ode 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,32 @@
1
+ subroutine ewset (n, itol, rtol, atol, ycur, ewt)
2
+ clll. optimize
3
+ c-----------------------------------------------------------------------
4
+ c this subroutine sets the error weight vector ewt according to
5
+ c ewt(i) = rtol(i)*abs(ycur(i)) + atol(i), i = 1,...,n,
6
+ c with the subscript on rtol and/or atol possibly replaced by 1 above,
7
+ c depending on the value of itol.
8
+ c-----------------------------------------------------------------------
9
+ integer n, itol
10
+ integer i
11
+ double precision rtol, atol, ycur, ewt
12
+ dimension rtol(1), atol(1), ycur(n), ewt(n)
13
+ c
14
+ go to (10, 20, 30, 40), itol
15
+ 10 continue
16
+ do 15 i = 1,n
17
+ 15 ewt(i) = rtol(1)*dabs(ycur(i)) + atol(1)
18
+ return
19
+ 20 continue
20
+ do 25 i = 1,n
21
+ 25 ewt(i) = rtol(1)*dabs(ycur(i)) + atol(i)
22
+ return
23
+ 30 continue
24
+ do 35 i = 1,n
25
+ 35 ewt(i) = rtol(i)*dabs(ycur(i)) + atol(1)
26
+ return
27
+ 40 continue
28
+ do 45 i = 1,n
29
+ 45 ewt(i) = rtol(i)*dabs(ycur(i)) + atol(i)
30
+ return
31
+ c----------------------- end of subroutine ewset -----------------------
32
+ end
@@ -0,0 +1,22 @@
1
+ double precision function fnorm (n, a, w)
2
+ clll. optimize
3
+ c-----------------------------------------------------------------------
4
+ c this function computes the norm of a full n by n matrix,
5
+ c stored in the array a, that is consistent with the weighted max-norm
6
+ c on vectors, with weights stored in the array w..
7
+ c fnorm = max(i=1,...,n) ( w(i) * sum(j=1,...,n) abs(a(i,j))/w(j) )
8
+ c-----------------------------------------------------------------------
9
+ integer n, i, j
10
+ double precision a, w, an, sum
11
+ dimension a(n,n), w(n)
12
+ an = 0.0d0
13
+ do 20 i = 1,n
14
+ sum = 0.0d0
15
+ do 10 j = 1,n
16
+ 10 sum = sum + dabs(a(i,j))/w(j)
17
+ an = dmax1(an,sum*w(i))
18
+ 20 continue
19
+ fnorm = an
20
+ return
21
+ c----------------------- end of function fnorm -------------------------
22
+ end
@@ -0,0 +1,84 @@
1
+ subroutine intdy (t, k, yh, nyh, dky, iflag)
2
+ clll. optimize
3
+ integer k, nyh, iflag
4
+ integer iownd, iowns,
5
+ 1 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
6
+ 2 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
7
+ integer i, ic, j, jb, jb2, jj, jj1, jp1
8
+ double precision t, yh, dky
9
+ double precision rowns,
10
+ 1 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround
11
+ double precision c, r, s, tp
12
+ dimension yh(nyh,1), dky(1)
13
+ common /ls0001/ rowns(209),
14
+ 2 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround,
15
+ 3 iownd(14), iowns(6),
16
+ 4 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
17
+ 5 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
18
+ c-----------------------------------------------------------------------
19
+ c intdy computes interpolated values of the k-th derivative of the
20
+ c dependent variable vector y, and stores it in dky. this routine
21
+ c is called within the package with k = 0 and t = tout, but may
22
+ c also be called by the user for any k up to the current order.
23
+ c (see detailed instructions in the usage documentation.)
24
+ c-----------------------------------------------------------------------
25
+ c the computed values in dky are gotten by interpolation using the
26
+ c nordsieck history array yh. this array corresponds uniquely to a
27
+ c vector-valued polynomial of degree nqcur or less, and dky is set
28
+ c to the k-th derivative of this polynomial at t.
