ode 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,177 @@
1
+ subroutine prja (neq, y, yh, nyh, ewt, ftem, savf, wm, iwm,
2
+ 1 f, jac)
3
+ clll. optimize
4
+ external f, jac
5
+ integer neq, nyh, iwm
6
+ integer iownd, iowns,
7
+ 1 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
8
+ 2 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
9
+ integer iownd2, iowns2, jtyp, mused, mxordn, mxords, isav
10
+ integer i, i1, i2, ier, ii, j, j1, jj, lenp,
11
+ 1 mba, mband, meb1, meband, ml, ml3, mu, np1
12
+ double precision y, yh, ewt, ftem, savf, wm, rsav
13
+ double precision rowns,
14
+ 1 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround
15
+ double precision rownd2, rowns2, pdnorm
16
+ double precision con, fac, hl0, r, r0, srur, yi, yj, yjj,
17
+ 1 vmnorm, fnorm, bnorm
18
+ dimension neq(1), y(1), yh(nyh,*), ewt(1), ftem(1), savf(1),
19
+ 1 wm(*), iwm(*), rsav(240), isav(50)
20
+ common /ls0001/ rowns(209),
21
+ 2 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround,
22
+ 3 iownd(14), iowns(6),
23
+ 4 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
24
+ 5 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
25
+ common /lsa001/ rownd2, rowns2(20), pdnorm,
26
+ 1 iownd2(3), iowns2(2), jtyp, mused, mxordn, mxords
27
+ c-----------------------------------------------------------------------
28
+ c prja is called by stoda to compute and process the matrix
29
+ c p = i - h*el(1)*j , where j is an approximation to the jacobian.
30
+ c here j is computed by the user-supplied routine jac if
31
+ c miter = 1 or 4 or by finite differencing if miter = 2 or 5.
32
+ c j, scaled by -h*el(1), is stored in wm. then the norm of j (the
33
+ c matrix norm consistent with the weighted max-norm on vectors given
34
+ c by vmnorm) is computed, and j is overwritten by p. p is then
35
+ c subjected to lu decomposition in preparation for later solution
36
+ c of linear systems with p as coefficient matrix. this is done
37
+ c by dgetrf if miter = 1 or 2, and by dgbtrf if miter = 4 or 5.
38
+ c
39
+ c in addition to variables described previously, communication
40
+ c with prja uses the following..
41
+ c y = array containing predicted values on entry.
42
+ c ftem = work array of length n (acor in stoda).
43
+ c savf = array containing f evaluated at predicted y.
44
+ c wm = real work space for matrices. on output it contains the
45
+ c lu decomposition of p.
46
+ c storage of matrix elements starts at wm(3).
47
+ c wm also contains the following matrix-related data..
48
+ c wm(1) = sqrt(uround), used in numerical jacobian increments.
49
+ c iwm = integer work space containing pivot information, starting at
50
+ c iwm(21). iwm also contains the band parameters
51
+ c ml = iwm(1) and mu = iwm(2) if miter is 4 or 5.
52
+ c el0 = el(1) (input).
53
+ c pdnorm= norm of jacobian matrix. (output).
54
+ c ierpj = output error flag, = 0 if no trouble, .gt. 0 if
55
+ c p matrix found to be singular.
56
+ c jcur = output flag = 1 to indicate that the jacobian matrix
57
+ c (or approximation) is now current.
58
+ c this routine also uses the common variables el0, h, tn, uround,
59
+ c miter, n, nfe, and nje.
60
+ c-----------------------------------------------------------------------
61
+ nje = nje + 1
62
+ ierpj = 0
63
+ jcur = 1
64
+ hl0 = h*el0
65
+ go to (100, 200, 300, 400, 500), miter
66
+ c if miter = 1, call jac and multiply by scalar. -----------------------
67
+ 100 lenp = n*n
68
+ do 110 i = 1,lenp
69
+ 110 wm(i+2) = 0.0d0
70
+ call srcma (rsav, isav, 1)
71
+ call jac (neq, tn, y, 0, 0, wm(3), n)
72
+ call srcma (rsav, isav, 2)
73
+ con = -hl0
74
+ do 120 i = 1,lenp
75
+ 120 wm(i+2) = wm(i+2)*con
76
+ go to 240
77
+ c if miter = 2, make n calls to f to approximate j. --------------------
78
+ 200 fac = vmnorm (n, savf, ewt)
79
+ r0 = 1000.0d0*dabs(h)*uround*dfloat(n)*fac
80
+ if (r0 .eq. 0.0d0) r0 = 1.0d0
81
+ srur = wm(1)
82
+ j1 = 2
83
+ do 230 j = 1,n
84
+ yj = y(j)
85
+ r = dmax1(srur*dabs(yj),r0/ewt(j))
86
+ y(j) = y(j) + r
87
+ fac = -hl0/r
88
+ call srcma (rsav, isav, 1)
89
+ call f (neq, tn, y, ftem)
90
+ call srcma (rsav, isav, 2)
91
+ do 220 i = 1,n
92
+ 220 wm(i+j1) = (ftem(i) - savf(i))*fac
93
+ y(j) = yj
94
+ j1 = j1 + n
95
+ 230 continue
96
+ nfe = nfe + n
97
+ 240 continue
98
+ c compute norm of jacobian. --------------------------------------------
99
+ pdnorm = fnorm (n, wm(3), ewt)/dabs(hl0)
100
+ c add identity matrix. -------------------------------------------------
101
+ np1 = n + 1
102
+ j = 3
103
+ do 250 i = 1,n
104
+ wm(j) = wm(j) + 1.0d0
105
+ 250 j = j + np1
106
+ c do lu decomposition on p. --------------------------------------------
107
+ c Replaced LINPACK dgefa with LAPACK dgetrf
108
+ c call dgefa (wm(3), n, n, iwm(21), ier)
109
+ call dgetrf (n, n, wm(3), n, iwm(21), ier)
110
+ if (ier .ne. 0) ierpj = 1
111
+ return
112
+ c dummy block only, since miter is never 3 in this routine. ------------
113
+ 300 return
114
+ c if miter = 4, call jac and multiply by scalar. -----------------------
115
+ 400 ml = iwm(1)
116
+ mu = iwm(2)
117
+ ml3 = ml + 3
118
+ mband = ml + mu + 1
119
+ meband = mband + ml
120
+ lenp = meband*n
121
+ do 410 i = 1,lenp
122
+ 410 wm(i+2) = 0.0d0
123
+ call srcma (rsav, isav, 1)
124
+ call jac (neq, tn, y, ml, mu, wm(ml3), meband)
125
+ call srcma (rsav, isav, 2)
126
+ con = -hl0
127
+ do 420 i = 1,lenp
128
