opener-opinion-detector-base 2.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/README.md +101 -0
- data/bin/opinion-detector-base +19 -0
- data/core/annotation.cfg.erb +9 -0
- data/core/packages/KafNafParser-1.4.tar.gz +0 -0
- data/core/packages/VUA_pylib-1.5.tar.gz +0 -0
- data/core/python-scripts/LICENSE +339 -0
- data/core/python-scripts/README.md +226 -0
- data/core/python-scripts/classify_kaf_naf_file.py +499 -0
- data/core/python-scripts/cross_validation.py +634 -0
- data/core/python-scripts/generate_folds.py +134 -0
- data/core/python-scripts/models.cfg +10 -0
- data/core/python-scripts/my_templates/README +33 -0
- data/core/python-scripts/my_templates/templates_exp.only0.txt +6 -0
- data/core/python-scripts/my_templates/templates_exp.pol0.txt +10 -0
- data/core/python-scripts/my_templates/templates_exp.red.txt +7 -0
- data/core/python-scripts/my_templates/templates_exp.txt +10 -0
- data/core/python-scripts/my_templates/templates_holder.only0.txt +11 -0
- data/core/python-scripts/my_templates/templates_holder.red.txt +9 -0
- data/core/python-scripts/my_templates/templates_holder.txt +10 -0
- data/core/python-scripts/my_templates/templates_target.only0.txt +11 -0
- data/core/python-scripts/my_templates/templates_target.red.txt +9 -0
- data/core/python-scripts/my_templates/templates_target.txt +10 -0
- data/core/python-scripts/run_all_experiments.sh +49 -0
- data/core/python-scripts/run_basic.py +20 -0
- data/core/python-scripts/run_experiment.sh +42 -0
- data/core/python-scripts/scripts/__init__.py +1 -0
- data/core/python-scripts/scripts/config_manager.py +314 -0
- data/core/python-scripts/scripts/crfutils.py +215 -0
- data/core/python-scripts/scripts/extract_feats_relations.py +295 -0
- data/core/python-scripts/scripts/extract_features.py +376 -0
- data/core/python-scripts/scripts/feats_to_crf.exp.py +105 -0
- data/core/python-scripts/scripts/lexicons.py +44 -0
- data/core/python-scripts/scripts/link_entities_distance.py +77 -0
- data/core/python-scripts/scripts/relation_classifier.py +250 -0
- data/core/python-scripts/train.py +566 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/PKG-INFO +10 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/SOURCES.txt +22 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/dependency_links.txt +1 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/installed-files.txt +47 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/top_level.txt +1 -0
- data/core/site-packages/pre_build/KafNafParser/KafNafParserMod.py +390 -0
- data/core/site-packages/pre_build/KafNafParser/KafNafParserMod.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/__init__.py +14 -0
- data/core/site-packages/pre_build/KafNafParser/__init__.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/constituency_data.py +125 -0
- data/core/site-packages/pre_build/KafNafParser/constituency_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/coreference_data.py +52 -0
- data/core/site-packages/pre_build/KafNafParser/coreference_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/dependency_data.py +78 -0
- data/core/site-packages/pre_build/KafNafParser/dependency_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/entity_data.py +59 -0
- data/core/site-packages/pre_build/KafNafParser/entity_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/external_references_data.py +41 -0
- data/core/site-packages/pre_build/KafNafParser/external_references_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/__init__.py +2 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/__init__.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/constituency.py +205 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/constituency.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/dependency.py +309 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/dependency.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/features_data.py +131 -0
- data/core/site-packages/pre_build/KafNafParser/features_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/header_data.py +127 -0
- data/core/site-packages/pre_build/KafNafParser/header_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/opinion_data.py +211 -0
- data/core/site-packages/pre_build/KafNafParser/opinion_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/references_data.py +23 -0
- data/core/site-packages/pre_build/KafNafParser/references_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/span_data.py +63 -0
- data/core/site-packages/pre_build/KafNafParser/span_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/term_data.py +111 -0
- data/core/site-packages/pre_build/KafNafParser/term_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/term_sentiment_data.py +42 -0
- data/core/site-packages/pre_build/KafNafParser/term_sentiment_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/text_data.py +99 -0
- data/core/site-packages/pre_build/KafNafParser/text_data.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/PKG-INFO +10 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/SOURCES.txt +14 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/dependency_links.txt +1 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/installed-files.txt +23 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/top_level.txt +1 -0
- data/core/site-packages/pre_build/VUA_pylib/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/common/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/common/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/common/common.py +28 -0
- data/core/site-packages/pre_build/VUA_pylib/common/common.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/google_web_nl.py +156 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/google_web_nl.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/feature_file.py +121 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/feature_file.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/lexicon.py +72 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/lexicon.pyc +0 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/PKG-INFO +10 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/SOURCES.txt +7 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/dependency_links.txt +1 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/installed-files.txt +11 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/top_level.txt +1 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafDataObjectsMod.py +165 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafDataObjectsMod.pyc +0 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafParserMod.py +439 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafParserMod.pyc +0 -0