29
+ c the formula for dky is..
30
+ c q
31
+ c dky(i) = sum c(j,k) * (t - tn)**(j-k) * h**(-j) * yh(i,j+1)
32
+ c j=k
33
+ c where c(j,k) = j*(j-1)*...*(j-k+1), q = nqcur, tn = tcur, h = hcur.
34
+ c the quantities nq = nqcur, l = nq+1, n = neq, tn, and h are
35
+ c communicated by common. the above sum is done in reverse order.
36
+ c iflag is returned negative if either k or t is out of bounds.
37
+ c-----------------------------------------------------------------------
38
+ iflag = 0
39
+ if (k .lt. 0 .or. k .gt. nq) go to 80
40
+ tp = tn - hu - 100.0d0*uround*(tn + hu)
41
+ if ((t-tp)*(t-tn) .gt. 0.0d0) go to 90
42
+ c
43
+ s = (t - tn)/h
44
+ ic = 1
45
+ if (k .eq. 0) go to 15
46
+ jj1 = l - k
47
+ do 10 jj = jj1,nq
48
+ 10 ic = ic*jj
49
+ 15 c = dfloat(ic)
50
+ do 20 i = 1,n
51
+ 20 dky(i) = c*yh(i,l)
52
+ if (k .eq. nq) go to 55
53
+ jb2 = nq - k
54
+ do 50 jb = 1,jb2
55
+ j = nq - jb
56
+ jp1 = j + 1
57
+ ic = 1
58
+ if (k .eq. 0) go to 35
59
+ jj1 = jp1 - k
60
+ do 30 jj = jj1,j
61
+ 30 ic = ic*jj
62
+ 35 c = dfloat(ic)
63
+ do 40 i = 1,n
64
+ 40 dky(i) = c*yh(i,jp1) + s*dky(i)
65
+ 50 continue
66
+ if (k .eq. 0) return
67
+ 55 r = h**(-k)
68
+ do 60 i = 1,n
69
+ 60 dky(i) = r*dky(i)
70
+ return
71
+ c
72
+ 80 call xerrwv('intdy-- k (=i1) illegal ',
73
+ 1 30, 51, 0, 1, k, 0, 0, 0.0d0, 0.0d0)
74
+ iflag = -1
75
+ return
76
+ 90 call xerrwv('intdy-- t (=r1) illegal ',
77
+ 1 30, 52, 0, 0, 0, 0, 1, t, 0.0d0)
78
+ call xerrwv(
79
+ 1 ' t not in interval tcur - hu (= r1) to tcur (=r2) ',
80
+ 1 60, 52, 0, 0, 0, 0, 2, tp, tn)
81
+ iflag = -2
82
+ return
83
+ c----------------------- end of subroutine intdy -----------------------
84
+ end
@@ -0,0 +1,1654 @@
1
+ subroutine lsoda (f, neq, y, t, tout, itol, rtol, atol, itask,
2
+ 1 istate, iopt, rwork, lrw, iwork, liw, jac, jt)
3
+ external f, jac
4
+ integer neq, itol, itask, istate, iopt, lrw, iwork, liw, jt, isav
5
+ double precision y, t, tout, rtol, atol, rwork, rsav
6
+ dimension neq(1), y(1), rtol(1), atol(1), rwork(lrw), iwork(liw)
7
+ dimension rsav(240), isav(50)
8
+ c-----------------------------------------------------------------------
9
+ c this is the 24 feb 1997 version of
10
+ c lsoda.. livermore solver for ordinary differential equations, with
11
+ c automatic method switching for stiff and nonstiff problems.
12
+ c
13
+ c this version is in double precision.
14
+ c
15
+ c lsoda solves the initial value problem for stiff or nonstiff
16
+ c systems of first order ode-s,
17
+ c dy/dt = f(t,y) , or, in component form,
18
+ c dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(neq)) (i = 1,...,neq).
19
+ c
20
+ c this a variant version of the lsode package.
