ode 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,18 @@
1
+ double precision function vmnorm (n, v, w)
2
+ clll. optimize
3
+ c-----------------------------------------------------------------------
4
+ c this function routine computes the weighted max-norm
5
+ c of the vector of length n contained in the array v, with weights
6
+ c contained in the array w of length n..
7
+ c vmnorm = max(i=1,...,n) abs(v(i))*w(i)
8
+ c-----------------------------------------------------------------------
9
+ integer n, i
10
+ double precision v, w, vm
11
+ dimension v(n), w(n)
12
+ vm = 0.0d0
13
+ do 10 i = 1,n
14
+ 10 vm = dmax1(vm,dabs(v(i))*w(i))
15
+ vmnorm = vm
16
+ return
17
+ c----------------------- end of function vmnorm ------------------------
18
+ end
@@ -0,0 +1,3667 @@
1
+
2
+ *DECK DVODE
3
+ SUBROUTINE DVODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
4
+ 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF,
5
+ 2 RPAR, IPAR)
6
+ EXTERNAL F, JAC
7
+ DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK, RPAR
8
+ INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW,
9
+ 1 MF, IPAR
10
+ DIMENSION Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW),
11
+ 1 RPAR(*), IPAR(*)
12
+ C-----------------------------------------------------------------------
13
+ C DVODE.. Variable-coefficient Ordinary Differential Equation solver,
14
+ C with fixed-leading-coefficient implementation.
15
+ C This version is in double precision.
16
+ C
17
+ C DVODE solves the initial value problem for stiff or nonstiff
18
+ C systems of first order ODEs,
19
+ C dy/dt = f(t,y) , or, in component form,
20
+ C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ).
21
+ C DVODE is a package based on the EPISODE and EPISODEB packages, and
22
+ C on the ODEPACK user interface standard, with minor modifications.
23
+ C-----------------------------------------------------------------------
24
+ C Revision History (YYMMDD)
25
+ C 890615 Date Written
26
+ C 890922 Added interrupt/restart ability, minor changes throughout.
27
+ C 910228 Minor revisions in line format, prologue, etc.
28
+ C 920227 Modifications by D. Pang:
29
+ C (1) Applied subgennam to get generic intrinsic names.
30
+ C (2) Changed intrinsic names to generic in comments.
31
+ C (3) Added *DECK lines before each routine.
32
+ C 920721 Names of routines and labeled Common blocks changed, so as
33
+ C to be unique in combined single/double precision code (ACH).
34
+ C 920722 Minor revisions to prologue (ACH).
35
+ C 920831 Conversion to double precision done (ACH).
36
+ C 921106 Fixed minor bug: ETAQ,ETAQM1 in DVSTEP SAVE statement (ACH).
37
+ C 921118 Changed LUNSAV/MFLGSV to IXSAV (ACH).
38
+ C 941222 Removed MF overwrite; attached sign to H in estimated second
39
+ C derivative in DVHIN; misc. comment corrections throughout.
40
+ C 970515 Minor corrections to comments in prologue, DVJAC.
41
+ C-----------------------------------------------------------------------
42
+ C References..
43
+ C
44
+ C 1. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, "VODE: A Variable
45
+ C Coefficient ODE Solver," SIAM J. Sci. Stat. Comput., 10 (1989),
46
+ C pp. 1038-1051. Also, LLNL Report UCRL-98412, June 1988.
47
+ C 2. G. D. Byrne and A. C. Hindmarsh, "A Polyalgorithm for the
48
+ C Numerical Solution of Ordinary Differential Equations,"
49
+ C ACM Trans. Math. Software, 1 (1975), pp. 71-96.
50
+ C 3. A. C. Hindmarsh and G. D. Byrne, "EPISODE: An Effective Package
51
+ C for the Integration of Systems of Ordinary Differential
52
+ C Equations," LLNL Report UCID-30112, Rev. 1, April 1977.
53
+ C 4. G. D. Byrne and A. C. Hindmarsh, "EPISODEB: An Experimental
54
+ C Package for the Integration of Systems of Ordinary Differential
55
+ C Equations with Banded Jacobians," LLNL Report UCID-30132, April
56
+ C 1976.
57
+ C 5. A. C. Hindmarsh, "ODEPACK, a Systematized Collection of ODE
58
+ C Solvers," in Scientific Computing, R. S. Stepleman et al., eds.,
59
+ C North-Holland, Amsterdam, 1983, pp. 55-64.
60
+ C 6. K. R. Jackson and R. Sacks-Davis, "An Alternative Implementation
61
+ C of Variable Step-Size Multistep Formulas for Stiff ODEs," ACM
62
+ C Trans. Math. Software, 6 (1980), pp. 295-318.
63
+ C-----------------------------------------------------------------------
64
+ C Authors..
65
+ C
66
+ C Peter N. Brown and Alan C. Hindmarsh
67
+ C Center for Applied Scientific Computing, L-561
68
+ C Lawrence Livermore National Laboratory
69
+ C Livermore, CA 94551
70
+ C and
71
+ C George D. Byrne
72
+ C Illinois Institute of Technology
73
+ C Chicago, IL 60616
74
+ C-----------------------------------------------------------------------
75
+ C Summary of usage.
76
+ C
77
+ C Communication between the user and the DVODE package, for normal
78
+ C situations, is summarized here. This summary describes only a subset
79
+ C of the full set of options available. See the full description for
80
+ C details, including optional communication, nonstandard options,
81
+ C and instructions for special situations. See also the example
82
+ C problem (with program and output) following this summary.
83
+ C
84
+ C A. First provide a subroutine of the form..
85
+ C
86
+ C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR)
87
+ C DOUBLE PRECISION T, Y, YDOT, RPAR
88
+ C DIMENSION Y(NEQ), YDOT(NEQ)
89
+ C
90
+ C which supplies the vector function f by loading YDOT(i) with f(i).
91
+ C
92
+ C B. Next determine (or guess) whether or not the problem is stiff.
93
+ C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue
94
+ C whose real part is negative and large in magnitude, compared to the
95
+ C reciprocal of the t span of interest. If the problem is nonstiff,
96
+ C use a method flag MF = 10. If it is stiff, there are four standard
97
+ C choices for MF (21, 22, 24, 25), and DVODE requires the Jacobian
98
+ C matrix in some form. In these cases (MF .gt. 0), DVODE will use a
99
+ C saved copy of the Jacobian matrix. If this is undesirable because of
100
+ C storage limitations, set MF to the corresponding negative value
101
+ C (-21, -22, -24, -25). (See full description of MF below.)
102
+ C The Jacobian matrix is regarded either as full (MF = 21 or 22),
103
+ C or banded (MF = 24 or 25). In the banded case, DVODE requires two
104
+ C half-bandwidth parameters ML and MU. These are, respectively, the
105
+ C widths of the lower and upper parts of the band, excluding the main
106
+ C diagonal. Thus the band consists of the locations (i,j) with
107
+ C i-ML .le. j .le. i+MU, and the full bandwidth is ML+MU+1.
108
+ C
109
+ C C. If the problem is stiff, you are encouraged to supply the Jacobian
110
+ C directly (MF = 21 or 24), but if this is not feasible, DVODE will
111
+ C compute it internally by difference quotients (MF = 22 or 25).
112
+ C If you are supplying the Jacobian, provide a subroutine of the form..
113
+ C
114
+ C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD, RPAR, IPAR)
115
+ C DOUBLE PRECISION T, Y, PD, RPAR
116
+ C DIMENSION Y(NEQ), PD(NROWPD,NEQ)
117
+ C
118
+ C which supplies df/dy by loading PD as follows..
119
+ C For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j),
120
+ C the partial derivative of f(i) with respect to y(j). (Ignore the
121
+ C ML and MU arguments in this case.)
122
+ C For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with
123
+ C df(i)/dy(j), i.e. load the diagonal lines of df/dy into the rows of
124
+ C PD from the top down.
125
+ C In either case, only nonzero elements need be loaded.
126
+ C
127
+ C D. Write a main program which calls subroutine DVODE once for
128
+ C each point at which answers are desired. This should also provide
129
+ C for possible use of logical unit 6 for output of error messages
130
+ C by DVODE. On the first call to DVODE, supply arguments as follows..
131
+ C F = Name of subroutine for right-hand side vector f.
132
+ C This name must be declared external in calling program.
133
+ C NEQ = Number of first order ODE-s.
134
+ C Y = Array of initial values, of length NEQ.
135
+ C T = The initial value of the independent variable.
136
+ C TOUT = First point where output is desired (.ne. T).
137
+ C ITOL = 1 or 2 according as ATOL (below) is a scalar or array.
138
+ C RTOL = Relative tolerance parameter (scalar).
139
+ C ATOL = Absolute tolerance parameter (scalar or array).
140
+ C The estimated local error in Y(i) will be controlled so as
141
+ C to be roughly less (in magnitude) than
142
+ C EWT(i) = RTOL*abs(Y(i)) + ATOL if ITOL = 1, or
143
+ C EWT(i) = RTOL*abs(Y(i)) + ATOL(i) if ITOL = 2.
144
+ C Thus the local error test passes if, in each component,
145
+ C either the absolute error is less than ATOL (or ATOL(i)),
146
+ C or the relative error is less than RTOL.
147
+ C Use RTOL = 0.0 for pure absolute error control, and
148
+ C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error
149
+ C control. Caution.. Actual (global) errors may exceed these
150
+ C local tolerances, so choose them conservatively.
151
+ C ITASK = 1 for normal computation of output values of Y at t = TOUT.
152
+ C ISTATE = Integer flag (input and output). Set ISTATE = 1.
153
+ C IOPT = 0 to indicate no optional input used.
154
+ C RWORK = Real work array of length at least..
155
+ C 20 + 16*NEQ for MF = 10,
156
+ C 22 + 9*NEQ + 2*NEQ**2 for MF = 21 or 22,
157
+ C 22 + 11*NEQ + (3*ML + 2*MU)*NEQ for MF = 24 or 25.
158
+ C LRW = Declared length of RWORK (in user's DIMENSION statement).
159
+ C IWORK = Integer work array of length at least..
160
+ C 30 for MF = 10,
161
+ C 30 + NEQ for MF = 21, 22, 24, or 25.
162
+ C If MF = 24 or 25, input in IWORK(1),IWORK(2) the lower
163
+ C and upper half-bandwidths ML,MU.
164
+ C LIW = Declared length of IWORK (in user's DIMENSION statement).
165
+ C JAC = Name of subroutine for Jacobian matrix (MF = 21 or 24).
166
+ C If used, this name must be declared external in calling
167
+ C program. If not used, pass a dummy name.
168
+ C MF = Method flag. Standard values are..
169
+ C 10 for nonstiff (Adams) method, no Jacobian used.
170
+ C 21 for stiff (BDF) method, user-supplied full Jacobian.
171
+ C 22 for stiff method, internally generated full Jacobian.
172
+ C 24 for stiff method, user-supplied banded Jacobian.
173
+ C 25 for stiff method, internally generated banded Jacobian.
174
+ C RPAR,IPAR = user-defined real and integer arrays passed to F and JAC.
175
+ C Note that the main program must declare arrays Y, RWORK, IWORK,
176
+ C and possibly ATOL, RPAR, and IPAR.
177
+ C
178
+ C E. The output from the first call (or any call) is..
179
+ C Y = Array of computed values of y(t) vector.
180
+ C T = Corresponding value of independent variable (normally TOUT).
181
+ C ISTATE = 2 if DVODE was successful, negative otherwise.
182
+ C -1 means excess work done on this call. (Perhaps wrong MF.)
183
+ C -2 means excess accuracy requested. (Tolerances too small.)
184
+ C -3 means illegal input detected. (See printed message.)
185
+ C -4 means repeated error test failures. (Check all input.)
186
+ C -5 means repeated convergence failures. (Perhaps bad
187
+ C Jacobian supplied or wrong choice of MF or tolerances.)
188
+ C -6 means error weight became zero during problem. (Solution
189
+ C component i vanished, and ATOL or ATOL(i) = 0.)
190
+ C
191
+ C F. To continue the integration after a successful return, simply
192
+ C reset TOUT and call DVODE again. No other parameters need be reset.
193
+ C
194
+ C-----------------------------------------------------------------------
195
+ C EXAMPLE PROBLEM
196
+ C
197
+ C The following is a simple example problem, with the coding
198
+ C needed for its solution by DVODE. The problem is from chemical
199
+ C kinetics, and consists of the following three rate equations..
200
+ C dy1/dt = -.04*y1 + 1.e4*y2*y3
201
+ C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2
202
+ C dy3/dt = 3.e7*y2**2
203
+ C on the interval from t = 0.0 to t = 4.e10, with initial conditions
204
+ C y1 = 1.0, y2 = y3 = 0. The problem is stiff.
205
+ C
206
+ C The following coding solves this problem with DVODE, using MF = 21
207
+ C and printing results at t = .4, 4., ..., 4.e10. It uses
208
+ C ITOL = 2 and ATOL much smaller for y2 than y1 or y3 because
209
+ C y2 has much smaller values.
210
+ C At the end of the run, statistical quantities of interest are
211
+ C printed. (See optional output in the full description below.)
212
+ C To generate Fortran source code, replace C in column 1 with a blank
213
+ C in the coding below.
214
+ C
215
+ C EXTERNAL FEX, JEX
216
+ C DOUBLE PRECISION ATOL, RPAR, RTOL, RWORK, T, TOUT, Y
217
+ C DIMENSION Y(3), ATOL(3), RWORK(67), IWORK(33)
218
+ C NEQ = 3
219
+ C Y(1) = 1.0D0
220
+ C Y(2) = 0.0D0
221
+ C Y(3) = 0.0D0
222
+ C T = 0.0D0
223
+ C TOUT = 0.4D0
224
+ C ITOL = 2
225
+ C RTOL = 1.D-4
226
+ C ATOL(1) = 1.D-8
227
+ C ATOL(2) = 1.D-14
228
+ C ATOL(3) = 1.D-6
229
+ C ITASK = 1
230
+ C ISTATE = 1
231
+ C IOPT = 0
232
+ C LRW = 67
233
+ C LIW = 33
234
+ C MF = 21
235
+ C DO 40 IOUT = 1,12
236
+ C CALL DVODE(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE,
237
+ C 1 IOPT,RWORK,LRW,IWORK,LIW,JEX,MF,RPAR,IPAR)
238
+ C WRITE(6,20)T,Y(1),Y(2),Y(3)
239
+ C 20 FORMAT(' At t =',D12.4,' y =',3D14.6)
240
+ C IF (ISTATE .LT. 0) GO TO 80
241
+ C 40 TOUT = TOUT*10.
242
+ C WRITE(6,60) IWORK(11),IWORK(12),IWORK(13),IWORK(19),
243
+ C 1 IWORK(20),IWORK(21),IWORK(22)
244
+ C 60 FORMAT(/' No. steps =',I4,' No. f-s =',I4,
245
+ C 1 ' No. J-s =',I4,' No. LU-s =',I4/
246
+ C 2 ' No. nonlinear iterations =',I4/
247
+ C 3 ' No. nonlinear convergence failures =',I4/
248
+ C 4 ' No. error test failures =',I4/)
249
+ C STOP
250
+ C 80 WRITE(6,90)ISTATE
251
+ C 90 FORMAT(///' Error halt.. ISTATE =',I3)
252
+ C STOP
253
+ C END
254
+ C
255
+ C SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)
256
+ C DOUBLE PRECISION RPAR, T, Y, YDOT
257
+ C DIMENSION Y(NEQ), YDOT(NEQ)
258
+ C YDOT(1) = -.04D0*Y(1) + 1.D4*Y(2)*Y(3)
259
+ C YDOT(3) = 3.D7*Y(2)*Y(2)
260
+ C YDOT(2) = -YDOT(1) - YDOT(3)
261
+ C RETURN
262
+ C END
263
+ C
264
+ C SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR)
265
+ C DOUBLE PRECISION PD, RPAR, T, Y
266
+ C DIMENSION Y(NEQ), PD(NRPD,NEQ)
267
+ C PD(1,1) = -.04D0
268
+ C PD(1,2) = 1.D4*Y(3)
269
+ C PD(1,3) = 1.D4*Y(2)
270
+ C PD(2,1) = .04D0
271
+ C PD(2,3) = -PD(1,3)
272
+ C PD(3,2) = 6.D7*Y(2)
273
+ C PD(2,2) = -PD(1,2) - PD(3,2)
274
+ C RETURN
275
+ C END
276
+ C
277
+ C The following output was obtained from the above program on a
278
+ C Cray-1 computer with the CFT compiler.
279
+ C
280
+ C At t = 4.0000e-01 y = 9.851680e-01 3.386314e-05 1.479817e-02
281
+ C At t = 4.0000e+00 y = 9.055255e-01 2.240539e-05 9.445214e-02
282
+ C At t = 4.0000e+01 y = 7.158108e-01 9.184883e-06 2.841800e-01
283
+ C At t = 4.0000e+02 y = 4.505032e-01 3.222940e-06 5.494936e-01
284
+ C At t = 4.0000e+03 y = 1.832053e-01 8.942690e-07 8.167938e-01
285
+ C At t = 4.0000e+04 y = 3.898560e-02 1.621875e-07 9.610142e-01
286
+ C At t = 4.0000e+05 y = 4.935882e-03 1.984013e-08 9.950641e-01
287
+ C At t = 4.0000e+06 y = 5.166183e-04 2.067528e-09 9.994834e-01
288
+ C At t = 4.0000e+07 y = 5.201214e-05 2.080593e-10 9.999480e-01
289
+ C At t = 4.0000e+08 y = 5.213149e-06 2.085271e-11 9.999948e-01
290
+ C At t = 4.0000e+09 y = 5.183495e-07 2.073399e-12 9.999995e-01
291
+ C At t = 4.0000e+10 y = 5.450996e-08 2.180399e-13 9.999999e-01
292
+ C
293
+ C No. steps = 595 No. f-s = 832 No. J-s = 13 No. LU-s = 112
294
+ C No. nonlinear iterations = 831
295
+ C No. nonlinear convergence failures = 0
296
+ C No. error test failures = 22
297
+ C-----------------------------------------------------------------------
298
+ C Full description of user interface to DVODE.
299
+ C
300
+ C The user interface to DVODE consists of the following parts.
301
+ C
302
+ C i. The call sequence to subroutine DVODE, which is a driver
303
+ C routine for the solver. This includes descriptions of both
304
+ C the call sequence arguments and of user-supplied routines.
305
+ C Following these descriptions is
306
+ C * a description of optional input available through the
307
+ C call sequence,
308
+ C * a description of optional output (in the work arrays), and
309
+ C * instructions for interrupting and restarting a solution.
310
+ C
311
+ C ii. Descriptions of other routines in the DVODE package that may be
312
+ C (optionally) called by the user. These provide the ability to
313
+ C alter error message handling, save and restore the internal
314
+ C COMMON, and obtain specified derivatives of the solution y(t).
315
+ C
316
+ C iii. Descriptions of COMMON blocks to be declared in overlay
317
+ C or similar environments.
318
+ C
319
+ C iv. Description of two routines in the DVODE package, either of
320
+ C which the user may replace with his own version, if desired.
321
+ C these relate to the measurement of errors.
322
+ C
323
+ C-----------------------------------------------------------------------
324
+ C Part i. Call Sequence.
325
+ C
326
+ C The call sequence parameters used for input only are
327
+ C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF,
328
+ C and those used for both input and output are
329
+ C Y, T, ISTATE.
330
+ C The work arrays RWORK and IWORK are also used for conditional and
331
+ C optional input and optional output. (The term output here refers
332
+ C to the return from subroutine DVODE to the user's calling program.)
333
+ C
334
+ C The legality of input parameters will be thoroughly checked on the
335
+ C initial call for the problem, but not checked thereafter unless a
336
+ C change in input parameters is flagged by ISTATE = 3 in the input.
337
+ C
338
+ C The descriptions of the call arguments are as follows.
339
+ C
340
+ C F = The name of the user-supplied subroutine defining the
341
+ C ODE system. The system must be put in the first-order
342
+ C form dy/dt = f(t,y), where f is a vector-valued function
343
+ C of the scalar t and the vector y. Subroutine F is to
344
+ C compute the function f. It is to have the form
345
+ C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR)
346
+ C DOUBLE PRECISION T, Y, YDOT, RPAR
347
+ C DIMENSION Y(NEQ), YDOT(NEQ)
348
+ C where NEQ, T, and Y are input, and the array YDOT = f(t,y)
349
+ C is output. Y and YDOT are arrays of length NEQ.
350
+ C (In the DIMENSION statement above, NEQ can be replaced by
351
+ C * to make Y and YDOT assumed size arrays.)
352
+ C Subroutine F should not alter Y(1),...,Y(NEQ).
353
+ C F must be declared EXTERNAL in the calling program.
354
+ C
355
+ C Subroutine F may access user-defined real and integer
356
+ C work arrays RPAR and IPAR, which are to be dimensioned
357
+ C in the main program.
358
+ C
359
+ C If quantities computed in the F routine are needed
360
+ C externally to DVODE, an extra call to F should be made
361
+ C for this purpose, for consistent and accurate results.
362
+ C If only the derivative dy/dt is needed, use DVINDY instead.
363
+ C
364
+ C NEQ = The size of the ODE system (number of first order
365
+ C ordinary differential equations). Used only for input.
366
+ C NEQ may not be increased during the problem, but
367
+ C can be decreased (with ISTATE = 3 in the input).
368
+ C
369
+ C Y = A real array for the vector of dependent variables, of
370
+ C length NEQ or more. Used for both input and output on the
371
+ C first call (ISTATE = 1), and only for output on other calls.
372
+ C On the first call, Y must contain the vector of initial
373
+ C values. In the output, Y contains the computed solution
374
+ C evaluated at T. If desired, the Y array may be used
375
+ C for other purposes between calls to the solver.
376
+ C
377
+ C This array is passed as the Y argument in all calls to
378
+ C F and JAC.
379
+ C
380
+ C T = The independent variable. In the input, T is used only on
381
+ C the first call, as the initial point of the integration.
382
+ C In the output, after each call, T is the value at which a
383
+ C computed solution Y is evaluated (usually the same as TOUT).
384
+ C On an error return, T is the farthest point reached.
385
+ C
386
+ C TOUT = The next value of t at which a computed solution is desired.
387
+ C Used only for input.
388
+ C
389
+ C When starting the problem (ISTATE = 1), TOUT may be equal
390
+ C to T for one call, then should .ne. T for the next call.
391
+ C For the initial T, an input value of TOUT .ne. T is used
392
+ C in order to determine the direction of the integration
393
+ C (i.e. the algebraic sign of the step sizes) and the rough
394
+ C scale of the problem. Integration in either direction
395
+ C (forward or backward in t) is permitted.
396
+ C
397
+ C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after
398
+ C the first call (i.e. the first call with TOUT .ne. T).
399
+ C Otherwise, TOUT is required on every call.
400
+ C
401
+ C If ITASK = 1, 3, or 4, the values of TOUT need not be
402
+ C monotone, but a value of TOUT which backs up is limited
403
+ C to the current internal t interval, whose endpoints are
404
+ C TCUR - HU and TCUR. (See optional output, below, for
405
+ C TCUR and HU.)
406
+ C
407
+ C ITOL = An indicator for the type of error control. See
408
+ C description below under ATOL. Used only for input.
409
+ C
410
+ C RTOL = A relative error tolerance parameter, either a scalar or
411
+ C an array of length NEQ. See description below under ATOL.
412
+ C Input only.
413
+ C
414
+ C ATOL = An absolute error tolerance parameter, either a scalar or
415
+ C an array of length NEQ. Input only.
416
+ C
417
+ C The input parameters ITOL, RTOL, and ATOL determine
418
+ C the error control performed by the solver. The solver will
419
+ C control the vector e = (e(i)) of estimated local errors
420
+ C in Y, according to an inequality of the form
421
+ C rms-norm of ( e(i)/EWT(i) ) .le. 1,
422
+ C where EWT(i) = RTOL(i)*abs(Y(i)) + ATOL(i),
423
+ C and the rms-norm (root-mean-square norm) here is
424
+ C rms-norm(v) = sqrt(sum v(i)**2 / NEQ). Here EWT = (EWT(i))
425
+ C is a vector of weights which must always be positive, and
426
+ C the values of RTOL and ATOL should all be non-negative.
427
+ C The following table gives the types (scalar/array) of
428
+ C RTOL and ATOL, and the corresponding form of EWT(i).
429
+ C
430
+ C ITOL RTOL ATOL EWT(i)
431
+ C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL
432
+ C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i)
433
+ C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL
434
+ C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i)
435
+ C
436
+ C When either of these parameters is a scalar, it need not
437
+ C be dimensioned in the user's calling program.
438
+ C
439
+ C If none of the above choices (with ITOL, RTOL, and ATOL
440
+ C fixed throughout the problem) is suitable, more general
441
+ C error controls can be obtained by substituting
442
+ C user-supplied routines for the setting of EWT and/or for
443
+ C the norm calculation. See Part iv below.