+ 420 wm(i+2) = wm(i+2)*con
129
+ go to 570
130
+ c if miter = 5, make mband calls to f to approximate j. ----------------
131
+ 500 ml = iwm(1)
132
+ mu = iwm(2)
133
+ mband = ml + mu + 1
134
+ mba = min0(mband,n)
135
+ meband = mband + ml
136
+ meb1 = meband - 1
137
+ srur = wm(1)
138
+ fac = vmnorm (n, savf, ewt)
139
+ r0 = 1000.0d0*dabs(h)*uround*dfloat(n)*fac
140
+ if (r0 .eq. 0.0d0) r0 = 1.0d0
141
+ do 560 j = 1,mba
142
+ do 530 i = j,n,mband
143
+ yi = y(i)
144
+ r = dmax1(srur*dabs(yi),r0/ewt(i))
145
+ 530 y(i) = y(i) + r
146
+ call srcma (rsav, isav, 1)
147
+ call f (neq, tn, y, ftem)
148
+ call srcma (rsav, isav, 2)
149
+ do 550 jj = j,n,mband
150
+ y(jj) = yh(jj,1)
151
+ yjj = y(jj)
152
+ r = dmax1(srur*dabs(yjj),r0/ewt(jj))
153
+ fac = -hl0/r
154
+ i1 = max0(jj-mu,1)
155
+ i2 = min0(jj+ml,n)
156
+ ii = jj*meb1 - ml + 2
157
+ do 540 i = i1,i2
158
+ 540 wm(ii+i) = (ftem(i) - savf(i))*fac
159
+ 550 continue
160
+ 560 continue
161
+ nfe = nfe + mba
162
+ 570 continue
163
+ c compute norm of jacobian. --------------------------------------------
164
+ pdnorm = bnorm (n, wm(3), meband, ml, mu, ewt)/dabs(hl0)
165
+ c add identity matrix. -------------------------------------------------
166
+ ii = mband + 2
167
+ do 580 i = 1,n
168
+ wm(ii) = wm(ii) + 1.0d0
169
+ 580 ii = ii + meband
170
+ c do lu decomposition of p. --------------------------------------------
171
+ c Replaced LINPACK dgefa with LAPACK dgetrf
172
+ c call dgbfa (wm(3), meband, n, ml, mu, iwm(21), ier)
173
+ call dgbtrf (n, n, ml, mu, wm(3), meband, iwm(21), ier)
174
+ if (ier .ne. 0) ierpj = 1
175
+ return
176
+ c----------------------- end of subroutine prja ------------------------
177
+ end
@@ -0,0 +1,84 @@
1
+
2
+ Here's what is available (all in double precision):
3
+ LSODE
4
+ LSODES
5
+ LSODA
6
+ LSODAR
7
+ LSODI
8
+ LSOIBT
9
+
10
+ To receive the document try:
11
+ send only DOC from odepack
12
+
13
+ To receive the demo program try:
14
+ send only DEMO from odepack
15
+
16
+
17
+
18
+ I. Summary of the ODEPACK Solvers
19
+
20
+
21
+ A. Solvers for explicitly given systems.
22
+
23
+ In the solvers below, it is assumed that the ODE's are given
24
+ explicitly, so that the system can be written in the form
25
+ dy/dt = f(t,y) ,
26
+ where y is the vector of dependent variables, and t is the independent
27
+ variable.
28
+
29
+
30
+ 1. LSODE (Livermore Solver for Ordinary Differential Equations) is the
31
+ basic solver of the collection. It solves stiff and nonstiff systems
32
+ of the form dy/dt = f. In the stiff case, it treats the Jacobian matrix
33
+ df/dy as either a full or a banded matrix, and as either user-supplied
34
+ or internally approximated by difference quotients. It uses Adams methods
35
+ (predictor-corrector) in the nonstiff case, and Backward Differentiation
36
+ Formula (BDF) methods in the stiff case. The linear systems that arise
37
+ are solved by direct methods (LU factor/solve). LSODE supersedes the older
38
+ GEAR and GEARB packages, and reflects a complete redesign of the user
39
+ interface and internal organization, with some algorithmic improvements.
40
+
41
+
42
+ 2. LSODES, written jointly with A. H. Sherman, solves systems dy/dt = f
43
+ and in the stiff case treats the Jacobian matrix in general sparse
44
+ form. It determines the sparsity structure on its own (or optionally
45
+ accepts this information from the user), and uses parts of the Yale Sparse
46
+ Matrix Package (YSMP) to solve the linear systems that arise.
47
+ LSODES supersedes, and improves upon, the older GEARS package.
48
+
49
+
50
+ 3. LSODA, written jointly with L. R. Petzold, solves systems dy/dt = f
51
+ with a full or banded Jacobian when the problem is stiff, but it
52
+ automatically selects between nonstiff (Adams) and stiff (BDF) methods.
53
+ It uses the nonstiff method initially, and dynamically monitors data
54
+ in order to decide which method to use.
55
+
56
+
57
+ 4. LSODAR, also written jointly with L. R. Petzold, is a variant of LSODA
58
+ with a rootfinding capability added. Thus it solves problems dy/dt = f
59
+ with full or banded Jacobian and automatic method selection, and at
60
+ the same time, it finds the roots of any of a set of given functions
61
+ of the form g(t,y). This is often useful for finding stop conditions
62
+ or points at which switches are to be made in the function f.
63
+
64
+
65
+ B. Solvers for linearly implicit systems.
66
+
67
+ In the solvers below, it is assumed that the derivative dy/dt is
68
+ implicit, but occurs linearly, so that the system can be written
69
+ A(t,y) dy/dt = g(t,y) ,
70
+ where A is a square matrix. These solvers allow A to be singular,
71
+ in which case the system is a differential-algebraic system, but in that
72
+ case users must be very careful to supply a well-posed problem with
73
+ consistent initial conditions.
74
+
75
+
76
+ 5. LSODI, written jointly with J. F. Painter, solves linearly implicit
77
+ systems in which the matrices involved (A, dg/dy, and d(A dy/dt)/dy) are
78
+ all assumed to be either full or banded. LSODI supersedes the older
79
+ GEARIB solver and improves upon it in numerous ways.
80
+
81
+
82
+ 6. LSOIBT, written jointly with C. S. Kenney, solves linearly implicit
83
+ systems in which the matrices involved are all assumed to be
84
+ block-tridiagonal. Linear systems are solved by the LU method.