21
+ c it switches automatically between stiff and nonstiff methods.
22
+ c this means that the user does not have to determine whether the
23
+ c problem is stiff or not, and the solver will automatically choose the
24
+ c appropriate method. it always starts with the nonstiff method.
25
+ c
26
+ c authors..
27
+ c linda r. petzold and alan c. hindmarsh,
28
+ c computing and mathematics research division, l-316
29
+ c lawrence livermore national laboratory
30
+ c livermore, ca 94550.
31
+ c
32
+ c references..
33
+ c 1. alan c. hindmarsh, odepack, a systematized collection of ode
34
+ c solvers, in scientific computing, r. s. stepleman et al. (eds.),
35
+ c north-holland, amsterdam, 1983, pp. 55-64.
36
+ c 2. linda r. petzold, automatic selection of methods for solving
37
+ c stiff and nonstiff systems of ordinary differential equations,
38
+ c siam j. sci. stat. comput. 4 (1983), pp. 136-148.
39
+ c-----------------------------------------------------------------------
40
+ c summary of usage.
41
+ c
42
+ c communication between the user and the lsoda package, for normal
43
+ c situations, is summarized here. this summary describes only a subset
44
+ c of the full set of options available. see the full description for
45
+ c details, including alternative treatment of the jacobian matrix,
46
+ c optional inputs and outputs, nonstandard options, and
47
+ c instructions for special situations. see also the example
48
+ c problem (with program and output) following this summary.
49
+ c
50
+ c a. first provide a subroutine of the form..
51
+ c subroutine f (neq, t, y, ydot)
52
+ c dimension y(neq), ydot(neq)
53
+ c which supplies the vector function f by loading ydot(i) with f(i).
54
+ c
55
+ c b. write a main program which calls subroutine lsoda once for
56
+ c each point at which answers are desired. this should also provide
57
+ c for possible use of logical unit 6 for output of error messages
58
+ c by lsoda. on the first call to lsoda, supply arguments as follows..
59
+ c f = name of subroutine for right-hand side vector f.
60
+ c this name must be declared external in calling program.
61
+ c neq = number of first order ode-s.
62
+ c y = array of initial values, of length neq.
63
+ c t = the initial value of the independent variable.
64
+ c tout = first point where output is desired (.ne. t).
65
+ c itol = 1 or 2 according as atol (below) is a scalar or array.
66
+ c rtol = relative tolerance parameter (scalar).
67
+ c atol = absolute tolerance parameter (scalar or array).
68
+ c the estimated local error in y(i) will be controlled so as
69
+ c to be less than
70
+ c ewt(i) = rtol*abs(y(i)) + atol if itol = 1, or
71
+ c ewt(i) = rtol*abs(y(i)) + atol(i) if itol = 2.
72
+ c thus the local error test passes if, in each component,
73
+ c either the absolute error is less than atol (or atol(i)),
74
+ c or the relative error is less than rtol.
75
+ c use rtol = 0.0 for pure absolute error control, and
76
+ c use atol = 0.0 (or atol(i) = 0.0) for pure relative error
77
+ c control. caution.. actual (global) errors may exceed these
78
+ c local tolerances, so choose them conservatively.
79
+ c itask = 1 for normal computation of output values of y at t = tout.
80
+ c istate = integer flag (input and output). set istate = 1.
81
+ c iopt = 0 to indicate no optional inputs used.
82
+ c rwork = real work array of length at least..
83
+ c 22 + neq * max(16, neq + 9).
84
+ c see also paragraph e below.
85
+ c lrw = declared length of rwork (in user-s dimension).
86
+ c iwork = integer work array of length at least 20 + neq.
87
+ c liw = declared length of iwork (in user-s dimension).
88
+ c jac = name of subroutine for jacobian matrix.
89
+ c use a dummy name. see also paragraph e below.
90
+ c jt = jacobian type indicator. set jt = 2.
91
+ c see also paragraph e below.