444
+ C
445
+ C If global errors are to be estimated by making a repeated
446
+ C run on the same problem with smaller tolerances, then all
447
+ C components of RTOL and ATOL (i.e. of EWT) should be scaled
448
+ C down uniformly.
449
+ C
450
+ C ITASK = An index specifying the task to be performed.
451
+ C Input only. ITASK has the following values and meanings.
452
+ C 1 means normal computation of output values of y(t) at
453
+ C t = TOUT (by overshooting and interpolating).
454
+ C 2 means take one step only and return.
455
+ C 3 means stop at the first internal mesh point at or
456
+ C beyond t = TOUT and return.
457
+ C 4 means normal computation of output values of y(t) at
458
+ C t = TOUT but without overshooting t = TCRIT.
459
+ C TCRIT must be input as RWORK(1). TCRIT may be equal to
460
+ C or beyond TOUT, but not behind it in the direction of
461
+ C integration. This option is useful if the problem
462
+ C has a singularity at or beyond t = TCRIT.
463
+ C 5 means take one step, without passing TCRIT, and return.
464
+ C TCRIT must be input as RWORK(1).
465
+ C
466
+ C Note.. If ITASK = 4 or 5 and the solver reaches TCRIT
467
+ C (within roundoff), it will return T = TCRIT (exactly) to
468
+ C indicate this (unless ITASK = 4 and TOUT comes before TCRIT,
469
+ C in which case answers at T = TOUT are returned first).
470
+ C
471
+ C ISTATE = an index used for input and output to specify the
472
+ C the state of the calculation.
473
+ C
474
+ C In the input, the values of ISTATE are as follows.
475
+ C 1 means this is the first call for the problem
476
+ C (initializations will be done). See note below.
477
+ C 2 means this is not the first call, and the calculation
478
+ C is to continue normally, with no change in any input
479
+ C parameters except possibly TOUT and ITASK.
480
+ C (If ITOL, RTOL, and/or ATOL are changed between calls
481
+ C with ISTATE = 2, the new values will be used but not
482
+ C tested for legality.)
483
+ C 3 means this is not the first call, and the
484
+ C calculation is to continue normally, but with
485
+ C a change in input parameters other than
486
+ C TOUT and ITASK. Changes are allowed in
487
+ C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, ML, MU,
488
+ C and any of the optional input except H0.
489
+ C (See IWORK description for ML and MU.)
490
+ C Note.. A preliminary call with TOUT = T is not counted
491
+ C as a first call here, as no initialization or checking of
492
+ C input is done. (Such a call is sometimes useful to include
493
+ C the initial conditions in the output.)
494
+ C Thus the first call for which TOUT .ne. T requires
495
+ C ISTATE = 1 in the input.
496
+ C
497
+ C In the output, ISTATE has the following values and meanings.
498
+ C 1 means nothing was done, as TOUT was equal to T with
499
+ C ISTATE = 1 in the input.
500
+ C 2 means the integration was performed successfully.
501
+ C -1 means an excessive amount of work (more than MXSTEP
502
+ C steps) was done on this call, before completing the
503
+ C requested task, but the integration was otherwise
504
+ C successful as far as T. (MXSTEP is an optional input
505
+ C and is normally 500.) To continue, the user may
506
+ C simply reset ISTATE to a value .gt. 1 and call again.
507
+ C (The excess work step counter will be reset to 0.)
508
+ C In addition, the user may increase MXSTEP to avoid
509
+ C this error return. (See optional input below.)
510
+ C -2 means too much accuracy was requested for the precision
511
+ C of the machine being used. This was detected before
512
+ C completing the requested task, but the integration
513
+ C was successful as far as T. To continue, the tolerance
514
+ C parameters must be reset, and ISTATE must be set
515
+ C to 3. The optional output TOLSF may be used for this
516
+ C purpose. (Note.. If this condition is detected before
517
+ C taking any steps, then an illegal input return
518
+ C (ISTATE = -3) occurs instead.)
519
+ C -3 means illegal input was detected, before taking any
520
+ C integration steps. See written message for details.
521
+ C Note.. If the solver detects an infinite loop of calls
522
+ C to the solver with illegal input, it will cause
523
+ C the run to stop.
524
+ C -4 means there were repeated error test failures on
525
+ C one attempted step, before completing the requested
526
+ C task, but the integration was successful as far as T.
527
+ C The problem may have a singularity, or the input
528
+ C may be inappropriate.
529
+ C -5 means there were repeated convergence test failures on
530
+ C one attempted step, before completing the requested
531
+ C task, but the integration was successful as far as T.
532
+ C This may be caused by an inaccurate Jacobian matrix,
533
+ C if one is being used.
534
+ C -6 means EWT(i) became zero for some i during the
535
+ C integration. Pure relative error control (ATOL(i)=0.0)
536
+ C was requested on a variable which has now vanished.
537
+ C The integration was successful as far as T.
538
+ C
539
+ C Note.. Since the normal output value of ISTATE is 2,
540
+ C it does not need to be reset for normal continuation.
541
+ C Also, since a negative input value of ISTATE will be
542
+ C regarded as illegal, a negative output value requires the
543
+ C user to change it, and possibly other input, before
544
+ C calling the solver again.
545
+ C
546
+ C IOPT = An integer flag to specify whether or not any optional
547
+ C input is being used on this call. Input only.
548
+ C The optional input is listed separately below.
549
+ C IOPT = 0 means no optional input is being used.
550
+ C Default values will be used in all cases.
551
+ C IOPT = 1 means optional input is being used.
552
+ C
553
+ C RWORK = A real working array (double precision).
554
+ C The length of RWORK must be at least
555
+ C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM where
556
+ C NYH = the initial value of NEQ,
557
+ C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a
558
+ C smaller value is given as an optional input),
559
+ C LWM = length of work space for matrix-related data..
560
+ C LWM = 0 if MITER = 0,
561
+ C LWM = 2*NEQ**2 + 2 if MITER = 1 or 2, and MF.gt.0,
562
+ C LWM = NEQ**2 + 2 if MITER = 1 or 2, and MF.lt.0,
563
+ C LWM = NEQ + 2 if MITER = 3,
564
+ C LWM = (3*ML+2*MU+2)*NEQ + 2 if MITER = 4 or 5, and MF.gt.0,
565
+ C LWM = (2*ML+MU+1)*NEQ + 2 if MITER = 4 or 5, and MF.lt.0.
566
+ C (See the MF description for METH and MITER.)
567
+ C Thus if MAXORD has its default value and NEQ is constant,
568
+ C this length is..
569
+ C 20 + 16*NEQ for MF = 10,
570
+ C 22 + 16*NEQ + 2*NEQ**2 for MF = 11 or 12,
571
+ C 22 + 16*NEQ + NEQ**2 for MF = -11 or -12,
572
+ C 22 + 17*NEQ for MF = 13,
573
+ C 22 + 18*NEQ + (3*ML+2*MU)*NEQ for MF = 14 or 15,
574
+ C 22 + 17*NEQ + (2*ML+MU)*NEQ for MF = -14 or -15,
575
+ C 20 + 9*NEQ for MF = 20,
576
+ C 22 + 9*NEQ + 2*NEQ**2 for MF = 21 or 22,
577
+ C 22 + 9*NEQ + NEQ**2 for MF = -21 or -22,
578
+ C 22 + 10*NEQ for MF = 23,
579
+ C 22 + 11*NEQ + (3*ML+2*MU)*NEQ for MF = 24 or 25.
580
+ C 22 + 10*NEQ + (2*ML+MU)*NEQ for MF = -24 or -25.
581
+ C The first 20 words of RWORK are reserved for conditional
582
+ C and optional input and optional output.
583
+ C
584
+ C The following word in RWORK is a conditional input..
585
+ C RWORK(1) = TCRIT = critical value of t which the solver
586
+ C is not to overshoot. Required if ITASK is
587
+ C 4 or 5, and ignored otherwise. (See ITASK.)
588
+ C
589
+ C LRW = The length of the array RWORK, as declared by the user.
590
+ C (This will be checked by the solver.)
591
+ C
592
+ C IWORK = An integer work array. The length of IWORK must be at least
593
+ C 30 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or
594
+ C 30 + NEQ otherwise (abs(MF) = 11,12,14,15,21,22,24,25).
595
+ C The first 30 words of IWORK are reserved for conditional and
596
+ C optional input and optional output.
597
+ C
598
+ C The following 2 words in IWORK are conditional input..
599
+ C IWORK(1) = ML These are the lower and upper
600
+ C IWORK(2) = MU half-bandwidths, respectively, of the
601
+ C banded Jacobian, excluding the main diagonal.
602
+ C The band is defined by the matrix locations
603
+ C (i,j) with i-ML .le. j .le. i+MU. ML and MU
604
+ C must satisfy 0 .le. ML,MU .le. NEQ-1.
605
+ C These are required if MITER is 4 or 5, and
606
+ C ignored otherwise. ML and MU may in fact be
607
+ C the band parameters for a matrix to which
608
+ C df/dy is only approximately equal.
609
+ C
610
+ C LIW = the length of the array IWORK, as declared by the user.
611
+ C (This will be checked by the solver.)
612
+ C
613
+ C Note.. The work arrays must not be altered between calls to DVODE
614
+ C for the same problem, except possibly for the conditional and
615
+ C optional input, and except for the last 3*NEQ words of RWORK.
616
+ C The latter space is used for internal scratch space, and so is
617
+ C available for use by the user outside DVODE between calls, if
618
+ C desired (but not for use by F or JAC).
619
+ C
620
+ C JAC = The name of the user-supplied routine (MITER = 1 or 4) to
621
+ C compute the Jacobian matrix, df/dy, as a function of
622
+ C the scalar t and the vector y. It is to have the form
623
+ C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD,
624
+ C RPAR, IPAR)
625
+ C DOUBLE PRECISION T, Y, PD, RPAR
626
+ C DIMENSION Y(NEQ), PD(NROWPD, NEQ)
627
+ C where NEQ, T, Y, ML, MU, and NROWPD are input and the array
628
+ C PD is to be loaded with partial derivatives (elements of the
629
+ C Jacobian matrix) in the output. PD must be given a first
630
+ C dimension of NROWPD. T and Y have the same meaning as in
631
+ C Subroutine F. (In the DIMENSION statement above, NEQ can
632
+ C be replaced by * to make Y and PD assumed size arrays.)
633
+ C In the full matrix case (MITER = 1), ML and MU are
634
+ C ignored, and the Jacobian is to be loaded into PD in
635
+ C columnwise manner, with df(i)/dy(j) loaded into PD(i,j).
636
+ C In the band matrix case (MITER = 4), the elements
637
+ C within the band are to be loaded into PD in columnwise
638
+ C manner, with diagonal lines of df/dy loaded into the rows
639
+ C of PD. Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j).
640
+ C ML and MU are the half-bandwidth parameters. (See IWORK).
641
+ C The locations in PD in the two triangular areas which
642
+ C correspond to nonexistent matrix elements can be ignored
643
+ C or loaded arbitrarily, as they are overwritten by DVODE.
644
+ C JAC need not provide df/dy exactly. A crude
645
+ C approximation (possibly with a smaller bandwidth) will do.
646
+ C In either case, PD is preset to zero by the solver,
647
+ C so that only the nonzero elements need be loaded by JAC.
648
+ C Each call to JAC is preceded by a call to F with the same
649
+ C arguments NEQ, T, and Y. Thus to gain some efficiency,
650
+ C intermediate quantities shared by both calculations may be
651
+ C saved in a user COMMON block by F and not recomputed by JAC,
652
+ C if desired. Also, JAC may alter the Y array, if desired.
653
+ C JAC must be declared external in the calling program.
654
+ C Subroutine JAC may access user-defined real and integer
655
+ C work arrays, RPAR and IPAR, whose dimensions are set by the
656
+ C user in the main program.
657
+ C
658
+ C MF = The method flag. Used only for input. The legal values of
659
+ C MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25,
660
+ C -11, -12, -14, -15, -21, -22, -24, -25.
661
+ C MF is a signed two-digit integer, MF = JSV*(10*METH + MITER).
662
+ C JSV = SIGN(MF) indicates the Jacobian-saving strategy..
663
+ C JSV = 1 means a copy of the Jacobian is saved for reuse
664
+ C in the corrector iteration algorithm.
665
+ C JSV = -1 means a copy of the Jacobian is not saved
666
+ C (valid only for MITER = 1, 2, 4, or 5).
667
+ C METH indicates the basic linear multistep method..
668
+ C METH = 1 means the implicit Adams method.
669
+ C METH = 2 means the method based on backward
670
+ C differentiation formulas (BDF-s).
671
+ C MITER indicates the corrector iteration method..
672
+ C MITER = 0 means functional iteration (no Jacobian matrix
673
+ C is involved).
674
+ C MITER = 1 means chord iteration with a user-supplied
675
+ C full (NEQ by NEQ) Jacobian.
676
+ C MITER = 2 means chord iteration with an internally
677
+ C generated (difference quotient) full Jacobian
678
+ C (using NEQ extra calls to F per df/dy value).
679
+ C MITER = 3 means chord iteration with an internally
680
+ C generated diagonal Jacobian approximation
681
+ C (using 1 extra call to F per df/dy evaluation).
682
+ C MITER = 4 means chord iteration with a user-supplied
683
+ C banded Jacobian.
684
+ C MITER = 5 means chord iteration with an internally
685
+ C generated banded Jacobian (using ML+MU+1 extra
686
+ C calls to F per df/dy evaluation).
687
+ C If MITER = 1 or 4, the user must supply a subroutine JAC
688
+ C (the name is arbitrary) as described above under JAC.
689
+ C For other values of MITER, a dummy argument can be used.
690
+ C
691
+ C RPAR User-specified array used to communicate real parameters
692
+ C to user-supplied subroutines. If RPAR is a vector, then
693
+ C it must be dimensioned in the user's main program. If it
694
+ C is unused or it is a scalar, then it need not be
695
+ C dimensioned.
696
+ C
697
+ C IPAR User-specified array used to communicate integer parameter
698
+ C to user-supplied subroutines. The comments on dimensioning
699
+ C RPAR apply to IPAR.
700
+ C-----------------------------------------------------------------------
701
+ C Optional Input.
702
+ C
703
+ C The following is a list of the optional input provided for in the
704
+ C call sequence. (See also Part ii.) For each such input variable,
705
+ C this table lists its name as used in this documentation, its
706
+ C location in the call sequence, its meaning, and the default value.
707
+ C The use of any of this input requires IOPT = 1, and in that
708
+ C case all of this input is examined. A value of zero for any
709
+ C of these optional input variables will cause the default value to be
710
+ C used. Thus to use a subset of the optional input, simply preload
711
+ C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and
712
+ C then set those of interest to nonzero values.
713
+ C
714
+ C NAME LOCATION MEANING AND DEFAULT VALUE
715
+ C
716
+ C H0 RWORK(5) The step size to be attempted on the first step.
717
+ C The default value is determined by the solver.
718
+ C
719
+ C HMAX RWORK(6) The maximum absolute step size allowed.
720
+ C The default value is infinite.
721
+ C
722
+ C HMIN RWORK(7) The minimum absolute step size allowed.
723
+ C The default value is 0. (This lower bound is not
724
+ C enforced on the final step before reaching TCRIT
725
+ C when ITASK = 4 or 5.)
726
+ C
727
+ C MAXORD IWORK(5) The maximum order to be allowed. The default
728
+ C value is 12 if METH = 1, and 5 if METH = 2.
729
+ C If MAXORD exceeds the default value, it will
730
+ C be reduced to the default value.
731
+ C If MAXORD is changed during the problem, it may
732
+ C cause the current order to be reduced.
733
+ C
734
+ C MXSTEP IWORK(6) Maximum number of (internally defined) steps
735
+ C allowed during one call to the solver.
736
+ C The default value is 500.
737
+ C
738
+ C MXHNIL IWORK(7) Maximum number of messages printed (per problem)
739
+ C warning that T + H = T on a step (H = step size).
740
+ C This must be positive to result in a non-default
741
+ C value. The default value is 10.
742
+ C
743
+ C-----------------------------------------------------------------------
744
+ C Optional Output.
745
+ C
746
+ C As optional additional output from DVODE, the variables listed
747
+ C below are quantities related to the performance of DVODE
748
+ C which are available to the user. These are communicated by way of
749
+ C the work arrays, but also have internal mnemonic names as shown.
750
+ C Except where stated otherwise, all of this output is defined
751
+ C on any successful return from DVODE, and on any return with
752
+ C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return
753
+ C (ISTATE = -3), they will be unchanged from their existing values
754
+ C (if any), except possibly for TOLSF, LENRW, and LENIW.
755
+ C On any error return, output relevant to the error will be defined,
756
+ C as noted below.
757
+ C
758
+ C NAME LOCATION MEANING
759
+ C
760
+ C HU RWORK(11) The step size in t last used (successfully).
761
+ C
762
+ C HCUR RWORK(12) The step size to be attempted on the next step.
763
+ C
764
+ C TCUR RWORK(13) The current value of the independent variable
765
+ C which the solver has actually reached, i.e. the
766
+ C current internal mesh point in t. In the output,
767
+ C TCUR will always be at least as far from the
768
+ C initial value of t as the current argument T,
769
+ C but may be farther (if interpolation was done).
770
+ C
771
+ C TOLSF RWORK(14) A tolerance scale factor, greater than 1.0,
772
+ C computed when a request for too much accuracy was
773
+ C detected (ISTATE = -3 if detected at the start of
774
+ C the problem, ISTATE = -2 otherwise). If ITOL is
775
+ C left unaltered but RTOL and ATOL are uniformly
776
+ C scaled up by a factor of TOLSF for the next call,
777
+ C then the solver is deemed likely to succeed.
778
+ C (The user may also ignore TOLSF and alter the
779
+ C tolerance parameters in any other way appropriate.)
780
+ C
781
+ C NST IWORK(11) The number of steps taken for the problem so far.
782
+ C
783
+ C NFE IWORK(12) The number of f evaluations for the problem so far.
784
+ C
785
+ C NJE IWORK(13) The number of Jacobian evaluations so far.
786
+ C
787
+ C NQU IWORK(14) The method order last used (successfully).
788
+ C
789
+ C NQCUR IWORK(15) The order to be attempted on the next step.
790
+ C
791
+ C IMXER IWORK(16) The index of the component of largest magnitude in
792
+ C the weighted local error vector ( e(i)/EWT(i) ),
793
+ C on an error return with ISTATE = -4 or -5.
794
+ C
795
+ C LENRW IWORK(17) The length of RWORK actually required.
796
+ C This is defined on normal returns and on an illegal
797
+ C input return for insufficient storage.
798
+ C
799
+ C LENIW IWORK(18) The length of IWORK actually required.
800
+ C This is defined on normal returns and on an illegal
801
+ C input return for insufficient storage.
802
+ C
803
+ C NLU IWORK(19) The number of matrix LU decompositions so far.
804
+ C
805
+ C NNI IWORK(20) The number of nonlinear (Newton) iterations so far.
806
+ C
807
+ C NCFN IWORK(21) The number of convergence failures of the nonlinear
808
+ C solver so far.
809
+ C
810
+ C NETF IWORK(22) The number of error test failures of the integrator
811
+ C so far.
812
+ C
813
+ C The following two arrays are segments of the RWORK array which
814
+ C may also be of interest to the user as optional output.
815
+ C For each array, the table below gives its internal name,
816
+ C its base address in RWORK, and its description.
817
+ C
818
+ C NAME BASE ADDRESS DESCRIPTION
819
+ C
820
+ C YH 21 The Nordsieck history array, of size NYH by
821
+ C (NQCUR + 1), where NYH is the initial value
822
+ C of NEQ. For j = 0,1,...,NQCUR, column j+1
823
+ C of YH contains HCUR**j/factorial(j) times
824
+ C the j-th derivative of the interpolating
825
+ C polynomial currently representing the
826
+ C solution, evaluated at t = TCUR.
827
+ C
828
+ C ACOR LENRW-NEQ+1 Array of size NEQ used for the accumulated
829
+ C corrections on each step, scaled in the output
830
+ C to represent the estimated local error in Y
831
+ C on the last step. This is the vector e in
832
+ C the description of the error control. It is
833
+ C defined only on a successful return from DVODE.
834
+ C
835
+ C-----------------------------------------------------------------------
836
+ C Interrupting and Restarting
837
+ C
838
+ C If the integration of a given problem by DVODE is to be
839
+ C interrrupted and then later continued, such as when restarting
840
+ C an interrupted run or alternating between two or more ODE problems,
841
+ C the user should save, following the return from the last DVODE call
842
+ C prior to the interruption, the contents of the call sequence
843
+ C variables and internal COMMON blocks, and later restore these
844
+ C values before the next DVODE call for that problem. To save
845
+ C and restore the COMMON blocks, use subroutine DVSRCO, as
846
+ C described below in part ii.
847
+ C
848
+ C In addition, if non-default values for either LUN or MFLAG are
849
+ C desired, an extra call to XSETUN and/or XSETF should be made just
850
+ C before continuing the integration. See Part ii below for details.
851
+ C
852
+ C-----------------------------------------------------------------------
853
+ C Part ii. Other Routines Callable.
854
+ C
855
+ C The following are optional calls which the user may make to
856
+ C gain additional capabilities in conjunction with DVODE.
857
+ C (The routines XSETUN and XSETF are designed to conform to the
858
+ C SLATEC error handling package.)
859
+ C
860
+ C FORM OF CALL FUNCTION
861
+ C CALL XSETUN(LUN) Set the logical unit number, LUN, for
862
+ C output of messages from DVODE, if
863
+ C the default is not desired.
864
+ C The default value of LUN is 6.
865
+ C
866
+ C CALL XSETF(MFLAG) Set a flag to control the printing of
867
+ C messages by DVODE.
868
+ C MFLAG = 0 means do not print. (Danger..
869
+ C This risks losing valuable information.)
870
+ C MFLAG = 1 means print (the default).
871
+ C
872
+ C Either of the above calls may be made at
873
+ C any time and will take effect immediately.
874
+ C
875
+ C CALL DVSRCO(RSAV,ISAV,JOB) Saves and restores the contents of
876
+ C the internal COMMON blocks used by
877
+ C DVODE. (See Part iii below.)
878
+ C RSAV must be a real array of length 49
879
+ C or more, and ISAV must be an integer
880
+ C array of length 40 or more.
881
+ C JOB=1 means save COMMON into RSAV/ISAV.
882
+ C JOB=2 means restore COMMON from RSAV/ISAV.
883
+ C DVSRCO is useful if one is
884
+ C interrupting a run and restarting
885
+ C later, or alternating between two or
886
+ C more problems solved with DVODE.
887
+ C
888
+ C CALL DVINDY(,,,,,) Provide derivatives of y, of various
889
+ C (See below.) orders, at a specified point T, if
890
+ C desired. It may be called only after
891
+ C a successful return from DVODE.
892
+ C
893
+ C The detailed instructions for using DVINDY are as follows.
894
+ C The form of the call is..
895
+ C
896
+ C CALL DVINDY (T, K, RWORK(21), NYH, DKY, IFLAG)
897
+ C
898
+ C The input parameters are..
899
+ C
900
+ C T = Value of independent variable where answers are desired
901
+ C (normally the same as the T last returned by DVODE).
902
+ C For valid results, T must lie between TCUR - HU and TCUR.
903
+ C (See optional output for TCUR and HU.)
904
+ C K = Integer order of the derivative desired. K must satisfy
905
+ C 0 .le. K .le. NQCUR, where NQCUR is the current order
906
+ C (see optional output). The capability corresponding
907
+ C to K = 0, i.e. computing y(T), is already provided
908
+ C by DVODE directly. Since NQCUR .ge. 1, the first
909
+ C derivative dy/dt is always available with DVINDY.
910
+ C RWORK(21) = The base address of the history array YH.
911
+ C NYH = Column length of YH, equal to the initial value of NEQ.
912
+ C
913
+ C The output parameters are..
914
+ C
915
+ C DKY = A real array of length NEQ containing the computed value
916
+ C of the K-th derivative of y(t).
917
+ C IFLAG = Integer flag, returned as 0 if K and T were legal,
918
+ C -1 if K was illegal, and -2 if T was illegal.
919
+ C On an error return, a message is also written.
920
+ C-----------------------------------------------------------------------
921
+ C Part iii. COMMON Blocks.
922
+ C If DVODE is to be used in an overlay situation, the user
923
+ C must declare, in the primary overlay, the variables in..
924
+ C (1) the call sequence to DVODE,
925
+ C (2) the two internal COMMON blocks
926
+ C /DVOD01/ of length 81 (48 double precision words
927
+ C followed by 33 integer words),
928
+ C /DVOD02/ of length 9 (1 double precision word
929
+ C followed by 8 integer words),
930
+ C
931
+ C If DVODE is used on a system in which the contents of internal
932
+ C COMMON blocks are not preserved between calls, the user should
933
+ C declare the above two COMMON blocks in his main program to insure
934
+ C that their contents are preserved.