@@ -0,0 +1,72 @@
1
+ subroutine solsy (wm, iwm, x, tem)
2
+ clll. optimize
3
+ integer iwm
4
+ integer iownd, iowns,
5
+ 1 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
6
+ 2 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
7
+ integer i, meband, ml, mu
8
+ double precision wm, x, tem
9
+ double precision rowns,
10
+ 1 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround
11
+ double precision di, hl0, phl0, r
12
+ dimension wm(*), iwm(*), x(1), tem(1)
13
+ common /ls0001/ rowns(209),
14
+ 2 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround,
15
+ 3 iownd(14), iowns(6),
16
+ 4 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
17
+ 5 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
18
+ c-----------------------------------------------------------------------
19
+ c this routine manages the solution of the linear system arising from
20
+ c a chord iteration. it is called if miter .ne. 0.
21
+ c if miter is 1 or 2, it calls dgetrs to accomplish this.
22
+ c if miter = 3 it updates the coefficient h*el0 in the diagonal
23
+ c matrix, and then computes the solution.
24
+ c if miter is 4 or 5, it calls dgbtrs.
25
+ c communication with solsy uses the following variables..
26
+ c wm = real work space containing the inverse diagonal matrix if
27
+ c miter = 3 and the lu decomposition of the matrix otherwise.
28
+ c storage of matrix elements starts at wm(3).
29
+ c wm also contains the following matrix-related data..
30
+ c wm(1) = sqrt(uround) (not used here),
31
+ c wm(2) = hl0, the previous value of h*el0, used if miter = 3.
32
+ c iwm = integer work space containing pivot information, starting at
33
+ c iwm(21), if miter is 1, 2, 4, or 5. iwm also contains band
34
+ c parameters ml = iwm(1) and mu = iwm(2) if miter is 4 or 5.
35
+ c x = the right-hand side vector on input, and the solution vector
36
+ c on output, of length n.
37
+ c tem = vector of work space of length n, not used in this version.
38
+ c iersl = output flag (in common). iersl = 0 if no trouble occurred.
39
+ c iersl = 1 if a singular matrix arose with miter = 3.
40
+ c this routine also uses the common variables el0, h, miter, and n.
41
+ c-----------------------------------------------------------------------
42
+ iersl = 0
43
+ go to (100, 100, 300, 400, 400), miter
44
+ c Replaced LINPACK dgesl with LAPACK dgetrs
45
+ c 100 call dgesl (wm(3), n, n, iwm(21), x, 0)
46
+ 100 call dgetrs ('N', n, 1, wm(3), n, iwm(21), x, n, ier)
47
+ return
48
+ c
49
+ 300 phl0 = wm(2)
50
+ hl0 = h*el0
51
+ wm(2) = hl0
52
+ if (hl0 .eq. phl0) go to 330
53
+ r = hl0/phl0
54
+ do 320 i = 1,n
55
+ di = 1.0d0 - r*(1.0d0 - 1.0d0/wm(i+2))
56
+ if (dabs(di) .eq. 0.0d0) go to 390
57
+ 320 wm(i+2) = 1.0d0/di
58
+ 330 do 340 i = 1,n
59
+ 340 x(i) = wm(i+2)*x(i)
60
+ return
61
+ 390 iersl = 1
62
+ return
63
+ c
64
+ 400 ml = iwm(1)
65
+ mu = iwm(2)
66
+ meband = 2*ml + mu + 1
67
+ c Replaced LINPACK dgbsl with LAPACK dgbtrs
68
+ c call dgbsl (wm(3), meband, n, ml, mu, iwm(21), x, 0)
69
+ call dgbtrs ('N', n, ml, mu, 1, wm(3), meband, iwm(21), x, n, ier)
70
+ return
71
+ c----------------------- end of subroutine solsy -----------------------
72
+ end
@@ -0,0 +1,55 @@
1
+ subroutine srcma (rsav, isav, job)
2
+ c-----------------------------------------------------------------------
3
+ c this routine saves or restores (depending on job) the contents of
4
+ c the common blocks ls0001, lsa001, and eh0001, which are used
5
+ c internally by one or more odepack solvers.
6
+ c
7
+ c rsav = real array of length 240 or more.
8
+ c isav = integer array of length 50 or more.
9
+ c job = flag indicating to save or restore the common blocks..
10
+ c job = 1 if common is to be saved (written to rsav/isav)
11
+ c job = 2 if common is to be restored (read from rsav/isav)
12
+ c a call with job = 2 presumes a prior call with job = 1.
13
+ c-----------------------------------------------------------------------
14
+ integer isav, job
15
+ integer ieh, ils, ilsa
16
+ integer i, lenrls, lenils, lenrla, lenila
17
+ double precision rsav
18
+ double precision rls, rlsa
19
+ dimension rsav(1), isav(1)
20
+ common /ls0001/ rls(218), ils(39)
21
+ common /lsa001/ rlsa(22), ilsa(9)
22
+ common /eh0001/ ieh(2)
23
+ data lenrls/218/, lenils/39/, lenrla/22/, lenila/9/
24
+ c
25
+ if (job .eq. 2) go to 100
26
+ do 10 i = 1,lenrls
27
+ 10 rsav(i) = rls(i)
28
+ do 15 i = 1,lenrla
29
+ 15 rsav(lenrls+i) = rlsa(i)
30
+ c
31
+ do 20 i = 1,lenils
32
+ 20 isav(i) = ils(i)
33
+ do 25 i = 1,lenila
34
+ 25 isav(lenils+i) = ilsa(i)
35
+ c
36
+ isav(lenils+lenila+1) = ieh(1)
37
+ isav(lenils+lenila+2) = ieh(2)
38
+ return
39
+ c
40
+ 100 continue
41
+ do 110 i = 1,lenrls
42
+ 110 rls(i) = rsav(i)
43
+ do 115 i = 1,lenrla
44
+ 115 rlsa(i) = rsav(lenrls+i)
45
+ c
46
+ do 120 i = 1,lenils
47
+ 120 ils(i) = isav(i)
48
+ do 125 i = 1,lenila
49
+ 125 ilsa(i) = isav(lenils+i)
50
+ c
51
+ ieh(1) = isav(lenils+lenila+1)
52
+ ieh(2) = isav(lenils+lenila+2)
53
+ return
54
+ c----------------------- end of subroutine srcma -----------------------
55
+ end
@@ -0,0 +1,637 @@
1
+ subroutine stoda (neq, y, yh, nyh, yh1, ewt, savf, acor,
2
+ 1 wm, iwm, f, jac, pjac, slvs)
3
+ clll. optimize
4
+ external f, jac, pjac, slvs
5
+ integer neq, nyh, iwm
6
+ integer iownd, ialth, ipup, lmax, meo, nqnyh, nslp,
7
+ 1 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
8
+ 2 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
9
+ integer iownd2, icount, irflag, jtyp, mused, mxordn, mxords
10
+ integer i, i1, iredo, iret, j, jb, m, ncf, newq
11
+ integer lm1, lm1p1, lm2, lm2p1, nqm1, nqm2, isav
12
+ double precision y, yh, yh1, ewt, savf, acor, wm, rsav
13
