opencv 0.0.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/History.txt +5 -0
- data/License.txt +30 -0
- data/Manifest.txt +115 -0
- data/README.txt +47 -0
- data/Rakefile +34 -0
- data/examples/convexhull.rb +41 -0
- data/examples/face_detect.rb +25 -0
- data/examples/houghcircle.rb +23 -0
- data/examples/inpaint.png +0 -0
- data/examples/inpaint.rb +43 -0
- data/examples/paint.rb +72 -0
- data/examples/snake.rb +43 -0
- data/examples/stuff.jpg +0 -0
- data/ext/curve.cpp +103 -0
- data/ext/curve.h +34 -0
- data/ext/cvavgcomp.cpp +67 -0
- data/ext/cvavgcomp.h +39 -0
- data/ext/cvbox2d.cpp +114 -0
- data/ext/cvbox2d.h +53 -0
- data/ext/cvcapture.cpp +276 -0
- data/ext/cvcapture.h +54 -0
- data/ext/cvchain.cpp +184 -0
- data/ext/cvchain.h +43 -0
- data/ext/cvchaincode.cpp +49 -0
- data/ext/cvchaincode.h +43 -0
- data/ext/cvcircle32f.cpp +90 -0
- data/ext/cvcircle32f.h +53 -0
- data/ext/cvcondensation.cpp +230 -0
- data/ext/cvcondensation.h +49 -0
- data/ext/cvconnectedcomp.cpp +115 -0
- data/ext/cvconnectedcomp.h +46 -0
- data/ext/cvcontour.cpp +219 -0
- data/ext/cvcontour.h +47 -0
- data/ext/cvcontourtree.cpp +86 -0
- data/ext/cvcontourtree.h +41 -0
- data/ext/cvconvexitydefect.cpp +103 -0
- data/ext/cvconvexitydefect.h +42 -0
- data/ext/cverror.cpp +140 -0
- data/ext/cverror.h +79 -0
- data/ext/cvfont.cpp +173 -0
- data/ext/cvfont.h +56 -0
- data/ext/cvhaarclassifiercascade.cpp +159 -0
- data/ext/cvhaarclassifiercascade.h +41 -0
- data/ext/cvhistogram.cpp +200 -0
- data/ext/cvhistogram.h +51 -0
- data/ext/cvindex.cpp +73 -0
- data/ext/cvindex.h +40 -0
- data/ext/cvline.cpp +106 -0
- data/ext/cvline.h +52 -0
- data/ext/cvmat.cpp +4809 -0
- data/ext/cvmat.h +286 -0
- data/ext/cvmatnd.cpp +44 -0
- data/ext/cvmatnd.h +28 -0
- data/ext/cvmemstorage.cpp +64 -0
- data/ext/cvmemstorage.h +53 -0
- data/ext/cvmoments.cpp +204 -0
- data/ext/cvmoments.h +48 -0
- data/ext/cvpoint.cpp +229 -0
- data/ext/cvpoint.h +59 -0
- data/ext/cvpoint2d32f.cpp +213 -0
- data/ext/cvpoint2d32f.h +61 -0
- data/ext/cvpoint3d32f.cpp +245 -0
- data/ext/cvpoint3d32f.h +64 -0
- data/ext/cvrect.cpp +340 -0
- data/ext/cvrect.h +79 -0
- data/ext/cvscalar.cpp +227 -0
- data/ext/cvscalar.h +63 -0
- data/ext/cvseq.cpp +583 -0
- data/ext/cvseq.h +71 -0
- data/ext/cvset.cpp +63 -0
- data/ext/cvset.h +39 -0
- data/ext/cvsize.cpp +223 -0
- data/ext/cvsize.h +63 -0
- data/ext/cvsize2d32f.cpp +180 -0
- data/ext/cvsize2d32f.h +59 -0
- data/ext/cvslice.cpp +82 -0
- data/ext/cvslice.h +53 -0
- data/ext/cvsparsemat.cpp +44 -0
- data/ext/cvsparsemat.h +28 -0
- data/ext/cvtermcriteria.cpp +183 -0
- data/ext/cvtermcriteria.h +71 -0
- data/ext/cvtwopoints.cpp +98 -0
- data/ext/cvtwopoints.h +50 -0
- data/ext/cvvector.cpp +206 -0
- data/ext/cvvector.h +54 -0
- data/ext/cvvideowriter.cpp +116 -0
- data/ext/cvvideowriter.h +41 -0
- data/ext/extconf.rb +61 -0
- data/ext/gui.cpp +65 -0
- data/ext/gui.h +33 -0
- data/ext/iplconvkernel.cpp +177 -0
- data/ext/iplconvkernel.h +52 -0
- data/ext/iplimage.cpp +238 -0
- data/ext/iplimage.h +54 -0
- data/ext/mouseevent.cpp +184 -0
- data/ext/mouseevent.h +59 -0
- data/ext/opencv.cpp +481 -0
- data/ext/opencv.h +356 -0
- data/ext/point3dset.cpp +41 -0
- data/ext/point3dset.h +31 -0
- data/ext/pointset.cpp +238 -0
- data/ext/pointset.h +69 -0
- data/ext/trackbar.cpp +122 -0
- data/ext/trackbar.h +65 -0
- data/ext/window.cpp +368 -0
- data/ext/window.h +56 -0
- data/images/CvMat_sobel.png +0 -0
- data/images/CvMat_sub_rect.png +0 -0
- data/images/CvSeq_relationmap.png +0 -0
- data/images/face_detect_from_lena.jpg +0 -0
- data/lib/opencv.rb +3 -0
- data/lib/version.rb +3 -0
- data/setup/setup.cygwin.rb +120 -0
- data/setup/setup.mingw.rb +99 -0
- data/setup/setup.mswin32.rb +103 -0
- data/test/test_opencv.rb +4 -0
- metadata +191 -0
data/ext/cvfont.cpp
ADDED
@@ -0,0 +1,173 @@
|
|
1
|
+
/************************************************************
|
2
|
+
|
3
|
+
cvfont.cpp -
|
4
|
+
|
5
|
+
$Author: lsxi $
|
6
|
+
|
7
|
+
Copyright (C) 2005-2006 Masakazu Yonekura
|
8
|
+
|
9
|
+
************************************************************/
|
10
|
+
#include "cvfont.h"
|
11
|
+
/*
|
12
|
+
* Document-class: OpenCV::CvFont
|
13
|
+
*
|
14
|
+
* Font structure that can be passed to text rendering functions.