935
+ C
936
+ C-----------------------------------------------------------------------
937
+ C Part iv. Optionally Replaceable Solver Routines.
938
+ C
939
+ C Below are descriptions of two routines in the DVODE package which
940
+ C relate to the measurement of errors. Either routine can be
941
+ C replaced by a user-supplied version, if desired. However, since such
942
+ C a replacement may have a major impact on performance, it should be
943
+ C done only when absolutely necessary, and only with great caution.
944
+ C (Note.. The means by which the package version of a routine is
945
+ C superseded by the user's version may be system-dependent.)
946
+ C
947
+ C (a) DEWSET.
948
+ C The following subroutine is called just before each internal
949
+ C integration step, and sets the array of error weights, EWT, as
950
+ C described under ITOL/RTOL/ATOL above..
951
+ C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT)
952
+ C where NEQ, ITOL, RTOL, and ATOL are as in the DVODE call sequence,
953
+ C YCUR contains the current dependent variable vector, and
954
+ C EWT is the array of weights set by DEWSET.
955
+ C
956
+ C If the user supplies this subroutine, it must return in EWT(i)
957
+ C (i = 1,...,NEQ) a positive quantity suitable for comparison with
958
+ C errors in Y(i). The EWT array returned by DEWSET is passed to the
959
+ C DVNORM routine (See below.), and also used by DVODE in the computation
960
+ C of the optional output IMXER, the diagonal Jacobian approximation,
961
+ C and the increments for difference quotient Jacobians.
962
+ C
963
+ C In the user-supplied version of DEWSET, it may be desirable to use
964
+ C the current values of derivatives of y. Derivatives up to order NQ
965
+ C are available from the history array YH, described above under
966
+ C Optional Output. In DEWSET, YH is identical to the YCUR array,
967
+ C extended to NQ + 1 columns with a column length of NYH and scale
968
+ C factors of h**j/factorial(j). On the first call for the problem,
969
+ C given by NST = 0, NQ is 1 and H is temporarily set to 1.0.
970
+ C NYH is the initial value of NEQ. The quantities NQ, H, and NST
971
+ C can be obtained by including in DEWSET the statements..
972
+ C DOUBLE PRECISION RVOD, H, HU
973
+ C COMMON /DVOD01/ RVOD(48), IVOD(33)
974
+ C COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
975
+ C NQ = IVOD(28)
976
+ C H = RVOD(21)
977
+ C Thus, for example, the current value of dy/dt can be obtained as
978
+ C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is
979
+ C unnecessary when NST = 0).
980
+ C
981
+ C (b) DVNORM.
982
+ C The following is a real function routine which computes the weighted
983
+ C root-mean-square norm of a vector v..
984
+ C D = DVNORM (N, V, W)
985
+ C where..
986
+ C N = the length of the vector,
987
+ C V = real array of length N containing the vector,
988
+ C W = real array of length N containing weights,
989
+ C D = sqrt( (1/N) * sum(V(i)*W(i))**2 ).
990
+ C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where
991
+ C EWT is as set by subroutine DEWSET.
992
+ C
993
+ C If the user supplies this function, it should return a non-negative
994
+ C value of DVNORM suitable for use in the error control in DVODE.
995
+ C None of the arguments should be altered by DVNORM.
996
+ C For example, a user-supplied DVNORM routine might..
997
+ C -substitute a max-norm of (V(i)*W(i)) for the rms-norm, or
998
+ C -ignore some components of V in the norm, with the effect of
999
+ C suppressing the error control on those components of Y.
1000
+ C-----------------------------------------------------------------------
1001
+ C Other Routines in the DVODE Package.
1002
+ C
1003
+ C In addition to subroutine DVODE, the DVODE package includes the
1004
+ C following subroutines and function routines..
1005
+ C DVHIN computes an approximate step size for the initial step.
1006
+ C DVINDY computes an interpolated value of the y vector at t = TOUT.
1007
+ C DVSTEP is the core integrator, which does one step of the
1008
+ C integration and the associated error control.
1009
+ C DVSET sets all method coefficients and test constants.
1010
+ C DVNLSD solves the underlying nonlinear system -- the corrector.
1011
+ C DVJAC computes and preprocesses the Jacobian matrix J = df/dy
1012
+ C and the Newton iteration matrix P = I - (h/l1)*J.
1013
+ C DVSOL manages solution of linear system in chord iteration.
1014
+ C DVJUST adjusts the history array on a change of order.
1015
+ C DEWSET sets the error weight vector EWT before each step.
1016
+ C DVNORM computes the weighted r.m.s. norm of a vector.
1017
+ C DVSRCO is a user-callable routine to save and restore
1018
+ C the contents of the internal COMMON blocks.
1019
+ C DACOPY is a routine to copy one two-dimensional array to another.
1020
+ C DGETRF and DGETRS are routines from LAPACK for solving full
1021
+ C systems of linear algebraic equations.
1022
+ C DGBTRF and DGBTRS are routines from LAPACK for solving banded
1023
+ C linear systems.
1024
+ C DAXPY, DSCAL, and DCOPY are basic linear algebra modules (BLAS).
1025
+ C D1MACH sets the unit roundoff of the machine.
1026
+ C XERRWD, XSETUN, XSETF, and IXSAV handle the printing of all
1027
+ C error messages and warnings. XERRWD is machine-dependent.
1028
+ C Note.. DVNORM, D1MACH, and IXSAV are function routines.
1029
+ C All the others are subroutines.
1030
+ C
1031
+ C The intrinsic and external routines used by the DVODE package are..
1032
+ C ABS, MAX, MIN, REAL, SIGN, SQRT, and WRITE.
1033
+ C
1034
+ C-----------------------------------------------------------------------
1035
+ C
1036
+ C Type declarations for labeled COMMON block DVOD01 --------------------
1037
+ C
1038
+ DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1039
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
1040
+ 2 RC, RL1, TAU, TQ, TN, UROUND
1041
+ INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1042
+ 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
1043
+ 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
1044
+ 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
1045
+ 4 NSLP, NYH
1046
+ C
1047
+ C Type declarations for labeled COMMON block DVOD02 --------------------
1048
+ C
1049
+ DOUBLE PRECISION HU
1050
+ INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
1051
+ C
1052
+ C Type declarations for local variables --------------------------------
1053
+ C
1054
+ EXTERNAL DVNLSD
1055
+ LOGICAL IHIT
1056
+ DOUBLE PRECISION ATOLI, BIG, EWTI, FOUR, H0, HMAX, HMX, HUN, ONE,
1057
+ 1 PT2, RH, RTOLI, SIZE, TCRIT, TNEXT, TOLSF, TP, TWO, ZERO
1058
+ INTEGER I, IER, IFLAG, IMXER, JCO, KGO, LENIW, LENJ, LENP, LENRW,
1059
+ 1 LENWM, LF0, MBAND, MFA, ML, MORD, MU, MXHNL0, MXSTP0, NITER,
1060
+ 2 NSLAST
1061
+ CHARACTER*80 MSG
1062
+ C
1063
+ C Type declaration for function subroutines called ---------------------
1064
+ C
1065
+ DOUBLE PRECISION D1MACH, DVNORM
1066
+ C
1067
+ DIMENSION MORD(2)
1068
+ C-----------------------------------------------------------------------
1069
+ C The following Fortran-77 declaration is to cause the values of the
1070
+ C listed (local) variables to be saved between calls to DVODE.
1071
+ C-----------------------------------------------------------------------
1072
+ SAVE MORD, MXHNL0, MXSTP0
1073
+ SAVE ZERO, ONE, TWO, FOUR, PT2, HUN
1074
+ C-----------------------------------------------------------------------
1075
+ C The following internal COMMON blocks contain variables which are
1076
+ C communicated between subroutines in the DVODE package, or which are
1077
+ C to be saved between calls to DVODE.
1078
+ C In each block, real variables precede integers.
1079
+ C The block /DVOD01/ appears in subroutines DVODE, DVINDY, DVSTEP,
1080
+ C DVSET, DVNLSD, DVJAC, DVSOL, DVJUST and DVSRCO.
1081
+ C The block /DVOD02/ appears in subroutines DVODE, DVINDY, DVSTEP,
1082
+ C DVNLSD, DVJAC, and DVSRCO.
1083
+ C
1084
+ C The variables stored in the internal COMMON blocks are as follows..
1085
+ C
1086
+ C ACNRM = Weighted r.m.s. norm of accumulated correction vectors.
1087
+ C CCMXJ = Threshhold on DRC for updating the Jacobian. (See DRC.)
1088
+ C CONP = The saved value of TQ(5).
1089
+ C CRATE = Estimated corrector convergence rate constant.
1090
+ C DRC = Relative change in H*RL1 since last DVJAC call.
1091
+ C EL = Real array of integration coefficients. See DVSET.
1092
+ C ETA = Saved tentative ratio of new to old H.
1093
+ C ETAMAX = Saved maximum value of ETA to be allowed.
1094
+ C H = The step size.
1095
+ C HMIN = The minimum absolute value of the step size H to be used.
1096
+ C HMXI = Inverse of the maximum absolute value of H to be used.
1097
+ C HMXI = 0.0 is allowed and corresponds to an infinite HMAX.
1098
+ C HNEW = The step size to be attempted on the next step.
1099
+ C HSCAL = Stepsize in scaling of YH array.
1100
+ C PRL1 = The saved value of RL1.
1101
+ C RC = Ratio of current H*RL1 to value on last DVJAC call.
1102
+ C RL1 = The reciprocal of the coefficient EL(1).
1103
+ C TAU = Real vector of past NQ step sizes, length 13.
1104
+ C TQ = A real vector of length 5 in which DVSET stores constants
1105
+ C used for the convergence test, the error test, and the
1106
+ C selection of H at a new order.
1107
+ C TN = The independent variable, updated on each step taken.
1108
+ C UROUND = The machine unit roundoff. The smallest positive real number
1109
+ C such that 1.0 + UROUND .ne. 1.0
1110
+ C ICF = Integer flag for convergence failure in DVNLSD..
1111
+ C 0 means no failures.
1112
+ C 1 means convergence failure with out of date Jacobian
1113
+ C (recoverable error).
1114
+ C 2 means convergence failure with current Jacobian or
1115
+ C singular matrix (unrecoverable error).
1116
+ C INIT = Saved integer flag indicating whether initialization of the
1117
+ C problem has been done (INIT = 1) or not.
1118
+ C IPUP = Saved flag to signal updating of Newton matrix.
1119
+ C JCUR = Output flag from DVJAC showing Jacobian status..
1120
+ C JCUR = 0 means J is not current.
1121
+ C JCUR = 1 means J is current.
1122
+ C JSTART = Integer flag used as input to DVSTEP..
1123
+ C 0 means perform the first step.
1124
+ C 1 means take a new step continuing from the last.
1125
+ C -1 means take the next step with a new value of MAXORD,
1126
+ C HMIN, HMXI, N, METH, MITER, and/or matrix parameters.
1127
+ C On return, DVSTEP sets JSTART = 1.
1128
+ C JSV = Integer flag for Jacobian saving, = sign(MF).
1129
+ C KFLAG = A completion code from DVSTEP with the following meanings..
1130
+ C 0 the step was succesful.
1131
+ C -1 the requested error could not be achieved.
1132
+ C -2 corrector convergence could not be achieved.
1133
+ C -3, -4 fatal error in VNLS (can not occur here).
1134
+ C KUTH = Input flag to DVSTEP showing whether H was reduced by the
1135
+ C driver. KUTH = 1 if H was reduced, = 0 otherwise.
1136
+ C L = Integer variable, NQ + 1, current order plus one.
1137
+ C LMAX = MAXORD + 1 (used for dimensioning).
1138
+ C LOCJS = A pointer to the saved Jacobian, whose storage starts at
1139
+ C WM(LOCJS), if JSV = 1.
1140
+ C LYH, LEWT, LACOR, LSAVF, LWM, LIWM = Saved integer pointers
1141
+ C to segments of RWORK and IWORK.
1142
+ C MAXORD = The maximum order of integration method to be allowed.
1143
+ C METH/MITER = The method flags. See MF.
1144
+ C MSBJ = The maximum number of steps between J evaluations, = 50.
1145
+ C MXHNIL = Saved value of optional input MXHNIL.
1146
+ C MXSTEP = Saved value of optional input MXSTEP.
1147
+ C N = The number of first-order ODEs, = NEQ.
1148
+ C NEWH = Saved integer to flag change of H.
1149
+ C NEWQ = The method order to be used on the next step.
1150
+ C NHNIL = Saved counter for occurrences of T + H = T.
1151
+ C NQ = Integer variable, the current integration method order.
1152
+ C NQNYH = Saved value of NQ*NYH.
1153
+ C NQWAIT = A counter controlling the frequency of order changes.
1154
+ C An order change is about to be considered if NQWAIT = 1.
1155
+ C NSLJ = The number of steps taken as of the last Jacobian update.
1156
+ C NSLP = Saved value of NST as of last Newton matrix update.
1157
+ C NYH = Saved value of the initial value of NEQ.
1158
+ C HU = The step size in t last used.
1159
+ C NCFN = Number of nonlinear convergence failures so far.
1160
+ C NETF = The number of error test failures of the integrator so far.
1161
+ C NFE = The number of f evaluations for the problem so far.
1162
+ C NJE = The number of Jacobian evaluations so far.
1163
+ C NLU = The number of matrix LU decompositions so far.
1164
+ C NNI = Number of nonlinear iterations so far.
1165
+ C NQU = The method order last used.
1166
+ C NST = The number of steps taken for the problem so far.
1167
+ C-----------------------------------------------------------------------
1168
+ COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1169
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
1170
+ 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
1171
+ 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1172
+ 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
1173
+ 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
1174
+ 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
1175
+ 7 NSLP, NYH
1176
+ COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
1177
+ C
1178
+ DATA MORD(1) /12/, MORD(2) /5/, MXSTP0 /500/, MXHNL0 /10/
1179
+ DATA ZERO /0.0D0/, ONE /1.0D0/, TWO /2.0D0/, FOUR /4.0D0/,
1180
+ 1 PT2 /0.2D0/, HUN /100.0D0/
1181
+ C-----------------------------------------------------------------------
1182
+ C Block A.
1183
+ C This code block is executed on every call.
1184
+ C It tests ISTATE and ITASK for legality and branches appropriately.
1185
+ C If ISTATE .gt. 1 but the flag INIT shows that initialization has
1186
+ C not yet been done, an error return occurs.
1187
+ C If ISTATE = 1 and TOUT = T, return immediately.
1188
+ C-----------------------------------------------------------------------
1189
+ IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601
1190
+ IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602
1191
+ IF (ISTATE .EQ. 1) GO TO 10
1192
+ IF (INIT .NE. 1) GO TO 603
1193
+ IF (ISTATE .EQ. 2) GO TO 200
1194
+ GO TO 20
1195
+ 10 INIT = 0
1196
+ IF (TOUT .EQ. T) RETURN
1197
+ C-----------------------------------------------------------------------
1198
+ C Block B.
1199
+ C The next code block is executed for the initial call (ISTATE = 1),
1200
+ C or for a continuation call with parameter changes (ISTATE = 3).
1201
+ C It contains checking of all input and various initializations.
1202
+ C
1203
+ C First check legality of the non-optional input NEQ, ITOL, IOPT,
1204
+ C MF, ML, and MU.
1205
+ C-----------------------------------------------------------------------
1206
+ 20 IF (NEQ .LE. 0) GO TO 604
1207
+ IF (ISTATE .EQ. 1) GO TO 25
1208
+ IF (NEQ .GT. N) GO TO 605
1209
+ 25 N = NEQ
1210
+ IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606
1211
+ IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607
1212
+ JSV = SIGN(1,MF)
1213
+ MFA = ABS(MF)
1214
+ METH = MFA/10
1215
+ MITER = MFA - 10*METH
1216
+ IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608
1217
+ IF (MITER .LT. 0 .OR. MITER .GT. 5) GO TO 608
1218
+ IF (MITER .LE. 3) GO TO 30
1219
+ ML = IWORK(1)
1220
+ MU = IWORK(2)
1221
+ IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609
1222
+ IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610
1223
+ 30 CONTINUE
1224
+ C Next process and check the optional input. ---------------------------
1225
+ IF (IOPT .EQ. 1) GO TO 40
1226
+ MAXORD = MORD(METH)
1227
+ MXSTEP = MXSTP0
1228
+ MXHNIL = MXHNL0
1229
+ IF (ISTATE .EQ. 1) H0 = ZERO
1230
+ HMXI = ZERO
1231
+ HMIN = ZERO
1232
+ GO TO 60
1233
+ 40 MAXORD = IWORK(5)
1234
+ IF (MAXORD .LT. 0) GO TO 611
1235
+ IF (MAXORD .EQ. 0) MAXORD = 100
1236
+ MAXORD = MIN(MAXORD,MORD(METH))
1237
+ MXSTEP = IWORK(6)
1238
+ IF (MXSTEP .LT. 0) GO TO 612
1239
+ IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0
1240
+ MXHNIL = IWORK(7)
1241
+ IF (MXHNIL .LT. 0) GO TO 613
1242
+ IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0
1243
+ IF (ISTATE .NE. 1) GO TO 50
1244
+ H0 = RWORK(5)
1245
+ IF ((TOUT - T)*H0 .LT. ZERO) GO TO 614
1246
+ 50 HMAX = RWORK(6)
1247
+ IF (HMAX .LT. ZERO) GO TO 615
1248
+ HMXI = ZERO
1249
+ IF (HMAX .GT. ZERO) HMXI = ONE/HMAX
1250
+ HMIN = RWORK(7)
1251
+ IF (HMIN .LT. ZERO) GO TO 616
1252
+ C-----------------------------------------------------------------------
1253
+ C Set work array pointers and check lengths LRW and LIW.
1254
+ C Pointers to segments of RWORK and IWORK are named by prefixing L to
1255
+ C the name of the segment. E.g., the segment YH starts at RWORK(LYH).
1256
+ C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVF, ACOR.
1257
+ C Within WM, LOCJS is the location of the saved Jacobian (JSV .gt. 0).
1258
+ C-----------------------------------------------------------------------
1259
+ 60 LYH = 21
1260
+ IF (ISTATE .EQ. 1) NYH = N
1261
+ LWM = LYH + (MAXORD + 1)*NYH
1262
+ JCO = MAX(0,JSV)
1263
+ IF (MITER .EQ. 0) LENWM = 0
1264
+ IF (MITER .EQ. 1 .OR. MITER .EQ. 2) THEN
1265
+ LENWM = 2 + (1 + JCO)*N*N
1266
+ LOCJS = N*N + 3
1267
+ ENDIF
1268
+ IF (MITER .EQ. 3) LENWM = 2 + N
1269
+ IF (MITER .EQ. 4 .OR. MITER .EQ. 5) THEN
1270
+ MBAND = ML + MU + 1
1271
+ LENP = (MBAND + ML)*N
1272
+ LENJ = MBAND*N
1273
+ LENWM = 2 + LENP + JCO*LENJ
1274
+ LOCJS = LENP + 3
1275
+ ENDIF
1276
+ LEWT = LWM + LENWM
1277
+ LSAVF = LEWT + N
1278
+ LACOR = LSAVF + N
1279
+ LENRW = LACOR + N - 1
1280
+ IWORK(17) = LENRW
1281
+ LIWM = 1
1282
+ LENIW = 30 + N
1283
+ IF (MITER .EQ. 0 .OR. MITER .EQ. 3) LENIW = 30
1284
+ IWORK(18) = LENIW
1285
+ IF (LENRW .GT. LRW) GO TO 617
1286
+ IF (LENIW .GT. LIW) GO TO 618
1287
+ C Check RTOL and ATOL for legality. ------------------------------------
1288
+ RTOLI = RTOL(1)
1289
+ ATOLI = ATOL(1)
1290
+ DO 70 I = 1,N
1291
+ IF (ITOL .GE. 3) RTOLI = RTOL(I)
1292
+ IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
1293
+ IF (RTOLI .LT. ZERO) GO TO 619
1294
+ IF (ATOLI .LT. ZERO) GO TO 620
1295
+ 70 CONTINUE
1296
+ IF (ISTATE .EQ. 1) GO TO 100
1297
+ C If ISTATE = 3, set flag to signal parameter changes to DVSTEP. -------
1298
+ JSTART = -1
1299
+ IF (NQ .LE. MAXORD) GO TO 90
1300
+ C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. ---------
1301
+ CALL DCOPY (N, RWORK(LWM), 1, RWORK(LSAVF), 1)
1302
+ C Reload WM(1) = RWORK(LWM), since LWM may have changed. ---------------
1303
+ 90 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
1304
+ C bug fix 12 Nov 1998
1305
+ GO TO 200
1306
+ C-----------------------------------------------------------------------
1307
+ C Block C.
1308
+ C The next block is for the initial call only (ISTATE = 1).
1309
+ C It contains all remaining initializations, the initial call to F,
1310
+ C and the calculation of the initial step size.
1311
+ C The error weights in EWT are inverted after being loaded.
1312
+ C-----------------------------------------------------------------------
1313
+ 100 UROUND = D1MACH(4)
1314
+ TN = T
1315
+ IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110
1316
+ TCRIT = RWORK(1)
1317
+ IF ((TCRIT - TOUT)*(TOUT - T) .LT. ZERO) GO TO 625
1318
+ IF (H0 .NE. ZERO .AND. (T + H0 - TCRIT)*H0 .GT. ZERO)
1319
+ 1 H0 = TCRIT - T
1320
+ 110 JSTART = 0
1321
+ IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
1322
+ CCMXJ = PT2
1323
+ MSBJ = 50
1324
+ NHNIL = 0
1325
+ NST = 0
1326
+ NJE = 0
1327
+ NNI = 0
1328
+ NCFN = 0
1329
+ NETF = 0
1330
+ NLU = 0
1331
+ NSLJ = 0
1332
+ NSLAST = 0
1333
+ HU = ZERO
1334
+ NQU = 0
1335
+ C Initial call to F. (LF0 points to YH(*,2).) -------------------------
1336
+ LF0 = LYH + NYH
1337
+ CALL F (N, T, Y, RWORK(LF0), RPAR, IPAR)
1338
+ NFE = 1
1339
+ C Load the initial value vector in YH. ---------------------------------
1340
+ CALL DCOPY (N, Y, 1, RWORK(LYH), 1)
1341
+ C Load and invert the EWT array. (H is temporarily set to 1.0.) -------
1342
+ NQ = 1
1343
+ H = ONE
1344
+ CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT))
1345
+ DO 120 I = 1,N
1346
+ IF (RWORK(I+LEWT-1) .LE. ZERO) GO TO 621
1347
+ 120 RWORK(I+LEWT-1) = ONE/RWORK(I+LEWT-1)
1348
+ IF (H0 .NE. ZERO) GO TO 180
1349
+ C Call DVHIN to set initial step size H0 to be attempted. --------------
1350
+ CALL DVHIN (N, T, RWORK(LYH), RWORK(LF0), F, RPAR, IPAR, TOUT,
1351
+ 1 UROUND, RWORK(LEWT), ITOL, ATOL, Y, RWORK(LACOR), H0,
1352
+ 2 NITER, IER)
1353
+ NFE = NFE + NITER
1354
+ IF (IER .NE. 0) GO TO 622
1355
+ C Adjust H0 if necessary to meet HMAX bound. ---------------------------
1356
+ 180 RH = ABS(H0)*HMXI
1357
+ IF (RH .GT. ONE) H0 = H0/RH
1358
+ C Load H with H0 and scale YH(*,2) by H0. ------------------------------
1359
+ H = H0
1360
+ CALL DSCAL (N, H0, RWORK(LF0), 1)
1361
+ GO TO 270
1362
+ C-----------------------------------------------------------------------
1363
+ C Block D.
1364
+ C The next code block is for continuation calls only (ISTATE = 2 or 3)
1365
+ C and is to check stop conditions before taking a step.
1366
+ C-----------------------------------------------------------------------
1367
+ 200 NSLAST = NST
1368
+ KUTH = 0
1369
+ GO TO (210, 250, 220, 230, 240), ITASK
1370
+ 210 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
1371
+ CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1372
+ IF (IFLAG .NE. 0) GO TO 627
1373
+ T = TOUT
1374
+ GO TO 420
1375
+ 220 TP = TN - HU*(ONE + HUN*UROUND)
1376
+ IF ((TP - TOUT)*H .GT. ZERO) GO TO 623
1377
+ IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
1378
+ GO TO 400
1379
+ 230 TCRIT = RWORK(1)
1380
+ IF ((TN - TCRIT)*H .GT. ZERO) GO TO 624
1381
+ IF ((TCRIT - TOUT)*H .LT. ZERO) GO TO 625
1382
+ IF ((TN - TOUT)*H .LT. ZERO) GO TO 245
1383
+ CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1384
+ IF (IFLAG .NE. 0) GO TO 627
1385
+ T = TOUT
1386
+ GO TO 420
1387
+ 240 TCRIT = RWORK(1)
1388
+ IF ((TN - TCRIT)*H .GT. ZERO) GO TO 624
1389
+ 245 HMX = ABS(TN) + ABS(H)
1390
+ IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX
1391
+ IF (IHIT) GO TO 400
1392
+ TNEXT = TN + HNEW*(ONE + FOUR*UROUND)
1393
+ IF ((TNEXT - TCRIT)*H .LE. ZERO) GO TO 250
1394
+ H = (TCRIT - TN)*(ONE - FOUR*UROUND)
1395
+ KUTH = 1
1396
+ C-----------------------------------------------------------------------
1397
+ C Block E.