- data/core/site-packages/pre_build/VUKafParserPy/__init__.py +7 -0
- data/core/site-packages/pre_build/VUKafParserPy/__init__.pyc +0 -0
- data/core/vendor/src/crfsuite/AUTHORS +1 -0
- data/core/vendor/src/crfsuite/COPYING +27 -0
- data/core/vendor/src/crfsuite/ChangeLog +103 -0
- data/core/vendor/src/crfsuite/INSTALL +236 -0
- data/core/vendor/src/crfsuite/Makefile.am +19 -0
- data/core/vendor/src/crfsuite/Makefile.in +783 -0
- data/core/vendor/src/crfsuite/README +183 -0
- data/core/vendor/src/crfsuite/aclocal.m4 +9018 -0
- data/core/vendor/src/crfsuite/autogen.sh +38 -0
- data/core/vendor/src/crfsuite/compile +143 -0
- data/core/vendor/src/crfsuite/config.guess +1502 -0
- data/core/vendor/src/crfsuite/config.h.in +198 -0
- data/core/vendor/src/crfsuite/config.sub +1714 -0
- data/core/vendor/src/crfsuite/configure +14273 -0
- data/core/vendor/src/crfsuite/configure.in +149 -0
- data/core/vendor/src/crfsuite/crfsuite.sln +42 -0
- data/core/vendor/src/crfsuite/depcomp +630 -0
- data/core/vendor/src/crfsuite/example/chunking.py +49 -0
- data/core/vendor/src/crfsuite/example/crfutils.py +179 -0
- data/core/vendor/src/crfsuite/example/ner.py +270 -0
- data/core/vendor/src/crfsuite/example/pos.py +78 -0
- data/core/vendor/src/crfsuite/example/template.py +88 -0
- data/core/vendor/src/crfsuite/frontend/Makefile.am +29 -0
- data/core/vendor/src/crfsuite/frontend/Makefile.in +640 -0
- data/core/vendor/src/crfsuite/frontend/dump.c +116 -0
- data/core/vendor/src/crfsuite/frontend/frontend.vcxproj +129 -0
- data/core/vendor/src/crfsuite/frontend/iwa.c +273 -0
- data/core/vendor/src/crfsuite/frontend/iwa.h +65 -0
- data/core/vendor/src/crfsuite/frontend/learn.c +439 -0
- data/core/vendor/src/crfsuite/frontend/main.c +137 -0
- data/core/vendor/src/crfsuite/frontend/option.c +93 -0
- data/core/vendor/src/crfsuite/frontend/option.h +86 -0
- data/core/vendor/src/crfsuite/frontend/readdata.h +38 -0
- data/core/vendor/src/crfsuite/frontend/reader.c +136 -0
- data/core/vendor/src/crfsuite/frontend/tag.c +427 -0
- data/core/vendor/src/crfsuite/genbinary.sh.in +15 -0
- data/core/vendor/src/crfsuite/include/Makefile.am +11 -0
- data/core/vendor/src/crfsuite/include/Makefile.in +461 -0
- data/core/vendor/src/crfsuite/include/crfsuite.h +1063 -0
- data/core/vendor/src/crfsuite/include/crfsuite.hpp +555 -0
- data/core/vendor/src/crfsuite/include/crfsuite_api.hpp +400 -0
- data/core/vendor/src/crfsuite/include/os.h +61 -0
- data/core/vendor/src/crfsuite/install-sh +520 -0
- data/core/vendor/src/crfsuite/lib/cqdb/COPYING +28 -0
- data/core/vendor/src/crfsuite/lib/cqdb/Makefile.am +21 -0
- data/core/vendor/src/crfsuite/lib/cqdb/Makefile.in +549 -0
- data/core/vendor/src/crfsuite/lib/cqdb/cqdb.vcxproj +86 -0
- data/core/vendor/src/crfsuite/lib/cqdb/include/cqdb.h +524 -0
- data/core/vendor/src/crfsuite/lib/cqdb/src/cqdb.c +587 -0
- data/core/vendor/src/crfsuite/lib/cqdb/src/lookup3.c +976 -0
- data/core/vendor/src/crfsuite/lib/crf/Makefile.am +46 -0
- data/core/vendor/src/crfsuite/lib/crf/Makefile.in +721 -0
- data/core/vendor/src/crfsuite/lib/crf/crf.vcxproj +216 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d.h +353 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_context.c +705 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_encode.c +943 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_feature.c +352 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_model.c +994 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_tag.c +550 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crfsuite.c +492 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crfsuite_internal.h +236 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crfsuite_train.c +272 -0
- data/core/vendor/src/crfsuite/lib/crf/src/dataset.c +106 -0
- data/core/vendor/src/crfsuite/lib/crf/src/dictionary.c +118 -0
- data/core/vendor/src/crfsuite/lib/crf/src/holdout.c +80 -0
- data/core/vendor/src/crfsuite/lib/crf/src/logging.c +91 -0
- data/core/vendor/src/crfsuite/lib/crf/src/logging.h +48 -0
- data/core/vendor/src/crfsuite/lib/crf/src/params.c +335 -0
- data/core/vendor/src/crfsuite/lib/crf/src/params.h +80 -0
- data/core/vendor/src/crfsuite/lib/crf/src/quark.c +172 -0
- data/core/vendor/src/crfsuite/lib/crf/src/quark.h +46 -0
- data/core/vendor/src/crfsuite/lib/crf/src/rumavl.c +1107 -0
- data/core/vendor/src/crfsuite/lib/crf/src/rumavl.h +160 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_arow.c +408 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_averaged_perceptron.c +242 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_l2sgd.c +507 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_lbfgs.c +338 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_passive_aggressive.c +435 -0
- data/core/vendor/src/crfsuite/lib/crf/src/vecmath.h +341 -0
- data/core/vendor/src/crfsuite/ltmain.sh +8413 -0
- data/core/vendor/src/crfsuite/missing +376 -0
- data/core/vendor/src/crfsuite/swig/Makefile.am +13 -0
- data/core/vendor/src/crfsuite/swig/Makefile.in +365 -0
- data/core/vendor/src/crfsuite/swig/crfsuite.cpp +2 -0
- data/core/vendor/src/crfsuite/swig/export.i +32 -0
- data/core/vendor/src/crfsuite/swig/python/README +92 -0
- data/core/vendor/src/crfsuite/swig/python/crfsuite.py +329 -0
- data/core/vendor/src/crfsuite/swig/python/export_wrap.cpp +14355 -0
- data/core/vendor/src/crfsuite/swig/python/export_wrap.h +63 -0
- data/core/vendor/src/crfsuite/swig/python/prepare.sh +9 -0
- data/core/vendor/src/crfsuite/swig/python/sample_tag.py +52 -0
- data/core/vendor/src/crfsuite/swig/python/sample_train.py +68 -0
- data/core/vendor/src/crfsuite/swig/python/setup.py +44 -0
- data/core/vendor/src/crfsuite/win32/stdint.h +679 -0
- data/core/vendor/src/liblbfgs/AUTHORS +1 -0
- data/core/vendor/src/liblbfgs/COPYING +22 -0
- data/core/vendor/src/liblbfgs/ChangeLog +120 -0
- data/core/vendor/src/liblbfgs/INSTALL +231 -0
- data/core/vendor/src/liblbfgs/Makefile.am +10 -0
- data/core/vendor/src/liblbfgs/Makefile.in +638 -0
- data/core/vendor/src/liblbfgs/NEWS +0 -0
- data/core/vendor/src/liblbfgs/README +71 -0
- data/core/vendor/src/liblbfgs/aclocal.m4 +6985 -0
- data/core/vendor/src/liblbfgs/autogen.sh +38 -0