|
15
|
+
* see CvMat#put_text, CvMat#put_text!
|
16
|
+
*/
|
17
|
+
|
18
|
+
__NAMESPACE_BEGIN_OPENCV
|
19
|
+
__NAMESPACE_BEGIN_CVFONT
|
20
|
+
|
21
|
+
VALUE rb_klass;
|
22
|
+
|
23
|
+
VALUE
|
24
|
+
rb_class()
|
25
|
+
{
|
26
|
+
return rb_klass;
|
27
|
+
}
|
28
|
+
|
29
|
+
void
|
30
|
+
define_ruby_class()
|
31
|
+
{
|
32
|
+
if (rb_klass)
|
33
|
+
return;
|
34
|
+
/*
|
35
|
+
* opencv = rb_define_module("OpenCV");
|
36
|
+
*
|
37
|
+
* note: this comment is used by rdoc.
|
38
|
+
*/
|
39
|
+
VALUE opencv = rb_module_opencv();
|
40
|
+
|
41
|
+
rb_klass = rb_define_class_under(opencv, "CvFont", rb_cObject);
|
42
|
+
rb_define_alloc_func(rb_klass, rb_allocate);
|
43
|
+
VALUE face = rb_hash_new();
|
44
|
+
rb_define_const(rb_klass, "FACE", face);
|
45
|
+
rb_hash_aset(face, ID2SYM(rb_intern("simplex")), INT2FIX(CV_FONT_HERSHEY_SIMPLEX));
|
46
|
+
rb_hash_aset(face, ID2SYM(rb_intern("plain")), INT2FIX(CV_FONT_HERSHEY_PLAIN));
|
47
|
+
rb_hash_aset(face, ID2SYM(rb_intern("duplex")), INT2FIX(CV_FONT_HERSHEY_DUPLEX));
|
48
|
+
rb_hash_aset(face, ID2SYM(rb_intern("triplex")), INT2FIX(CV_FONT_HERSHEY_TRIPLEX));
|
49
|
+
rb_hash_aset(face, ID2SYM(rb_intern("complex_small")), INT2FIX(CV_FONT_HERSHEY_COMPLEX_SMALL));
|
50
|
+
rb_hash_aset(face, ID2SYM(rb_intern("script_simplex")), INT2FIX(CV_FONT_HERSHEY_SCRIPT_SIMPLEX));
|
51
|
+
rb_hash_aset(face, ID2SYM(rb_intern("script_complex")), INT2FIX(CV_FONT_HERSHEY_SCRIPT_COMPLEX));
|
52
|
+
|
53
|
+
VALUE default_option = rb_hash_new();
|
54
|
+
rb_define_const(rb_klass, "FONT_OPTION", default_option);
|
55
|
+
rb_hash_aset(default_option, ID2SYM(rb_intern("hscale")), rb_float_new(1.0));
|
56
|
+
rb_hash_aset(default_option, ID2SYM(rb_intern("vscale")), rb_float_new(1.0));
|
57
|
+
rb_hash_aset(default_option, ID2SYM(rb_intern("shear")), INT2FIX(0));
|
58
|
+
rb_hash_aset(default_option, ID2SYM(rb_intern("thickness")), INT2FIX(1));
|
59
|
+
rb_hash_aset(default_option, ID2SYM(rb_intern("line_type")), INT2FIX(8));
|
60
|
+
|
61
|
+
rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1);
|
62
|
+
}
|
63
|
+
|
64
|
+
VALUE
|
65
|
+
rb_allocate(VALUE klass)
|
66
|
+
{
|
67
|
+
CvFont *ptr;
|
68
|
+
return Data_Make_Struct(klass, CvFont, 0, -1, ptr);
|
69
|
+
}
|
70
|
+
|
71
|
+
|
72
|
+
/*
|
73
|
+
* call-seq:
|
74
|
+
* CvFont.new(<i>face[,font_option]</i>) -> font
|
75
|
+
*
|
76
|
+
* Create font object.