1398
+ C The next block is normally executed for all calls and contains
1399
+ C the call to the one-step core integrator DVSTEP.
1400
+ C
1401
+ C This is a looping point for the integration steps.
1402
+ C
1403
+ C First check for too many steps being taken, update EWT (if not at
1404
+ C start of problem), check for too much accuracy being requested, and
1405
+ C check for H below the roundoff level in T.
1406
+ C-----------------------------------------------------------------------
1407
+ 250 CONTINUE
1408
+ IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500
1409
+ CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT))
1410
+ DO 260 I = 1,N
1411
+ IF (RWORK(I+LEWT-1) .LE. ZERO) GO TO 510
1412
+ 260 RWORK(I+LEWT-1) = ONE/RWORK(I+LEWT-1)
1413
+ 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT))
1414
+ IF (TOLSF .LE. ONE) GO TO 280
1415
+ TOLSF = TOLSF*TWO
1416
+ IF (NST .EQ. 0) GO TO 626
1417
+ GO TO 520
1418
+ 280 IF ((TN + H) .NE. TN) GO TO 290
1419
+ NHNIL = NHNIL + 1
1420
+ IF (NHNIL .GT. MXHNIL) GO TO 290
1421
+ MSG = 'DVODE-- Warning..internal T (=R1) and H (=R2) are'
1422
+ CALL XERRWD (MSG, 50, 101, 1, 0, 0, 0, 0, ZERO, ZERO)
1423
+ MSG=' such that in the machine, T + H = T on the next step '
1424
+ CALL XERRWD (MSG, 60, 101, 1, 0, 0, 0, 0, ZERO, ZERO)
1425
+ MSG = ' (H = step size). solver will continue anyway'
1426
+ CALL XERRWD (MSG, 50, 101, 1, 0, 0, 0, 2, TN, H)
1427
+ IF (NHNIL .LT. MXHNIL) GO TO 290
1428
+ MSG = 'DVODE-- Above warning has been issued I1 times. '
1429
+ CALL XERRWD (MSG, 50, 102, 1, 0, 0, 0, 0, ZERO, ZERO)
1430
+ MSG = ' it will not be issued again for this problem'
1431
+ CALL XERRWD (MSG, 50, 102, 1, 1, MXHNIL, 0, 0, ZERO, ZERO)
1432
+ 290 CONTINUE
1433
+ C-----------------------------------------------------------------------
1434
+ C CALL DVSTEP (Y, YH, NYH, YH, EWT, SAVF, VSAV, ACOR,
1435
+ C WM, IWM, F, JAC, F, DVNLSD, RPAR, IPAR)
1436
+ C-----------------------------------------------------------------------
1437
+ CALL DVSTEP (Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT),
1438
+ 1 RWORK(LSAVF), Y, RWORK(LACOR), RWORK(LWM), IWORK(LIWM),
1439
+ 2 F, JAC, F, DVNLSD, RPAR, IPAR)
1440
+ KGO = 1 - KFLAG
1441
+ C Branch on KFLAG. Note..In this version, KFLAG can not be set to -3.
1442
+ C KFLAG .eq. 0, -1, -2
1443
+ GO TO (300, 530, 540), KGO
1444
+ C-----------------------------------------------------------------------
1445
+ C Block F.
1446
+ C The following block handles the case of a successful return from the
1447
+ C core integrator (KFLAG = 0). Test for stop conditions.
1448
+ C-----------------------------------------------------------------------
1449
+ 300 INIT = 1
1450
+ KUTH = 0
1451
+ GO TO (310, 400, 330, 340, 350), ITASK
1452
+ C ITASK = 1. If TOUT has been reached, interpolate. -------------------
1453
+ 310 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
1454
+ CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1455
+ T = TOUT
1456
+ GO TO 420
1457
+ C ITASK = 3. Jump to exit if TOUT was reached. ------------------------
1458
+ 330 IF ((TN - TOUT)*H .GE. ZERO) GO TO 400
1459
+ GO TO 250
1460
+ C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary.
1461
+ 340 IF ((TN - TOUT)*H .LT. ZERO) GO TO 345
1462
+ CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1463
+ T = TOUT
1464
+ GO TO 420
1465
+ 345 HMX = ABS(TN) + ABS(H)
1466
+ IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX
1467
+ IF (IHIT) GO TO 400
1468
+ TNEXT = TN + HNEW*(ONE + FOUR*UROUND)
1469
+ IF ((TNEXT - TCRIT)*H .LE. ZERO) GO TO 250
1470
+ H = (TCRIT - TN)*(ONE - FOUR*UROUND)
1471
+ KUTH = 1
1472
+ GO TO 250
1473
+ C ITASK = 5. See if TCRIT was reached and jump to exit. ---------------
1474
+ 350 HMX = ABS(TN) + ABS(H)
1475
+ IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX
1476
+ C-----------------------------------------------------------------------
1477
+ C Block G.
1478
+ C The following block handles all successful returns from DVODE.
1479
+ C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly.
1480
+ C ISTATE is set to 2, and the optional output is loaded into the work
1481
+ C arrays before returning.
1482
+ C-----------------------------------------------------------------------
1483
+ 400 CONTINUE
1484
+ CALL DCOPY (N, RWORK(LYH), 1, Y, 1)
1485
+ T = TN
1486
+ IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420
1487
+ IF (IHIT) T = TCRIT
1488
+ 420 ISTATE = 2
1489
+ RWORK(11) = HU
1490
+ RWORK(12) = HNEW
1491
+ RWORK(13) = TN
1492
+ IWORK(11) = NST
1493
+ IWORK(12) = NFE
1494
+ IWORK(13) = NJE
1495
+ IWORK(14) = NQU
1496
+ IWORK(15) = NEWQ
1497
+ IWORK(19) = NLU
1498
+ IWORK(20) = NNI
1499
+ IWORK(21) = NCFN
1500
+ IWORK(22) = NETF
1501
+ RETURN
1502
+ C-----------------------------------------------------------------------
1503
+ C Block H.
1504
+ C The following block handles all unsuccessful returns other than
1505
+ C those for illegal input. First the error message routine is called.
1506
+ C if there was an error test or convergence test failure, IMXER is set.
1507
+ C Then Y is loaded from YH, and T is set to TN.
1508
+ C The optional output is loaded into the work arrays before returning.
1509
+ C-----------------------------------------------------------------------
1510
+ C The maximum number of steps was taken before reaching TOUT. ----------
1511
+ 500 MSG = 'DVODE-- At current T (=R1), MXSTEP (=I1) steps '
1512
+ CALL XERRWD (MSG, 50, 201, 1, 0, 0, 0, 0, ZERO, ZERO)
1513
+ MSG = ' taken on this call before reaching TOUT '
1514
+ CALL XERRWD (MSG, 50, 201, 1, 1, MXSTEP, 0, 1, TN, ZERO)
1515
+ ISTATE = -1
1516
+ GO TO 580
1517
+ C EWT(i) .le. 0.0 for some i (not at start of problem). ----------------
1518
+ 510 EWTI = RWORK(LEWT+I-1)
1519
+ MSG = 'DVODE-- At T (=R1), EWT(I1) has become R2 .le. 0.'
1520
+ CALL XERRWD (MSG, 50, 202, 1, 1, I, 0, 2, TN, EWTI)
1521
+ ISTATE = -6
1522
+ GO TO 580
1523
+ C Too much accuracy requested for machine precision. -------------------
1524
+ 520 MSG = 'DVODE-- At T (=R1), too much accuracy requested '
1525
+ CALL XERRWD (MSG, 50, 203, 1, 0, 0, 0, 0, ZERO, ZERO)
1526
+ MSG = ' for precision of machine.. see TOLSF (=R2) '
1527
+ CALL XERRWD (MSG, 50, 203, 1, 0, 0, 0, 2, TN, TOLSF)
1528
+ RWORK(14) = TOLSF
1529
+ ISTATE = -2
1530
+ GO TO 580
1531
+ C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. -----
1532
+ 530 MSG = 'DVODE-- At T(=R1) and step size H(=R2), the error'
1533
+ CALL XERRWD (MSG, 50, 204, 1, 0, 0, 0, 0, ZERO, ZERO)
1534
+ MSG = ' test failed repeatedly or with abs(H) = HMIN'
1535
+ CALL XERRWD (MSG, 50, 204, 1, 0, 0, 0, 2, TN, H)
1536
+ ISTATE = -4
1537
+ GO TO 560
1538
+ C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ----
1539
+ 540 MSG = 'DVODE-- At T (=R1) and step size H (=R2), the '
1540
+ CALL XERRWD (MSG, 50, 205, 1, 0, 0, 0, 0, ZERO, ZERO)
1541
+ MSG = ' corrector convergence failed repeatedly '
1542
+ CALL XERRWD (MSG, 50, 205, 1, 0, 0, 0, 0, ZERO, ZERO)
1543
+ MSG = ' or with abs(H) = HMIN '
1544
+ CALL XERRWD (MSG, 30, 205, 1, 0, 0, 0, 2, TN, H)
1545
+ ISTATE = -5
1546
+ C Compute IMXER if relevant. -------------------------------------------
1547
+ 560 BIG = ZERO
1548
+ IMXER = 1
1549
+ DO 570 I = 1,N
1550
+ SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1))
1551
+ IF (BIG .GE. SIZE) GO TO 570
1552
+ BIG = SIZE
1553
+ IMXER = I
1554
+ 570 CONTINUE
1555
+ IWORK(16) = IMXER
1556
+ C Set Y vector, T, and optional output. --------------------------------
1557
+ 580 CONTINUE
1558
+ CALL DCOPY (N, RWORK(LYH), 1, Y, 1)
1559
+ T = TN
1560
+ RWORK(11) = HU
1561
+ RWORK(12) = H
1562
+ RWORK(13) = TN
1563
+ IWORK(11) = NST
1564
+ IWORK(12) = NFE
1565
+ IWORK(13) = NJE
1566
+ IWORK(14) = NQU
1567
+ IWORK(15) = NQ
1568
+ IWORK(19) = NLU
1569
+ IWORK(20) = NNI
1570
+ IWORK(21) = NCFN
1571
+ IWORK(22) = NETF
1572
+ RETURN
1573
+ C-----------------------------------------------------------------------
1574
+ C Block I.
1575
+ C The following block handles all error returns due to illegal input
1576
+ C (ISTATE = -3), as detected before calling the core integrator.
1577
+ C First the error message routine is called. If the illegal input
1578
+ C is a negative ISTATE, the run is aborted (apparent infinite loop).
1579
+ C-----------------------------------------------------------------------
1580
+ 601 MSG = 'DVODE-- ISTATE (=I1) illegal '
1581
+ CALL XERRWD (MSG, 30, 1, 1, 1, ISTATE, 0, 0, ZERO, ZERO)
1582
+ IF (ISTATE .LT. 0) GO TO 800
1583
+ GO TO 700
1584
+ 602 MSG = 'DVODE-- ITASK (=I1) illegal '
1585
+ CALL XERRWD (MSG, 30, 2, 1, 1, ITASK, 0, 0, ZERO, ZERO)
1586
+ GO TO 700
1587
+ 603 MSG='DVODE-- ISTATE (=I1) .gt. 1 but DVODE not initialized '
1588
+ CALL XERRWD (MSG, 60, 3, 1, 1, ISTATE, 0, 0, ZERO, ZERO)
1589
+ GO TO 700
1590
+ 604 MSG = 'DVODE-- NEQ (=I1) .lt. 1 '
1591
+ CALL XERRWD (MSG, 30, 4, 1, 1, NEQ, 0, 0, ZERO, ZERO)
1592
+ GO TO 700
1593
+ 605 MSG = 'DVODE-- ISTATE = 3 and NEQ increased (I1 to I2) '
1594
+ CALL XERRWD (MSG, 50, 5, 1, 2, N, NEQ, 0, ZERO, ZERO)
1595
+ GO TO 700
1596
+ 606 MSG = 'DVODE-- ITOL (=I1) illegal '
1597
+ CALL XERRWD (MSG, 30, 6, 1, 1, ITOL, 0, 0, ZERO, ZERO)
1598
+ GO TO 700
1599
+ 607 MSG = 'DVODE-- IOPT (=I1) illegal '
1600
+ CALL XERRWD (MSG, 30, 7, 1, 1, IOPT, 0, 0, ZERO, ZERO)
1601
+ GO TO 700
1602
+ 608 MSG = 'DVODE-- MF (=I1) illegal '
1603
+ CALL XERRWD (MSG, 30, 8, 1, 1, MF, 0, 0, ZERO, ZERO)
1604
+ GO TO 700
1605
+ 609 MSG = 'DVODE-- ML (=I1) illegal.. .lt.0 or .ge.NEQ (=I2)'
1606
+ CALL XERRWD (MSG, 50, 9, 1, 2, ML, NEQ, 0, ZERO, ZERO)
1607
+ GO TO 700
1608
+ 610 MSG = 'DVODE-- MU (=I1) illegal.. .lt.0 or .ge.NEQ (=I2)'
1609
+ CALL XERRWD (MSG, 50, 10, 1, 2, MU, NEQ, 0, ZERO, ZERO)
1610
+ GO TO 700
1611
+ 611 MSG = 'DVODE-- MAXORD (=I1) .lt. 0 '
1612
+ CALL XERRWD (MSG, 30, 11, 1, 1, MAXORD, 0, 0, ZERO, ZERO)
1613
+ GO TO 700
1614
+ 612 MSG = 'DVODE-- MXSTEP (=I1) .lt. 0 '
1615
+ CALL XERRWD (MSG, 30, 12, 1, 1, MXSTEP, 0, 0, ZERO, ZERO)
1616
+ GO TO 700
1617
+ 613 MSG = 'DVODE-- MXHNIL (=I1) .lt. 0 '
1618
+ CALL XERRWD (MSG, 30, 13, 1, 1, MXHNIL, 0, 0, ZERO, ZERO)
1619
+ GO TO 700
1620
+ 614 MSG = 'DVODE-- TOUT (=R1) behind T (=R2) '
1621
+ CALL XERRWD (MSG, 40, 14, 1, 0, 0, 0, 2, TOUT, T)
1622
+ MSG = ' integration direction is given by H0 (=R1) '
1623
+ CALL XERRWD (MSG, 50, 14, 1, 0, 0, 0, 1, H0, ZERO)
1624
+ GO TO 700
1625
+ 615 MSG = 'DVODE-- HMAX (=R1) .lt. 0.0 '
1626
+ CALL XERRWD (MSG, 30, 15, 1, 0, 0, 0, 1, HMAX, ZERO)
1627
+ GO TO 700
1628
+ 616 MSG = 'DVODE-- HMIN (=R1) .lt. 0.0 '
1629
+ CALL XERRWD (MSG, 30, 16, 1, 0, 0, 0, 1, HMIN, ZERO)
1630
+ GO TO 700
1631
+ 617 CONTINUE
1632
+ MSG='DVODE-- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)'
1633
+ CALL XERRWD (MSG, 60, 17, 1, 2, LENRW, LRW, 0, ZERO, ZERO)
1634
+ GO TO 700
1635
+ 618 CONTINUE
1636
+ MSG='DVODE-- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)'
1637
+ CALL XERRWD (MSG, 60, 18, 1, 2, LENIW, LIW, 0, ZERO, ZERO)
1638
+ GO TO 700
1639
+ 619 MSG = 'DVODE-- RTOL(I1) is R1 .lt. 0.0 '
1640
+ CALL XERRWD (MSG, 40, 19, 1, 1, I, 0, 1, RTOLI, ZERO)
1641
+ GO TO 700
1642
+ 620 MSG = 'DVODE-- ATOL(I1) is R1 .lt. 0.0 '
1643
+ CALL XERRWD (MSG, 40, 20, 1, 1, I, 0, 1, ATOLI, ZERO)
1644
+ GO TO 700
1645
+ 621 EWTI = RWORK(LEWT+I-1)
1646
+ MSG = 'DVODE-- EWT(I1) is R1 .le. 0.0 '
1647
+ CALL XERRWD (MSG, 40, 21, 1, 1, I, 0, 1, EWTI, ZERO)
1648
+ GO TO 700
1649
+ 622 CONTINUE
1650
+ MSG='DVODE-- TOUT (=R1) too close to T(=R2) to start integration'
1651
+ CALL XERRWD (MSG, 60, 22, 1, 0, 0, 0, 2, TOUT, T)
1652
+ GO TO 700
1653
+ 623 CONTINUE
1654
+ MSG='DVODE-- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) '
1655
+ CALL XERRWD (MSG, 60, 23, 1, 1, ITASK, 0, 2, TOUT, TP)
1656
+ GO TO 700
1657
+ 624 CONTINUE
1658
+ MSG='DVODE-- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) '
1659
+ CALL XERRWD (MSG, 60, 24, 1, 0, 0, 0, 2, TCRIT, TN)
1660
+ GO TO 700
1661
+ 625 CONTINUE
1662
+ MSG='DVODE-- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) '
1663
+ CALL XERRWD (MSG, 60, 25, 1, 0, 0, 0, 2, TCRIT, TOUT)
1664
+ GO TO 700
1665
+ 626 MSG = 'DVODE-- At start of problem, too much accuracy '
1666
+ CALL XERRWD (MSG, 50, 26, 1, 0, 0, 0, 0, ZERO, ZERO)
1667
+ MSG=' requested for precision of machine.. see TOLSF (=R1) '
1668
+ CALL XERRWD (MSG, 60, 26, 1, 0, 0, 0, 1, TOLSF, ZERO)
1669
+ RWORK(14) = TOLSF
1670
+ GO TO 700
1671
+ 627 MSG='DVODE-- Trouble from DVINDY. ITASK = I1, TOUT = R1. '
1672
+ CALL XERRWD (MSG, 60, 27, 1, 1, ITASK, 0, 1, TOUT, ZERO)
1673
+ C
1674
+ 700 CONTINUE
1675
+ ISTATE = -3
1676
+ RETURN
1677
+ C
1678
+ 800 MSG = 'DVODE-- Run aborted.. apparent infinite loop '
1679
+ CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, ZERO, ZERO)
1680
+ RETURN
1681
+ C----------------------- End of Subroutine DVODE -----------------------
1682
+ END
1683
+ *DECK DVHIN
1684
+ SUBROUTINE DVHIN (N, T0, Y0, YDOT, F, RPAR, IPAR, TOUT, UROUND,
1685
+ 1 EWT, ITOL, ATOL, Y, TEMP, H0, NITER, IER)
1686
+ EXTERNAL F
1687
+ DOUBLE PRECISION T0, Y0, YDOT, RPAR, TOUT, UROUND, EWT, ATOL, Y,
1688
+ 1 TEMP, H0
1689
+ INTEGER N, IPAR, ITOL, NITER, IER
1690
+ DIMENSION Y0(*), YDOT(*), EWT(*), ATOL(*), Y(*),
1691
+ 1 TEMP(*), RPAR(*), IPAR(*)
1692
+ C-----------------------------------------------------------------------
1693
+ C Call sequence input -- N, T0, Y0, YDOT, F, RPAR, IPAR, TOUT, UROUND,
1694
+ C EWT, ITOL, ATOL, Y, TEMP
1695
+ C Call sequence output -- H0, NITER, IER
1696
+ C COMMON block variables accessed -- None
1697
+ C
1698
+ C Subroutines called by DVHIN.. F
1699
+ C Function routines called by DVHIN.. DVNORM
1700
+ C-----------------------------------------------------------------------
1701
+ C This routine computes the step size, H0, to be attempted on the
1702
+ C first step, when the user has not supplied a value for this.
1703
+ C
1704
+ C First we check that TOUT - T0 differs significantly from zero. Then
1705
+ C an iteration is done to approximate the initial second derivative
1706
+ C and this is used to define h from w.r.m.s.norm(h**2 * yddot / 2) = 1.
1707
+ C A bias factor of 1/2 is applied to the resulting h.
1708
+ C The sign of H0 is inferred from the initial values of TOUT and T0.
1709
+ C
1710
+ C Communication with DVHIN is done with the following variables..
1711
+ C
1712
+ C N = Size of ODE system, input.
1713
+ C T0 = Initial value of independent variable, input.
1714
+ C Y0 = Vector of initial conditions, input.
1715
+ C YDOT = Vector of initial first derivatives, input.
1716
+ C F = Name of subroutine for right-hand side f(t,y), input.
1717
+ C RPAR, IPAR = Dummy names for user's real and integer work arrays.
1718
+ C TOUT = First output value of independent variable
1719
+ C UROUND = Machine unit roundoff
1720
+ C EWT, ITOL, ATOL = Error weights and tolerance parameters
1721
+ C as described in the driver routine, input.
1722
+ C Y, TEMP = Work arrays of length N.
1723
+ C H0 = Step size to be attempted, output.
1724
+ C NITER = Number of iterations (and of f evaluations) to compute H0,
1725
+ C output.
1726
+ C IER = The error flag, returned with the value
1727
+ C IER = 0 if no trouble occurred, or
1728
+ C IER = -1 if TOUT and T0 are considered too close to proceed.
1729
+ C-----------------------------------------------------------------------
1730
+ C
1731
+ C Type declarations for local variables --------------------------------
1732
+ C
1733
+ DOUBLE PRECISION AFI, ATOLI, DELYI, H, HALF, HG, HLB, HNEW, HRAT,
1734
+ 1 HUB, HUN, PT1, T1, TDIST, TROUND, TWO, YDDNRM
1735
+ INTEGER I, ITER
1736
+ C
1737
+ C Type declaration for function subroutines called ---------------------
1738
+ C
1739
+ DOUBLE PRECISION DVNORM
1740
+ C-----------------------------------------------------------------------
1741
+ C The following Fortran-77 declaration is to cause the values of the
1742
+ C listed (local) variables to be saved between calls to this integrator.
1743
+ C-----------------------------------------------------------------------
1744
+ SAVE HALF, HUN, PT1, TWO
1745
+ DATA HALF /0.5D0/, HUN /100.0D0/, PT1 /0.1D0/, TWO /2.0D0/
1746
+ C
1747
+ NITER = 0
1748
+ TDIST = ABS(TOUT - T0)
1749
+ TROUND = UROUND*MAX(ABS(T0),ABS(TOUT))
1750
+ IF (TDIST .LT. TWO*TROUND) GO TO 100
1751
+ C
1752
+ C Set a lower bound on h based on the roundoff level in T0 and TOUT. ---
1753
+ HLB = HUN*TROUND
1754
+ C Set an upper bound on h based on TOUT-T0 and the initial Y and YDOT. -
1755
+ HUB = PT1*TDIST
1756
+ ATOLI = ATOL(1)
1757
+ DO 10 I = 1, N
1758
+ IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
1759
+ DELYI = PT1*ABS(Y0(I)) + ATOLI
1760
+ AFI = ABS(YDOT(I))
1761
+ IF (AFI*HUB .GT. DELYI) HUB = DELYI/AFI
1762
+ 10 CONTINUE
1763
+ C
1764
+ C Set initial guess for h as geometric mean of upper and lower bounds. -
1765
+ ITER = 0
1766
+ HG = SQRT(HLB*HUB)
1767
+ C If the bounds have crossed, exit with the mean value. ----------------
1768
+ IF (HUB .LT. HLB) THEN
1769
+ H0 = HG
1770
+ GO TO 90
1771
+ ENDIF
1772
+ C
1773
+ C Looping point for iteration. -----------------------------------------
1774
+ 50 CONTINUE
1775
+ C Estimate the second derivative as a difference quotient in f. --------
1776
+ H = SIGN (HG, TOUT - T0)
1777
+ T1 = T0 + H
1778
+ DO 60 I = 1, N
1779
+ 60 Y(I) = Y0(I) + H*YDOT(I)
1780
+ CALL F (N, T1, Y, TEMP, RPAR, IPAR)
1781
+ DO 70 I = 1, N
1782
+ 70 TEMP(I) = (TEMP(I) - YDOT(I))/H
1783
+ YDDNRM = DVNORM (N, TEMP, EWT)
1784
+ C Get the corresponding new value of h. --------------------------------
1785
+ IF (YDDNRM*HUB*HUB .GT. TWO) THEN
1786
+ HNEW = SQRT(TWO/YDDNRM)
1787
+ ELSE
1788
+ HNEW = SQRT(HG*HUB)
1789
+ ENDIF
1790
+ ITER = ITER + 1
1791
+ C-----------------------------------------------------------------------
1792
+ C Test the stopping conditions.
1793
+ C Stop if the new and previous h values differ by a factor of .lt. 2.
