatval_t lambda = opt->lambda;
|
307
|
+
|
308
|
+
logging(lg, "Calibrating the learning rate (eta)\n");
|
309
|
+
logging(lg, "calibration.eta: %f\n", eta);
|
310
|
+
logging(lg, "calibration.rate: %f\n", rate);
|
311
|
+
logging(lg, "calibration.samples: %d\n", S);
|
312
|
+
logging(lg, "calibration.candidates: %d\n", num);
|
313
|
+
logging(lg, "calibration.max_trials: %d\n", opt->calibration_max_trials);
|
314
|
+
|
315
|
+
/* Initialize a permutation that shuffles the instances. */
|
316
|
+
dataset_shuffle(ds);
|
317
|
+
|
318
|
+
/* Initialize feature weights as zero. */
|
319
|
+
vecset(w, 0, K);
|
320
|
+
|
321
|
+
/* Compute the initial loss. */
|
322
|
+
gm->set_weights(gm, w, 1.);
|
323
|
+
init_loss = 0;
|
324
|
+
for (i = 0;i < S;++i) {
|
325
|
+
floatval_t score;
|
326
|
+
const crfsuite_instance_t *inst = dataset_get(ds, i);
|
327
|
+
gm->set_instance(gm, inst);
|
328
|
+
gm->score(gm, inst->labels, &score);
|
329
|
+
init_loss -= score;
|
330
|
+
gm->partition_factor(gm, &score);
|
331
|
+
init_loss += score;
|
332
|
+
}
|
333
|
+
init_loss += 0.5 * lambda * vecdot(w, w, K) * N;
|
334
|
+
logging(lg, "Initial loss: %f\n", init_loss);
|
335
|
+
|
336
|
+
while (num > 0 || !dec) {
|
337
|
+
logging(lg, "Trial #%d (eta = %f): ", trials, eta);
|
338
|
+
|
339
|
+
/* Perform SGD for one epoch. */
|
340
|
+
l2sgd(
|
341
|
+
gm,
|
342
|
+
ds,
|
343
|
+
NULL,
|
344
|
+
w,
|
345
|
+
lg,
|
346
|
+
S, 1.0 / (lambda * eta), lambda, 1, 1, 1, 0., &loss);
|
347
|
+
|
348
|
+
/* Make sure that the learning rate decreases the log-likelihood. */
|
349
|
+
ok = isfinite(loss) && (loss < init_loss);
|
350
|
+
if (ok) {
|
351
|
+
logging(lg, "%f\n", loss);
|
352
|
+
--num;
|
353
|
+
} else {
|
354
|
+
logging(lg, "%f (worse)\n", loss);
|
355
|
+
}
|
356
|
+
|
357
|
+
if (isfinite(loss) && loss < best_loss) {
|
358
|
+
best_loss = loss;
|
359
|
+
best_eta = eta;
|
360
|
+
}
|
361
|
+
|
362
|
+
if (!dec) {
|
363
|
+
if (ok && 0 < num) {
|
364
|
+
eta *= rate;
|
365
|
+
} else {
|
366
|
+
dec = 1;
|
367
|
+
num = opt->calibration_candidates;
|
368
|
+
eta = init_eta / rate;
|
369
|
+
}
|
370
|
+
} else {
|
371
|
+
eta /= rate;
|
372
|
+
}
|
373
|
+
|
374
|
+
++trials;
|
375
|
+
if (opt->calibration_max_trials <= trials) {
|
376
|
+
break;
|
377
|
+
}
|
378
|
+
}
|
379
|
+
|
380
|
+
eta = best_eta;
|
381
|
+
logging(lg, "Best learning rate (eta): %f\n", eta);
|
382
|
+
logging(lg, "Seconds required: %.3f\n", (clock() - clk_begin) / (double)CLOCKS_PER_SEC);
|
383
|
+
logging(lg, "\n");
|
384
|
+
|
385
|
+
return 1.0 / (lambda * eta);
|
386
|
+
}
|
387
|
+
|
388
|
+
int exchange_options(crfsuite_params_t* params, training_option_t* opt, int mode)
|
389
|
+
{
|
390
|
+
BEGIN_PARAM_MAP(params, mode)
|
391
|
+
DDX_PARAM_FLOAT(
|
392
|
+
"c2", opt->c2, 1.,
|
393
|
+
"Coefficient for L2 regularization."
|
394
|
+
)
|
395
|
+
DDX_PARAM_INT(
|
396
|
+
"max_iterations", opt->max_iterations, 1000,
|
397
|
+
"The maximum number of iterations (epochs) for SGD optimization."
|
398
|
+
)
|
399
|
+
DDX_PARAM_INT(
|
400
|
+
"period", opt->period, 10,
|
401
|
+
"The duration of iterations to test the stopping criterion."