+ double precision conit, crate, el, elco, hold, rmax, tesco,
14
+ 2 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround
15
+ double precision rownd2, pdest, pdlast, ratio, cm1, cm2,
16
+ 1 pdnorm
17
+ double precision dcon, ddn, del, delp, dsm, dup, exdn, exsm, exup,
18
+ 1 r, rh, rhdn, rhsm, rhup, told, vmnorm
19
+ double precision alpha, dm1, dm2, exm1, exm2, pdh, pnorm, rate,
20
+ 1 rh1, rh1it, rh2, rm, sm1
21
+ dimension neq(1), y(1), yh(nyh,*), yh1(1), ewt(1), savf(1),
22
+ 1 acor(1), wm(*), iwm(*), rsav(240), isav(50)
23
+ dimension sm1(12)
24
+ common /ls0001/ conit, crate, el(13), elco(13,12),
25
+ 1 hold, rmax, tesco(3,12),
26
+ 2 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround, iownd(14),
27
+ 3 ialth, ipup, lmax, meo, nqnyh, nslp,
28
+ 4 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
29
+ 5 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
30
+ common /lsa001/ rownd2, pdest, pdlast, ratio, cm1(12), cm2(5),
31
+ 1 pdnorm,
32
+ 2 iownd2(3), icount, irflag, jtyp, mused, mxordn, mxords
33
+ data sm1/0.5d0, 0.575d0, 0.55d0, 0.45d0, 0.35d0, 0.25d0,
34
+ 1 0.20d0, 0.15d0, 0.10d0, 0.075d0, 0.050d0, 0.025d0/
35
+ c-----------------------------------------------------------------------
36
+ c stoda performs one step of the integration of an initial value
37
+ c problem for a system of ordinary differential equations.
38
+ c note.. stoda is independent of the value of the iteration method
39
+ c indicator miter, when this is .ne. 0, and hence is independent
40
+ c of the type of chord method used, or the jacobian structure.
41
+ c communication with stoda is done with the following variables..
42
+ c
43
+ c y = an array of length .ge. n used as the y argument in
44
+ c all calls to f and jac.
45
+ c neq = integer array containing problem size in neq(1), and
46
+ c passed as the neq argument in all calls to f and jac.
47
+ c yh = an nyh by lmax array containing the dependent variables
48
+ c and their approximate scaled derivatives, where
49
+ c lmax = maxord + 1. yh(i,j+1) contains the approximate
50
+ c j-th derivative of y(i), scaled by h**j/factorial(j)
51
+ c (j = 0,1,...,nq). on entry for the first step, the first
52
+ c two columns of yh must be set from the initial values.
53
+ c nyh = a constant integer .ge. n, the first dimension of yh.
54
+ c yh1 = a one-dimensional array occupying the same space as yh.
55
+ c ewt = an array of length n containing multiplicative weights
56
+ c for local error measurements. local errors in y(i) are
57
+ c compared to 1.0/ewt(i) in various error tests.
58
+ c savf = an array of working storage, of length n.
59
+ c acor = a work array of length n, used for the accumulated
60
+ c corrections. on a successful return, acor(i) contains
61
+ c the estimated one-step local error in y(i).
62
+ c wm,iwm = real and integer work arrays associated with matrix
63
+ c operations in chord iteration (miter .ne. 0).
64
+ c pjac = name of routine to evaluate and preprocess jacobian matrix
65
+ c and p = i - h*el0*jac, if a chord method is being used.
66
+ c it also returns an estimate of norm(jac) in pdnorm.
67
+ c slvs = name of routine to solve linear system in chord iteration.
68
+ c ccmax = maximum relative change in h*el0 before pjac is called.
69
+ c h = the step size to be attempted on the next step.
70
+ c h is altered by the error control algorithm during the
71
+ c problem. h can be either positive or negative, but its
72
+ c sign must remain constant throughout the problem.
73
+ c hmin = the minimum absolute value of the step size h to be used.
74
+ c hmxi = inverse of the maximum absolute value of h to be used.
75
+ c hmxi = 0.0 is allowed and corresponds to an infinite hmax.
76
+ c hmin and hmxi may be changed at any time, but will not
77
+ c take effect until the next change of h is considered.
78
+ c tn = the independent variable. tn is updated on each step taken.
79
+ c jstart = an integer used for input only, with the following
80
+ c values and meanings..
81
+ c 0 perform the first step.
82
+ c .gt.0 take a new step continuing from the last.
83
+ c -1 take the next step with a new value of h,
84
+ c n, meth, miter, and/or matrix parameters.
85
+ c -2 take the next step with a new value of h,
86
+ c but with other inputs unchanged.
87
+ c on return, jstart is set to 1 to facilitate continuation.
88
+ c kflag = a completion code with the following meanings..
89
+ c 0 the step was succesful.
90
+ c -1 the requested error could not be achieved.
91
+ c -2 corrector convergence could not be achieved.
92
+ c -3 fatal error in pjac or slvs.
93
+ c a return with kflag = -1 or -2 means either
94
+ c abs(h) = hmin or 10 consecutive failures occurred.
95
+ c on a return with kflag negative, the values of tn and
96
+ c the yh array are as of the beginning of the last
97
+ c step, and h is the last step size attempted.
98
+ c maxord = the maximum order of integration method to be allowed.
99
+ c maxcor = the maximum number of corrector iterations allowed.
100
+ c msbp = maximum number of steps between pjac calls (miter .gt. 0).
101
+ c mxncf = maximum number of convergence failures allowed.
102
+ c meth = current method.
103
+ c meth = 1 means adams method (nonstiff)
104
+ c meth = 2 means bdf method (stiff)
105
+ c meth may be reset by stoda.
106
+ c miter = corrector iteration method.
107
+ c miter = 0 means functional iteration.
108
+ c miter = jt .gt. 0 means a chord iteration corresponding
109
+ c to jacobian type jt. (the lsoda argument jt is
110
+ c communicated here as jtyp, but is not used in stoda
111
+ c except to load miter following a method switch.)
112
+ c miter may be reset by stoda.
113
+ c n = the number of first-order differential equations.