1794
+ C Stop if four iterations have been done. Also, stop with previous h
1795
+ C if HNEW/HG .gt. 2 after first iteration, as this probably means that
1796
+ C the second derivative value is bad because of cancellation error.
1797
+ C-----------------------------------------------------------------------
1798
+ IF (ITER .GE. 4) GO TO 80
1799
+ HRAT = HNEW/HG
1800
+ IF ( (HRAT .GT. HALF) .AND. (HRAT .LT. TWO) ) GO TO 80
1801
+ IF ( (ITER .GE. 2) .AND. (HNEW .GT. TWO*HG) ) THEN
1802
+ HNEW = HG
1803
+ GO TO 80
1804
+ ENDIF
1805
+ HG = HNEW
1806
+ GO TO 50
1807
+ C
1808
+ C Iteration done. Apply bounds, bias factor, and sign. Then exit. ----
1809
+ 80 H0 = HNEW*HALF
1810
+ IF (H0 .LT. HLB) H0 = HLB
1811
+ IF (H0 .GT. HUB) H0 = HUB
1812
+ 90 H0 = SIGN(H0, TOUT - T0)
1813
+ NITER = ITER
1814
+ IER = 0
1815
+ RETURN
1816
+ C Error return for TOUT - T0 too small. --------------------------------
1817
+ 100 IER = -1
1818
+ RETURN
1819
+ C----------------------- End of Subroutine DVHIN -----------------------
1820
+ END
1821
+ *DECK DVINDY
1822
+ SUBROUTINE DVINDY (T, K, YH, LDYH, DKY, IFLAG)
1823
+ DOUBLE PRECISION T, YH, DKY
1824
+ INTEGER K, LDYH, IFLAG
1825
+ DIMENSION YH(LDYH,*), DKY(*)
1826
+ C-----------------------------------------------------------------------
1827
+ C Call sequence input -- T, K, YH, LDYH
1828
+ C Call sequence output -- DKY, IFLAG
1829
+ C COMMON block variables accessed..
1830
+ C /DVOD01/ -- H, TN, UROUND, L, N, NQ
1831
+ C /DVOD02/ -- HU
1832
+ C
1833
+ C Subroutines called by DVINDY.. DSCAL, XERRWD
1834
+ C Function routines called by DVINDY.. None
1835
+ C-----------------------------------------------------------------------
1836
+ C DVINDY computes interpolated values of the K-th derivative of the
1837
+ C dependent variable vector y, and stores it in DKY. This routine
1838
+ C is called within the package with K = 0 and T = TOUT, but may
1839
+ C also be called by the user for any K up to the current order.
1840
+ C (See detailed instructions in the usage documentation.)
1841
+ C-----------------------------------------------------------------------
1842
+ C The computed values in DKY are gotten by interpolation using the
1843
+ C Nordsieck history array YH. This array corresponds uniquely to a
1844
+ C vector-valued polynomial of degree NQCUR or less, and DKY is set
1845
+ C to the K-th derivative of this polynomial at T.
1846
+ C The formula for DKY is..
1847
+ C q
1848
+ C DKY(i) = sum c(j,K) * (T - TN)**(j-K) * H**(-j) * YH(i,j+1)
1849
+ C j=K
1850
+ C where c(j,K) = j*(j-1)*...*(j-K+1), q = NQCUR, TN = TCUR, H = HCUR.
1851
+ C The quantities NQ = NQCUR, L = NQ+1, N, TN, and H are
1852
+ C communicated by COMMON. The above sum is done in reverse order.
1853
+ C IFLAG is returned negative if either K or T is out of bounds.
1854
+ C
1855
+ C Discussion above and comments in driver explain all variables.
1856
+ C-----------------------------------------------------------------------
1857
+ C
1858
+ C Type declarations for labeled COMMON block DVOD01 --------------------
1859
+ C
1860
+ DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1861
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
1862
+ 2 RC, RL1, TAU, TQ, TN, UROUND
1863
+ INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1864
+ 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
1865
+ 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
1866
+ 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
1867
+ 4 NSLP, NYH
1868
+ C
1869
+ C Type declarations for labeled COMMON block DVOD02 --------------------
1870
+ C
1871
+ DOUBLE PRECISION HU
1872
+ INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
1873
+ C
1874
+ C Type declarations for local variables --------------------------------
1875
+ C
1876
+ DOUBLE PRECISION C, HUN, R, S, TFUZZ, TN1, TP, ZERO
1877
+ INTEGER I, IC, J, JB, JB2, JJ, JJ1, JP1
1878
+ CHARACTER*80 MSG
1879
+ C-----------------------------------------------------------------------
1880
+ C The following Fortran-77 declaration is to cause the values of the
1881
+ C listed (local) variables to be saved between calls to this integrator.
1882
+ C-----------------------------------------------------------------------
1883
+ SAVE HUN, ZERO
1884
+ C
1885
+ COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1886
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
1887
+ 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
1888
+ 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1889
+ 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
1890
+ 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
1891
+ 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
1892
+ 7 NSLP, NYH
1893
+ COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
1894
+ C
1895
+ DATA HUN /100.0D0/, ZERO /0.0D0/
1896
+ C
1897
+ IFLAG = 0
1898
+ IF (K .LT. 0 .OR. K .GT. NQ) GO TO 80
1899
+ TFUZZ = HUN*UROUND*(TN + HU)
1900
+ TP = TN - HU - TFUZZ
1901
+ TN1 = TN + TFUZZ
1902
+ IF ((T-TP)*(T-TN1) .GT. ZERO) GO TO 90
1903
+ C
1904
+ S = (T - TN)/H
1905
+ IC = 1
1906
+ IF (K .EQ. 0) GO TO 15
1907
+ JJ1 = L - K
1908
+ DO 10 JJ = JJ1, NQ
1909
+ 10 IC = IC*JJ
1910
+ 15 C = REAL(IC)
1911
+ DO 20 I = 1, N
1912
+ 20 DKY(I) = C*YH(I,L)
1913
+ IF (K .EQ. NQ) GO TO 55
1914
+ JB2 = NQ - K
1915
+ DO 50 JB = 1, JB2
1916
+ J = NQ - JB
1917
+ JP1 = J + 1
1918
+ IC = 1
1919
+ IF (K .EQ. 0) GO TO 35
1920
+ JJ1 = JP1 - K
1921
+ DO 30 JJ = JJ1, J
1922
+ 30 IC = IC*JJ
1923
+ 35 C = REAL(IC)
1924
+ DO 40 I = 1, N
1925
+ 40 DKY(I) = C*YH(I,JP1) + S*DKY(I)
1926
+ 50 CONTINUE
1927
+ IF (K .EQ. 0) RETURN
1928
+ 55 R = H**(-K)
1929
+ CALL DSCAL (N, R, DKY, 1)
1930
+ RETURN
1931
+ C
1932
+ 80 MSG = 'DVINDY-- K (=I1) illegal '
1933
+ CALL XERRWD (MSG, 30, 51, 1, 1, K, 0, 0, ZERO, ZERO)
1934
+ IFLAG = -1
1935
+ RETURN
1936
+ 90 MSG = 'DVINDY-- T (=R1) illegal '
1937
+ CALL XERRWD (MSG, 30, 52, 1, 0, 0, 0, 1, T, ZERO)
1938
+ MSG=' T not in interval TCUR - HU (= R1) to TCUR (=R2) '
1939
+ CALL XERRWD (MSG, 60, 52, 1, 0, 0, 0, 2, TP, TN)
1940
+ IFLAG = -2
1941
+ RETURN
1942
+ C----------------------- End of Subroutine DVINDY ----------------------
1943
+ END
1944
+ *DECK DVSTEP
1945
+ SUBROUTINE DVSTEP (Y, YH, LDYH, YH1, EWT, SAVF, VSAV, ACOR,
1946
+ 1 WM, IWM, F, JAC, PSOL, VNLS, RPAR, IPAR)
1947
+ EXTERNAL F, JAC, PSOL, VNLS
1948
+ DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, VSAV, ACOR, WM, RPAR
1949
+ INTEGER LDYH, IWM, IPAR
1950
+ DIMENSION Y(*), YH(LDYH,*), YH1(*), EWT(*), SAVF(*), VSAV(*),
1951
+ 1 ACOR(*), WM(*), IWM(*), RPAR(*), IPAR(*)
1952
+ C-----------------------------------------------------------------------
1953
+ C Call sequence input -- Y, YH, LDYH, YH1, EWT, SAVF, VSAV,
1954
+ C ACOR, WM, IWM, F, JAC, PSOL, VNLS, RPAR, IPAR
1955
+ C Call sequence output -- YH, ACOR, WM, IWM
1956
+ C COMMON block variables accessed..
1957
+ C /DVOD01/ ACNRM, EL(13), H, HMIN, HMXI, HNEW, HSCAL, RC, TAU(13),
1958
+ C TQ(5), TN, JCUR, JSTART, KFLAG, KUTH,
1959
+ C L, LMAX, MAXORD, N, NEWQ, NQ, NQWAIT
1960
+ C /DVOD02/ HU, NCFN, NETF, NFE, NQU, NST
1961
+ C
1962
+ C Subroutines called by DVSTEP.. F, DAXPY, DCOPY, DSCAL,
1963
+ C DVJUST, VNLS, DVSET
1964
+ C Function routines called by DVSTEP.. DVNORM
1965
+ C-----------------------------------------------------------------------
1966
+ C DVSTEP performs one step of the integration of an initial value
1967
+ C problem for a system of ordinary differential equations.
1968
+ C DVSTEP calls subroutine VNLS for the solution of the nonlinear system
1969
+ C arising in the time step. Thus it is independent of the problem
1970
+ C Jacobian structure and the type of nonlinear system solution method.
1971
+ C DVSTEP returns a completion flag KFLAG (in COMMON).
1972
+ C A return with KFLAG = -1 or -2 means either ABS(H) = HMIN or 10
1973
+ C consecutive failures occurred. On a return with KFLAG negative,
1974
+ C the values of TN and the YH array are as of the beginning of the last
1975
+ C step, and H is the last step size attempted.
1976
+ C
1977
+ C Communication with DVSTEP is done with the following variables..
1978
+ C
1979
+ C Y = An array of length N used for the dependent variable vector.
1980
+ C YH = An LDYH by LMAX array containing the dependent variables
1981
+ C and their approximate scaled derivatives, where
1982
+ C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate
1983
+ C j-th derivative of y(i), scaled by H**j/factorial(j)
1984
+ C (j = 0,1,...,NQ). On entry for the first step, the first
1985
+ C two columns of YH must be set from the initial values.
1986
+ C LDYH = A constant integer .ge. N, the first dimension of YH.
1987
+ C N is the number of ODEs in the system.
1988
+ C YH1 = A one-dimensional array occupying the same space as YH.
1989
+ C EWT = An array of length N containing multiplicative weights
1990
+ C for local error measurements. Local errors in y(i) are
1991
+ C compared to 1.0/EWT(i) in various error tests.
1992
+ C SAVF = An array of working storage, of length N.
1993
+ C also used for input of YH(*,MAXORD+2) when JSTART = -1
1994
+ C and MAXORD .lt. the current order NQ.
1995
+ C VSAV = A work array of length N passed to subroutine VNLS.
1996
+ C ACOR = A work array of length N, used for the accumulated
1997
+ C corrections. On a successful return, ACOR(i) contains
1998
+ C the estimated one-step local error in y(i).
1999
+ C WM,IWM = Real and integer work arrays associated with matrix
2000
+ C operations in VNLS.
2001
+ C F = Dummy name for the user supplied subroutine for f.
2002
+ C JAC = Dummy name for the user supplied Jacobian subroutine.
2003
+ C PSOL = Dummy name for the subroutine passed to VNLS, for
2004
+ C possible use there.
2005
+ C VNLS = Dummy name for the nonlinear system solving subroutine,
2006
+ C whose real name is dependent on the method used.
2007
+ C RPAR, IPAR = Dummy names for user's real and integer work arrays.
2008
+ C-----------------------------------------------------------------------
2009
+ C
2010
+ C Type declarations for labeled COMMON block DVOD01 --------------------
2011
+ C
2012
+ DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
2013
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2014
+ 2 RC, RL1, TAU, TQ, TN, UROUND
2015
+ INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2016
+ 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2017
+ 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2018
+ 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2019
+ 4 NSLP, NYH
2020
+ C
2021
+ C Type declarations for labeled COMMON block DVOD02 --------------------
2022
+ C
2023
+ DOUBLE PRECISION HU
2024
+ INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
2025
+ C
2026
+ C Type declarations for local variables --------------------------------
2027
+ C
2028
+ DOUBLE PRECISION ADDON, BIAS1,BIAS2,BIAS3, CNQUOT, DDN, DSM, DUP,
2029
+ 1 ETACF, ETAMIN, ETAMX1, ETAMX2, ETAMX3, ETAMXF,
2030
+ 2 ETAQ, ETAQM1, ETAQP1, FLOTL, ONE, ONEPSM,
2031
+ 3 R, THRESH, TOLD, ZERO
2032
+ INTEGER I, I1, I2, IBACK, J, JB, KFC, KFH, MXNCF, NCF, NFLAG
2033
+ C
2034
+ C Type declaration for function subroutines called ---------------------
2035
+ C
2036
+ DOUBLE PRECISION DVNORM
2037
+ C-----------------------------------------------------------------------
2038
+ C The following Fortran-77 declaration is to cause the values of the
2039
+ C listed (local) variables to be saved between calls to this integrator.
2040
+ C-----------------------------------------------------------------------
2041
+ SAVE ADDON, BIAS1, BIAS2, BIAS3,
2042
+ 1 ETACF, ETAMIN, ETAMX1, ETAMX2, ETAMX3, ETAMXF, ETAQ, ETAQM1,
2043
+ 2 KFC, KFH, MXNCF, ONEPSM, THRESH, ONE, ZERO
2044
+ C-----------------------------------------------------------------------
2045
+ COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
2046
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2047
+ 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
2048
+ 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2049
+ 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2050
+ 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2051
+ 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2052
+ 7 NSLP, NYH
2053
+ COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
2054
+ C
2055
+ DATA KFC/-3/, KFH/-7/, MXNCF/10/
2056
+ DATA ADDON /1.0D-6/, BIAS1 /6.0D0/, BIAS2 /6.0D0/,
2057
+ 1 BIAS3 /10.0D0/, ETACF /0.25D0/, ETAMIN /0.1D0/,
2058
+ 2 ETAMXF /0.2D0/, ETAMX1 /1.0D4/, ETAMX2 /10.0D0/,
2059
+ 3 ETAMX3 /10.0D0/, ONEPSM /1.00001D0/, THRESH /1.5D0/
2060
+ DATA ONE/1.0D0/, ZERO/0.0D0/
2061
+ C
2062
+ KFLAG = 0
2063
+ TOLD = TN
2064
+ NCF = 0
2065
+ JCUR = 0
2066
+ NFLAG = 0
2067
+ IF (JSTART .GT. 0) GO TO 20
2068
+ IF (JSTART .EQ. -1) GO TO 100
2069
+ C-----------------------------------------------------------------------
2070
+ C On the first call, the order is set to 1, and other variables are
2071
+ C initialized. ETAMAX is the maximum ratio by which H can be increased
2072
+ C in a single step. It is normally 10, but is larger during the
2073
+ C first step to compensate for the small initial H. If a failure
2074
+ C occurs (in corrector convergence or error test), ETAMAX is set to 1
2075
+ C for the next increase.
2076
+ C-----------------------------------------------------------------------
2077
+ LMAX = MAXORD + 1
2078
+ NQ = 1
2079
+ L = 2
2080
+ NQNYH = NQ*LDYH
2081
+ TAU(1) = H
2082
+ PRL1 = ONE
2083
+ RC = ZERO
2084
+ ETAMAX = ETAMX1
2085
+ NQWAIT = 2
2086
+ HSCAL = H
2087
+ GO TO 200
2088
+ C-----------------------------------------------------------------------
2089
+ C Take preliminary actions on a normal continuation step (JSTART.GT.0).
2090
+ C If the driver changed H, then ETA must be reset and NEWH set to 1.
2091
+ C If a change of order was dictated on the previous step, then
2092
+ C it is done here and appropriate adjustments in the history are made.
2093
+ C On an order decrease, the history array is adjusted by DVJUST.
2094
+ C On an order increase, the history array is augmented by a column.
2095
+ C On a change of step size H, the history array YH is rescaled.
2096
+ C-----------------------------------------------------------------------
2097
+ 20 CONTINUE
2098
+ IF (KUTH .EQ. 1) THEN
2099
+ ETA = MIN(ETA,H/HSCAL)
2100
+ NEWH = 1
2101
+ ENDIF
2102
+ 50 IF (NEWH .EQ. 0) GO TO 200
2103
+ IF (NEWQ .EQ. NQ) GO TO 150
2104
+ IF (NEWQ .LT. NQ) THEN
2105
+ CALL DVJUST (YH, LDYH, -1)
2106
+ NQ = NEWQ
2107
+ L = NQ + 1
2108
+ NQWAIT = L
2109
+ GO TO 150
2110
+ ENDIF
2111
+ IF (NEWQ .GT. NQ) THEN
2112
+ CALL DVJUST (YH, LDYH, 1)
2113
+ NQ = NEWQ
2114
+ L = NQ + 1
2115
+ NQWAIT = L
2116
+ GO TO 150
2117
+ ENDIF
2118
+ C-----------------------------------------------------------------------
2119
+ C The following block handles preliminaries needed when JSTART = -1.
2120
+ C If N was reduced, zero out part of YH to avoid undefined references.
2121
+ C If MAXORD was reduced to a value less than the tentative order NEWQ,
2122
+ C then NQ is set to MAXORD, and a new H ratio ETA is chosen.
2123
+ C Otherwise, we take the same preliminary actions as for JSTART .gt. 0.
2124
+ C In any case, NQWAIT is reset to L = NQ + 1 to prevent further
2125
+ C changes in order for that many steps.
2126
+ C The new H ratio ETA is limited by the input H if KUTH = 1,
2127
+ C by HMIN if KUTH = 0, and by HMXI in any case.
2128
+ C Finally, the history array YH is rescaled.
2129
+ C-----------------------------------------------------------------------
2130
+ 100 CONTINUE
2131
+ LMAX = MAXORD + 1
2132
+ IF (N .EQ. LDYH) GO TO 120
2133
+ I1 = 1 + (NEWQ + 1)*LDYH
2134
+ I2 = (MAXORD + 1)*LDYH
2135
+ IF (I1 .GT. I2) GO TO 120
2136
+ DO 110 I = I1, I2
2137
+ 110 YH1(I) = ZERO
2138
+ 120 IF (NEWQ .LE. MAXORD) GO TO 140
2139
+ FLOTL = REAL(LMAX)
2140
+ IF (MAXORD .LT. NQ-1) THEN
2141
+ DDN = DVNORM (N, SAVF, EWT)/TQ(1)
2142
+ ETA = ONE/((BIAS1*DDN)**(ONE/FLOTL) + ADDON)
2143
+ ENDIF
2144
+ IF (MAXORD .EQ. NQ .AND. NEWQ .EQ. NQ+1) ETA = ETAQ
2145
+ IF (MAXORD .EQ. NQ-1 .AND. NEWQ .EQ. NQ+1) THEN
2146
+ ETA = ETAQM1
2147
+ CALL DVJUST (YH, LDYH, -1)
2148
+ ENDIF
2149
+ IF (MAXORD .EQ. NQ-1 .AND. NEWQ .EQ. NQ) THEN
2150
+ DDN = DVNORM (N, SAVF, EWT)/TQ(1)
2151
+ ETA = ONE/((BIAS1*DDN)**(ONE/FLOTL) + ADDON)
2152
+ CALL DVJUST (YH, LDYH, -1)
2153
+ ENDIF
2154
+ ETA = MIN(ETA,ONE)
2155
+ NQ = MAXORD
2156
+ L = LMAX
2157
+ 140 IF (KUTH .EQ. 1) ETA = MIN(ETA,ABS(H/HSCAL))
2158
+ IF (KUTH .EQ. 0) ETA = MAX(ETA,HMIN/ABS(HSCAL))
2159
+ ETA = ETA/MAX(ONE,ABS(HSCAL)*HMXI*ETA)
2160
+ NEWH = 1
2161
+ NQWAIT = L
2162
+ IF (NEWQ .LE. MAXORD) GO TO 50
2163
+ C Rescale the history array for a change in H by a factor of ETA. ------
2164
+ 150 R = ONE
2165
+ DO 180 J = 2, L
2166
+ R = R*ETA
2167
+ CALL DSCAL (N, R, YH(1,J), 1 )
2168
+ 180 CONTINUE
2169
+ H = HSCAL*ETA
2170
+ HSCAL = H
2171
+ RC = RC*ETA
2172
+ NQNYH = NQ*LDYH
2173
+ C-----------------------------------------------------------------------
2174
+ C This section computes the predicted values by effectively
2175
+ C multiplying the YH array by the Pascal triangle matrix.
2176
+ C DVSET is called to calculate all integration coefficients.
2177
+ C RC is the ratio of new to old values of the coefficient H/EL(2)=h/l1.
2178
+ C-----------------------------------------------------------------------
2179
+ 200 TN = TN + H
2180
+ I1 = NQNYH + 1
2181
+ DO 220 JB = 1, NQ
2182
+ I1 = I1 - LDYH
2183
+ DO 210 I = I1, NQNYH
2184
+ 210 YH1(I) = YH1(I) + YH1(I+LDYH)
2185
+ 220 CONTINUE
2186
+ CALL DVSET
2187
+ RL1 = ONE/EL(2)
2188
+ RC = RC*(RL1/PRL1)
2189
+ PRL1 = RL1
2190
+ C
2191
+ C Call the nonlinear system solver. ------------------------------------
2192
+ C
2193
+ CALL VNLS (Y, YH, LDYH, VSAV, SAVF, EWT, ACOR, IWM, WM,
2194
+ 1 F, JAC, PSOL, NFLAG, RPAR, IPAR)
2195
+ C
2196
+ IF (NFLAG .EQ. 0) GO TO 450
2197
+ C-----------------------------------------------------------------------
2198
+ C The VNLS routine failed to achieve convergence (NFLAG .NE. 0).
2199
+ C The YH array is retracted to its values before prediction.
2200
+ C The step size H is reduced and the step is retried, if possible.
2201
+ C Otherwise, an error exit is taken.
2202
+ C-----------------------------------------------------------------------
2203
+ NCF = NCF + 1
2204
+ NCFN = NCFN + 1
2205
+ ETAMAX = ONE
2206
+ TN = TOLD
2207
+ I1 = NQNYH + 1
2208
+ DO 430 JB = 1, NQ
2209
+ I1 = I1 - LDYH
2210
+ DO 420 I = I1, NQNYH
2211
+ 420 YH1(I) = YH1(I) - YH1(I+LDYH)
2212
+ 430 CONTINUE
2213
+ IF (NFLAG .LT. -1) GO TO 680
2214
+ IF (ABS(H) .LE. HMIN*ONEPSM) GO TO 670
2215
+ IF (NCF .EQ. MXNCF) GO TO 670
2216
+ ETA = ETACF
2217
+ ETA = MAX(ETA,HMIN/ABS(H))
2218
+ NFLAG = -1
2219
+ GO TO 150
2220
+ C-----------------------------------------------------------------------
2221
+ C The corrector has converged (NFLAG = 0). The local error test is
2222
+ C made and control passes to statement 500 if it fails.
2223
+ C-----------------------------------------------------------------------
2224
+ 450 CONTINUE
2225
+ DSM = ACNRM/TQ(2)
2226
+ IF (DSM .GT. ONE) GO TO 500
2227
+ C-----------------------------------------------------------------------
2228
+ C After a successful step, update the YH and TAU arrays and decrement
2229
+ C NQWAIT. If NQWAIT is then 1 and NQ .lt. MAXORD, then ACOR is saved
2230
+ C for use in a possible order increase on the next step.
2231
+ C If ETAMAX = 1 (a failure occurred this step), keep NQWAIT .ge. 2.
2232
+ C-----------------------------------------------------------------------
2233
+ KFLAG = 0
2234
+ NST = NST + 1
2235
+ HU = H
2236
+ NQU = NQ
2237
+ DO 470 IBACK = 1, NQ
2238
+ I = L - IBACK
2239
+ 470 TAU(I+1) = TAU(I)
2240
+ TAU(1) = H
2241
+ DO 480 J = 1, L
2242
+ CALL DAXPY (N, EL(J), ACOR, 1, YH(1,J), 1 )
2243
+ 480 CONTINUE
2244
+ NQWAIT = NQWAIT - 1
2245
+ IF ((L .EQ. LMAX) .OR. (NQWAIT .NE. 1)) GO TO 490
2246
+ CALL DCOPY (N, ACOR, 1, YH(1,LMAX), 1 )
2247
+ CONP = TQ(5)
2248
+ 490 IF (ETAMAX .NE. ONE) GO TO 560
2249
+ IF (NQWAIT .LT. 2) NQWAIT = 2
2250
+ NEWQ = NQ
2251
+ NEWH = 0
2252
+ ETA = ONE
2253
+ HNEW = H
2254
+ GO TO 690
2255
+ C-----------------------------------------------------------------------
2256
+ C The error test failed. KFLAG keeps track of multiple failures.