|
402
|
+
)
|
403
|
+
DDX_PARAM_FLOAT(
|
404
|
+
"delta", opt->delta, 1e-6,
|
405
|
+
"The threshold for the stopping criterion; an optimization process stops when\n"
|
406
|
+
"the improvement of the log likelihood over the last ${period} iterations is no\n"
|
407
|
+
"greater than this threshold."
|
408
|
+
)
|
409
|
+
DDX_PARAM_FLOAT(
|
410
|
+
"calibration.eta", opt->calibration_eta, 0.1,
|
411
|
+
"The initial value of learning rate (eta) used for calibration."
|
412
|
+
)
|
413
|
+
DDX_PARAM_FLOAT(
|
414
|
+
"calibration.rate", opt->calibration_rate, 2.,
|
415
|
+
"The rate of increase/decrease of learning rate for calibration."
|
416
|
+
)
|
417
|
+
DDX_PARAM_INT(
|
418
|
+
"calibration.samples", opt->calibration_samples, 1000,
|
419
|
+
"The number of instances used for calibration."
|
420
|
+
)
|
421
|
+
DDX_PARAM_INT(
|
422
|
+
"calibration.candidates", opt->calibration_candidates, 10,
|
423
|
+
"The number of candidates of learning rate."
|
424
|
+
)
|
425
|
+
DDX_PARAM_INT(
|
426
|
+
"calibration.max_trials", opt->calibration_max_trials, 20,
|
427
|
+
"The maximum number of trials of learning rates for calibration."
|
428
|
+
)
|
429
|
+
END_PARAM_MAP()
|
430
|
+
|
431
|
+
return 0;
|
432
|
+
}
|
433
|
+
|
434
|
+
void crfsuite_train_l2sgd_init(crfsuite_params_t* params)
|
435
|
+
{
|
436
|
+
exchange_options(params, NULL, 0);
|
437
|
+
}
|
438
|
+
|
439
|
+
int crfsuite_train_l2sgd(
|
440
|
+
encoder_t *gm,
|
441
|
+
dataset_t *trainset,
|
442
|
+
dataset_t *testset,
|
443
|
+
crfsuite_params_t *params,
|
444
|
+
logging_t *lg,
|
445
|
+
floatval_t **ptr_w
|
446
|
+
)
|
447
|
+
{
|
448
|
+
int ret = 0;
|
449
|
+
floatval_t *w = NULL;
|
450
|
+
clock_t clk_begin;
|
451
|
+
floatval_t loss = 0;
|
452
|
+
const int N = trainset->num_instances;
|
453
|
+
const int K = gm->num_features;
|
454
|
+
const int T = gm->cap_items;
|
455
|
+
training_option_t opt;
|
456
|
+
|
457
|
+
/* Obtain parameter values. */
|
458
|
+
exchange_options(params, &opt, -1);
|
459
|
+
|
460
|
+
/* Allocate arrays. */
|
461
|
+
w = (floatval_t*)calloc(sizeof(floatval_t), K);
|
462
|
+
if (w == NULL) {
|
463
|
+
ret = CRFSUITEERR_OUTOFMEMORY;
|
464
|
+
goto error_exit;
|
465
|
+
}
|
466
|
+
|
467
|
+
opt.lambda = 2. * opt.c2 / N;
|
468
|
+
|
469
|
+
logging(lg, "Stochastic Gradient Descent (SGD)\n");
|
470
|
+
logging(lg, "c2: %f\n", opt.c2);
|
471
|
+
logging(lg, "max_iterations: %d\n", opt.max_iterations);
|
472
|
+
logging(lg, "period: %d\n", opt.period);
|
473
|
+
logging(lg, "delta: %f\n", opt.delta);
|
474
|
+
logging(lg, "\n");
|
475
|
+
clk_begin = clock();
|
476
|
+
|
477
|
+
/* Calibrate the training rate (eta). */
|
478
|
+
opt.t0 = l2sgd_calibration(gm, trainset, w, lg, &opt);
|
479
|
+
|
480
|
+
/* Perform stochastic gradient descent. */
|
481
|
+
ret = l2sgd(
|
482
|
+
gm,
|
483
|
+
trainset,
|
484
|
+
testset,
|
485
|
+
w,
|
486
|
+
lg,
|
487
|
+
N,
|
488
|
+
opt.t0,
|
489
|
+
opt.lambda,
|
490
|
+
opt.max_iterations,
|
491
|
+
0,
|
492
|
+
opt.period,
|
493
|
+
opt.delta,
|
494
|
+
&loss
|
495
|
+
);
|
496
|
+
|
497
|
+
logging(lg, "Loss: %f\n", loss);
|
498
|
+
logging(lg, "Total seconds required for training: %.3f\n", (clock() - clk_begin) / (double)CLOCKS_PER_SEC);
|
499
|
+
logging(lg, "\n");
|
500
|
+
|
501
|
+
*ptr_w = w;
|
502
|
+
return ret;
|
503
|
+
|
504
|
+
error_exit:
|
505
|
+
free(w);
|
506
|
+
return ret;
|
507
|
+
}
|