- data/core/vendor/src/liblbfgs/config.guess +1411 -0
- data/core/vendor/src/liblbfgs/config.h.in +64 -0
- data/core/vendor/src/liblbfgs/config.sub +1500 -0
- data/core/vendor/src/liblbfgs/configure +21146 -0
- data/core/vendor/src/liblbfgs/configure.in +107 -0
- data/core/vendor/src/liblbfgs/depcomp +522 -0
- data/core/vendor/src/liblbfgs/include/lbfgs.h +745 -0
- data/core/vendor/src/liblbfgs/install-sh +322 -0
- data/core/vendor/src/liblbfgs/lbfgs.sln +26 -0
- data/core/vendor/src/liblbfgs/lib/Makefile.am +24 -0
- data/core/vendor/src/liblbfgs/lib/Makefile.in +499 -0
- data/core/vendor/src/liblbfgs/lib/arithmetic_ansi.h +133 -0
- data/core/vendor/src/liblbfgs/lib/arithmetic_sse_double.h +294 -0
- data/core/vendor/src/liblbfgs/lib/arithmetic_sse_float.h +298 -0
- data/core/vendor/src/liblbfgs/lib/lbfgs.c +1371 -0
- data/core/vendor/src/liblbfgs/lib/lib.vcxproj +95 -0
- data/core/vendor/src/liblbfgs/ltmain.sh +6426 -0
- data/core/vendor/src/liblbfgs/missing +353 -0
- data/core/vendor/src/liblbfgs/sample/Makefile.am +15 -0
- data/core/vendor/src/liblbfgs/sample/Makefile.in +433 -0
- data/core/vendor/src/liblbfgs/sample/sample.c +81 -0
- data/core/vendor/src/liblbfgs/sample/sample.cpp +126 -0
- data/core/vendor/src/liblbfgs/sample/sample.vcxproj +105 -0
- data/core/vendor/src/svm_light/LICENSE.txt +59 -0
- data/core/vendor/src/svm_light/Makefile +105 -0
- data/core/vendor/src/svm_light/kernel.h +40 -0
- data/core/vendor/src/svm_light/svm_classify.c +197 -0
- data/core/vendor/src/svm_light/svm_common.c +985 -0
- data/core/vendor/src/svm_light/svm_common.h +301 -0
- data/core/vendor/src/svm_light/svm_hideo.c +1062 -0
- data/core/vendor/src/svm_light/svm_learn.c +4147 -0
- data/core/vendor/src/svm_light/svm_learn.h +169 -0
- data/core/vendor/src/svm_light/svm_learn_main.c +397 -0
- data/core/vendor/src/svm_light/svm_loqo.c +211 -0
- data/ext/hack/Rakefile +17 -0
- data/ext/hack/support.rb +88 -0
- data/lib/opener/opinion_detectors/base.rb +112 -0
- data/lib/opener/opinion_detectors/base/version.rb +7 -0
- data/lib/opener/opinion_detectors/configuration_creator.rb +86 -0
- data/lib/opener/opinion_detectors/de.rb +7 -0
- data/lib/opener/opinion_detectors/en.rb +7 -0
- data/lib/opener/opinion_detectors/it.rb +7 -0
- data/lib/opener/opinion_detectors/nl.rb +6 -0
- data/opener-opinion-detector-base.gemspec +35 -0
- data/pre_build_requirements.txt +3 -0
- metadata +374 -0
@@ -0,0 +1,226 @@
|
|
1
|
+
#Opinion miner deluxe#
|
2
|
+
|
3
|
+
##Introduction##
|
4
|
+
|
5
|
+
|
6
|
+
Opinion miner based on machine learning that can be trained using a list of
|
7
|
+
KAF/NAF files. It is important to notice that the opinion miner module will not call
|
8
|
+
to any external module to obtain features. It will read all the features from the input KAF/NAF file,
|
9
|
+
so you have to make sure that your input file contains all the required information in advance (tokens,
|
10
|
+
terms, polarities, constituents, entitiess, dependencies...)
|
11
|
+
|
12
|
+
The task is divided into 2 steps
|
13
|
+
* Detection of opinion entities (holder, target and expression): using
|
14
|
+
Conditional Random Fields
|
15
|
+
* Opinion entity linking (expression<-target and expression-<holder): using
|
16
|
+
binary Support Vector Machines
|
17
|
+
|
18
|
+
In next subsections, a brief explanation of the 2 steps is given.
|
19
|
+
|
20
|
+
###Opinion Entity detection###
|
21
|
+
|
22
|
+
The first step when extracting opinions from text is to determine which portions of text represent the different opinion entities:
|
23
|
+
|
24
|
+
- Opinion expressions: very nice, really ugly ...
|
25
|
+
- Opinion targets: the hotel, the rooms, the staff ...
|
26
|
+
- Opinion holders: I, our family, the manager ...
|
27
|
+
|
28
|
+
In order to do this, three different Conditional Random Fields (CRF) classifiers have been trained using by default this set of features: tokens,
|
29
|
+
lemmas, part-of-speech tags, constituent labels and polarity of words and entities. These classifiers detect portions of text representeing differnet opinion
|
30
|
+
entities.
|
31
|
+
|
32
|
+
|
33
|
+
###Opinion Entity linking###
|
34
|
+
|
35
|
+
This step takes as input the opinion entities detected in the previous step, and links them to create the final opinions <expression/target/holder>.
|
36
|
+
In this case we have trained two binary Support Vector Machines (SVM), one that indicates the degree of association between a given target and a given expression,
|
37
|
+
and another one that gives the degree of linkage between a holder and an opinion expression. So given a list of expressions, a list of targets and holders detected
|
38
|
+
by the CRF classifiers, the SVM models try to select the best candidate from the target list for each expressions, and the best holder from the holder list, to create
|
39
|
+
the final opinion triple.
|
40
|
+
|
41
|
+
Considering a certain opinion expression and a target, these are the features by default used to represent this data for the SVM engine:
|
42
|
+
|
43
|
+
1) Textual features: tokens and lemmas of the expression and the target
|
44
|
+
2) Distance features: features representing the relative distance of both elements in the text (normalized to a discrete list of possible values: far/medium/close for instance),
|
45
|
+
and if both elements are in the same sentence or not
|
46
|
+
3) Dependency features: to indicate the dependency relations between the two elements in the text (dependency path, and dependencies relations with the root of the sentence)
|
47
|
+
|
48
|
+
##Requirements##
|
49
|
+
This is the list of required libraries:
|
50
|
+
+ SVMLight: library for Support Vector Machines (http://svmlight.joachims.org/)
|
51
|
+
+ CRFsuite: library for Conditional Random Fields (http://www.chokkan.org/software/crfsuite/)
|
52
|
+
+ KafNafParserPy: library for parsing KAF or NAF files (https://github.com/cltl/KafNafParserPy)
|
53
|
+
+ VUA_pylib: library with functions used by the system (https://github.com/cltl/VUA_pylib)
|
54
|
+
|
55
|
+
To install SVMLight and CRFsuite please visit the corresponding webpages and follow the instructions given. For the last two python libraries,
|
56
|
+
you will only to clone the repositories and make sure that both are in the python path so Python is able to find them (the easiest way is
|
57
|
+
to modify the variable PYTHON_PATH to include the path to these libraries if you don't want to modify your system files).