92
+ c note that the main program must declare arrays y, rwork, iwork,
93
+ c and possibly atol.
94
+ c
95
+ c c. the output from the first call (or any call) is..
96
+ c y = array of computed values of y(t) vector.
97
+ c t = corresponding value of independent variable (normally tout).
98
+ c istate = 2 if lsoda was successful, negative otherwise.
99
+ c -1 means excess work done on this call (perhaps wrong jt).
100
+ c -2 means excess accuracy requested (tolerances too small).
101
+ c -3 means illegal input detected (see printed message).
102
+ c -4 means repeated error test failures (check all inputs).
103
+ c -5 means repeated convergence failures (perhaps bad jacobian
104
+ c supplied or wrong choice of jt or tolerances).
105
+ c -6 means error weight became zero during problem. (solution
106
+ c component i vanished, and atol or atol(i) = 0.)
107
+ c -7 means work space insufficient to finish (see messages).
108
+ c
109
+ c d. to continue the integration after a successful return, simply
110
+ c reset tout and call lsoda again. no other parameters need be reset.
111
+ c
112
+ c e. note.. if and when lsoda regards the problem as stiff, and
113
+ c switches methods accordingly, it must make use of the neq by neq
114
+ c jacobian matrix, j = df/dy. for the sake of simplicity, the
115
+ c inputs to lsoda recommended in paragraph b above cause lsoda to
116
+ c treat j as a full matrix, and to approximate it internally by
117
+ c difference quotients. alternatively, j can be treated as a band
118
+ c matrix (with great potential reduction in the size of the rwork
119
+ c array). also, in either the full or banded case, the user can supply
120
+ c j in closed form, with a routine whose name is passed as the jac
121
+ c argument. these alternatives are described in the paragraphs on
122
+ c rwork, jac, and jt in the full description of the call sequence below.
123
+ c
124
+ c-----------------------------------------------------------------------
125
+ c example problem.
126
+ c
127
+ c the following is a simple example problem, with the coding
128
+ c needed for its solution by lsoda. the problem is from chemical
129
+ c kinetics, and consists of the following three rate equations..
130
+ c dy1/dt = -.04*y1 + 1.e4*y2*y3
131
+ c dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2
132
+ c dy3/dt = 3.e7*y2**2
133
+ c on the interval from t = 0.0 to t = 4.e10, with initial conditions
134
+ c y1 = 1.0, y2 = y3 = 0. the problem is stiff.
135
+ c
136
+ c the following coding solves this problem with lsoda,
137
+ c printing results at t = .4, 4., ..., 4.e10. it uses
138
+ c itol = 2 and atol much smaller for y2 than y1 or y3 because
139
+ c y2 has much smaller values.
140
+ c at the end of the run, statistical quantities of interest are
141
+ c printed (see optional outputs in the full description below).
142
+ c
143
+ c external fex
144
+ c double precision atol, rtol, rwork, t, tout, y
145
+ c dimension y(3), atol(3), rwork(70), iwork(23)
146
+ c neq = 3
147
+ c y(1) = 1.0d0
148
+ c y(2) = 0.0d0
149
+ c y(3) = 0.0d0
150
+ c t = 0.0d0
151
+ c tout = 0.4d0
152
+ c itol = 2
153
+ c rtol = 1.0d-4
154
+ c atol(1) = 1.0d-6
155
+ c atol(2) = 1.0d-10
156
+ c atol(3) = 1.0d-6
157
+ c itask = 1
158
+ c istate = 1
159
+ c iopt = 0
160
+ c lrw = 70
161
+ c liw = 23
162
+ c jt = 2
163
+ c do 40 iout = 1,12
164
+ c call lsoda(fex,neq,y,t,tout,itol,rtol,atol,itask,istate,
165
+ c 1 iopt,rwork,lrw,iwork,liw,jdum,jt)
166
+ c write(6,20)t,y(1),y(2),y(3)
167
+ c 20 format(' at t =',e12.4,' y =',3e14.6)
168
+ c if (istate .lt. 0) go to 80
169
+ c 40 tout = tout*10.0d0
170
+ c write(6,60)iwork(11),iwork(12),iwork(13),iwork(19),rwork(15)
171
+ c 60 format(/' no. steps =',i4,' no. f-s =',i4,' no. j-s =',i4/
172
+ c 1 ' method last used =',i2,' last switch was at t =',e12.4)
173
+ c stop
174
+ c 80 write(6,90)istate
175
+ c 90 format(///' error halt.. istate =',i3)
176
+ c stop
177
+ c end
178
+ c
179
+ c subroutine fex (neq, t, y, ydot)
180
+ c double precision t, y, ydot
181
+ c dimension y(3), ydot(3)
182
+ c ydot(1) = -.04d0*y(1) + 1.0d4*y(2)*y(3)
183
+ c ydot(3) = 3.0d7*y(2)*y(2)
184
+ c ydot(2) = -ydot(1) - ydot(3)
185
+ c return
186
+ c end
187
+ c
188
+ c the output of this program (on a cdc-7600 in single precision)
189
+ c is as follows..