114
+ c-----------------------------------------------------------------------
115
+ kflag = 0
116
+ told = tn
117
+ ncf = 0
118
+ ierpj = 0
119
+ iersl = 0
120
+ jcur = 0
121
+ icf = 0
122
+ delp = 0.0d0
123
+ if (jstart .gt. 0) go to 200
124
+ if (jstart .eq. -1) go to 100
125
+ if (jstart .eq. -2) go to 160
126
+ c-----------------------------------------------------------------------
127
+ c on the first call, the order is set to 1, and other variables are
128
+ c initialized. rmax is the maximum ratio by which h can be increased
129
+ c in a single step. it is initially 1.e4 to compensate for the small
130
+ c initial h, but then is normally equal to 10. if a failure
131
+ c occurs (in corrector convergence or error test), rmax is set at 2
132
+ c for the next increase.
133
+ c cfode is called to get the needed coefficients for both methods.
134
+ c-----------------------------------------------------------------------
135
+ lmax = maxord + 1
136
+ nq = 1
137
+ l = 2
138
+ ialth = 2
139
+ rmax = 10000.0d0
140
+ rc = 0.0d0
141
+ el0 = 1.0d0
142
+ crate = 0.7d0
143
+ hold = h
144
+ nslp = 0
145
+ ipup = miter
146
+ iret = 3
147
+ c initialize switching parameters. meth = 1 is assumed initially. -----
148
+ icount = 20
149
+ irflag = 0
150
+ pdest = 0.0d0
151
+ pdlast = 0.0d0
152
+ ratio = 5.0d0
153
+ call cfode (2, elco, tesco)
154
+ do 10 i = 1,5
155
+ 10 cm2(i) = tesco(2,i)*elco(i+1,i)
156
+ call cfode (1, elco, tesco)
157
+ do 20 i = 1,12
158
+ 20 cm1(i) = tesco(2,i)*elco(i+1,i)
159
+ go to 150
160
+ c-----------------------------------------------------------------------
161
+ c the following block handles preliminaries needed when jstart = -1.
162
+ c ipup is set to miter to force a matrix update.
163
+ c if an order increase is about to be considered (ialth = 1),
164
+ c ialth is reset to 2 to postpone consideration one more step.
165
+ c if the caller has changed meth, cfode is called to reset
166
+ c the coefficients of the method.
167
+ c if h is to be changed, yh must be rescaled.
168
+ c if h or meth is being changed, ialth is reset to l = nq + 1
169
+ c to prevent further changes in h for that many steps.
170
+ c-----------------------------------------------------------------------
171
+ 100 ipup = miter
172
+ lmax = maxord + 1
173
+ if (ialth .eq. 1) ialth = 2
174
+ if (meth .eq. mused) go to 160
175
+ call cfode (meth, elco, tesco)
176
+ ialth = l
177
+ iret = 1
178
+ c-----------------------------------------------------------------------
179
+ c the el vector and related constants are reset
180
+ c whenever the order nq is changed, or at the start of the problem.
181
+ c-----------------------------------------------------------------------
182
+ 150 do 155 i = 1,l
183
+ 155 el(i) = elco(i,nq)
184
+ nqnyh = nq*nyh
185
+ rc = rc*el(1)/el0
186
+ el0 = el(1)
187
+ conit = 0.5d0/dfloat(nq+2)
188
+ go to (160, 170, 200), iret
189
+ c-----------------------------------------------------------------------
190
+ c if h is being changed, the h ratio rh is checked against
191
+ c rmax, hmin, and hmxi, and the yh array rescaled. ialth is set to
192
+ c l = nq + 1 to prevent a change of h for that many steps, unless
193
+ c forced by a convergence or error test failure.
194
+ c-----------------------------------------------------------------------
195
+ 160 if (h .eq. hold) go to 200
196
+ rh = h/hold
197
+ h = hold
198
+ iredo = 3
199
+ go to 175
200
+ 170 rh = dmax1(rh,hmin/dabs(h))
201
+ 175 rh = dmin1(rh,rmax)
202
+ rh = rh/dmax1(1.0d0,dabs(h)*hmxi*rh)
203
+ c-----------------------------------------------------------------------
204
+ c if meth = 1, also restrict the new step size by the stability region.
205
+ c if this reduces h, set irflag to 1 so that if there are roundoff
206
+ c problems later, we can assume that is the cause of the trouble.
207
+ c-----------------------------------------------------------------------
208
+ if (meth .eq. 2) go to 178
209
+ irflag = 0
210
+ pdh = dmax1(dabs(h)*pdlast,0.000001d0)
211
+ if (rh*pdh*1.00001d0 .lt. sm1(nq)) go to 178
212
+ rh = sm1(nq)/pdh
213
+ irflag = 1
214
+ 178 continue
215
+ r = 1.0d0
216
+ do 180 j = 2,l
217
+ r = r*rh
218
+ do 180 i = 1,n
219
+ 180 yh(i,j) = yh(i,j)*r
220
+ h = h*rh
221
+ rc = rc*rh
222
+ ialth = l
223
+ if (iredo .eq. 0) go to 690
224
+ c-----------------------------------------------------------------------
225
+ c this section computes the predicted values by effectively
226
+ c multiplying the yh array by the pascal triangle matrix.
227
+ c rc is the ratio of new to old values of the coefficient h*el(1).
228
+ c when rc differs from 1 by more than ccmax, ipup is set to miter
229
+ c to force pjac to be called, if a jacobian is involved.
230
+ c in any case, pjac is called at least every msbp steps.
231
+ c-----------------------------------------------------------------------
232
+ 200 if (dabs(rc-1.0d0) .gt. ccmax) ipup = miter
233
+ if (nst .ge. nslp+msbp) ipup = miter
234
+ tn = tn + h
235
+ i1 = nqnyh + 1
236
+ do 215 jb = 1,nq
237
+ i1 = i1 - nyh
238
+ cdir$ ivdep
239
+ do 210 i = i1,nqnyh
240
+ 210 yh1(i) = yh1(i) + yh1(i+nyh)
241
+ 215 continue
242
+ pnorm = vmnorm (n, yh1, ewt)
243
+ c-----------------------------------------------------------------------
244
+ c up to maxcor corrector iterations are taken. a convergence test is
245
+ c made on the r.m.s. norm of each correction, weighted by the error
246
+ c weight vector ewt. the sum of the corrections is accumulated in the
247
+ c vector acor(i). the yh array is not altered in the corrector loop.