|
58
|
+
|
59
|
+
##Setting the opinion miner##
|
60
|
+
|
61
|
+
You will need first to install all the requirements on your local machine and then create a configuration file like this one:
|
62
|
+
|
63
|
+
```shell
|
64
|
+
[general]
|
65
|
+
output_folder = feat
|
66
|
+
|
67
|
+
[crfsuite]
|
68
|
+
path_to_binary = crfsuite
|
69
|
+
|
70
|
+
[svmlight]
|
71
|
+
path_to_binary_learn = /home/izquierdo/tools/svm_light/svm_learn
|
72
|
+
path_to_binary_classify = /home/izquierdo/tools/svm_light/svm_classify
|
73
|
+
````
|
74
|
+
|
75
|
+
The `output_folder` variable is the folder where the trained models have been stored. The rest of parameters are the local paths to your installation
|
76
|
+
of CRFsuite and SVMLight. This file will be passed to the main script to detect opinions in a new KAF/NAF file:
|
77
|
+
|
78
|
+
````shell
|
79
|
+
cat my_file.kaf | classify_kaf_naf_file.py your_config_file.cfg
|
80
|
+
````
|
81
|
+
|
82
|
+
##Training your own models##
|
83
|
+
|
84
|
+
You will need first to install all the requirementes given and then follow these steps:
|
85
|
+
|
86
|
+
1) Prepare the KAF/NAF files that you will be used for training, with as many layers as possible (for the default configuration, preferably KAF
|
87
|
+
files with tokens, terms, polarities, entities, aspects, constituents and dependencies). A file with the complete path to each training KAF
|
88
|
+
file needs to be created (my_list_kafs.txt, for instance)
|
89
|
+
|
90
|
+
2) Create the feature template files or modify the existing ones on the folder `my_templates`
|
91
|
+
|
92
|
+
3) Prepare a configuration file (or modify the existing one my_training.cfg) like this one:
|
93
|
+
|
94
|
+
````shell
|
95
|
+
[general]
|
96
|
+
output_folder = feat
|
97
|
+
filename_training_list = /home/izquierdo/data/MPQA/13jan2014/list.25
|
98
|
+
|
99
|
+
[feature_templates]
|
100
|
+
expression = my_templates/templates_exp.txt
|
101
|
+
holder = my_templates/templates_holder.txt
|
102
|
+
target = my_templates/templates_target.txt
|
103
|
+
|
104
|
+
[valid_opinions]
|
105
|
+
negative = sentiment-neg
|
106
|
+
positive = sentiment-pos
|
107
|
+
|
108
|
+
[crfsuite]
|
109
|
+
path_to_binary = /home/izquierdo/bin/crfsuite
|
110
|
+
parameters = -a lbfgs
|
111
|
+
|
112
|
+
[svmlight]
|
113
|
+
path_to_binary_learn = /home/izquierdo/tools/svm_light/svm_learn
|
114
|
+
path_to_binary_classify = /home/izquierdo/tools/svm_light/svm_classify
|
115
|
+
parameters = -c 0.1
|
116
|
+
````
|
117
|
+
|
118
|
+
The `output_folder` variable is where you want to store your new models (will be used later for tagging new files), and the `filename_training_list` is the file
|
119
|
+
you created with the paths to all your training KAF/NAF files (my_list_kafs.txt). The section feature_templates contains pointers to the feature template files
|
120
|
+
you want to use. The section valid_opinions allows you to specify which opinions from the training KAF files you want to use, and a mapping from all the labels
|
121
|
+
used in the KAF files. So with this configuration:
|
122
|
+
|
123
|
+
````shell
|
124
|
+
[valid_opinions]
|
125
|
+
negative = sentiment-neg
|
126
|
+
positive = sentiment-pos
|
127
|
+
````
|
128
|
+
|
129
|
+
the opinion expressions classifier will be trained for two classes (negative and positive), and for instance all the opinion expressions with the label sentiment-neg in
|
130
|
+
your KAF files will be used as training instance for the negative classifier. This allows you to use different sets of labels for the opinion expressions, for instance
|
131
|
+
you could use KAF files with differente labels for the negative expressions, like sentiment-low-negative, sentiment-medium-negative and sentiment-high-negative. To train the
|
132
|
+
system considering all these instances as training material for the negative classifier you will need to specify:
|
133
|
+
|
134
|
+
````shell
|
135
|
+
[valid_opinions]
|
136
|
+
negative = sentiment-low-negative;sentiment-medium-negative;sentiment-high-negative
|
137
|
+
positive = sentiment-pos
|
138
|
+
````
|
139
|
+
|
140
|
+
The rest of sections on the config file (crfsuite and svm_light) indicate the paths to your local installation of these libraries and the parameters accepted
|
141
|
+
by these (check the webpage of the libraries for information about these parameters)
|
142
|
+
|
143
|
+
4) Once completed the previous step, the training can be performed calling to the script train.py:
|
144
|
+
|
145
|
+
````shell
|
146
|
+
train.py my_modified_train.cfg
|
147
|
+
````
|
148
|
+
|
149
|
+
This will used the config file (my_modified_train.cfg) to train the system and will store all the models and different intermediate files on the folder you set.
|
150
|
+
|
151
|
+
|
152
|
+
##How to add new features##
|
153
|
+
This section explains how to add new features to the system
|
154
|
+
|
155
|
+
###Adding new features to the opinion entity detection (CRF)###
|
156
|
+
|
157
|
+
1) Modify the function that generates the features `scripts/extract_features.py-> extract_features_from_kaf_naf_file(...)`
|
158
|
+
|
159
|
+
1.1) Modify the variable `features`, is a list of features for each token
|
160
|
+
|
161
|
+
1.2) Modify the variable labels, which gives a name to each feature (lenghts must match)
|
162
|
+
|
163
|
+
2) With the previous step you can extract the features for a single token only. You need specify which features you want to use from the context,
|
164
|
+
and if you want to use bigrams/trigrams. In order to do this 3 different features templates have to be filled. These files are plain text files, and
|
165
|
+
the default files used can be found on the subfolder `my_templates`. One different feature template can be specify for each CRF classifier. The format
|
166
|
+
of these files are a set of lines like `1 token -2 -1 0`, where:
|
167
|
+
|
168
|
+
- The first 1 is the length of the template, in this case unigram
|
169
|
+
- Then 'n' labels that will be used (must match with the labels generated by the feature extractor)
|
170
|
+
- Then the positions, in case of 2grams 3grams each position must be n/m/p
|
171
|
+
|
172
|
+
An example with bigrams: `2 token token -2/-1 -1/0 0/1 1/2` which would generate these templates:
|
173
|
+
|
174
|
+
````shell
|
175
|
+
(('token',-2),('token',-1))
|
176
|
+
(('token',-1),('token',0))
|
177
|
+
(('token',1),('token',1))
|
178
|
+
````
|
179
|
+
|
180
|
+
An one more example with trigrams: `3 token lemma pos -2/0/4 9/8/3`.
|
181
|
+
|
182
|
+
````shell
|
183
|
+
(('token',-2),('lemma',0),('pos',4))
|
184
|
+
(('token',9),('lemma',8),('pos',3))
|
185
|
+
````
|
186
|
+
|
187
|
+
|
188
|
+
|
189
|
+
|
190
|
+
###Adding new features to the opinion entity linking (SVM)###
|
191
|
+
|
192
|
+
You will need to modify the script `scripts/extract_feats_relations.py`. There is one function to extract the features from an opinion
|
193
|
+
expression and a target, for the SVM model expression - target, and another function with the same purpose for the SVM model expression-holder.
|
194
|
+
These functions are:
|
195
|
+
|
196
|
+
````shell
|
197
|
+
def extract_feats_exp_tar(exp_ids,tar_ids,knaf_obj):
|
198
|
+
...
|
199
|
+
|
200
|
+
def extract_feats_exp_hol(exp_ids,hol_ids,knaf_obj):
|
201
|
+
...