190
+ c
191
+ c at t = 4.0000e-01 y = 9.851712e-01 3.386380e-05 1.479493e-02
192
+ c at t = 4.0000e+00 y = 9.055333e-01 2.240655e-05 9.444430e-02
193
+ c at t = 4.0000e+01 y = 7.158403e-01 9.186334e-06 2.841505e-01
194
+ c at t = 4.0000e+02 y = 4.505250e-01 3.222964e-06 5.494717e-01
195
+ c at t = 4.0000e+03 y = 1.831975e-01 8.941774e-07 8.168016e-01
196
+ c at t = 4.0000e+04 y = 3.898730e-02 1.621940e-07 9.610125e-01
197
+ c at t = 4.0000e+05 y = 4.936363e-03 1.984221e-08 9.950636e-01
198
+ c at t = 4.0000e+06 y = 5.161831e-04 2.065786e-09 9.994838e-01
199
+ c at t = 4.0000e+07 y = 5.179817e-05 2.072032e-10 9.999482e-01
200
+ c at t = 4.0000e+08 y = 5.283401e-06 2.113371e-11 9.999947e-01
201
+ c at t = 4.0000e+09 y = 4.659031e-07 1.863613e-12 9.999995e-01
202
+ c at t = 4.0000e+10 y = 1.404280e-08 5.617126e-14 1.000000e+00
203
+ c
204
+ c no. steps = 361 no. f-s = 693 no. j-s = 64
205
+ c method last used = 2 last switch was at t = 6.0092e-03
206
+ c-----------------------------------------------------------------------
207
+ c full description of user interface to lsoda.
208
+ c
209
+ c the user interface to lsoda consists of the following parts.
210
+ c
211
+ c i. the call sequence to subroutine lsoda, which is a driver
212
+ c routine for the solver. this includes descriptions of both
213
+ c the call sequence arguments and of user-supplied routines.
214
+ c following these descriptions is a description of
215
+ c optional inputs available through the call sequence, and then
216
+ c a description of optional outputs (in the work arrays).
217
+ c
218
+ c ii. descriptions of other routines in the lsoda package that may be
219
+ c (optionally) called by the user. these provide the ability to
220
+ c alter error message handling, save and restore the internal
221
+ c common, and obtain specified derivatives of the solution y(t).
222
+ c
223
+ c iii. descriptions of common blocks to be declared in overlay
224
+ c or similar environments, or to be saved when doing an interrupt
225
+ c of the problem and continued solution later.
226
+ c
227
+ c iv. description of a subroutine in the lsoda package,
228
+ c which the user may replace with his own version, if desired.
229
+ c this relates to the measurement of errors.
230
+ c
231
+ c-----------------------------------------------------------------------
232
+ c part i. call sequence.