|
77
|
+
* <i>face</i> is font name identifier.
|
78
|
+
*
|
79
|
+
* Only a subset of Hershey fonts (http://sources.isc.org/utils/misc/hershey-font.txt) are supported now:
|
80
|
+
* * :simplex - normal size sans-serif font
|
81
|
+
* * :plain - small size sans-serif font
|
82
|
+
* * :duplex - normal size sans-serif font (more complex than :simplex)
|
83
|
+
* * :complex - normal size serif font
|
84
|
+
* * :triplex - normal size serif font (more complex than :complex)
|
85
|
+
* * :complex_small - smaller version of :complex
|
86
|
+
* * :script_simplex - hand-writing style font
|
87
|
+
* * :script_complex - more complex variant of :script_simplex
|
88
|
+
*
|
89
|
+
* <i>font_option</i> should be Hash include these keys.
|
90
|
+
* :hscale
|
91
|
+
* Horizontal scale. If equal to 1.0, the characters have the original width depending on the font type.
|
92
|
+
* If equal to 0.5, the characters are of half the original width.
|
93
|
+
* :vscale
|
94
|
+
* Vertical scale. If equal to 1.0, the characters have the original height depending on the font type.
|
95
|
+
* If equal to 0.5, the characters are of half the original height.
|
96
|
+
* :shear
|
97
|
+
* Approximate tangent of the character slope relative to the vertical line.
|
98
|
+
* Zero value means a non-italic font, 1.0f means ~45degree slope, etc.
|
99
|
+
* :thickness
|
100
|
+
* Thickness of the text strokes.
|
101
|
+
* :line_type
|
102
|
+
* Type of the strokes, see CvMat#Line description.
|
103
|
+
* :italic
|
104
|
+
* If value is not nil or false that means italic or oblique font.
|
105
|
+
*
|
106
|
+
* note: <i>font_option</i>'s default value is CvFont::FONT_OPTION.
|
107
|
+
*
|
108
|
+
* e.g. Create Font
|
109
|
+
* OpenCV::CvFont.new(:simplex, :hscale => 2, :vslace => 2, :italic => true)
|
110
|
+
* # create 2x bigger than normal, italic type font.
|
111
|
+
*/
|
112
|
+
VALUE
|
113
|
+
rb_initialize(int argc, VALUE *argv, VALUE self)
|
114
|
+
{
|
115
|
+
VALUE face, font_option;
|
116
|
+
rb_scan_args(argc, argv, "11", &face, &font_option);
|
117
|
+
Check_Type(face, T_SYMBOL);
|
118
|
+
face = rb_hash_aref(rb_const_get(cCvFont::rb_class(), rb_intern("FACE")), face);
|
119
|
+
if (NIL_P(face)) {
|
120
|
+
rb_raise(rb_eArgError, "undefined face.");
|
121
|
+
}
|
122
|
+
font_option = FONT_OPTION(font_option);
|
123
|
+
/*
|
124
|
+
cvInitFont(CVFONT(self),
|
125
|
+
(FIX2INT(face) | FO_ITALIC(font_option)),
|
126
|
+
FO_HSCALE(font_option),
|
127
|
+
FO_VSCALE(font_option),
|
128
|
+
FO_SHEAR(font_option),
|
129
|
+
FO_THICKNESS(font_option),
|
130
|
+
FO_LINE_TYPE(font_option));
|
131
|
+
*/
|
132
|
+
return self;
|
133
|
+
}
|
134
|
+
|
135
|
+
|
136
|
+
VALUE
|
137
|
+
rb_face(VALUE self)
|
138
|
+
{
|
139
|
+
return FIX2INT(CVFONT(self)->font_face);
|
140
|
+
}
|
141
|
+
|
142
|
+
VALUE
|
143
|
+
rb_hscale(VALUE self)
|
144
|
+
{
|
145
|
+
return rb_float_new(CVFONT(self)->hscale);
|
146
|
+
}
|
147
|
+
|
148
|
+
VALUE
|
149
|
+
rb_vscale(VALUE self)
|
150
|
+
{
|
151
|
+
return rb_float_new(CVFONT(self)->vscale);
|
152
|
+
}
|
153
|
+
|
154
|
+
VALUE
|
155
|
+
rb_shear(VALUE self)
|
156
|
+
{
|
157
|
+
return rb_float_new(CVFONT(self)->shear);
|
158
|
+
}
|
159
|
+
|
160
|
+
VALUE
|
161
|
+
rb_thickness(VALUE self)
|
162
|
+
{
|
163
|
+
return FIX2INT(CVFONT(self)->thickness);
|
164
|
+
}
|
165
|
+
|
166
|
+
VALUE
|
167
|
+
rb_line_type(VALUE self)
|
168
|
+
{
|
169
|
+
return FIX2INT(CVFONT(self)->line_type);
|
170