248
+ c-----------------------------------------------------------------------
249
+ 220 m = 0
250
+ rate = 0.0d0
251
+ del = 0.0d0
252
+ do 230 i = 1,n
253
+ 230 y(i) = yh(i,1)
254
+ call srcma (rsav, isav, 1)
255
+ call f (neq, tn, y, savf)
256
+ call srcma (rsav, isav, 2)
257
+ nfe = nfe + 1
258
+ if (ipup .le. 0) go to 250
259
+ c-----------------------------------------------------------------------
260
+ c if indicated, the matrix p = i - h*el(1)*j is reevaluated and
261
+ c preprocessed before starting the corrector iteration. ipup is set
262
+ c to 0 as an indicator that this has been done.
263
+ c-----------------------------------------------------------------------
264
+ call pjac (neq, y, yh, nyh, ewt, acor, savf, wm, iwm, f, jac)
265
+ ipup = 0
266
+ rc = 1.0d0
267
+ nslp = nst
268
+ crate = 0.7d0
269
+ if (ierpj .ne. 0) go to 430
270
+ 250 do 260 i = 1,n
271
+ 260 acor(i) = 0.0d0
272
+ 270 if (miter .ne. 0) go to 350
273
+ c-----------------------------------------------------------------------
274
+ c in the case of functional iteration, update y directly from
275
+ c the result of the last function evaluation.
276
+ c-----------------------------------------------------------------------
277
+ do 290 i = 1,n
278
+ savf(i) = h*savf(i) - yh(i,2)
279
+ 290 y(i) = savf(i) - acor(i)
280
+ del = vmnorm (n, y, ewt)
281
+ do 300 i = 1,n
282
+ y(i) = yh(i,1) + el(1)*savf(i)
283
+ 300 acor(i) = savf(i)
284
+ go to 400
285
+ c-----------------------------------------------------------------------
286
+ c in the case of the chord method, compute the corrector error,
287
+ c and solve the linear system with that as right-hand side and
288
+ c p as coefficient matrix.
289
+ c-----------------------------------------------------------------------
290
+ 350 do 360 i = 1,n
291
+ 360 y(i) = h*savf(i) - (yh(i,2) + acor(i))
292
+ call slvs (wm, iwm, y, savf)
293
+ if (iersl .lt. 0) go to 430
294
+ if (iersl .gt. 0) go to 410
295
+ del = vmnorm (n, y, ewt)
296
+ do 380 i = 1,n
297
+ acor(i) = acor(i) + y(i)
298
+ 380 y(i) = yh(i,1) + el(1)*acor(i)
299
+ c-----------------------------------------------------------------------
300
+ c test for convergence. if m.gt.0, an estimate of the convergence
301
+ c rate constant is stored in crate, and this is used in the test.
302
+ c
303
+ c we first check for a change of iterates that is the size of
304
+ c roundoff error. if this occurs, the iteration has converged, and a
305
+ c new rate estimate is not formed.
306
+ c in all other cases, force at least two iterations to estimate a
307
+ c local lipschitz constant estimate for adams methods.
308
+ c on convergence, form pdest = local maximum lipschitz constant
309
+ c estimate. pdlast is the most recent nonzero estimate.
310
+ c-----------------------------------------------------------------------
311
+ 400 continue
312
+ if (del .le. 100.0d0*pnorm*uround) go to 450
313
+ if (m .eq. 0 .and. meth .eq. 1) go to 405
314
+ if (m .eq. 0) go to 402
315
+ rm = 1024.0d0
316
+ if (del .le. 1024.0d0*delp) rm = del/delp
317
+ rate = dmax1(rate,rm)
318
+ crate = dmax1(0.2d0*crate,rm)
319
+ 402 dcon = del*dmin1(1.0d0,1.5d0*crate)/(tesco(2,nq)*conit)
320
+ if (dcon .gt. 1.0d0) go to 405
321
+ pdest = dmax1(pdest,rate/dabs(h*el(1)))
322
+ if (pdest .ne. 0.0d0) pdlast = pdest
323
+ go to 450
324
+ 405 continue
325
+ m = m + 1
326
+ if (m .eq. maxcor) go to 410
327
+ if (m .ge. 2 .and. del .gt. 2.0d0*delp) go to 410
328
+ delp = del
329
+ call srcma (rsav, isav, 1)
330
+ call f (neq, tn, y, savf)
331
+ call srcma (rsav, isav, 2)
332
+ nfe = nfe + 1
333
+ go to 270
334
+ c-----------------------------------------------------------------------
335
+ c the corrector iteration failed to converge.
336
+ c if miter .ne. 0 and the jacobian is out of date, pjac is called for
337
+ c the next try. otherwise the yh array is retracted to its values
338
+ c before prediction, and h is reduced, if possible. if h cannot be
339
+ c reduced or mxncf failures have occurred, exit with kflag = -2.
340
+ c-----------------------------------------------------------------------
341
+ 410 if (miter .eq. 0 .or. jcur .eq. 1) go to 430
342
+ icf = 1
343
+ ipup = miter
344
+ go to 220
345
+ 430 icf = 2
346
+ ncf = ncf + 1
347
+ rmax = 2.0d0
348
+ tn = told
349
+ i1 = nqnyh + 1
350
+ do 445 jb = 1,nq
351
+ i1 = i1 - nyh
352
+ cdir$ ivdep
353
+ do 440 i = i1,nqnyh
354
+ 440 yh1(i) = yh1(i) - yh1(i+nyh)
355
+ 445 continue
356
+ if (ierpj .lt. 0 .or. iersl .lt. 0) go to 680
357
+ if (dabs(h) .le. hmin*1.00001d0) go to 670
358
+ if (ncf .eq. mxncf) go to 670
359
+ rh = 0.25d0
360
+ ipup = miter
361
+ iredo = 1
362
+ go to 170
363
+ c-----------------------------------------------------------------------
364
+ c the corrector has converged. jcur is set to 0
365
+ c to signal that the jacobian involved may need updating later.
366
+ c the local error test is made and control passes to statement 500
367
+ c if it fails.
368
+ c-----------------------------------------------------------------------
369
+ 450 jcur = 0
370
+ if (m .eq. 0) dsm = del/tesco(2,nq)
371
+ if (m .gt. 0) dsm = vmnorm (n, acor, ewt)/tesco(2,nq)
372
+ if (dsm .gt. 1.0d0) go to 500
373
+ c-----------------------------------------------------------------------
374
+ c after a successful step, update the yh array.
375
+ c decrease icount by 1, and if it is -1, consider switching methods.
376
+ c if a method switch is made, reset various parameters,
377
+ c rescale the yh array, and exit. if there is no switch,
378
+ c consider changing h if ialth = 1. otherwise decrease ialth by 1.
379
+ c if ialth is then 1 and nq .lt. maxord, then acor is saved for
380
+ c use in a possible order increase on the next step.