|
202
|
+
````
|
203
|
+
|
204
|
+
Both take as input a list of term identifiers for the expression and for the target/holder, and a kaf/naf tree object representing the input file,
|
205
|
+
so there is no need to parse it again. These functions return a list of features for the expression, a list of features for the holder/target and two
|
206
|
+
extra list of features (for the expression and for the target/holder), that will be used later to stablish features that represent a relation (like
|
207
|
+
the dependencies or whether both are in the same sentence or not.) In order to to this, there are two functions that take as input two set of features
|
208
|
+
and generate this relation features:
|
209
|
+
|
210
|
+
````shell
|
211
|
+
def get_extra_feats_exp_tar(extra_e, extra_t):
|
212
|
+
...
|
213
|
+
|
214
|
+
def get_extra_feats_exp_hol(extra_e, extra_h):
|
215
|
+
...
|
216
|
+
````
|
217
|
+
|
218
|
+
The main reason of this is that the features for each expression, target and holder is extracted only once, but later for instance each target will act
|
219
|
+
as a positive example in one case (with its correct expression), but as negative example for the rest of possible expressions in the file. So the relation
|
220
|
+
features can not be extracted in advance for a pair expression/target but has to be computed for each pair we consider, and in order to do this we need
|
221
|
+
the two get_extra_feats functions indicated above.
|
222
|
+
|
223
|
+
##Contact##
|
224
|
+
* Ruben Izquierdo
|
225
|
+
* Vrije University of Amsterdam
|
226
|
+
* ruben.izquierdobevia@vu.nl
|
@@ -0,0 +1,499 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
|
3
|
+
import sys
|
4
|
+
import os
|
5
|
+
import csv
|
6
|
+
from tempfile import NamedTemporaryFile
|
7
|
+
from subprocess import Popen, PIPE
|
8
|
+
import logging
|
9
|
+
import cPickle
|
10
|
+
import argparse
|
11
|
+
|
12
|
+
from scripts import lexicons as lexicons_manager
|
13
|
+
from scripts.config_manager import Cconfig_manager, internal_config_filename
|
14
|
+
from scripts.extract_features import extract_features_from_kaf_naf_file
|
15
|
+
from scripts.crfutils import extract_features_to_crf
|
16
|
+
from scripts.link_entities_distance import link_entities_distance
|
17
|
+
from scripts.relation_classifier import link_entities_svm
|
18
|
+
from KafNafParserPy import *
|
19
|
+
|
20
|
+
|
21
|
+
DEBUG=0
|
22
|
+
|
23
|
+
my_config_manager = Cconfig_manager()
|
24
|
+
__this_folder = os.path.dirname(os.path.realpath(__file__))
|
25
|
+
separator = '\t'
|
26
|
+
__desc = 'Deluxe opinion miner (CRF+SVM)'
|
27
|
+
__last_edited = '10jan2014'
|
28
|
+
__version = '2.0'
|
29
|
+
|
30
|
+
logging.basicConfig(stream=sys.stderr,format='%(asctime)s - %(levelname)s\n + %(message)s', level=logging.CRITICAL)
|
31
|
+
|
32
|
+
terms_for_token = None
|
33
|
+
|
34
|
+
|
35
|
+
def load_obj_from_file(filename):
|
36
|
+
fic = open(filename,'rb')
|
37
|
+
obj = cPickle.load(fic)
|
38
|
+
return obj
|
39
|
+
|
40
|
+
# Gets the output of crf and a list of token ids, and parses the B- or I- ...
|
41
|
+
# Output: [(['id0', 'id1', 'id2', 'id3'], 'holder'), (['id4', 'id5', 'id6'], 'target')]
|
42
|
+
def match_crfsuite_out(crfout,list_token_ids):
|
43
|
+
matches = []
|
44
|
+
inside = False
|
45
|
+
current = []
|
46
|
+
current_type = None
|
47
|
+
num_token = 0
|
48
|
+
for line in crfout.splitlines():
|
49
|
+
if len(line) == 0: #new sentence
|
50
|
+
if inside:
|
51
|
+
matches.append((current,current_type))
|
52
|
+
current = []
|
53
|
+
inside = False
|
54
|
+
else:
|
55
|
+
if line=='O':
|
56
|
+
if inside:
|
57
|
+
matches.append((current,current_type))
|
58
|
+
current = []
|
59
|
+
inside = False
|
60
|
+
else:
|
61
|
+
my_type = line[0]
|
62
|
+
value = line[2:]
|
63
|
+
if my_type == 'B':
|
64
|
+
if inside:
|
65
|
+
matches.append((current,current_type))
|
66
|
+
current = [list_token_ids[num_token]]
|
67
|
+
inside = True
|
68
|
+
current_type = value
|
69
|
+
elif my_type == 'I':
|
70
|
+
if inside:
|
71
|
+
current.append(list_token_ids[num_token])
|
72
|
+
else:
|
73
|
+
current = [list_token_ids[num_token]]
|
74
|
+
current_type = value
|
75
|
+
inside = True
|
76
|
+
num_token += 1
|
77
|
+
if inside:
|
78
|
+
matches.append((current,current_type))
|
79
|
+
return matches
|
80
|
+
|
81
|
+
|
82
|
+
|
83
|
+
def extract_features(kaf_naf_obj):
|
84
|
+
feat_file_desc = NamedTemporaryFile(delete=False)
|
85
|
+
feat_file_desc.close()
|
86
|
+
|
87
|
+
out_file = feat_file_desc.name
|
88
|
+
err_file = out_file+'.log'
|
89
|
+
|
90
|
+
expressions_lexicon = None
|
91
|
+
targets_lexicon = None
|
92
|
+
if my_config_manager.get_use_training_lexicons():
|
93
|
+
expression_lexicon_filename = my_config_manager.get_expression_lexicon_filename()
|
94
|
+
target_lexicon_filename = my_config_manager.get_target_lexicon_filename()
|
95
|
+
|
96
|
+
expressions_lexicon = lexicons_manager.load_lexicon(expression_lexicon_filename)
|
97
|
+
targets_lexicon =lexicons_manager.load_lexicon(target_lexicon_filename)
|
98
|
+
|
99
|
+
#def extract_features_from_kaf_naf_file(knaf_obj,out_file=None,log_file=None,include_class=True,accepted_opinions=None, exp_lex= None):
|
100