|
+
}
|
171
|
+
|
172
|
+
__NAMESPACE_END_CVFONT
|
173
|
+
__NAMESPACE_END_OPENCV
|
data/ext/cvfont.h
ADDED
@@ -0,0 +1,56 @@
|
|
1
|
+
/************************************************************
|
2
|
+
|
3
|
+
cvfont.h -
|
4
|
+
|
5
|
+
$Author: lsxi $
|
6
|
+
|
7
|
+
Copyright (C) 2005-2006 Masakazu Yonekura
|
8
|
+
|
9
|
+
************************************************************/
|
10
|
+
#ifndef RUBY_OPENCV_CVFONT_H
|
11
|
+
#define RUBY_OPENCV_CVFONT_H
|
12
|
+
|
13
|
+
#include "opencv.h"
|
14
|
+
|
15
|
+
#define __NAMESPACE_BEGIN_CVFONT namespace cCvFont{
|
16
|
+
#define __NAMESPACE_END_CVFONT }
|
17
|
+
|
18
|
+
__NAMESPACE_BEGIN_OPENCV
|
19
|
+
__NAMESPACE_BEGIN_CVFONT
|
20
|
+
|
21
|
+
#define FONT_OPTION(op) NIL_P(op) ? rb_const_get(rb_class(), rb_intern("FONT_OPTION")) : rb_funcall(rb_const_get(rb_class(), rb_intern("FONT_OPTION")), rb_intern("merge"), 1, font_option)
|
22
|
+
#define FO_ITALIC(op) ({VALUE _italic = rb_hash_aref(op, ID2SYM(rb_intern("italic"))); NIL_P(_italic) ? 0 : _italic == Qfalse ? 0 : 1;})
|
23
|
+
#define FO_HSCALE(op) NUM2DBL(rb_hash_aref(op, ID2SYM(rb_intern("hscale"))))
|
24
|
+
#define FO_VSCALE(op) NUM2DBL(rb_hash_aref(op, ID2SYM(rb_intern("vscale"))))
|
25
|
+
#define FO_SHEAR(op) NUM2DBL(rb_hash_aref(op, ID2SYM(rb_intern("shear"))))
|
26
|
+
#define FO_THICKNESS(op) FIX2INT(rb_hash_aref(op, ID2SYM(rb_intern("thickness"))))
|
27
|
+
#define FO_LINE_TYPE(op) FIX2INT(rb_hash_aref(op, ID2SYM(rb_intern("line_type"))) == ID2SYM("aa") ? INT2FIX(CV_AA) : rb_hash_aref(op, ID2SYM(rb_intern("line_type"))))
|
28
|
+
|
29
|
+
|
30
|
+
VALUE rb_class();
|
31
|
+
|
32
|
+
void define_ruby_class();
|
33
|
+
|
34
|
+
VALUE rb_allocate(VALUE klass);
|
35
|
+
VALUE rb_initialize(int argc, VALUE *argv, VALUE self);
|
36
|
+
|
37
|
+
VALUE rb_face(VALUE self);
|
38
|
+
VALUE rb_hscale(VALUE self);
|
39
|
+
VALUE rb_vscale(VALUE self);
|
40
|
+
VALUE rb_shear(VALUE self);
|
41
|
+
VALUE rb_thickness(VALUE self);
|
42
|
+
VALUE rb_line_type(VALUE self);
|
43
|
+
|
44
|
+
__NAMESPACE_END_CVFONT
|
45
|
+
|
46
|
+
inline CvFont*
|
47
|
+
CVFONT(VALUE object)
|
48
|
+
{
|
49
|
+
CvFont *ptr;
|
50
|
+
Data_Get_Struct(object, CvFont, ptr);
|
51
|
+
return ptr;
|
52
|
+
}
|
53
|
+
|
54
|
+
__NAMESPACE_END_OPENCV
|
55
|
+
|
56
|
+
#endif // RUBY_OPENCV_CVFONT_H
|
@@ -0,0 +1,159 @@
|
|
1
|
+
/************************************************************
|
2
|
+
|
3
|
+
cvhaarclassifercascade.cpp -
|
4
|
+
|
5
|
+
$Author: lsxi $
|
6
|
+
|
7
|
+
Copyright (C) 2005-2007 Masakazu Yonekura
|
8
|
+
|
9
|
+
************************************************************/
|
10
|
+
#include "cvhaarclassifiercascade.h"
|
11
|
+
/*
|
12
|
+
* Document-class: OpenCV::CvHaarClassifierCascade
|
13
|
+
*
|
14
|
+
* CvHaarClassifierCascade object is "fast-object-detector".
|
15
|
+
* This detector can discover object (e.g. human's face) from image.
|
16
|
+
*
|
17
|
+
* Find face-area from picture "lena"...
|
18
|
+
* link:../images/face_detect_from_lena.jpg
|
19
|
+
*/
|
20
|
+
__NAMESPACE_BEGIN_OPENCV
|
21
|
+
__NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE
|
22
|
+
|
23
|
+
VALUE rb_klass;
|
24
|
+
|
25
|
+
VALUE
|
26
|
+
rb_class()
|
27
|
+
{
|
28
|
+
return rb_klass;
|
29
|
+
}
|
30
|
+
|
31
|
+
void define_ruby_class()
|
32
|
+
{
|
33
|
+
if (rb_klass)
|
34
|
+
return;
|
35
|
+
/*
|
36
|
+
* opencv = rb_define_module("OpenCV");
|
37
|
+
*
|
38
|
+
* note: this comment is used by rdoc.