381
+ c if a change in h is considered, an increase or decrease in order
382
+ c by one is considered also. a change in h is made only if it is by a
383
+ c factor of at least 1.1. if not, ialth is set to 3 to prevent
384
+ c testing for that many steps.
385
+ c-----------------------------------------------------------------------
386
+ kflag = 0
387
+ iredo = 0
388
+ nst = nst + 1
389
+ hu = h
390
+ nqu = nq
391
+ mused = meth
392
+ do 460 j = 1,l
393
+ do 460 i = 1,n
394
+ 460 yh(i,j) = yh(i,j) + el(j)*acor(i)
395
+ icount = icount - 1
396
+ if (icount .ge. 0) go to 488
397
+ if (meth .eq. 2) go to 480
398
+ c-----------------------------------------------------------------------
399
+ c we are currently using an adams method. consider switching to bdf.
400
+ c if the current order is greater than 5, assume the problem is
401
+ c not stiff, and skip this section.
402
+ c if the lipschitz constant and error estimate are not polluted
403
+ c by roundoff, go to 470 and perform the usual test.
404
+ c otherwise, switch to the bdf methods if the last step was
405
+ c restricted to insure stability (irflag = 1), and stay with adams
406
+ c method if not. when switching to bdf with polluted error estimates,
407
+ c in the absence of other information, double the step size.
408
+ c
409
+ c when the estimates are ok, we make the usual test by computing
410
+ c the step size we could have (ideally) used on this step,
411
+ c with the current (adams) method, and also that for the bdf.
412
+ c if nq .gt. mxords, we consider changing to order mxords on switching.
413
+ c compare the two step sizes to decide whether to switch.
414
+ c the step size advantage must be at least ratio = 5 to switch.
415
+ c-----------------------------------------------------------------------
416
+ if (nq .gt. 5) go to 488
417
+ if (dsm .gt. 100.0d0*pnorm*uround .and. pdest .ne. 0.0d0)
418
+ 1 go to 470
419
+ if (irflag .eq. 0) go to 488
420
+ rh2 = 2.0d0
421
+ nqm2 = min0(nq,mxords)
422
+ go to 478
423
+ 470 continue
424
+ exsm = 1.0d0/dfloat(l)
425
+ rh1 = 1.0d0/(1.2d0*dsm**exsm + 0.0000012d0)
426
+ rh1it = 2.0d0*rh1
427
+ pdh = pdlast*dabs(h)
428
+ if (pdh*rh1 .gt. 0.00001d0) rh1it = sm1(nq)/pdh
429
+ rh1 = dmin1(rh1,rh1it)
430
+ if (nq .le. mxords) go to 474
431
+ nqm2 = mxords
432
+ lm2 = mxords + 1
433
+ exm2 = 1.0d0/dfloat(lm2)
434
+ lm2p1 = lm2 + 1
435
+ dm2 = vmnorm (n, yh(1,lm2p1), ewt)/cm2(mxords)
436
+ rh2 = 1.0d0/(1.2d0*dm2**exm2 + 0.0000012d0)
437
+ go to 476
438
+ 474 dm2 = dsm*(cm1(nq)/cm2(nq))
439
+ rh2 = 1.0d0/(1.2d0*dm2**exsm + 0.0000012d0)
440
+ nqm2 = nq
441
+ 476 continue
442
+ if (rh2 .lt. ratio*rh1) go to 488
443
+ c the switch test passed. reset relevant quantities for bdf. ----------
444
+ 478 rh = rh2
445
+ icount = 20
446
+ meth = 2
447
+ miter = jtyp
448
+ pdlast = 0.0d0
449
+ nq = nqm2
450
+ l = nq + 1
451
+ go to 170
452
+ c-----------------------------------------------------------------------
453
+ c we are currently using a bdf method. consider switching to adams.
454
+ c compute the step size we could have (ideally) used on this step,
455
+ c with the current (bdf) method, and also that for the adams.
456
+ c if nq .gt. mxordn, we consider changing to order mxordn on switching.
457
+ c compare the two step sizes to decide whether to switch.
458
+ c the step size advantage must be at least 5/ratio = 1 to switch.
459
+ c if the step size for adams would be so small as to cause
460
+ c roundoff pollution, we stay with bdf.
461
+ c-----------------------------------------------------------------------
462
+ 480 continue
463
+ exsm = 1.0d0/dfloat(l)
464
+ if (mxordn .ge. nq) go to 484
465
+ nqm1 = mxordn
466
+ lm1 = mxordn + 1
467
+ exm1 = 1.0d0/dfloat(lm1)
468
+ lm1p1 = lm1 + 1
469
+ dm1 = vmnorm (n, yh(1,lm1p1), ewt)/cm1(mxordn)
470
+ rh1 = 1.0d0/(1.2d0*dm1**exm1 + 0.0000012d0)
471
+ go to 486
472
+ 484 dm1 = dsm*(cm2(nq)/cm1(nq))
473
+ rh1 = 1.0d0/(1.2d0*dm1**exsm + 0.0000012d0)
474
+ nqm1 = nq
475
+ exm1 = exsm
476
+ 486 rh1it = 2.0d0*rh1
477
+ pdh = pdnorm*dabs(h)
478
+ if (pdh*rh1 .gt. 0.00001d0) rh1it = sm1(nqm1)/pdh
479
+ rh1 = dmin1(rh1,rh1it)
480
+ rh2 = 1.0d0/(1.2d0*dsm**exsm + 0.0000012d0)
481
+ if (rh1*ratio .lt. 5.0d0*rh2) go to 488
482
+ alpha = dmax1(0.001d0,rh1)
483
+ dm1 = (alpha**exm1)*dm1
484
+ if (dm1 .le. 1000.0d0*uround*pnorm) go to 488
485
+ c the switch test passed. reset relevant quantities for adams. --------
486
+ rh = rh1
487
+ icount = 20
488
+ meth = 1
489
+ miter = 0
490
+ pdlast = 0.0d0
491
+ nq = nqm1
492
+ l = nq + 1
493
+ go to 170
494
+ c
495
+ c no method switch is being made. do the usual step/order selection. --
496
+ 488 continue
497
+ ialth = ialth - 1
498
+ if (ialth .eq. 0) go to 520
499
+ if (ialth .gt. 1) go to 700
500
+ if (l .eq. lmax) go to 700
501
+ do 490 i = 1,n
502
+ 490 yh(i,lmax) = acor(i)
503
+ go to 700
504
+ c-----------------------------------------------------------------------
505
+ c the error test failed. kflag keeps track of multiple failures.