|
+
labels, separator,polarities_skipped = extract_features_from_kaf_naf_file(kaf_naf_obj,out_file,err_file,include_class=False, exp_lex=expressions_lexicon,tar_lex=targets_lexicon)
|
101
|
+
return out_file, err_file
|
102
|
+
|
103
|
+
|
104
|
+
def convert_to_crf(input_file,templates):
|
105
|
+
out_desc = NamedTemporaryFile(delete=False)
|
106
|
+
out_desc.close()
|
107
|
+
|
108
|
+
out_crf = out_desc.name
|
109
|
+
|
110
|
+
##Load description of features
|
111
|
+
path_feat_desc = my_config_manager.get_feature_desc_filename()
|
112
|
+
fic = open(path_feat_desc)
|
113
|
+
fields = fic.read().strip()
|
114
|
+
fic.close()
|
115
|
+
####
|
116
|
+
|
117
|
+
extract_features_to_crf(input_file,out_crf,fields,separator,templates,possible_classes=None)
|
118
|
+
return out_crf
|
119
|
+
|
120
|
+
|
121
|
+
|
122
|
+
def run_crfsuite_tag(input_file,model_file):
|
123
|
+
crfsuite = my_config_manager.get_crfsuite_binary()
|
124
|
+
cmd = [crfsuite]
|
125
|
+
if not os.path.exists(crfsuite):
|
126
|
+
print>>sys.stderr,'CRFsuite not found on',crfsuite
|
127
|
+
print>>sys.stderr,'Check the config filename and make sure the path is correctly set'
|
128
|
+
print>>sys.stderr,'[crfsuite]\npath_to_binary = yourpathtolocalcrfsuite'
|
129
|
+
sys.exit(-1)
|
130
|
+
|
131
|
+
cmd.append('tag')
|
132
|
+
cmd.append('-m '+model_file)
|
133
|
+
cmd.append(input_file)
|
134
|
+
|
135
|
+
crf_process = Popen(' '.join(cmd), stdin=PIPE, stdout=PIPE, stderr=PIPE, shell=True)
|
136
|
+
crf_process.wait()
|
137
|
+
output = crf_process.stdout.read()
|
138
|
+
error = crf_process.stderr.read()
|
139
|
+
return output,error
|
140
|
+
|
141
|
+
|
142
|
+
def detect_expressions(tab_feat_file,list_token_ids):
|
143
|
+
#1) Convert to the correct CRF
|
144
|
+
templates = my_config_manager.get_templates_expr()
|
145
|
+
|
146
|
+
crf_exp_file = convert_to_crf(tab_feat_file,templates)
|
147
|
+
logging.debug('File with crf format for EXPRESSIONS '+crf_exp_file)
|
148
|
+
if DEBUG:
|
149
|
+
print>>sys.stderr,'#'*50
|
150
|
+
print>>sys.stderr,'CRF FEATURES EXPRESSION'
|
151
|
+
f = open(crf_exp_file)
|
152
|
+
print>>sys.stderr,f.read()
|
153
|
+
f.close()
|
154
|
+
print>>sys.stderr,'#'*50
|
155
|
+
|
156
|
+
model_file = my_config_manager.get_filename_model_expression()
|
157
|
+
output_crf,error_crf = run_crfsuite_tag(crf_exp_file,model_file)
|
158
|
+
|
159
|
+
logging.debug('Expressions crf error: '+error_crf)
|
160
|
+
matches_exp = match_crfsuite_out(output_crf, list_token_ids)
|
161
|
+
if DEBUG:
|
162
|
+
print>>sys.stderr,'#'*50
|
163
|
+
print>>sys.stderr,'CRF output for EXPRESSION'
|
164
|
+
print>>sys.stderr,'Raw output CRF:', output_crf
|
165
|
+
print>>sys.stderr,'List token ids:',str(list_token_ids)
|
166
|
+
print>>sys.stderr,'MATCHES:',str(matches_exp)
|
167
|
+
print>>sys.stderr,'TEMP FILE:',crf_exp_file
|
168
|
+
print>>sys.stderr,'#'*50
|
169
|
+
|
170
|
+
|
171
|
+
logging.debug('Detector expressions out: '+str(matches_exp))
|
172
|
+
os.remove(crf_exp_file)
|
173
|
+
return matches_exp
|
174
|
+
|
175
|
+
|
176
|
+
|
177
|
+
|
178
|
+
|
179
|
+
def detect_targets(tab_feat_file, list_token_ids):
|
180
|
+
templates_target = my_config_manager.get_templates_target()
|
181
|
+
|
182
|
+
crf_target_file = convert_to_crf(tab_feat_file,templates_target)
|
183
|
+
logging.debug('File with crf format for TARGETS '+crf_target_file)
|
184
|
+
if DEBUG:
|
185
|
+
print>>sys.stderr,'#'*50
|
186
|
+
print>>sys.stderr,'CRF FEATURES TARGETS'
|
187
|
+
f = open(crf_target_file)
|
188
|
+
print>>sys.stderr,f.read()
|
189
|
+
f.close()
|
190
|
+
print>>sys.stderr,'#'*50
|
191
|
+
|
192
|
+
model_target_file = my_config_manager.get_filename_model_target()
|
193
|
+
out_crf_target,error_crf = run_crfsuite_tag(crf_target_file, model_target_file)
|
194
|
+
logging.debug('TARGETS crf error: '+error_crf)
|
195
|
+
|
196
|
+
matches_tar = match_crfsuite_out(out_crf_target, list_token_ids)
|
197
|
+
|
198
|
+
if DEBUG:
|
199
|
+
print>>sys.stderr,'#'*50
|
200
|
+
print>>sys.stderr,'CRF output for TARGETS'
|
201
|
+
print>>sys.stderr,'Raw output CRF:', out_crf_target
|
202
|
+
print>>sys.stderr,'List token ids:',str(list_token_ids)
|
203
|
+
print>>sys.stderr,'MATCHES:',str(matches_tar)
|
204
|
+
print>>sys.stderr,'#'*50
|
205
|
+
|
206
|
+
logging.debug('Detector targets out: '+str(matches_tar))
|
207
|
+
os.remove(crf_target_file)
|
208
|
+
return matches_tar
|
209
|
+
|
210
|
+
|
211
|
+
|
212
|
+
|
213
|
+
|
214
|
+
def detect_holders(tab_feat_file, list_token_ids):
|
215
|
+
templates_holder = my_config_manager.get_templates_holder()
|
216
|
+
|
217
|
+
crf_holder_file = convert_to_crf(tab_feat_file,templates_holder)
|
218
|
+
logging.debug('File with crf format for HOLDERS '+crf_holder_file)
|
219
|
+
if DEBUG:
|
220
|
+
print>>sys.stderr,'#'*50
|
221
|
+
print>>sys.stderr,'CRF FEATURES HOLDERS'
|
222
|
+
f = open(crf_holder_file)
|
223
|
+
print>>sys.stderr,f.read()
|
224
|
+
f.close()
|
225
|
+
print>>sys.stderr,'#'*50
|
226
|
+
|
227
|
+
model_holder_file = my_config_manager.get_filename_model_holder()
|
228
|
+
out_crf_holder,error_crf = run_crfsuite_tag(crf_holder_file, model_holder_file)
|
229
|
+
logging.debug('HOLDERS crf error: '+error_crf)