|
39
|
+
*/
|
40
|
+
VALUE opencv = rb_module_opencv();
|
41
|
+
|
42
|
+
rb_klass = rb_define_class_under(opencv, "CvHaarClassifierCascade", rb_cObject);
|
43
|
+
rb_define_alloc_func(rb_klass, rb_allocate);
|
44
|
+
rb_define_singleton_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load), 1);
|
45
|
+
rb_define_method(rb_klass, "detect_objects", RUBY_METHOD_FUNC(rb_detect_objects), -1);
|
46
|
+
rb_define_method(rb_klass, "detect_objects_with_pruning", RUBY_METHOD_FUNC(rb_detect_objects_with_pruning), -1);
|
47
|
+
}
|
48
|
+
|
49
|
+
VALUE
|
50
|
+
rb_allocate(VALUE klass)
|
51
|
+
{
|
52
|
+
return OPENCV_OBJECT(klass, 0);
|
53
|
+
}
|
54
|
+
|
55
|
+
/*
|
56
|
+
* call-seq:
|
57
|
+
* CvHaarClassiferCascade.load(<i>path</i>) -> object-detector
|
58
|
+
*
|
59
|
+
* Load trained cascade of haar classifers from file.
|
60
|
+
* Object detection classifiers are stored in XML or YAML files.
|
61
|
+
* sample of object detection classifier files is included by OpenCV.
|
62
|
+
*
|
63
|
+
* You can found these at
|
64
|
+
* C:\Program Files\OpenCV\data\haarcascades\*.xml (Windows, default install path)
|
65
|
+
*
|
66
|
+
* e.g. you want to try to detect human's face.
|
67
|
+
* detector = CvHaarClassiferCascade.load("haarcascade_frontalface_alt.xml")
|
68
|
+
*/
|
69
|
+
VALUE
|
70
|
+
rb_load(VALUE klass, VALUE path)
|
71
|
+
{
|
72
|
+
CvHaarClassifierCascade *cascade = (CvHaarClassifierCascade*)cvLoad(StringValueCStr(path), 0, 0, 0);
|
73
|
+
if(!CV_IS_HAAR_CLASSIFIER(cascade))
|
74
|
+
rb_raise(rb_eTypeError, "invalid format haar classifier cascade file.");
|
75
|
+
return OPENCV_OBJECT(rb_klass, cascade);
|
76
|
+
}
|
77
|
+
|
78
|
+
VALUE
|
79
|
+
rb_save(VALUE self, VALUE path)
|
80
|
+
{
|
81
|
+
rb_raise(rb_eNotImpError, "");
|
82
|
+
}
|
83
|
+
|
84
|
+
/*
|
85
|
+
* call-seq:
|
86
|
+
* detect_objects(image[,scale_factor = 1.1, min_neighbor = 3, min_size = CvSize.new(0,0)]) -> cvseq(include CvAvgComp object)
|
87
|
+
* detect_objects(image[,scale_factor = 1.1, min_neighbor = 3, min_size = CvSize.new(0,0)]){|cmp| ... } -> cvseq(include CvAvgComp object)
|
88
|
+
*
|
89
|
+
* Detects objects in the image. This method finds rectangular regions in the
|
90
|
+
* given image that are likely to contain objects the cascade has been trained
|
91
|
+
* for and return those regions as a sequence of rectangles.
|
92
|
+
*
|
93
|
+
* * scale_factor (should be > 1.0)
|
94
|
+
* The factor by which the search window is scaled between the subsequent scans, for example, 1.1 mean increasing window by 10%.
|
95
|
+
* * min_neighbors
|
96
|
+
* Minimum number (minus 1) of neighbor rectangles that makes up an object.
|
97
|
+
* All the groups of a smaller number of rectangles than min_neighbors - 1 are rejected.
|
98
|
+
* If min_neighbors is 0, the function does not any grouping at all and returns all the detected
|
99
|
+
* candidate rectangles, whitch many be useful if the user wants to apply a customized grouping procedure.
|
100
|
+
* * min_size
|
101
|
+
* Minimum window size. By default, it is set to size of samples the classifier has been trained on.