233
+ c
234
+ c the call sequence parameters used for input only are
235
+ c f, neq, tout, itol, rtol, atol, itask, iopt, lrw, liw, jac, jt,
236
+ c and those used for both input and output are
237
+ c y, t, istate.
238
+ c the work arrays rwork and iwork are also used for conditional and
239
+ c optional inputs and optional outputs. (the term output here refers
240
+ c to the return from subroutine lsoda to the user-s calling program.)
241
+ c
242
+ c the legality of input parameters will be thoroughly checked on the
243
+ c initial call for the problem, but not checked thereafter unless a
244
+ c change in input parameters is flagged by istate = 3 on input.
245
+ c
246
+ c the descriptions of the call arguments are as follows.
247
+ c
248
+ c f = the name of the user-supplied subroutine defining the
249
+ c ode system. the system must be put in the first-order
250
+ c form dy/dt = f(t,y), where f is a vector-valued function
251
+ c of the scalar t and the vector y. subroutine f is to
252
+ c compute the function f. it is to have the form
253
+ c subroutine f (neq, t, y, ydot)
254
+ c dimension y(1), ydot(1)
255
+ c where neq, t, and y are input, and the array ydot = f(t,y)
256
+ c is output. y and ydot are arrays of length neq.
257
+ c (in the dimension statement above, 1 is a dummy
258
+ c dimension.. it can be replaced by any value.)
259
+ c subroutine f should not alter y(1),...,y(neq).
260
+ c f must be declared external in the calling program.
261
+ c
262
+ c subroutine f may access user-defined quantities in
263
+ c neq(2),... and/or in y(neq(1)+1),... if neq is an array
264
+ c (dimensioned in f) and/or y has length exceeding neq(1).
265
+ c see the descriptions of neq and y below.
266
+ c
267
+ c if quantities computed in the f routine are needed
268
+ c externally to lsoda, an extra call to f should be made
269
+ c for this purpose, for consistent and accurate results.
270
+ c if only the derivative dy/dt is needed, use intdy instead.
271
+ c
272
+ c neq = the size of the ode system (number of first order
273
+ c ordinary differential equations). used only for input.
274
+ c neq may be decreased, but not increased, during the problem.
275
+ c if neq is decreased (with istate = 3 on input), the
276
+ c remaining components of y should be left undisturbed, if
277
+ c these are to be accessed in f and/or jac.
278
+ c
279
+ c normally, neq is a scalar, and it is generally referred to
280
+ c as a scalar in this user interface description. however,
281
+ c neq may be an array, with neq(1) set to the system size.
282
+ c (the lsoda package accesses only neq(1).) in either case,
283
+ c this parameter is passed as the neq argument in all calls
284
+ c to f and jac. hence, if it is an array, locations
285
+ c neq(2),... may be used to store other integer data and pass
286
+ c it to f and/or jac. subroutines f and/or jac must include
287
+ c neq in a dimension statement in that case.
288
+ c
289
+ c y = a real array for the vector of dependent variables, of
290
+ c length neq or more. used for both input and output on the
291
+ c first call (istate = 1), and only for output on other calls.
292
+ c on the first call, y must contain the vector of initial
293
+ c values. on output, y contains the computed solution vector,
294
+ c evaluated at t. if desired, the y array may be used
295
+ c for other purposes between calls to the solver.
296
+ c
297
+ c this array is passed as the y argument in all calls to
298
+ c f and jac. hence its length may exceed neq, and locations
299
+ c y(neq+1),... may be used to store other real data and
300
+ c pass it to f and/or jac. (the lsoda package accesses only
301
+ c y(1),...,y(neq).)
302
+ c
303
+ c t = the independent variable. on input, t is used only on the
304
+ c first call, as the initial point of the integration.
305
+ c on output, after each call, t is the value at which a
306
+ c computed solution y is evaluated (usually the same as tout).
307
+ c on an error return, t is the farthest point reached.
308
+ c
309
+ c tout = the next value of t at which a computed solution is desired.
310
+ c used only for input.