506
+ c restore tn and the yh array to their previous values, and prepare
507
+ c to try the step again. compute the optimum step size for this or
508
+ c one lower order. after 2 or more failures, h is forced to decrease
509
+ c by a factor of 0.2 or less.
510
+ c-----------------------------------------------------------------------
511
+ 500 kflag = kflag - 1
512
+ tn = told
513
+ i1 = nqnyh + 1
514
+ do 515 jb = 1,nq
515
+ i1 = i1 - nyh
516
+ cdir$ ivdep
517
+ do 510 i = i1,nqnyh
518
+ 510 yh1(i) = yh1(i) - yh1(i+nyh)
519
+ 515 continue
520
+ rmax = 2.0d0
521
+ if (dabs(h) .le. hmin*1.00001d0) go to 660
522
+ if (kflag .le. -3) go to 640
523
+ iredo = 2
524
+ rhup = 0.0d0
525
+ go to 540
526
+ c-----------------------------------------------------------------------
527
+ c regardless of the success or failure of the step, factors
528
+ c rhdn, rhsm, and rhup are computed, by which h could be multiplied
529
+ c at order nq - 1, order nq, or order nq + 1, respectively.
530
+ c in the case of failure, rhup = 0.0 to avoid an order increase.
531
+ c the largest of these is determined and the new order chosen
532
+ c accordingly. if the order is to be increased, we compute one
533
+ c additional scaled derivative.
534
+ c-----------------------------------------------------------------------
535
+ 520 rhup = 0.0d0
536
+ if (l .eq. lmax) go to 540
537
+ do 530 i = 1,n
538
+ 530 savf(i) = acor(i) - yh(i,lmax)
539
+ dup = vmnorm (n, savf, ewt)/tesco(3,nq)
540
+ exup = 1.0d0/dfloat(l+1)
541
+ rhup = 1.0d0/(1.4d0*dup**exup + 0.0000014d0)
542
+ 540 exsm = 1.0d0/dfloat(l)
543
+ rhsm = 1.0d0/(1.2d0*dsm**exsm + 0.0000012d0)
544
+ rhdn = 0.0d0
545
+ if (nq .eq. 1) go to 550
546
+ ddn = vmnorm (n, yh(1,l), ewt)/tesco(1,nq)
547
+ exdn = 1.0d0/dfloat(nq)
548
+ rhdn = 1.0d0/(1.3d0*ddn**exdn + 0.0000013d0)
549
+ c if meth = 1, limit rh according to the stability region also. --------
550
+ 550 if (meth .eq. 2) go to 560
551
+ pdh = dmax1(dabs(h)*pdlast,0.000001d0)
552
+ if (l .lt. lmax) rhup = dmin1(rhup,sm1(l)/pdh)
553
+ rhsm = dmin1(rhsm,sm1(nq)/pdh)
554
+ if (nq .gt. 1) rhdn = dmin1(rhdn,sm1(nq-1)/pdh)
555
+ pdest = 0.0d0
556
+ 560 if (rhsm .ge. rhup) go to 570
557
+ if (rhup .gt. rhdn) go to 590
558
+ go to 580
559
+ 570 if (rhsm .lt. rhdn) go to 580
560
+ newq = nq
561
+ rh = rhsm
562
+ go to 620
563
+ 580 newq = nq - 1
564
+ rh = rhdn
565
+ if (kflag .lt. 0 .and. rh .gt. 1.0d0) rh = 1.0d0
566
+ go to 620
567
+ 590 newq = l
568
+ rh = rhup
569
+ if (rh .lt. 1.1d0) go to 610
570
+ r = el(l)/dfloat(l)
571
+ do 600 i = 1,n
572
+ 600 yh(i,newq+1) = acor(i)*r
573
+ go to 630
574
+ 610 ialth = 3
575
+ go to 700
576
+ c if meth = 1 and h is restricted by stability, bypass 10 percent test.
577
+ 620 if (meth .eq. 2) go to 622
578
+ if (rh*pdh*1.00001d0 .ge. sm1(newq)) go to 625
579
+ 622 if (kflag .eq. 0 .and. rh .lt. 1.1d0) go to 610
580
+ 625 if (kflag .le. -2) rh = dmin1(rh,0.2d0)
581
+ c-----------------------------------------------------------------------
582
+ c if there is a change of order, reset nq, l, and the coefficients.
583
+ c in any case h is reset according to rh and the yh array is rescaled.
584
+ c then exit from 690 if the step was ok, or redo the step otherwise.
585
+ c-----------------------------------------------------------------------
586
+ if (newq .eq. nq) go to 170
587
+ 630 nq = newq
588
+ l = nq + 1
589
+ iret = 2
590
+ go to 150
591
+ c-----------------------------------------------------------------------
592
+ c control reaches this section if 3 or more failures have occured.
593
+ c if 10 failures have occurred, exit with kflag = -1.
594
+ c it is assumed that the derivatives that have accumulated in the
595
+ c yh array have errors of the wrong order. hence the first
596
+ c derivative is recomputed, and the order is set to 1. then
597
+ c h is reduced by a factor of 10, and the step is retried,
598
+ c until it succeeds or h reaches hmin.
599
+ c-----------------------------------------------------------------------
600
+ 640 if (kflag .eq. -10) go to 660
601
+ rh = 0.1d0
602
+ rh = dmax1(hmin/dabs(h),rh)
603
+ h = h*rh
604
+ do 645 i = 1,n
605
+ 645 y(i) = yh(i,1)
606
+ call srcma (rsav, isav, 1)
607
+ call f (neq, tn, y, savf)
608
+ call srcma (rsav, isav, 2)
609
+ nfe = nfe + 1
610
+ do 650 i = 1,n
611
+ 650 yh(i,2) = h*savf(i)
612
+ ipup = miter
613
+ ialth = 5
614
+ if (nq .eq. 1) go to 200
615
+ nq = 1
616
+ l = 2
617
+ iret = 3
618
+ go to 150
619
+ c-----------------------------------------------------------------------
620
+ c all returns are made through this section. h is saved in hold
621
+ c to allow the caller to change h on the next step.
622
+ c-----------------------------------------------------------------------
623
+ 660 kflag = -1
624
+ go to 720
625
+ 670 kflag = -2
626
+ go to 720
627
+ 680 kflag = -3
628
+ go to 720
629
+ 690 rmax = 10.0d0
630
+ 700 r = 1.0d0/tesco(2,nqu)
631
+ do 710 i = 1,n
632
+ 710 acor(i) = acor(i)*r
633
+ 720 hold = h
634
+ jstart = 1
635
+ return
636
+ c----------------------- end of subroutine stoda -----------------------
637
+ end