2257
+ C Restore TN and the YH array to their previous values, and prepare
2258
+ C to try the step again. Compute the optimum step size for the
2259
+ C same order. After repeated failures, H is forced to decrease
2260
+ C more rapidly.
2261
+ C-----------------------------------------------------------------------
2262
+ 500 KFLAG = KFLAG - 1
2263
+ NETF = NETF + 1
2264
+ NFLAG = -2
2265
+ TN = TOLD
2266
+ I1 = NQNYH + 1
2267
+ DO 520 JB = 1, NQ
2268
+ I1 = I1 - LDYH
2269
+ DO 510 I = I1, NQNYH
2270
+ 510 YH1(I) = YH1(I) - YH1(I+LDYH)
2271
+ 520 CONTINUE
2272
+ IF (ABS(H) .LE. HMIN*ONEPSM) GO TO 660
2273
+ ETAMAX = ONE
2274
+ IF (KFLAG .LE. KFC) GO TO 530
2275
+ C Compute ratio of new H to current H at the current order. ------------
2276
+ FLOTL = REAL(L)
2277
+ ETA = ONE/((BIAS2*DSM)**(ONE/FLOTL) + ADDON)
2278
+ ETA = MAX(ETA,HMIN/ABS(H),ETAMIN)
2279
+ IF ((KFLAG .LE. -2) .AND. (ETA .GT. ETAMXF)) ETA = ETAMXF
2280
+ GO TO 150
2281
+ C-----------------------------------------------------------------------
2282
+ C Control reaches this section if 3 or more consecutive failures
2283
+ C have occurred. It is assumed that the elements of the YH array
2284
+ C have accumulated errors of the wrong order. The order is reduced
2285
+ C by one, if possible. Then H is reduced by a factor of 0.1 and
2286
+ C the step is retried. After a total of 7 consecutive failures,
2287
+ C an exit is taken with KFLAG = -1.
2288
+ C-----------------------------------------------------------------------
2289
+ 530 IF (KFLAG .EQ. KFH) GO TO 660
2290
+ IF (NQ .EQ. 1) GO TO 540
2291
+ ETA = MAX(ETAMIN,HMIN/ABS(H))
2292
+ CALL DVJUST (YH, LDYH, -1)
2293
+ L = NQ
2294
+ NQ = NQ - 1
2295
+ NQWAIT = L
2296
+ GO TO 150
2297
+ 540 ETA = MAX(ETAMIN,HMIN/ABS(H))
2298
+ H = H*ETA
2299
+ HSCAL = H
2300
+ TAU(1) = H
2301
+ CALL F (N, TN, Y, SAVF, RPAR, IPAR)
2302
+ NFE = NFE + 1
2303
+ DO 550 I = 1, N
2304
+ 550 YH(I,2) = H*SAVF(I)
2305
+ NQWAIT = 10
2306
+ GO TO 200
2307
+ C-----------------------------------------------------------------------
2308
+ C If NQWAIT = 0, an increase or decrease in order by one is considered.
2309
+ C Factors ETAQ, ETAQM1, ETAQP1 are computed by which H could
2310
+ C be multiplied at order q, q-1, or q+1, respectively.
2311
+ C The largest of these is determined, and the new order and
2312
+ C step size set accordingly.
2313
+ C A change of H or NQ is made only if H increases by at least a
2314
+ C factor of THRESH. If an order change is considered and rejected,
2315
+ C then NQWAIT is set to 2 (reconsider it after 2 steps).
2316
+ C-----------------------------------------------------------------------
2317
+ C Compute ratio of new H to current H at the current order. ------------
2318
+ 560 FLOTL = REAL(L)
2319
+ ETAQ = ONE/((BIAS2*DSM)**(ONE/FLOTL) + ADDON)
2320
+ IF (NQWAIT .NE. 0) GO TO 600
2321
+ NQWAIT = 2
2322
+ ETAQM1 = ZERO
2323
+ IF (NQ .EQ. 1) GO TO 570
2324
+ C Compute ratio of new H to current H at the current order less one. ---
2325
+ DDN = DVNORM (N, YH(1,L), EWT)/TQ(1)
2326
+ ETAQM1 = ONE/((BIAS1*DDN)**(ONE/(FLOTL - ONE)) + ADDON)
2327
+ 570 ETAQP1 = ZERO
2328
+ IF (L .EQ. LMAX) GO TO 580
2329
+ C Compute ratio of new H to current H at current order plus one. -------
2330
+ CNQUOT = (TQ(5)/CONP)*(H/TAU(2))**L
2331
+ DO 575 I = 1, N
2332
+ 575 SAVF(I) = ACOR(I) - CNQUOT*YH(I,LMAX)
2333
+ DUP = DVNORM (N, SAVF, EWT)/TQ(3)
2334
+ ETAQP1 = ONE/((BIAS3*DUP)**(ONE/(FLOTL + ONE)) + ADDON)
2335
+ 580 IF (ETAQ .GE. ETAQP1) GO TO 590
2336
+ IF (ETAQP1 .GT. ETAQM1) GO TO 620
2337
+ GO TO 610
2338
+ 590 IF (ETAQ .LT. ETAQM1) GO TO 610
2339
+ 600 ETA = ETAQ
2340
+ NEWQ = NQ
2341
+ GO TO 630
2342
+ 610 ETA = ETAQM1
2343
+ NEWQ = NQ - 1
2344
+ GO TO 630
2345
+ 620 ETA = ETAQP1
2346
+ NEWQ = NQ + 1
2347
+ CALL DCOPY (N, ACOR, 1, YH(1,LMAX), 1)
2348
+ C Test tentative new H against THRESH, ETAMAX, and HMXI, then exit. ----
2349
+ 630 IF (ETA .LT. THRESH .OR. ETAMAX .EQ. ONE) GO TO 640
2350
+ ETA = MIN(ETA,ETAMAX)
2351
+ ETA = ETA/MAX(ONE,ABS(H)*HMXI*ETA)
2352
+ NEWH = 1
2353
+ HNEW = H*ETA
2354
+ GO TO 690
2355
+ 640 NEWQ = NQ
2356
+ NEWH = 0
2357
+ ETA = ONE
2358
+ HNEW = H
2359
+ GO TO 690
2360
+ C-----------------------------------------------------------------------
2361
+ C All returns are made through this section.
2362
+ C On a successful return, ETAMAX is reset and ACOR is scaled.
2363
+ C-----------------------------------------------------------------------
2364
+ 660 KFLAG = -1
2365
+ GO TO 720
2366
+ 670 KFLAG = -2
2367
+ GO TO 720
2368
+ 680 IF (NFLAG .EQ. -2) KFLAG = -3
2369
+ IF (NFLAG .EQ. -3) KFLAG = -4
2370
+ GO TO 720
2371
+ 690 ETAMAX = ETAMX3
2372
+ IF (NST .LE. 10) ETAMAX = ETAMX2
2373
+ 700 R = ONE/TQ(2)
2374
+ CALL DSCAL (N, R, ACOR, 1)
2375
+ 720 JSTART = 1
2376
+ RETURN
2377
+ C----------------------- End of Subroutine DVSTEP ----------------------
2378
+ END
2379
+ *DECK DVSET
2380
+ SUBROUTINE DVSET
2381
+ C-----------------------------------------------------------------------
2382
+ C Call sequence communication.. None
2383
+ C COMMON block variables accessed..
2384
+ C /DVOD01/ -- EL(13), H, TAU(13), TQ(5), L(= NQ + 1),
2385
+ C METH, NQ, NQWAIT
2386
+ C
2387
+ C Subroutines called by DVSET.. None
2388
+ C Function routines called by DVSET.. None
2389
+ C-----------------------------------------------------------------------
2390
+ C DVSET is called by DVSTEP and sets coefficients for use there.
2391
+ C
2392
+ C For each order NQ, the coefficients in EL are calculated by use of
2393
+ C the generating polynomial lambda(x), with coefficients EL(i).
2394
+ C lambda(x) = EL(1) + EL(2)*x + ... + EL(NQ+1)*(x**NQ).
2395
+ C For the backward differentiation formulas,
2396
+ C NQ-1
2397
+ C lambda(x) = (1 + x/xi*(NQ)) * product (1 + x/xi(i) ) .
2398
+ C i = 1
2399
+ C For the Adams formulas,
2400
+ C NQ-1
2401
+ C (d/dx) lambda(x) = c * product (1 + x/xi(i) ) ,
2402
+ C i = 1
2403
+ C lambda(-1) = 0, lambda(0) = 1,
2404
+ C where c is a normalization constant.
2405
+ C In both cases, xi(i) is defined by
2406
+ C H*xi(i) = t sub n - t sub (n-i)
2407
+ C = H + TAU(1) + TAU(2) + ... TAU(i-1).
2408
+ C
2409
+ C
2410
+ C In addition to variables described previously, communication
2411
+ C with DVSET uses the following..
2412
+ C TAU = A vector of length 13 containing the past NQ values
2413
+ C of H.
2414
+ C EL = A vector of length 13 in which vset stores the
2415
+ C coefficients for the corrector formula.
2416
+ C TQ = A vector of length 5 in which vset stores constants
2417
+ C used for the convergence test, the error test, and the
2418
+ C selection of H at a new order.
2419
+ C METH = The basic method indicator.
2420
+ C NQ = The current order.
2421
+ C L = NQ + 1, the length of the vector stored in EL, and
2422
+ C the number of columns of the YH array being used.
2423
+ C NQWAIT = A counter controlling the frequency of order changes.
2424
+ C An order change is about to be considered if NQWAIT = 1.
2425
+ C-----------------------------------------------------------------------
2426
+ C
2427
+ C Type declarations for labeled COMMON block DVOD01 --------------------
2428
+ C
2429
+ DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
2430
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2431
+ 2 RC, RL1, TAU, TQ, TN, UROUND
2432
+ INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2433
+ 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2434
+ 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2435
+ 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2436
+ 4 NSLP, NYH
2437
+ C
2438
+ C Type declarations for local variables --------------------------------
2439
+ C
2440
+ DOUBLE PRECISION AHATN0, ALPH0, CNQM1, CORTES, CSUM, ELP, EM,
2441
+ 1 EM0, FLOTI, FLOTL, FLOTNQ, HSUM, ONE, RXI, RXIS, S, SIX,
2442
+ 2 T1, T2, T3, T4, T5, T6, TWO, XI, ZERO
2443
+ INTEGER I, IBACK, J, JP1, NQM1, NQM2
2444
+ C
2445
+ DIMENSION EM(13)
2446
+ C-----------------------------------------------------------------------
2447
+ C The following Fortran-77 declaration is to cause the values of the
2448
+ C listed (local) variables to be saved between calls to this integrator.
2449
+ C-----------------------------------------------------------------------
2450
+ SAVE CORTES, ONE, SIX, TWO, ZERO
2451
+ C
2452
+ COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
2453
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2454
+ 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
2455
+ 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2456
+ 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2457
+ 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2458
+ 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2459
+ 7 NSLP, NYH
2460
+ C
2461
+ DATA CORTES /0.1D0/
2462
+ DATA ONE /1.0D0/, SIX /6.0D0/, TWO /2.0D0/, ZERO /0.0D0/
2463
+ C
2464
+ FLOTL = REAL(L)
2465
+ NQM1 = NQ - 1
2466
+ NQM2 = NQ - 2
2467
+ GO TO (100, 200), METH
2468
+ C
2469
+ C Set coefficients for Adams methods. ----------------------------------
2470
+ 100 IF (NQ .NE. 1) GO TO 110
2471
+ EL(1) = ONE
2472
+ EL(2) = ONE
2473
+ TQ(1) = ONE
2474
+ TQ(2) = TWO
2475
+ TQ(3) = SIX*TQ(2)
2476
+ TQ(5) = ONE
2477
+ GO TO 300
2478
+ 110 HSUM = H
2479
+ EM(1) = ONE
2480
+ FLOTNQ = FLOTL - ONE
2481
+ DO 115 I = 2, L
2482
+ 115 EM(I) = ZERO
2483
+ DO 150 J = 1, NQM1
2484
+ IF ((J .NE. NQM1) .OR. (NQWAIT .NE. 1)) GO TO 130
2485
+ S = ONE
2486
+ CSUM = ZERO
2487
+ DO 120 I = 1, NQM1
2488
+ CSUM = CSUM + S*EM(I)/REAL(I+1)
2489
+ 120 S = -S
2490
+ TQ(1) = EM(NQM1)/(FLOTNQ*CSUM)
2491
+ 130 RXI = H/HSUM
2492
+ DO 140 IBACK = 1, J
2493
+ I = (J + 2) - IBACK
2494
+ 140 EM(I) = EM(I) + EM(I-1)*RXI
2495
+ HSUM = HSUM + TAU(J)
2496
+ 150 CONTINUE
2497
+ C Compute integral from -1 to 0 of polynomial and of x times it. -------
2498
+ S = ONE
2499
+ EM0 = ZERO
2500
+ CSUM = ZERO
2501
+ DO 160 I = 1, NQ
2502
+ FLOTI = REAL(I)
2503
+ EM0 = EM0 + S*EM(I)/FLOTI
2504
+ CSUM = CSUM + S*EM(I)/(FLOTI+ONE)
2505
+ 160 S = -S
2506
+ C In EL, form coefficients of normalized integrated polynomial. --------
2507
+ S = ONE/EM0
2508
+ EL(1) = ONE
2509
+ DO 170 I = 1, NQ
2510
+ 170 EL(I+1) = S*EM(I)/REAL(I)
2511
+ XI = HSUM/H
2512
+ TQ(2) = XI*EM0/CSUM
2513
+ TQ(5) = XI/EL(L)
2514
+ IF (NQWAIT .NE. 1) GO TO 300
2515
+ C For higher order control constant, multiply polynomial by 1+x/xi(q). -
2516
+ RXI = ONE/XI
2517
+ DO 180 IBACK = 1, NQ
2518
+ I = (L + 1) - IBACK
2519
+ 180 EM(I) = EM(I) + EM(I-1)*RXI
2520
+ C Compute integral of polynomial. --------------------------------------
2521
+ S = ONE
2522
+ CSUM = ZERO
2523
+ DO 190 I = 1, L
2524
+ CSUM = CSUM + S*EM(I)/REAL(I+1)
2525
+ 190 S = -S
2526
+ TQ(3) = FLOTL*EM0/CSUM
2527
+ GO TO 300
2528
+ C
2529
+ C Set coefficients for BDF methods. ------------------------------------
2530
+ 200 DO 210 I = 3, L
2531
+ 210 EL(I) = ZERO
2532
+ EL(1) = ONE
2533
+ EL(2) = ONE
2534
+ ALPH0 = -ONE
2535
+ AHATN0 = -ONE
2536
+ HSUM = H
2537
+ RXI = ONE
2538
+ RXIS = ONE
2539
+ IF (NQ .EQ. 1) GO TO 240
2540
+ DO 230 J = 1, NQM2
2541
+ C In EL, construct coefficients of (1+x/xi(1))*...*(1+x/xi(j+1)). ------
2542
+ HSUM = HSUM + TAU(J)
2543
+ RXI = H/HSUM
2544
+ JP1 = J + 1
2545
+ ALPH0 = ALPH0 - ONE/REAL(JP1)
2546
+ DO 220 IBACK = 1, JP1
2547
+ I = (J + 3) - IBACK
2548
+ 220 EL(I) = EL(I) + EL(I-1)*RXI
2549
+ 230 CONTINUE
2550
+ ALPH0 = ALPH0 - ONE/REAL(NQ)
2551
+ RXIS = -EL(2) - ALPH0
2552
+ HSUM = HSUM + TAU(NQM1)
2553
+ RXI = H/HSUM
2554
+ AHATN0 = -EL(2) - RXI
2555
+ DO 235 IBACK = 1, NQ
2556
+ I = (NQ + 2) - IBACK
2557
+ 235 EL(I) = EL(I) + EL(I-1)*RXIS
2558
+ 240 T1 = ONE - AHATN0 + ALPH0
2559
+ T2 = ONE + REAL(NQ)*T1
2560
+ TQ(2) = ABS(ALPH0*T2/T1)
2561
+ TQ(5) = ABS(T2/(EL(L)*RXI/RXIS))
2562
+ IF (NQWAIT .NE. 1) GO TO 300
2563
+ CNQM1 = RXIS/EL(L)
2564
+ T3 = ALPH0 + ONE/REAL(NQ)
2565
+ T4 = AHATN0 + RXI
2566
+ ELP = T3/(ONE - T4 + T3)
2567
+ TQ(1) = ABS(ELP/CNQM1)
2568
+ HSUM = HSUM + TAU(NQ)
2569
+ RXI = H/HSUM
2570
+ T5 = ALPH0 - ONE/REAL(NQ+1)
2571
+ T6 = AHATN0 - RXI
2572
+ ELP = T2/(ONE - T6 + T5)
2573
+ TQ(3) = ABS(ELP*RXI*(FLOTL + ONE)*T5)
2574
+ 300 TQ(4) = CORTES*TQ(2)
2575
+ RETURN
2576
+ C----------------------- End of Subroutine DVSET -----------------------
2577
+ END
2578
+ *DECK DVJUST
2579
+ SUBROUTINE DVJUST (YH, LDYH, IORD)
2580
+ DOUBLE PRECISION YH
2581
+ INTEGER LDYH, IORD
2582
+ DIMENSION YH(LDYH,*)
2583
+ C-----------------------------------------------------------------------
2584
+ C Call sequence input -- YH, LDYH, IORD
2585
+ C Call sequence output -- YH
2586
+ C COMMON block input -- NQ, METH, LMAX, HSCAL, TAU(13), N
2587
+ C COMMON block variables accessed..
2588
+ C /DVOD01/ -- HSCAL, TAU(13), LMAX, METH, N, NQ,
2589
+ C
2590
+ C Subroutines called by DVJUST.. DAXPY
2591
+ C Function routines called by DVJUST.. None
2592
+ C-----------------------------------------------------------------------
2593
+ C This subroutine adjusts the YH array on reduction of order,
2594
+ C and also when the order is increased for the stiff option (METH = 2).
2595
+ C Communication with DVJUST uses the following..
2596
+ C IORD = An integer flag used when METH = 2 to indicate an order
2597
+ C increase (IORD = +1) or an order decrease (IORD = -1).
2598
+ C HSCAL = Step size H used in scaling of Nordsieck array YH.
2599
+ C (If IORD = +1, DVJUST assumes that HSCAL = TAU(1).)
2600
+ C See References 1 and 2 for details.
2601
+ C-----------------------------------------------------------------------
2602
+ C
2603
+ C Type declarations for labeled COMMON block DVOD01 --------------------
2604
+ C
2605
+ DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
2606
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2607
+ 2 RC, RL1, TAU, TQ, TN, UROUND
2608
+ INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2609
+ 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2610
+ 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2611
+ 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2612
+ 4 NSLP, NYH
2613
+ C
2614
+ C Type declarations for local variables --------------------------------
2615
+ C
2616
+ DOUBLE PRECISION ALPH0, ALPH1, HSUM, ONE, PROD, T1, XI,XIOLD, ZERO
2617
+ INTEGER I, IBACK, J, JP1, LP1, NQM1, NQM2, NQP1
2618
+ C-----------------------------------------------------------------------
2619
+ C The following Fortran-77 declaration is to cause the values of the
2620
+ C listed (local) variables to be saved between calls to this integrator.
2621
+ C-----------------------------------------------------------------------
2622
+ SAVE ONE, ZERO
2623
+ C
2624
+ COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
2625
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2626
+ 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
2627
+ 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2628
+ 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2629
+ 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2630
+ 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2631
+ 7 NSLP, NYH
2632
+ C
2633
+ DATA ONE /1.0D0/, ZERO /0.0D0/
2634
+ C
2635
+ IF ((NQ .EQ. 2) .AND. (IORD .NE. 1)) RETURN
2636
+ NQM1 = NQ - 1
2637
+ NQM2 = NQ - 2
2638
+ GO TO (100, 200), METH
2639
+ C-----------------------------------------------------------------------
2640
+ C Nonstiff option...
2641
+ C Check to see if the order is being increased or decreased.
2642
+ C-----------------------------------------------------------------------
2643
+ 100 CONTINUE
2644
+ IF (IORD .EQ. 1) GO TO 180
2645
+ C Order decrease. ------------------------------------------------------
2646
+ DO 110 J = 1, LMAX
2647
+ 110 EL(J) = ZERO
2648
+ EL(2) = ONE
2649
+ HSUM = ZERO
2650
+ DO 130 J = 1, NQM2
2651
+ C Construct coefficients of x*(x+xi(1))*...*(x+xi(j)). -----------------
2652
+ HSUM = HSUM + TAU(J)
2653
+ XI = HSUM/HSCAL
2654
+ JP1 = J + 1
2655
+ DO 120 IBACK = 1, JP1
2656
+ I = (J + 3) - IBACK
2657
+ 120 EL(I) = EL(I)*XI + EL(I-1)
2658
+ 130 CONTINUE
2659
+ C Construct coefficients of integrated polynomial. ---------------------
2660
+ DO 140 J = 2, NQM1
2661
+ 140 EL(J+1) = REAL(NQ)*EL(J)/REAL(J)
2662
+ C Subtract correction terms from YH array. -----------------------------
2663
+ DO 170 J = 3, NQ
2664
+ DO 160 I = 1, N
2665
+ 160 YH(I,J) = YH(I,J) - YH(I,L)*EL(J)
2666
+ 170 CONTINUE
2667
+ RETURN
2668
+ C Order increase. ------------------------------------------------------
2669
+ C Zero out next column in YH array. ------------------------------------
2670
+ 180 CONTINUE
2671
+ LP1 = L + 1
2672
+ DO 190 I = 1, N
2673
+ 190 YH(I,LP1) = ZERO
2674
+ RETURN
2675
+ C-----------------------------------------------------------------------
2676
+ C Stiff option...
2677
+ C Check to see if the order is being increased or decreased.
2678
+ C-----------------------------------------------------------------------
2679
+ 200 CONTINUE
2680
+ IF (IORD .EQ. 1) GO TO 300
2681
+ C Order decrease. ------------------------------------------------------
2682
+ DO 210 J = 1, LMAX
2683
+ 210 EL(J) = ZERO
2684
+ EL(3) = ONE
2685
+ HSUM = ZERO
2686
+ DO 230 J = 1,NQM2
2687
+ C Construct coefficients of x*x*(x+xi(1))*...*(x+xi(j)). ---------------
2688
+ HSUM = HSUM + TAU(J)
2689
+ XI = HSUM/HSCAL
2690
+ JP1 = J + 1
2691
+ DO 220 IBACK = 1, JP1
2692
+ I = (J + 4) - IBACK
2693
+ 220 EL(I) = EL(I)*XI + EL(I-1)
2694
+ 230 CONTINUE
2695
+ C Subtract correction terms from YH array. -----------------------------
2696
+ DO 250 J = 3,NQ
2697
+ DO 240 I = 1, N
2698
+ 240 YH(I,J) = YH(I,J) - YH(I,L)*EL(J)
2699
+ 250 CONTINUE
2700
+ RETURN
2701
+ C Order increase. ------------------------------------------------------
2702
+ 300 DO 310 J = 1, LMAX
2703
+ 310 EL(J) = ZERO
2704
+ EL(3) = ONE
2705
+ ALPH0 = -ONE
2706
+ ALPH1 = ONE
2707
+ PROD = ONE
2708
+ XIOLD = ONE
2709
+ HSUM = HSCAL
2710
+ IF (NQ .EQ. 1) GO TO 340
2711
+ DO 330 J = 1, NQM1
2712
+ C Construct coefficients of x*x*(x+xi(1))*...*(x+xi(j)). ---------------
2713
+ JP1 = J + 1
2714
+ HSUM = HSUM + TAU(JP1)
2715
+ XI = HSUM/HSCAL
2716
+ PROD = PROD*XI
2717
+ ALPH0 = ALPH0 - ONE/REAL(JP1)
2718
+ ALPH1 = ALPH1 + ONE/XI
2719
+ DO 320 IBACK = 1, JP1
2720
+ I = (J + 4) - IBACK
2721
+ 320 EL(I) = EL(I)*XIOLD + EL(I-1)
2722
+ XIOLD = XI
2723
+ 330 CONTINUE
2724
+ 340 CONTINUE
2725
+ T1 = (-ALPH0 - ALPH1)/PROD
2726
+ C Load column L + 1 in YH array. ---------------------------------------
2727
+ LP1 = L + 1
2728
+ DO 350 I = 1, N
2729
+ 350 YH(I,LP1) = T1*YH(I,LMAX)
2730
+ C Add correction terms to YH array. ------------------------------------
2731
+ NQP1 = NQ + 1
2732
+ DO 370 J = 3, NQP1
2733
+ CALL DAXPY (N, EL(J), YH(1,LP1), 1, YH(1,J), 1 )
2734
+ 370 CONTINUE
2735
+ RETURN
2736
+ C----------------------- End of Subroutine DVJUST ----------------------
2737
+ END
2738
+ *DECK DVNLSD
2739
+ SUBROUTINE DVNLSD (Y, YH, LDYH, VSAV, SAVF, EWT, ACOR, IWM, WM,
2740
+ 1 F, JAC, PDUM, NFLAG, RPAR, IPAR)
2741
+ EXTERNAL F, JAC, PDUM
2742
+ DOUBLE PRECISION Y, YH, VSAV, SAVF, EWT, ACOR, WM, RPAR
2743
+ INTEGER LDYH, IWM, NFLAG, IPAR
2744
+ DIMENSION Y(*), YH(LDYH,*), VSAV(*), SAVF(*), EWT(*), ACOR(*),
2745
+ 1 IWM(*), WM(*), RPAR(*), IPAR(*)
2746
+ C-----------------------------------------------------------------------
2747
+ C Call sequence input -- Y, YH, LDYH, SAVF, EWT, ACOR, IWM, WM,
2748
+ C F, JAC, NFLAG, RPAR, IPAR
2749
+ C Call sequence output -- YH, ACOR, WM, IWM, NFLAG
2750
+ C COMMON block variables accessed..