|
230
|
+
|
231
|
+
matches_holder = match_crfsuite_out(out_crf_holder, list_token_ids)
|
232
|
+
|
233
|
+
if DEBUG:
|
234
|
+
print>>sys.stderr,'#'*50
|
235
|
+
print>>sys.stderr,'CRF output for HOLDERS'
|
236
|
+
print>>sys.stderr,'Raw output CRF:', out_crf_holder
|
237
|
+
print>>sys.stderr,'List token ids:',str(list_token_ids)
|
238
|
+
print>>sys.stderr,'MATCHES:',str(matches_holder)
|
239
|
+
print>>sys.stderr,'#'*50
|
240
|
+
|
241
|
+
logging.debug('Detector HOLDERS out: '+str(matches_holder))
|
242
|
+
os.remove(crf_holder_file)
|
243
|
+
return matches_holder
|
244
|
+
|
245
|
+
|
246
|
+
|
247
|
+
|
248
|
+
|
249
|
+
def map_tokens_to_terms(list_tokens,knaf_obj):
|
250
|
+
global terms_for_token
|
251
|
+
if terms_for_token is None:
|
252
|
+
terms_for_token = {}
|
253
|
+
for term in knaf_obj.get_terms():
|
254
|
+
termid = term.get_id()
|
255
|
+
token_ids = term.get_span().get_span_ids()
|
256
|
+
for tokid in token_ids:
|
257
|
+
if tokid not in terms_for_token:
|
258
|
+
terms_for_token[tokid] = [termid]
|
259
|
+
else:
|
260
|
+
terms_for_token[tokid].append(termid)
|
261
|
+
|
262
|
+
ret = set()
|
263
|
+
for my_id in list_tokens:
|
264
|
+
term_ids = terms_for_token[my_id]
|
265
|
+
ret |= set(term_ids)
|
266
|
+
return sorted(list(ret))
|
267
|
+
|
268
|
+
|
269
|
+
|
270
|
+
def add_opinions_to_knaf(triples,knaf_obj,text_for_tid,ids_used, map_to_terms=True,include_polarity_strength=True):
|
271
|
+
num_opinion = 0
|
272
|
+
for type_exp, span_exp, span_tar, span_hol in triples:
|
273
|
+
#Map tokens to terms
|
274
|
+
if map_to_terms:
|
275
|
+
span_exp_terms = map_tokens_to_terms(span_exp,kaf_obj)
|
276
|
+
span_tar_terms = map_tokens_to_terms(span_tar,kaf_obj)
|
277
|
+
span_hol_terms = map_tokens_to_terms(span_hol, kaf_obj)
|
278
|
+
else:
|
279
|
+
span_hol_terms = span_hol
|
280
|
+
span_tar_terms = span_tar
|
281
|
+
span_exp_terms = span_exp
|
282
|
+
|
283
|
+
##Creating holder
|
284
|
+
span_hol = Cspan()
|
285
|
+
span_hol.create_from_ids(span_hol_terms)
|
286
|
+
my_hol = Cholder()
|
287
|
+
my_hol.set_span(span_hol)
|
288
|
+
|
289
|
+
hol_text = ' '.join(text_for_tid[tid] for tid in span_hol_terms)
|
290
|
+
my_hol.set_comment(hol_text)
|
291
|
+
|
292
|
+
#Creating target
|
293
|
+
span_tar = Cspan()
|
294
|
+
span_tar.create_from_ids(span_tar_terms)
|
295
|
+
my_tar = opinion_data.Ctarget()
|
296
|
+
my_tar.set_span(span_tar)
|
297
|
+
tar_text = ' '.join(text_for_tid[tid] for tid in span_tar_terms)
|
298
|
+
my_tar.set_comment(tar_text)
|
299
|
+
#########################
|
300
|
+
|
301
|
+
##Creating expression
|
302
|
+
span_exp = Cspan()
|
303
|
+
span_exp.create_from_ids(span_exp_terms)
|
304
|
+
my_exp = Cexpression()
|
305
|
+
my_exp.set_span(span_exp)
|
306
|
+
my_exp.set_polarity(type_exp)
|
307
|
+
if include_polarity_strength:
|
308
|
+
my_exp.set_strength("1")
|
309
|
+
exp_text = ' '.join(text_for_tid[tid] for tid in span_exp_terms)
|
310
|
+
my_exp.set_comment(exp_text)
|
311
|
+
#########################
|
312
|
+
|
313
|
+
#To get the first possible ID not already used
|
314
|
+
new_id = None
|
315
|
+
while True:
|
316
|
+
new_id = 'o'+str(num_opinion+1)
|
317
|
+
if new_id not in ids_used:
|
318
|
+
ids_used.add(new_id)
|
319
|
+
break
|
320
|
+
else:
|
321
|
+
num_opinion += 1
|
322
|
+
new_opinion = Copinion(type=knaf_obj.get_type())
|
323
|
+
new_opinion.set_id(new_id)
|
324
|
+
if len(span_hol_terms) != 0: #To avoid empty holders
|
325
|
+
new_opinion.set_holder(my_hol)
|
326
|
+
|
327
|
+
if len(span_tar_terms) != 0: #To avoid empty targets
|
328
|
+
new_opinion.set_target(my_tar)
|
329
|
+
|
330
|
+
new_opinion.set_expression(my_exp)
|
331
|
+
|
332
|
+
knaf_obj.add_opinion(new_opinion)
|
333
|
+
|
334
|
+
##
|
335
|
+
# Input_file_stream can be a filename of a stream
|
336
|
+
# Opoutfile_trasm can be a filename of a stream
|
337
|
+
#Config file must be a string filename
|
338
|
+
def tag_file_with_opinions(input_file_stream, output_file_stream,model_folder,kaf_obj=None, remove_existing_opinions=True,include_polarity_strength=True,timestamp=True):
|
339
|
+
|
340
|
+
config_filename = os.path.join(model_folder,internal_config_filename)
|
341
|
+
if not os.path.exists(config_filename):
|
342
|
+
print>>sys.stderr,'Config file not found on:',config_filename
|
343
|
+
sys.exit(-1)
|
344
|
+
|
345
|
+
my_config_manager.set_current_folder(__this_folder)
|
346
|
+
my_config_manager.set_config(config_filename)
|
347
|
+
|
348
|
+
if kaf_obj is not None:
|
349
|
+
knaf_obj = kaf_obj
|
350
|
+
else:
|
351
|
+
knaf_obj = KafNafParser(input_file_stream)
|
352
|
+
|
353
|
+
#Create a temporary file
|
354
|
+
out_feat_file, err_feat_file = extract_features(knaf_obj)
|
355
|
+
if DEBUG:
|
356
|
+
print>>sys.stderr,'#'*50
|
357
|
+
print>>sys.stderr,'FEATURE FILE'
|
358
|
+
f = open(out_feat_file)
|
359
|
+
print>>sys.stderr,f.read()
|
360
|
+
f.close()
|
361
|
+
print>>sys.stderr,'#'*50
|
362
|
+
|
363
|
+
#get all the tokens in order
|
364
|
+
list_token_ids = []
|
365
|
+
text_for_wid = {}
|
366
|
+
text_for_tid = {}
|
367
|
+
sentence_for_token = {}
|
368
|
+
for token_obj in knaf_obj.get_tokens():
|
369
|
+
token = token_obj.get_text()
|
370
|