|
102
|
+
*/
|
103
|
+
VALUE
|
104
|
+
rb_detect_objects(int argc, VALUE *argv, VALUE self)
|
105
|
+
{
|
106
|
+
VALUE image, storage, scale_factor, min_neighbors, min_size, result;
|
107
|
+
rb_scan_args(argc, argv, "14", &image, &storage, &scale_factor, &min_neighbors, &min_size);
|
108
|
+
if (!rb_obj_is_kind_of(image, cCvMat::rb_class()))
|
109
|
+
rb_raise(rb_eTypeError, "argument 1(target-image) should be %s.", rb_class2name(cCvMat::rb_class()));
|
110
|
+
double scale = IF_DBL(scale_factor, 1.1);
|
111
|
+
if (!(scale > 1.0))
|
112
|
+
rb_raise(rb_eArgError, "argument 2 (scale factor) must > 1.0.");
|
113
|
+
storage = CHECK_CVMEMSTORAGE(storage);
|
114
|
+
CvSeq *seq = cvHaarDetectObjects(CVMAT(image), CVHAARCLASSIFIERCASCADE(self), CVMEMSTORAGE(storage),
|
115
|
+
scale, IF_INT(min_neighbors, 3), 0, NIL_P(min_size) ? cvSize(0,0) : VALUE_TO_CVSIZE(min_size));
|
116
|
+
result = cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvAvgComp::rb_class(), storage);
|
117
|
+
if (rb_block_given_p()) {
|
118
|
+
for(int i = 0; i < seq->total; i++)
|
119
|
+
rb_yield(REFER_OBJECT(cCvAvgComp::rb_class(), cvGetSeqElem(seq, i), storage));
|
120
|
+
}
|
121
|
+
return result;
|
122
|
+
}
|
123
|
+
|
124
|
+
/*
|
125
|
+
* call-seq:
|
126
|
+
* detect_objects_with_pruning(image[,scale_factor = 1.1, min_neighbor = 3, min_size = CvSize.new(0,0)]) -> cvseq(include CvAvgComp object)
|
127
|
+
* detect_objects_with_pruning(image[,scale_factor = 1.1, min_neighbor = 3, min_size = CvSize.new(0,0)]){|cmp| ... } -> cvseq(include CvAvgComp object)
|
128
|
+
*
|
129
|
+
* Almost same to #detect_objects (Return detected objects).
|
130
|
+
*
|
131
|
+
* Before scanning to image, Canny edge detector to reject some image regions
|
132
|
+
* that contain too few or too much edges, and thus can not contain the searched object.
|
133
|
+
*
|
134
|
+
* note: The particular threshold values are tuned for face detection.
|
135
|
+
* And in this case the pruning speeds up the processing.
|
136
|
+
*/
|
137
|
+
VALUE
|
138
|
+
rb_detect_objects_with_pruning(int argc, VALUE *argv, VALUE self)
|
139
|
+
{
|
140
|
+
VALUE image, storage, scale_factor, min_neighbors, min_size, result;
|
141
|
+
rb_scan_args(argc, argv, "14", &image, &storage, &scale_factor, &min_neighbors, &min_size);
|
142
|
+
if (!rb_obj_is_kind_of(image, cCvMat::rb_class()))
|
143
|
+
rb_raise(rb_eTypeError, "argument 1(target-image) should be %s.", rb_class2name(cCvMat::rb_class()));
|
144
|
+
double scale = IF_DBL(scale_factor, 1.1);
|
145
|
+
if (!(scale > 1.0))
|
146
|
+
rb_raise(rb_eArgError, "argument 2 (scale factor) must > 1.0.");
|
147
|
+
storage = CHECK_CVMEMSTORAGE(storage);
|
148
|
+
CvSeq *seq = cvHaarDetectObjects(CVMAT(image), CVHAARCLASSIFIERCASCADE(self), CVMEMSTORAGE(storage),
|
149
|
+
scale, IF_INT(min_neighbors, 3), CV_HAAR_DO_CANNY_PRUNING, NIL_P(min_size) ? cvSize(0,0) : VALUE_TO_CVSIZE(min_size));
|
150
|
+
result = cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvAvgComp::rb_class(), storage);
|
151
|
+
if (rb_block_given_p()) {
|
152
|
+
for(int i = 0; i < seq->total; i++)
|
153
|
+
rb_yield(REFER_OBJECT(cCvAvgComp::rb_class(), cvGetSeqElem(seq, i), storage));
|
154
|
+
}
|
155
|
+
return result;
|
156
|
+
}
|
157
|
+
|
158
|
+
__NAMESPACE_END_CVHAARCLASSIFERCASCADE
|
159
|
+
__NAMESPACE_END_OPENCV
|
@@ -0,0 +1,41 @@
|
|
1
|
+
/************************************************************
|
2
|
+
|
3
|
+
cvhaarclassifiercascade.h -
|
4
|
+
|
5
|
+
$Author: lsxi $
|
6
|
+
|
7
|
+
Copyright (C) 2005-2006 Masakazu Yonekura
|
8
|
+
|
9
|
+
************************************************************/
|
10
|
+
#ifndef RUBY_OPENCV_CVHAARCLASSIFIERCASCADE_H
|
11
|
+
#define RUBY_OPENCV_CVHAARCLASSIFIERCASCADE_H
|
12
|
+
|
13
|
+
#define __NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE namespace cCvHaarClassifierCascade{
|
14