2751
+ C /DVOD01/ ACNRM, CRATE, DRC, H, RC, RL1, TQ(5), TN, ICF,
2752
+ C JCUR, METH, MITER, N, NSLP
2753
+ C /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
2754
+ C
2755
+ C Subroutines called by DVNLSD.. F, DAXPY, DCOPY, DSCAL, DVJAC, DVSOL
2756
+ C Function routines called by DVNLSD.. DVNORM
2757
+ C-----------------------------------------------------------------------
2758
+ C Subroutine DVNLSD is a nonlinear system solver, which uses functional
2759
+ C iteration or a chord (modified Newton) method. For the chord method
2760
+ C direct linear algebraic system solvers are used. Subroutine DVNLSD
2761
+ C then handles the corrector phase of this integration package.
2762
+ C
2763
+ C Communication with DVNLSD is done with the following variables. (For
2764
+ C more details, please see the comments in the driver subroutine.)
2765
+ C
2766
+ C Y = The dependent variable, a vector of length N, input.
2767
+ C YH = The Nordsieck (Taylor) array, LDYH by LMAX, input
2768
+ C and output. On input, it contains predicted values.
2769
+ C LDYH = A constant .ge. N, the first dimension of YH, input.
2770
+ C VSAV = Unused work array.
2771
+ C SAVF = A work array of length N.
2772
+ C EWT = An error weight vector of length N, input.
2773
+ C ACOR = A work array of length N, used for the accumulated
2774
+ C corrections to the predicted y vector.
2775
+ C WM,IWM = Real and integer work arrays associated with matrix
2776
+ C operations in chord iteration (MITER .ne. 0).
2777
+ C F = Dummy name for user supplied routine for f.
2778
+ C JAC = Dummy name for user supplied Jacobian routine.
2779
+ C PDUM = Unused dummy subroutine name. Included for uniformity
2780
+ C over collection of integrators.
2781
+ C NFLAG = Input/output flag, with values and meanings as follows..
2782
+ C INPUT
2783
+ C 0 first call for this time step.
2784
+ C -1 convergence failure in previous call to DVNLSD.
2785
+ C -2 error test failure in DVSTEP.
2786
+ C OUTPUT
2787
+ C 0 successful completion of nonlinear solver.
2788
+ C -1 convergence failure or singular matrix.
2789
+ C -2 unrecoverable error in matrix preprocessing
2790
+ C (cannot occur here).
2791
+ C -3 unrecoverable error in solution (cannot occur
2792
+ C here).
2793
+ C RPAR, IPAR = Dummy names for user's real and integer work arrays.
2794
+ C
2795
+ C IPUP = Own variable flag with values and meanings as follows..
2796
+ C 0, do not update the Newton matrix.
2797
+ C MITER .ne. 0, update Newton matrix, because it is the
2798
+ C initial step, order was changed, the error
2799
+ C test failed, or an update is indicated by
2800
+ C the scalar RC or step counter NST.
2801
+ C
2802
+ C For more details, see comments in driver subroutine.
2803
+ C-----------------------------------------------------------------------
2804
+ C Type declarations for labeled COMMON block DVOD01 --------------------
2805
+ C
2806
+ DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
2807
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2808
+ 2 RC, RL1, TAU, TQ, TN, UROUND
2809
+ INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2810
+ 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2811
+ 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2812
+ 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2813
+ 4 NSLP, NYH
2814
+ C
2815
+ C Type declarations for labeled COMMON block DVOD02 --------------------
2816
+ C
2817
+ DOUBLE PRECISION HU
2818
+ INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
2819
+ C
2820
+ C Type declarations for local variables --------------------------------
2821
+ C
2822
+ DOUBLE PRECISION CCMAX, CRDOWN, CSCALE, DCON, DEL, DELP, ONE,
2823
+ 1 RDIV, TWO, ZERO
2824
+ INTEGER I, IERPJ, IERSL, M, MAXCOR, MSBP
2825
+ C
2826
+ C Type declaration for function subroutines called ---------------------
2827
+ C
2828
+ DOUBLE PRECISION DVNORM
2829
+ C-----------------------------------------------------------------------
2830
+ C The following Fortran-77 declaration is to cause the values of the
2831
+ C listed (local) variables to be saved between calls to this integrator.
2832
+ C-----------------------------------------------------------------------
2833
+ SAVE CCMAX, CRDOWN, MAXCOR, MSBP, RDIV, ONE, TWO, ZERO
2834
+ C
2835
+ COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
2836
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2837
+ 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
2838
+ 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2839
+ 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2840
+ 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2841
+ 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2842
+ 7 NSLP, NYH
2843
+ COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
2844
+ C
2845
+ DATA CCMAX /0.3D0/, CRDOWN /0.3D0/, MAXCOR /3/, MSBP /20/,
2846
+ 1 RDIV /2.0D0/
2847
+ DATA ONE /1.0D0/, TWO /2.0D0/, ZERO /0.0D0/
2848
+ C-----------------------------------------------------------------------
2849
+ C On the first step, on a change of method order, or after a
2850
+ C nonlinear convergence failure with NFLAG = -2, set IPUP = MITER
2851
+ C to force a Jacobian update when MITER .ne. 0.
2852
+ C-----------------------------------------------------------------------
2853
+ IF (JSTART .EQ. 0) NSLP = 0
2854
+ IF (NFLAG .EQ. 0) ICF = 0
2855
+ IF (NFLAG .EQ. -2) IPUP = MITER
2856
+ IF ( (JSTART .EQ. 0) .OR. (JSTART .EQ. -1) ) IPUP = MITER
2857
+ C If this is functional iteration, set CRATE .eq. 1 and drop to 220
2858
+ IF (MITER .EQ. 0) THEN
2859
+ CRATE = ONE
2860
+ GO TO 220
2861
+ ENDIF
2862
+ C-----------------------------------------------------------------------
2863
+ C RC is the ratio of new to old values of the coefficient H/EL(2)=h/l1.
2864
+ C When RC differs from 1 by more than CCMAX, IPUP is set to MITER
2865
+ C to force DVJAC to be called, if a Jacobian is involved.
2866
+ C In any case, DVJAC is called at least every MSBP steps.
2867
+ C-----------------------------------------------------------------------
2868
+ DRC = ABS(RC-ONE)
2869
+ IF (DRC .GT. CCMAX .OR. NST .GE. NSLP+MSBP) IPUP = MITER
2870
+ C-----------------------------------------------------------------------
2871
+ C Up to MAXCOR corrector iterations are taken. A convergence test is
2872
+ C made on the r.m.s. norm of each correction, weighted by the error
2873
+ C weight vector EWT. The sum of the corrections is accumulated in the
2874
+ C vector ACOR(i). The YH array is not altered in the corrector loop.
2875
+ C-----------------------------------------------------------------------
2876
+ 220 M = 0
2877
+ DELP = ZERO
2878
+ CALL DCOPY (N, YH(1,1), 1, Y, 1 )
2879
+ CALL F (N, TN, Y, SAVF, RPAR, IPAR)
2880
+ NFE = NFE + 1
2881
+ IF (IPUP .LE. 0) GO TO 250
2882
+ C-----------------------------------------------------------------------
2883
+ C If indicated, the matrix P = I - h*rl1*J is reevaluated and
2884
+ C preprocessed before starting the corrector iteration. IPUP is set
2885
+ C to 0 as an indicator that this has been done.
2886
+ C-----------------------------------------------------------------------
2887
+ CALL DVJAC (Y, YH, LDYH, EWT, ACOR, SAVF, WM, IWM, F, JAC, IERPJ,
2888
+ 1 RPAR, IPAR)
2889
+ IPUP = 0
2890
+ RC = ONE
2891
+ DRC = ZERO
2892
+ CRATE = ONE
2893
+ NSLP = NST
2894
+ C If matrix is singular, take error return to force cut in step size. --
2895
+ IF (IERPJ .NE. 0) GO TO 430
2896
+ 250 DO 260 I = 1,N
2897
+ 260 ACOR(I) = ZERO
2898
+ C This is a looping point for the corrector iteration. -----------------
2899
+ 270 IF (MITER .NE. 0) GO TO 350
2900
+ C-----------------------------------------------------------------------
2901
+ C In the case of functional iteration, update Y directly from
2902
+ C the result of the last function evaluation.
2903
+ C-----------------------------------------------------------------------
2904
+ DO 280 I = 1,N
2905
+ 280 SAVF(I) = RL1*(H*SAVF(I) - YH(I,2))
2906
+ DO 290 I = 1,N
2907
+ 290 Y(I) = SAVF(I) - ACOR(I)
2908
+ DEL = DVNORM (N, Y, EWT)
2909
+ DO 300 I = 1,N
2910
+ 300 Y(I) = YH(I,1) + SAVF(I)
2911
+ CALL DCOPY (N, SAVF, 1, ACOR, 1)
2912
+ GO TO 400
2913
+ C-----------------------------------------------------------------------
2914
+ C In the case of the chord method, compute the corrector error,
2915
+ C and solve the linear system with that as right-hand side and
2916
+ C P as coefficient matrix. The correction is scaled by the factor
2917
+ C 2/(1+RC) to account for changes in h*rl1 since the last DVJAC call.
2918
+ C-----------------------------------------------------------------------
2919
+ 350 DO 360 I = 1,N
2920
+ 360 Y(I) = (RL1*H)*SAVF(I) - (RL1*YH(I,2) + ACOR(I))
2921
+ CALL DVSOL (WM, IWM, Y, IERSL)
2922
+ NNI = NNI + 1
2923
+ IF (IERSL .GT. 0) GO TO 410
2924
+ IF (METH .EQ. 2 .AND. RC .NE. ONE) THEN
2925
+ CSCALE = TWO/(ONE + RC)
2926
+ CALL DSCAL (N, CSCALE, Y, 1)
2927
+ ENDIF
2928
+ DEL = DVNORM (N, Y, EWT)
2929
+ CALL DAXPY (N, ONE, Y, 1, ACOR, 1)
2930
+ DO 380 I = 1,N
2931
+ 380 Y(I) = YH(I,1) + ACOR(I)
2932
+ C-----------------------------------------------------------------------
2933
+ C Test for convergence. If M .gt. 0, an estimate of the convergence
2934
+ C rate constant is stored in CRATE, and this is used in the test.
2935
+ C-----------------------------------------------------------------------
2936
+ 400 IF (M .NE. 0) CRATE = MAX(CRDOWN*CRATE,DEL/DELP)
2937
+ DCON = DEL*MIN(ONE,CRATE)/TQ(4)
2938
+ IF (DCON .LE. ONE) GO TO 450
2939
+ M = M + 1
2940
+ IF (M .EQ. MAXCOR) GO TO 410
2941
+ IF (M .GE. 2 .AND. DEL .GT. RDIV*DELP) GO TO 410
2942
+ DELP = DEL
2943
+ CALL F (N, TN, Y, SAVF, RPAR, IPAR)
2944
+ NFE = NFE + 1
2945
+ GO TO 270
2946
+ C
2947
+ 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430
2948
+ ICF = 1
2949
+ IPUP = MITER
2950
+ GO TO 220
2951
+ C
2952
+ 430 CONTINUE
2953
+ NFLAG = -1
2954
+ ICF = 2
2955
+ IPUP = MITER
2956
+ RETURN
2957
+ C
2958
+ C Return for successful step. ------------------------------------------
2959
+ 450 NFLAG = 0
2960
+ JCUR = 0
2961
+ ICF = 0
2962
+ IF (M .EQ. 0) ACNRM = DEL
2963
+ IF (M .GT. 0) ACNRM = DVNORM (N, ACOR, EWT)
2964
+ RETURN
2965
+ C----------------------- End of Subroutine DVNLSD ----------------------
2966
+ END
2967
+ *DECK DVJAC
2968
+ SUBROUTINE DVJAC (Y, YH, LDYH, EWT, FTEM, SAVF, WM, IWM, F, JAC,
2969
+ 1 IERPJ, RPAR, IPAR)
2970
+ EXTERNAL F, JAC
2971
+ DOUBLE PRECISION Y, YH, EWT, FTEM, SAVF, WM, RPAR
2972
+ INTEGER LDYH, IWM, IERPJ, IPAR
2973
+ DIMENSION Y(*), YH(LDYH,*), EWT(*), FTEM(*), SAVF(*),
2974
+ 1 WM(*), IWM(*), RPAR(*), IPAR(*)
2975
+ C-----------------------------------------------------------------------
2976
+ C Call sequence input -- Y, YH, LDYH, EWT, FTEM, SAVF, WM, IWM,
2977
+ C F, JAC, RPAR, IPAR
2978
+ C Call sequence output -- WM, IWM, IERPJ
2979
+ C COMMON block variables accessed..
2980
+ C /DVOD01/ CCMXJ, DRC, H, RL1, TN, UROUND, ICF, JCUR, LOCJS,
2981
+ C MITER, MSBJ, N, NSLJ
2982
+ C /DVOD02/ NFE, NST, NJE, NLU
2983
+ C
2984
+ C Subroutines called by DVJAC.. F, JAC, DACOPY, DCOPY, DGBTRF, DGETRF,
2985
+ C DSCAL
2986
+ C Function routines called by DVJAC.. DVNORM
2987
+ C-----------------------------------------------------------------------
2988
+ C DVJAC is called by DVNLSD to compute and process the matrix
2989
+ C P = I - h*rl1*J , where J is an approximation to the Jacobian.
2990
+ C Here J is computed by the user-supplied routine JAC if
2991
+ C MITER = 1 or 4, or by finite differencing if MITER = 2, 3, or 5.
2992
+ C If MITER = 3, a diagonal approximation to J is used.
2993
+ C If JSV = -1, J is computed from scratch in all cases.
2994
+ C If JSV = 1 and MITER = 1, 2, 4, or 5, and if the saved value of J is
2995
+ C considered acceptable, then P is constructed from the saved J.
2996
+ C J is stored in wm and replaced by P. If MITER .ne. 3, P is then
2997
+ C subjected to LU decomposition in preparation for later solution
2998
+ C of linear systems with P as coefficient matrix. This is done
2999
+ C by DGETRF if MITER = 1 or 2, and by DGBTRF if MITER = 4 or 5.
3000
+ C
3001
+ C Communication with DVJAC is done with the following variables. (For
3002
+ C more details, please see the comments in the driver subroutine.)
3003
+ C Y = Vector containing predicted values on entry.
3004
+ C YH = The Nordsieck array, an LDYH by LMAX array, input.
3005
+ C LDYH = A constant .ge. N, the first dimension of YH, input.
3006
+ C EWT = An error weight vector of length N.
3007
+ C SAVF = Array containing f evaluated at predicted y, input.
3008
+ C WM = Real work space for matrices. In the output, it containS
3009
+ C the inverse diagonal matrix if MITER = 3 and the LU
3010
+ C decomposition of P if MITER is 1, 2 , 4, or 5.
3011
+ C Storage of matrix elements starts at WM(3).
3012
+ C Storage of the saved Jacobian starts at WM(LOCJS).
3013
+ C WM also contains the following matrix-related data..
3014
+ C WM(1) = SQRT(UROUND), used in numerical Jacobian step.
3015
+ C WM(2) = H*RL1, saved for later use if MITER = 3.
3016
+ C IWM = Integer work space containing pivot information,
3017
+ C starting at IWM(31), if MITER is 1, 2, 4, or 5.
3018
+ C IWM also contains band parameters ML = IWM(1) and
3019
+ C MU = IWM(2) if MITER is 4 or 5.
3020
+ C F = Dummy name for the user supplied subroutine for f.
3021
+ C JAC = Dummy name for the user supplied Jacobian subroutine.
3022
+ C RPAR, IPAR = Dummy names for user's real and integer work arrays.
3023
+ C RL1 = 1/EL(2) (input).
3024
+ C IERPJ = Output error flag, = 0 if no trouble, 1 if the P
3025
+ C matrix is found to be singular.
3026
+ C JCUR = Output flag to indicate whether the Jacobian matrix
3027
+ C (or approximation) is now current.
3028
+ C JCUR = 0 means J is not current.
3029
+ C JCUR = 1 means J is current.
3030
+ C-----------------------------------------------------------------------
3031
+ C
3032
+ C Type declarations for labeled COMMON block DVOD01 --------------------
3033
+ C
3034
+ DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
3035
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
3036
+ 2 RC, RL1, TAU, TQ, TN, UROUND
3037
+ INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
3038
+ 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
3039
+ 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3040
+ 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
3041
+ 4 NSLP, NYH
3042
+ C
3043
+ C Type declarations for labeled COMMON block DVOD02 --------------------
3044
+ C
3045
+ DOUBLE PRECISION HU
3046
+ INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
3047
+ C
3048
+ C Type declarations for local variables --------------------------------
3049
+ C
3050
+ DOUBLE PRECISION CON, DI, FAC, HRL1, ONE, PT1, R, R0, SRUR, THOU,
3051
+ 1 YI, YJ, YJJ, ZERO
3052
+ INTEGER I, I1, I2, IER, II, J, J1, JJ, JOK, LENP, MBA, MBAND,
3053
+ 1 MEB1, MEBAND, ML, ML3, MU, NP1
3054
+ C
3055
+ C Type declaration for function subroutines called ---------------------
3056
+ C
3057
+ DOUBLE PRECISION DVNORM
3058
+ C-----------------------------------------------------------------------
3059
+ C The following Fortran-77 declaration is to cause the values of the
3060
+ C listed (local) variables to be saved between calls to this subroutine.
3061
+ C-----------------------------------------------------------------------
3062
+ SAVE ONE, PT1, THOU, ZERO
3063
+ C-----------------------------------------------------------------------
3064
+ COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
3065
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
3066
+ 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3067
+ 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
3068
+ 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
3069
+ 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3070
+ 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
3071
+ 7 NSLP, NYH
3072
+ COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
3073
+ C
3074
+ DATA ONE /1.0D0/, THOU /1000.0D0/, ZERO /0.0D0/, PT1 /0.1D0/
3075
+ C
3076
+ IERPJ = 0
3077
+ HRL1 = H*RL1
3078
+ C See whether J should be evaluated (JOK = -1) or not (JOK = 1). -------
3079
+ JOK = JSV
3080
+ IF (JSV .EQ. 1) THEN
3081
+ IF (NST .EQ. 0 .OR. NST .GT. NSLJ+MSBJ) JOK = -1
3082
+ IF (ICF .EQ. 1 .AND. DRC .LT. CCMXJ) JOK = -1
3083
+ IF (ICF .EQ. 2) JOK = -1
3084
+ ENDIF
3085
+ C End of setting JOK. --------------------------------------------------
3086
+ C
3087
+ IF (JOK .EQ. -1 .AND. MITER .EQ. 1) THEN
3088
+ C If JOK = -1 and MITER = 1, call JAC to evaluate Jacobian. ------------
3089
+ NJE = NJE + 1
3090
+ NSLJ = NST
3091
+ JCUR = 1
3092
+ LENP = N*N
3093
+ DO 110 I = 1,LENP
3094
+ 110 WM(I+2) = ZERO
3095
+ CALL JAC (N, TN, Y, 0, 0, WM(3), N, RPAR, IPAR)
3096
+ IF (JSV .EQ. 1) CALL DCOPY (LENP, WM(3), 1, WM(LOCJS), 1)
3097
+ ENDIF
3098
+ C
3099
+ IF (JOK .EQ. -1 .AND. MITER .EQ. 2) THEN
3100
+ C If MITER = 2, make N calls to F to approximate the Jacobian. ---------
3101
+ NJE = NJE + 1
3102
+ NSLJ = NST
3103
+ JCUR = 1
3104
+ FAC = DVNORM (N, SAVF, EWT)
3105
+ R0 = THOU*ABS(H)*UROUND*REAL(N)*FAC
3106
+ IF (R0 .EQ. ZERO) R0 = ONE
3107
+ SRUR = WM(1)
3108
+ J1 = 2
3109
+ DO 230 J = 1,N
3110
+ YJ = Y(J)
3111
+ R = MAX(SRUR*ABS(YJ),R0/EWT(J))
3112
+ Y(J) = Y(J) + R
3113
+ FAC = ONE/R
3114
+ CALL F (N, TN, Y, FTEM, RPAR, IPAR)
3115
+ DO 220 I = 1,N
3116
+ 220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC
3117
+ Y(J) = YJ
3118
+ J1 = J1 + N
3119
+ 230 CONTINUE
3120
+ NFE = NFE + N
3121
+ LENP = N*N
3122
+ IF (JSV .EQ. 1) CALL DCOPY (LENP, WM(3), 1, WM(LOCJS), 1)
3123
+ ENDIF
3124
+ C
3125
+ IF (JOK .EQ. 1 .AND. (MITER .EQ. 1 .OR. MITER .EQ. 2)) THEN
3126
+ JCUR = 0
3127
+ LENP = N*N
3128
+ CALL DCOPY (LENP, WM(LOCJS), 1, WM(3), 1)
3129
+ ENDIF
3130
+ C
3131
+ IF (MITER .EQ. 1 .OR. MITER .EQ. 2) THEN
3132
+ C Multiply Jacobian by scalar, add identity, and do LU decomposition. --
3133
+ CON = -HRL1
3134
+ CALL DSCAL (LENP, CON, WM(3), 1)
3135
+ J = 3
3136
+ NP1 = N + 1
3137
+ DO 250 I = 1,N
3138
+ WM(J) = WM(J) + ONE
3139
+ 250 J = J + NP1
3140
+ NLU = NLU + 1
3141
+ c Replaced LINPACK dgefa with LAPACK dgetrf
3142
+ c CALL DGEFA (WM(3), N, N, IWM(31), IER)
3143
+ CALL DGETRF (N, N, WM(3), N, IWM(31), IER)
3144
+ IF (IER .NE. 0) IERPJ = 1
3145
+ RETURN
3146
+ ENDIF
3147
+ C End of code block for MITER = 1 or 2. --------------------------------
3148
+ C
3149
+ IF (MITER .EQ. 3) THEN
3150
+ C If MITER = 3, construct a diagonal approximation to J and P. ---------
3151
+ NJE = NJE + 1
3152
+ JCUR = 1
3153
+ WM(2) = HRL1
3154
+ R = RL1*PT1
3155
+ DO 310 I = 1,N
3156
+ 310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2))
3157
+ CALL F (N, TN, Y, WM(3), RPAR, IPAR)
3158
+ NFE = NFE + 1
3159
+ DO 320 I = 1,N
3160
+ R0 = H*SAVF(I) - YH(I,2)
3161
+ DI = PT1*R0 - H*(WM(I+2) - SAVF(I))
3162
+ WM(I+2) = ONE
3163
+ IF (ABS(R0) .LT. UROUND/EWT(I)) GO TO 320
3164
+ IF (ABS(DI) .EQ. ZERO) GO TO 330
3165
+ WM(I+2) = PT1*R0/DI
3166
+ 320 CONTINUE
3167
+ RETURN
3168
+ 330 IERPJ = 1
3169
+ RETURN
3170
+ ENDIF
3171
+ C End of code block for MITER = 3. -------------------------------------
3172
+ C
3173
+ C Set constants for MITER = 4 or 5. ------------------------------------
3174
+ ML = IWM(1)
3175
+ MU = IWM(2)
3176
+ ML3 = ML + 3
3177
+ MBAND = ML + MU + 1
3178
+ MEBAND = MBAND + ML
3179
+ LENP = MEBAND*N
3180
+ C
3181
+ IF (JOK .EQ. -1 .AND. MITER .EQ. 4) THEN
3182
+ C If JOK = -1 and MITER = 4, call JAC to evaluate Jacobian. ------------
3183
+ NJE = NJE + 1
3184
+ NSLJ = NST
3185
+ JCUR = 1
3186
+ DO 410 I = 1,LENP
3187
+ 410 WM(I+2) = ZERO
3188
+ CALL JAC (N, TN, Y, ML, MU, WM(ML3), MEBAND, RPAR, IPAR)
3189
+ IF (JSV .EQ. 1)
3190
+ 1 CALL DACOPY (MBAND, N, WM(ML3), MEBAND, WM(LOCJS), MBAND)
3191
+ ENDIF
3192
+ C
3193
+ IF (JOK .EQ. -1 .AND. MITER .EQ. 5) THEN
3194
+ C If MITER = 5, make ML+MU+1 calls to F to approximate the Jacobian. ---
3195
+ NJE = NJE + 1
3196
+ NSLJ = NST
3197
+ JCUR = 1
3198
+ MBA = MIN(MBAND,N)
3199
+ MEB1 = MEBAND - 1
3200
+ SRUR = WM(1)
3201
+ FAC = DVNORM (N, SAVF, EWT)
3202
+ R0 = THOU*ABS(H)*UROUND*REAL(N)*FAC
3203
+ IF (R0 .EQ. ZERO) R0 = ONE
3204
+ DO 560 J = 1,MBA
3205
+ DO 530 I = J,N,MBAND
3206
+ YI = Y(I)
3207
+ R = MAX(SRUR*ABS(YI),R0/EWT(I))
3208
+ 530 Y(I) = Y(I) + R
3209
+ CALL F (N, TN, Y, FTEM, RPAR, IPAR)
3210
+ DO 550 JJ = J,N,MBAND
3211
+ Y(JJ) = YH(JJ,1)
3212
+ YJJ = Y(JJ)
3213
+ R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ))
3214
+ FAC = ONE/R
3215
+ I1 = MAX(JJ-MU,1)
3216
+ I2 = MIN(JJ+ML,N)
3217
+ II = JJ*MEB1 - ML + 2
3218
+ DO 540 I = I1,I2
3219
+ 540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC
3220
+ 550 CONTINUE
3221
+ 560 CONTINUE
3222
+ NFE = NFE + MBA
3223
+ IF (JSV .EQ. 1)
3224
+ 1 CALL DACOPY (MBAND, N, WM(ML3), MEBAND, WM(LOCJS), MBAND)
3225
+ ENDIF
3226
+ C
3227
+ IF (JOK .EQ. 1) THEN
3228
+ JCUR = 0
3229
+ CALL DACOPY (MBAND, N, WM(LOCJS), MBAND, WM(ML3), MEBAND)
3230
+ ENDIF
3231
+ C
3232
+ C Multiply Jacobian by scalar, add identity, and do LU decomposition.