+
s_id = token_obj.get_sent()
|
371
|
+
w_id = token_obj.get_id()
|
372
|
+
text_for_wid[w_id] = token
|
373
|
+
|
374
|
+
list_token_ids.append(w_id)
|
375
|
+
sentence_for_token[w_id] = s_id
|
376
|
+
|
377
|
+
for term in knaf_obj.get_terms():
|
378
|
+
tid = term.get_id()
|
379
|
+
toks = [text_for_wid.get(wid,'') for wid in term.get_span().get_span_ids()]
|
380
|
+
text_for_tid[tid] = ' '.join(toks)
|
381
|
+
|
382
|
+
|
383
|
+
expressions = detect_expressions(out_feat_file,list_token_ids)
|
384
|
+
targets = detect_targets(out_feat_file, list_token_ids)
|
385
|
+
holders = detect_holders(out_feat_file, list_token_ids)
|
386
|
+
|
387
|
+
os.remove(out_feat_file)
|
388
|
+
os.remove(err_feat_file)
|
389
|
+
|
390
|
+
if DEBUG:
|
391
|
+
print>>sys.stderr,"Expressions detected:"
|
392
|
+
for e in expressions:
|
393
|
+
print>>sys.stderr,'\t',e, ' '.join([text_for_wid[wid] for wid in e[0] ])
|
394
|
+
print>>sys.stderr
|
395
|
+
|
396
|
+
print>>sys.stderr,'Targets detected'
|
397
|
+
for t in targets:
|
398
|
+
print>>sys.stderr,'\t',t, ' '.join([text_for_wid[wid] for wid in t[0] ])
|
399
|
+
print>>sys.stderr
|
400
|
+
|
401
|
+
print>>sys.stderr,'Holders',holders
|
402
|
+
for h in holders:
|
403
|
+
print>>sys.stderr,'\t',h, ' '.join([text_for_wid[wid] for wid in h[0] ])
|
404
|
+
print>>sys.stderr
|
405
|
+
|
406
|
+
|
407
|
+
# Entity linker based on distances
|
408
|
+
####triples = link_entities_distance(expressions,targets,holders,sentence_for_token)
|
409
|
+
|
410
|
+
triples = link_entities_svm(expressions, targets, holders, knaf_obj, my_config_manager)
|
411
|
+
|
412
|
+
ids_used = set()
|
413
|
+
if remove_existing_opinions:
|
414
|
+
knaf_obj.remove_opinion_layer()
|
415
|
+
else:
|
416
|
+
for opi in knaf_obj.get_opinions():
|
417
|
+
ids_used.add(opi.get_id())
|
418
|
+
|
419
|
+
|
420
|
+
add_opinions_to_knaf(triples, knaf_obj,text_for_tid,ids_used, map_to_terms=False,include_polarity_strength=include_polarity_strength)
|
421
|
+
|
422
|
+
#Adding linguistic processor
|
423
|
+
my_lp = Clp()
|
424
|
+
my_lp.set_name(__desc)
|
425
|
+
my_lp.set_version(__last_edited+'_'+__version)
|
426
|
+
if timestamp:
|
427
|
+
my_lp.set_timestamp() ##Set to the current date and time
|
428
|
+
else:
|
429
|
+
my_lp.set_timestamp('*')
|
430
|
+
knaf_obj.add_linguistic_processor('opinions',my_lp)
|
431
|
+
knaf_obj.dump(output_file_stream)
|
432
|
+
|
433
|
+
|
434
|
+
|
435
|
+
def obtain_predefined_model(lang,domain,just_show=False):
|
436
|
+
#This function will read the models from the file models.cfg and will return
|
437
|
+
#The model folder for the lang and domain
|
438
|
+
# format of the file: 1 model per line: lang|domain|path_to_folder
|
439
|
+
model_file = os.path.join(__this_folder,'models.cfg')
|
440
|
+
fic = open(model_file)
|
441
|
+
use_this_model = None
|
442
|
+
if just_show:
|
443
|
+
print '#'*25
|
444
|
+
print 'Models available'
|
445
|
+
print '#'*25
|
446
|
+
|
447
|
+
nm = 0
|
448
|
+
for line in fic:
|
449
|
+
if line[0]!='#':
|
450
|
+
this_lang, this_domain, this_model,this_desc = line.strip().split('|')
|
451
|
+
if just_show:
|
452
|
+
print ' Model',nm
|
453
|
+
print ' Lang:',this_lang
|
454
|
+
print ' Domain:', this_domain
|
455
|
+
print ' Folder:',this_model
|
456
|
+
print ' Desc:',this_desc
|
457
|
+
nm+= 1
|
458
|
+
else:
|
459
|
+
if this_lang == lang and this_domain == domain:
|
460
|
+
use_this_model = this_model
|
461
|
+
break
|
462
|
+
fic.close()
|
463
|
+
if just_show:
|
464
|
+
print '#'*25
|
465
|
+
return use_this_model
|
466
|
+
|
467
|
+
if __name__ == '__main__':
|
468
|
+
|
469
|
+
argument_parser = argparse.ArgumentParser(description='Detect opinion triples in a KAF/NAF file')
|
470
|
+
group = argument_parser.add_mutually_exclusive_group(required=True)
|
471
|
+
group.add_argument('-m',dest='model_folder',help='Folder storing the trained models')
|
472
|
+
group.add_argument('-d', dest='domain',help='The domain where the models were trained')
|
473
|
+
group.add_argument('-show-models', dest='show_models', action='store_true',help='Show the models available and finish')
|
474
|
+
|
475
|
+
argument_parser.add_argument('-keep-opinions',dest='keep_opinions',action='store_true',help='Keep the opinions from the input (by default will be deleted)')
|
476
|
+
argument_parser.add_argument('-no-time',dest='timestamp',action='store_false',help='No include time in timestamp (for testing)')
|
477
|
+
arguments = argument_parser.parse_args()
|
478
|
+
|
479
|
+
if arguments.show_models:
|
480
|
+
obtain_predefined_model(None,None,just_show=True)
|
481
|
+
sys.exit(0)
|
482
|
+
|
483
|
+
knaf_obj = KafNafParser(sys.stdin)
|
484
|
+
model_folder = None
|
485
|
+
if arguments.model_folder is not None:
|
486
|
+
model_folder = arguments.model_folder
|
487
|
+
else:
|
488
|
+
#Obtain the language
|
489
|
+
lang = knaf_obj.get_language()
|
490
|
+
model_folder = obtain_predefined_model(lang,arguments.domain)
|
491
|
+
|
492
|
+
|
493
|
+
tag_file_with_opinions(None, sys.stdout,model_folder,kaf_obj=knaf_obj,remove_existing_opinions=(not arguments.keep_opinions),timestamp=arguments.timestamp)
|
494
|
+
sys.exit(0)
|
495
|
+
|
496
|
+
|
497
|
+
|
498
|
+
|
499
|
+
|