|
+
#define __NAMESPACE_END_CVHAARCLASSIFERCASCADE }
|
15
|
+
|
16
|
+
#include"opencv.h"
|
17
|
+
|
18
|
+
__NAMESPACE_BEGIN_OPENCV
|
19
|
+
__NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE
|
20
|
+
|
21
|
+
VALUE rb_class();
|
22
|
+
|
23
|
+
void define_ruby_class();
|
24
|
+
|
25
|
+
VALUE rb_allocate(VALUE klass);
|
26
|
+
VALUE rb_initialize(int argc, VALUE *argv, VALUE self);
|
27
|
+
|
28
|
+
VALUE rb_load(VALUE klass, VALUE path);
|
29
|
+
VALUE rb_save(VALUE self, VALUE name);
|
30
|
+
VALUE rb_detect_objects(int argc, VALUE *argv, VALUE self);
|
31
|
+
VALUE rb_detect_objects_with_pruning(int argc, VALUE *argv, VALUE self);
|
32
|
+
|
33
|
+
__NAMESPACE_END_CVHAARCLASSIFERCASCADE
|
34
|
+
inline CvHaarClassifierCascade *CVHAARCLASSIFIERCASCADE(VALUE object){
|
35
|
+
CvHaarClassifierCascade *ptr;
|
36
|
+
Data_Get_Struct(object, CvHaarClassifierCascade, ptr);
|
37
|
+
return ptr;
|
38
|
+
}
|
39
|
+
__NAMESPACE_END_OPENCV
|
40
|
+
|
41
|
+
#endif // RUBY_OPENCV_CVHAARCLASSIFIERCASCADE_H
|
data/ext/cvhistogram.cpp
ADDED
@@ -0,0 +1,200 @@
|
|
1
|
+
/************************************************************
|
2
|
+
|
3
|
+
cvhistogram.cpp -
|
4
|
+
|
5
|
+
$Author: lsxi $
|
6
|
+
|
7
|
+
Copyright (C) 2005-2008 Masakazu Yonekura
|
8
|
+
|
9
|
+
************************************************************/
|
10
|
+
#include "cvhistogram.h"
|
11
|
+
/*
|
12
|
+
* Document-class: OpenCV::CvHistogram
|
13
|
+
*
|
14
|
+
* Muti-dimensional histogram.
|
15
|
+
*/
|
16
|
+
__NAMESPACE_BEGIN_OPENCV
|
17
|
+
__NAMESPACE_BEGIN_CVHISTOGRAM
|
18
|
+
|
19
|
+
VALUE rb_klass;
|
20
|
+
|
21
|
+
VALUE
|
22
|
+
rb_class()
|
23
|
+
{
|
24
|
+
return rb_klass;
|
25
|
+
}
|
26
|
+
|
27
|
+
void
|
28
|
+
define_ruby_class()
|
29
|
+
{
|
30
|
+
if (rb_klass)
|
31
|
+
return;
|
32
|
+
/*
|
33
|
+
* opencv = rb_define_module("OpenCV");
|
34
|
+
*
|
35
|
+
* note: this comment is used by rdoc.
|
36
|
+
*/
|
37
|
+
VALUE opencv = rb_module_opencv();
|
38
|
+
|
39
|
+
rb_klass = rb_define_class_under(opencv, "CvHistogram", rb_cObject);
|
40
|
+
|
41
|
+
rb_define_method(rb_klass, "is_uniform?", RUBY_METHOD_FUNC(rb_is_uniform), 0);
|
42
|
+
rb_define_method(rb_klass, "is_sparse?", RUBY_METHOD_FUNC(rb_is_sparse), 0);
|
43
|
+
rb_define_method(rb_klass, "has_range?", RUBY_METHOD_FUNC(rb_has_range), 0);
|
44
|
+
rb_define_method(rb_klass, "dims", RUBY_METHOD_FUNC(rb_dims), 0);
|
45
|
+
|
46
|
+
rb_define_method(rb_klass, "normalize", RUBY_METHOD_FUNC(rb_normalize), 1);
|
47
|
+
rb_define_method(rb_klass, "normalize!", RUBY_METHOD_FUNC(rb_normalize_bang), 1);
|
48
|
+
rb_define_method(rb_klass, "thresh", RUBY_METHOD_FUNC(rb_thresh), 1);
|
49
|
+
rb_define_alias(rb_klass, "threshold", "thresh");
|
50
|
+
rb_define_method(rb_klass, "thresh!", RUBY_METHOD_FUNC(rb_thresh_bang), 1);
|
51
|
+
rb_define_alias(rb_klass, "threshold!", "thresh!");
|
52
|
+
}
|
53
|
+
|
54
|
+
VALUE
|
55
|
+
rb_allocate(VALUE klass)
|
56
|
+
{
|
57
|
+
// not yet
|
58
|
+
return Qnil;
|
59
|
+
}
|
60
|
+
|
61
|
+
/*
|
62
|
+
* call-seq:
|
63
|
+
* is_uniform? -> true or false
|
64
|
+
*
|
65
|
+
*/
|
66
|
+
VALUE
|
67
|
+
rb_is_uniform(VALUE self)
|
68
|
+
{
|
69
|
+
return CV_IS_UNIFORM_HIST(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
|
70
|
+
}
|
71
|
+
|
72
|
+
/*
|
73
|
+
* call-seq:
|
74
|
+
* is_sparse? -> true or false
|
75
|
+
*
|
76
|
+
*/
|
77
|
+
VALUE
|
78
|
+
rb_is_sparse(VALUE self)
|
79
|
+
{
|
80
|
+
return CV_IS_SPARSE_HIST(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
|
81
|
+
}
|
82
|
+
|
83
|
+
/*
|
84
|
+
* call-seq:
|
85
|
+
* has_range? -> true or false
|
86
|
+
*/
|
87
|
+
VALUE
|
88
|
+
rb_has_range(VALUE self)
|
89
|
+
{
|
90
|
+
return CV_HIST_HAS_RANGES(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
|
91
|
+
}
|
92
|
+
|
93
|
+
/*
|
94
|
+
* call-seq:
|
95
|
+
* dims -> [int[,int...]]