3233
+ CON = -HRL1
3234
+ CALL DSCAL (LENP, CON, WM(3), 1 )
3235
+ II = MBAND + 2
3236
+ DO 580 I = 1,N
3237
+ WM(II) = WM(II) + ONE
3238
+ 580 II = II + MEBAND
3239
+ NLU = NLU + 1
3240
+ c Replaced LINPACK dgbfa with LAPACK dgbtrf
3241
+ c CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(31), IER)
3242
+ CALL DGBTRF (N, N, ML, MU, WM(3), MEBAND, IWM(31), IER)
3243
+ IF (IER .NE. 0) IERPJ = 1
3244
+ RETURN
3245
+ C End of code block for MITER = 4 or 5. --------------------------------
3246
+ C
3247
+ C----------------------- End of Subroutine DVJAC -----------------------
3248
+ END
3249
+ *DECK DACOPY
3250
+ SUBROUTINE DACOPY (NROW, NCOL, A, NROWA, B, NROWB)
3251
+ DOUBLE PRECISION A, B
3252
+ INTEGER NROW, NCOL, NROWA, NROWB
3253
+ DIMENSION A(NROWA,NCOL), B(NROWB,NCOL)
3254
+ C-----------------------------------------------------------------------
3255
+ C Call sequence input -- NROW, NCOL, A, NROWA, NROWB
3256
+ C Call sequence output -- B
3257
+ C COMMON block variables accessed -- None
3258
+ C
3259
+ C Subroutines called by DACOPY.. DCOPY
3260
+ C Function routines called by DACOPY.. None
3261
+ C-----------------------------------------------------------------------
3262
+ C This routine copies one rectangular array, A, to another, B,
3263
+ C where A and B may have different row dimensions, NROWA and NROWB.
3264
+ C The data copied consists of NROW rows and NCOL columns.
3265
+ C-----------------------------------------------------------------------
3266
+ INTEGER IC
3267
+ C
3268
+ DO 20 IC = 1,NCOL
3269
+ CALL DCOPY (NROW, A(1,IC), 1, B(1,IC), 1)
3270
+ 20 CONTINUE
3271
+ C
3272
+ RETURN
3273
+ C----------------------- End of Subroutine DACOPY ----------------------
3274
+ END
3275
+ *DECK DVSOL
3276
+ SUBROUTINE DVSOL (WM, IWM, X, IERSL)
3277
+ DOUBLE PRECISION WM, X
3278
+ INTEGER IWM, IERSL
3279
+ DIMENSION WM(*), IWM(*), X(*)
3280
+ C-----------------------------------------------------------------------
3281
+ C Call sequence input -- WM, IWM, X
3282
+ C Call sequence output -- X, IERSL
3283
+ C COMMON block variables accessed..
3284
+ C /DVOD01/ -- H, RL1, MITER, N
3285
+ C
3286
+ C Subroutines called by DVSOL.. DGETRS, DGBTRS
3287
+ C Function routines called by DVSOL.. None
3288
+ C-----------------------------------------------------------------------
3289
+ C This routine manages the solution of the linear system arising from
3290
+ C a chord iteration. It is called if MITER .ne. 0.
3291
+ C If MITER is 1 or 2, it calls DGETRS to accomplish this.
3292
+ C If MITER = 3 it updates the coefficient H*RL1 in the diagonal
3293
+ C matrix, and then computes the solution.
3294
+ C If MITER is 4 or 5, it calls DGBTRS.
3295
+ C Communication with DVSOL uses the following variables..
3296
+ C WM = Real work space containing the inverse diagonal matrix if
3297
+ C MITER = 3 and the LU decomposition of the matrix otherwise.
3298
+ C Storage of matrix elements starts at WM(3).
3299
+ C WM also contains the following matrix-related data..
3300
+ C WM(1) = SQRT(UROUND) (not used here),
3301
+ C WM(2) = HRL1, the previous value of H*RL1, used if MITER = 3.
3302
+ C IWM = Integer work space containing pivot information, starting at
3303
+ C IWM(31), if MITER is 1, 2, 4, or 5. IWM also contains band
3304
+ C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5.
3305
+ C X = The right-hand side vector on input, and the solution vector
3306
+ C on output, of length N.
3307
+ C IERSL = Output flag. IERSL = 0 if no trouble occurred.
3308
+ C IERSL = 1 if a singular matrix arose with MITER = 3.
3309
+ C-----------------------------------------------------------------------
3310
+ C
3311
+ C Type declarations for labeled COMMON block DVOD01 --------------------
3312
+ C
3313
+ DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
3314
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
3315
+ 2 RC, RL1, TAU, TQ, TN, UROUND
3316
+ INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
3317
+ 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
3318
+ 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3319
+ 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
3320
+ 4 NSLP, NYH
3321
+ C
3322
+ C Type declarations for local variables --------------------------------
3323
+ C
3324
+ INTEGER I, MEBAND, ML, MU
3325
+ DOUBLE PRECISION DI, HRL1, ONE, PHRL1, R, ZERO
3326
+ C-----------------------------------------------------------------------
3327
+ C The following Fortran-77 declaration is to cause the values of the
3328
+ C listed (local) variables to be saved between calls to this integrator.
3329
+ C-----------------------------------------------------------------------
3330
+ SAVE ONE, ZERO
3331
+ C
3332
+ COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
3333
+ 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
3334
+ 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3335
+ 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
3336
+ 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
3337
+ 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3338
+ 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
3339
+ 7 NSLP, NYH
3340
+ C
3341
+ DATA ONE /1.0D0/, ZERO /0.0D0/
3342
+ C
3343
+ IERSL = 0
3344
+ GO TO (100, 100, 300, 400, 400), MITER
3345
+ c Replaced LINPACK dgesl with LAPACK dgetrs
3346
+ c 100 CALL DGESL (WM(3), N, N, IWM(31), X, 0)
3347
+ 100 CALL DGETRS ('N', N, 1, WM(3), N, IWM(31), X, N, IER)
3348
+ RETURN
3349
+ C
3350
+ 300 PHRL1 = WM(2)
3351
+ HRL1 = H*RL1
3352
+ WM(2) = HRL1
3353
+ IF (HRL1 .EQ. PHRL1) GO TO 330
3354
+ R = HRL1/PHRL1
3355
+ DO 320 I = 1,N
3356
+ DI = ONE - R*(ONE - ONE/WM(I+2))
3357
+ IF (ABS(DI) .EQ. ZERO) GO TO 390
3358
+ 320 WM(I+2) = ONE/DI
3359
+ C
3360
+ 330 DO 340 I = 1,N
3361
+ 340 X(I) = WM(I+2)*X(I)
3362
+ RETURN
3363
+ 390 IERSL = 1
3364
+ RETURN
3365
+ C
3366
+ 400 ML = IWM(1)
3367
+ MU = IWM(2)
3368
+ MEBAND = 2*ML + MU + 1
3369
+ c Replaced LINPACK dgbsl with LAPACK dgbtrs
3370
+ c CALL DGBSL (WM(3), MEBAND, N, ML, MU, IWM(31), X, 0)
3371
+ CALL DGBTRS ('N', N, ML, MU, 1, WM(3), MEBAND, IWM(31), X, N, IER)
3372
+ RETURN
3373
+ C----------------------- End of Subroutine DVSOL -----------------------
3374
+ END
3375
+ *DECK DVSRCO
3376
+ SUBROUTINE DVSRCO (RSAV, ISAV, JOB)
3377
+ DOUBLE PRECISION RSAV
3378
+ INTEGER ISAV, JOB
3379
+ DIMENSION RSAV(*), ISAV(*)
3380
+ C-----------------------------------------------------------------------
3381
+ C Call sequence input -- RSAV, ISAV, JOB
3382
+ C Call sequence output -- RSAV, ISAV
3383
+ C COMMON block variables accessed -- All of /DVOD01/ and /DVOD02/
3384
+ C
3385
+ C Subroutines/functions called by DVSRCO.. None
3386
+ C-----------------------------------------------------------------------
3387
+ C This routine saves or restores (depending on JOB) the contents of the
3388
+ C COMMON blocks DVOD01 and DVOD02, which are used internally by DVODE.
3389
+ C
3390
+ C RSAV = real array of length 49 or more.
3391
+ C ISAV = integer array of length 41 or more.
3392
+ C JOB = flag indicating to save or restore the COMMON blocks..
3393
+ C JOB = 1 if COMMON is to be saved (written to RSAV/ISAV).
3394
+ C JOB = 2 if COMMON is to be restored (read from RSAV/ISAV).
3395
+ C A call with JOB = 2 presumes a prior call with JOB = 1.
3396
+ C-----------------------------------------------------------------------
3397
+ DOUBLE PRECISION RVOD1, RVOD2
3398
+ INTEGER IVOD1, IVOD2
3399
+ INTEGER I, LENIV1, LENIV2, LENRV1, LENRV2
3400
+ C-----------------------------------------------------------------------
3401
+ C The following Fortran-77 declaration is to cause the values of the
3402
+ C listed (local) variables to be saved between calls to this integrator.
3403
+ C-----------------------------------------------------------------------
3404
+ SAVE LENRV1, LENIV1, LENRV2, LENIV2
3405
+ C
3406
+ COMMON /DVOD01/ RVOD1(48), IVOD1(33)
3407
+ COMMON /DVOD02/ RVOD2(1), IVOD2(8)
3408
+ DATA LENRV1/48/, LENIV1/33/, LENRV2/1/, LENIV2/8/
3409
+ C
3410
+ IF (JOB .EQ. 2) GO TO 100
3411
+ DO 10 I = 1,LENRV1
3412
+ 10 RSAV(I) = RVOD1(I)
3413
+ DO 15 I = 1,LENRV2
3414
+ 15 RSAV(LENRV1+I) = RVOD2(I)
3415
+ C
3416
+ DO 20 I = 1,LENIV1
3417
+ 20 ISAV(I) = IVOD1(I)
3418
+ DO 25 I = 1,LENIV2
3419
+ 25 ISAV(LENIV1+I) = IVOD2(I)
3420
+ C
3421
+ RETURN
3422
+ C
3423
+ 100 CONTINUE
3424
+ DO 110 I = 1,LENRV1
3425
+ 110 RVOD1(I) = RSAV(I)
3426
+ DO 115 I = 1,LENRV2
3427
+ 115 RVOD2(I) = RSAV(LENRV1+I)
3428
+ C
3429
+ DO 120 I = 1,LENIV1
3430
+ 120 IVOD1(I) = ISAV(I)
3431
+ DO 125 I = 1,LENIV2
3432
+ 125 IVOD2(I) = ISAV(LENIV1+I)
3433
+ C
3434
+ RETURN
3435
+ C----------------------- End of Subroutine DVSRCO ----------------------
3436
+ END
3437
+ *DECK DEWSET
3438
+ SUBROUTINE DEWSET (N, ITOL, RTOL, ATOL, YCUR, EWT)
3439
+ DOUBLE PRECISION RTOL, ATOL, YCUR, EWT
3440
+ INTEGER N, ITOL
3441
+ DIMENSION RTOL(*), ATOL(*), YCUR(N), EWT(N)
3442
+ C-----------------------------------------------------------------------
3443
+ C Call sequence input -- N, ITOL, RTOL, ATOL, YCUR
3444
+ C Call sequence output -- EWT
3445
+ C COMMON block variables accessed -- None
3446
+ C
3447
+ C Subroutines/functions called by DEWSET.. None
3448
+ C-----------------------------------------------------------------------
3449
+ C This subroutine sets the error weight vector EWT according to
3450
+ C EWT(i) = RTOL(i)*abs(YCUR(i)) + ATOL(i), i = 1,...,N,
3451
+ C with the subscript on RTOL and/or ATOL possibly replaced by 1 above,
3452
+ C depending on the value of ITOL.
3453
+ C-----------------------------------------------------------------------
3454
+ INTEGER I
3455
+ C
3456
+ GO TO (10, 20, 30, 40), ITOL
3457
+ 10 CONTINUE
3458
+ DO 15 I = 1, N
3459
+ 15 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(1)
3460
+ RETURN
3461
+ 20 CONTINUE
3462
+ DO 25 I = 1, N
3463
+ 25 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(I)
3464
+ RETURN
3465
+ 30 CONTINUE
3466
+ DO 35 I = 1, N
3467
+ 35 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(1)
3468
+ RETURN
3469
+ 40 CONTINUE
3470
+ DO 45 I = 1, N
3471
+ 45 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(I)
3472
+ RETURN
3473
+ C----------------------- End of Subroutine DEWSET ----------------------
3474
+ END
3475
+ *DECK DVNORM
3476
+ DOUBLE PRECISION FUNCTION DVNORM (N, V, W)
3477
+ DOUBLE PRECISION V, W
3478
+ INTEGER N
3479
+ DIMENSION V(N), W(N)
3480
+ C-----------------------------------------------------------------------
3481
+ C Call sequence input -- N, V, W
3482
+ C Call sequence output -- None
3483
+ C COMMON block variables accessed -- None
3484
+ C
3485
+ C Subroutines/functions called by DVNORM.. None
3486
+ C-----------------------------------------------------------------------
3487
+ C This function routine computes the weighted root-mean-square norm
3488
+ C of the vector of length N contained in the array V, with weights
3489
+ C contained in the array W of length N..
3490
+ C DVNORM = sqrt( (1/N) * sum( V(i)*W(i) )**2 )
3491
+ C-----------------------------------------------------------------------
3492
+ DOUBLE PRECISION SUM
3493
+ INTEGER I
3494
+ C
3495
+ SUM = 0.0D0
3496
+ DO 10 I = 1, N
3497
+ 10 SUM = SUM + (V(I)*W(I))**2
3498
+ DVNORM = SQRT(SUM/REAL(N))
3499
+ RETURN
3500
+ C----------------------- End of Function DVNORM ------------------------
3501
+ END
3502
+ *DECK D1MACH
3503
+ DOUBLE PRECISION FUNCTION D1MACH (IDUM)
3504
+ INTEGER IDUM
3505
+ C-----------------------------------------------------------------------
3506
+ C This routine computes the unit roundoff of the machine.
3507
+ C This is defined as the smallest positive machine number
3508
+ C u such that 1.0 + u .ne. 1.0
3509
+ C
3510
+ C Subroutines/functions called by D1MACH.. None
3511
+ C-----------------------------------------------------------------------
3512
+ DOUBLE PRECISION U, COMP
3513
+ U = 1.0D0
3514
+ 10 U = U*0.5D0
3515
+ COMP = 1.0D0 + U
3516
+ IF (COMP .NE. 1.0D0) GO TO 10
3517
+ D1MACH = U*2.0D0
3518
+ RETURN
3519
+ C----------------------- End of Function D1MACH ------------------------
3520
+ END
3521
+ *DECK XERRWD
3522
+ SUBROUTINE XERRWD (MSG, NMES, NERR, LEVEL, NI, I1, I2, NR, R1, R2)
3523
+ DOUBLE PRECISION R1, R2
3524
+ INTEGER NMES, NERR, LEVEL, NI, I1, I2, NR
3525
+ CHARACTER*1 MSG(NMES)
3526
+ C-----------------------------------------------------------------------
3527
+ C Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV,
3528
+ C as given here, constitute a simplified version of the SLATEC error
3529
+ C handling package.
3530
+ C Written by A. C. Hindmarsh and P. N. Brown at LLNL.
3531
+ C Version of 18 November, 1992.
3532
+ C This version is in double precision.
3533
+ C
3534
+ C All arguments are input arguments.
3535
+ C
3536
+ C MSG = The message (character array).
3537
+ C NMES = The length of MSG (number of characters).
3538
+ C NERR = The error number (not used).
3539
+ C LEVEL = The error level..
3540
+ C 0 or 1 means recoverable (control returns to caller).
3541
+ C 2 means fatal (run is aborted--see note below).
3542
+ C NI = Number of integers (0, 1, or 2) to be printed with message.
3543
+ C I1,I2 = Integers to be printed, depending on NI.
3544
+ C NR = Number of reals (0, 1, or 2) to be printed with message.
3545
+ C R1,R2 = Reals to be printed, depending on NR.
3546
+ C
3547
+ C Note.. this routine is machine-dependent and specialized for use
3548
+ C in limited context, in the following ways..
3549
+ C 1. The argument MSG is assumed to be of type CHARACTER, and
3550
+ C the message is printed with a format of (1X,80A1).
3551
+ C 2. The message is assumed to take only one line.
3552
+ C Multi-line messages are generated by repeated calls.
3553
+ C 3. If LEVEL = 2, control passes to the statement STOP
3554
+ C to abort the run. This statement may be machine-dependent.
3555
+ C 4. R1 and R2 are assumed to be in double precision and are printed
3556
+ C in D21.13 format.
3557
+ C
3558
+ C For a different default logical unit number, change the data
3559
+ C statement in function routine IXSAV.
3560
+ C For a different run-abort command, change the statement following
3561
+ C statement 100 at the end.
3562
+ C-----------------------------------------------------------------------
3563
+ C Subroutines called by XERRWD.. None
3564
+ C Function routine called by XERRWD.. IXSAV
3565
+ C-----------------------------------------------------------------------
3566
+ C
3567
+ INTEGER I, LUNIT, IXSAV, MESFLG
3568
+ C
3569
+ C Get logical unit number and message print flag. ----------------------
3570
+ LUNIT = IXSAV (1, 0, .FALSE.)
3571
+ MESFLG = IXSAV (2, 0, .FALSE.)
3572
+ IF (MESFLG .EQ. 0) GO TO 100
3573
+ C Write the message. ---------------------------------------------------
3574
+ WRITE (LUNIT,10) (MSG(I),I=1,NMES)
3575
+ 10 FORMAT(1X,80A1)
3576
+ IF (NI .EQ. 1) WRITE (LUNIT, 20) I1
3577
+ 20 FORMAT(6X,'In above message, I1 =',I10)
3578
+ IF (NI .EQ. 2) WRITE (LUNIT, 30) I1,I2
3579
+ 30 FORMAT(6X,'In above message, I1 =',I10,3X,'I2 =',I10)
3580
+ IF (NR .EQ. 1) WRITE (LUNIT, 40) R1
3581
+ 40 FORMAT(6X,'In above message, R1 =',D21.13)
3582
+ IF (NR .EQ. 2) WRITE (LUNIT, 50) R1,R2
3583
+ 50 FORMAT(6X,'In above, R1 =',D21.13,3X,'R2 =',D21.13)
3584
+ C Abort the run if LEVEL = 2. ------------------------------------------
3585
+ 100 IF (LEVEL .NE. 2) RETURN
3586
+ STOP
3587
+ C----------------------- End of Subroutine XERRWD ----------------------
3588
+ END
3589
+ *DECK XSETUN
3590
+ SUBROUTINE XSETUN (LUN)
3591
+ C-----------------------------------------------------------------------
3592
+ C This routine resets the logical unit number for messages.
3593
+ C
3594
+ C Subroutines called by XSETUN.. None
3595
+ C Function routine called by XSETUN.. IXSAV
3596
+ C-----------------------------------------------------------------------
3597
+ INTEGER LUN, JUNK, IXSAV
3598
+ C
3599
+ IF (LUN .GT. 0) JUNK = IXSAV (1,LUN,.TRUE.)
3600
+ RETURN
3601
+ C----------------------- End of Subroutine XSETUN ----------------------
3602
+ END
3603
+ *DECK XSETF
3604
+ SUBROUTINE XSETF (MFLAG)
3605
+ C-----------------------------------------------------------------------
3606
+ C This routine resets the print control flag MFLAG.
3607
+ C
3608
+ C Subroutines called by XSETF.. None
3609
+ C Function routine called by XSETF.. IXSAV
3610
+ C-----------------------------------------------------------------------
3611
+ INTEGER MFLAG, JUNK, IXSAV
3612
+ C
3613
+ IF (MFLAG .EQ. 0 .OR. MFLAG .EQ. 1) JUNK = IXSAV (2,MFLAG,.TRUE.)
3614
+ RETURN
3615
+ C----------------------- End of Subroutine XSETF -----------------------
3616
+ END
3617
+ *DECK IXSAV
3618
+ INTEGER FUNCTION IXSAV (IPAR, IVALUE, ISET)
3619
+ LOGICAL ISET
3620
+ INTEGER IPAR, IVALUE
3621
+ C-----------------------------------------------------------------------
3622
+ C IXSAV saves and recalls one of two error message parameters:
3623
+ C LUNIT, the logical unit number to which messages are printed, and
3624
+ C MESFLG, the message print flag.
3625
+ C This is a modification of the SLATEC library routine J4SAVE.
3626
+ C
3627
+ C Saved local variables..
3628
+ C LUNIT = Logical unit number for messages.
3629
+ C The default is 6 (machine-dependent).
3630
+ C MESFLG = Print control flag..
3631
+ C 1 means print all messages (the default).
3632
+ C 0 means no printing.
3633
+ C
3634
+ C On input..
3635
+ C IPAR = Parameter indicator (1 for LUNIT, 2 for MESFLG).
3636
+ C IVALUE = The value to be set for the parameter, if ISET = .TRUE.
3637
+ C ISET = Logical flag to indicate whether to read or write.
3638
+ C If ISET = .TRUE., the parameter will be given
3639
+ C the value IVALUE. If ISET = .FALSE., the parameter
3640
+ C will be unchanged, and IVALUE is a dummy argument.
3641
+ C
3642
+ C On return..
3643
+ C IXSAV = The (old) value of the parameter.
3644
+ C
3645
+ C Subroutines/functions called by IXSAV.. None
3646
+ C-----------------------------------------------------------------------
3647
+ INTEGER LUNIT, MESFLG
3648
+ C-----------------------------------------------------------------------
3649
+ C The following Fortran-77 declaration is to cause the values of the
3650
+ C listed (local) variables to be saved between calls to this routine.
3651
+ C-----------------------------------------------------------------------
3652
+ SAVE LUNIT, MESFLG
3653
+ DATA LUNIT/6/, MESFLG/1/
3654
+ C
3655
+ IF (IPAR .EQ. 1) THEN
3656
+ IXSAV = LUNIT
3657
+ IF (ISET) LUNIT = IVALUE
3658
+ ENDIF
3659
+ C
3660
+ IF (IPAR .EQ. 2) THEN
3661
+ IXSAV = MESFLG
3662
+ IF (ISET) MESFLG = IVALUE
3663
+ ENDIF
3664
+ C
3665
+ RETURN
3666
+ C----------------------- End of Function IXSAV -------------------------
3667
+ END