|
96
|
+
*/
|
97
|
+
VALUE
|
98
|
+
rb_dims(VALUE self)
|
99
|
+
{
|
100
|
+
int size[CV_MAX_DIM];
|
101
|
+
int dims = cvGetDims(CVHISTOGRAM(self)->bins, size);
|
102
|
+
VALUE result = rb_ary_new2(dims);
|
103
|
+
for(int i = 0; i < dims; i++){
|
104
|
+
rb_ary_store(result, i, INT2FIX(size[i]));
|
105
|
+
}
|
106
|
+
return result;
|
107
|
+
}
|
108
|
+
|
109
|
+
/*
|
110
|
+
* call-seq:
|
111
|
+
* bins -> cvmatnd or cvsparsemat
|
112
|
+
*/
|
113
|
+
VALUE
|
114
|
+
rb_bins(VALUE self)
|
115
|
+
{
|
116
|
+
CvHistogram *hist = CVHISTOGRAM(self);
|
117
|
+
return REFER_OBJECT(CV_IS_SPARSE_HIST(hist) ? cCvSparseMat::rb_class() : cCvMatND::rb_class(), hist->bins, self);
|
118
|
+
}
|
119
|
+
|
120
|
+
/*
|
121
|
+
* call-seq:
|
122
|
+
* copy -> cvhist
|
123
|
+
*
|
124
|
+
* Clone histogram.
|
125
|
+
*/
|
126
|
+
VALUE
|
127
|
+
rb_copy(VALUE self)
|
128
|
+
{
|
129
|
+
VALUE dest = 0;
|
130
|
+
CvHistogram *hist = CVHISTOGRAM(dest);
|
131
|
+
cvCopyHist(CVHISTOGRAM(self), &hist);
|
132
|
+
return dest;
|
133
|
+
}
|
134
|
+
|
135
|
+
/*
|
136
|
+
* call-seq:
|
137
|
+
* clear!
|
138
|
+
*
|
139
|
+
* Sets all histogram bins to 0 in case of dense histogram and removes all histogram bins in case of sparse array.
|
140
|
+
*/
|
141
|
+
VALUE
|
142
|
+
rb_clear_bang(VALUE self)
|
143
|
+
{
|
144
|
+
cvClearHist(CVHISTOGRAM(self));
|
145
|
+
return self;
|
146
|
+
}
|
147
|
+
|
148
|
+
/*
|
149
|
+
* call-seq:
|
150
|
+
* normalize(<i>factor</i>) -> cvhist
|
151
|
+
*
|
152
|
+
* Return normalized the histogram bins by scaling them, such that the sum of the bins becomes equal to <i>factor</i>.
|
153
|
+
*/
|
154
|
+
VALUE
|
155
|
+
rb_normalize(VALUE self, VALUE factor)
|
156
|
+
{
|
157
|
+
return rb_normalize_bang(rb_copy(self), factor);
|
158
|
+
}
|
159
|
+
|
160
|
+
/*
|
161
|
+
* call-seq:
|
162
|
+
* normalize!(<i>factor</i>) -> self
|
163
|
+
*
|
164
|
+
* normalizes the histogram bins by scaling them, such that the sum of the bins becomes equal to <i>factor</i>.
|
165
|
+
*/
|
166
|
+
VALUE
|
167
|
+
rb_normalize_bang(VALUE self, VALUE factor)
|
168
|
+
{
|
169
|
+
cvNormalizeHist(CVHISTOGRAM(self), NUM2DBL(factor));
|
170
|
+
return self;
|
171
|
+
}
|
172
|
+
|
173
|
+
/*
|
174
|
+
* call-seq:
|
175
|
+
* thresh(<i>factor</i>) -> cvhist
|
176
|
+
*
|
177
|
+
* Return cleared histogram bins that are below the specified threshold.
|
178
|
+
*/
|
179
|
+
VALUE
|
180
|
+
rb_thresh(VALUE self, VALUE factor)
|
181
|
+
{
|
182
|
+
return rb_thresh_bang(rb_copy(self), factor);
|
183
|
+
}
|
184
|
+
|
185
|
+
/*
|
186
|
+
* call-seq:
|
187
|
+
* thresh!(<i>factor</i>) -> self
|
188
|
+
*
|
189
|
+
* Cleares histogram bins that are below the specified threshold.
|
190
|
+
*/
|
191
|
+
VALUE
|
192
|
+
rb_thresh_bang(VALUE self, VALUE factor)
|
193
|
+
{
|
194
|
+
cvThreshHist(CVHISTOGRAM(self), NUM2DBL(factor));
|
195
|
+
return self;
|
196
|
+
}
|
197
|
+
|
198
|
+
|
199
|
+
__NAMESPACE_END_CVHISTOGRAM
|
200
|
+
__NAMESPACE_END_OPENCV
|