311
+ c
312
+ c when starting the problem (istate = 1), tout may be equal
313
+ c to t for one call, then should .ne. t for the next call.
314
+ c for the initial t, an input value of tout .ne. t is used
315
+ c in order to determine the direction of the integration
316
+ c (i.e. the algebraic sign of the step sizes) and the rough
317
+ c scale of the problem. integration in either direction
318
+ c (forward or backward in t) is permitted.
319
+ c
320
+ c if itask = 2 or 5 (one-step modes), tout is ignored after
321
+ c the first call (i.e. the first call with tout .ne. t).
322
+ c otherwise, tout is required on every call.
323
+ c
324
+ c if itask = 1, 3, or 4, the values of tout need not be
325
+ c monotone, but a value of tout which backs up is limited
326
+ c to the current internal t interval, whose endpoints are
327
+ c tcur - hu and tcur (see optional outputs, below, for
328
+ c tcur and hu).
329
+ c
330
+ c itol = an indicator for the type of error control. see
331
+ c description below under atol. used only for input.
332
+ c
333
+ c rtol = a relative error tolerance parameter, either a scalar or
334
+ c an array of length neq. see description below under atol.
335
+ c input only.
336
+ c
337
+ c atol = an absolute error tolerance parameter, either a scalar or
338
+ c an array of length neq. input only.
339
+ c
340
+ c the input parameters itol, rtol, and atol determine
341
+ c the error control performed by the solver. the solver will
342
+ c control the vector e = (e(i)) of estimated local errors
343
+ c in y, according to an inequality of the form
344
+ c max-norm of ( e(i)/ewt(i) ) .le. 1,
345
+ c where ewt = (ewt(i)) is a vector of positive error weights.
346
+ c the values of rtol and atol should all be non-negative.
347
+ c the following table gives the types (scalar/array) of
348
+ c rtol and atol, and the corresponding form of ewt(i).
349
+ c
350
+ c itol rtol atol ewt(i)
351
+ c 1 scalar scalar rtol*abs(y(i)) + atol
352
+ c 2 scalar array rtol*abs(y(i)) + atol(i)
353
+ c 3 array scalar rtol(i)*abs(y(i)) + atol
354
+ c 4 array array rtol(i)*abs(y(i)) + atol(i)
355
+ c
356
+ c when either of these parameters is a scalar, it need not
357
+ c be dimensioned in the user-s calling program.
358
+ c
359
+ c if none of the above choices (with itol, rtol, and atol
360
+ c fixed throughout the problem) is suitable, more general
361
+ c error controls can be obtained by substituting a
362
+ c user-supplied routine for the setting of ewt.
363
+ c see part iv below.
364
+ c
365
+ c if global errors are to be estimated by making a repeated
366
+ c run on the same problem with smaller tolerances, then all
367
+ c components of rtol and atol (i.e. of ewt) should be scaled
368
+ c down uniformly.
369
+ c
370
+ c itask = an index specifying the task to be performed.
371
+ c input only. itask has the following values and meanings.
372
+ c 1 means normal computation of output values of y(t) at
373
+ c t = tout (by overshooting and interpolating).
374
+ c 2 means take one step only and return.
375
+ c 3 means stop at the first internal mesh point at or
376
+ c beyond t = tout and return.
377
+ c 4 means normal computation of output values of y(t) at
378
+ c t = tout but without overshooting t = tcrit.
379
+ c tcrit must be input as rwork(1). tcrit may be equal to
380
+ c or beyond tout, but not behind it in the direction of
381
+ c integration. this option is useful if the problem
382
+ c has a singularity at or beyond t = tcrit.
383
+ c 5 means take one step, without passing tcrit, and return.
384
+ c tcrit must be input as rwork(1).
385
+ c
386
+ c note.. if itask = 4 or 5 and the solver reaches tcrit
387
+ c (within roundoff), it will return t = tcrit (exactly) to
388
+ c indicate this (unless itask = 4 and tout comes before tcrit,
389
+ c in which case answers at t = tout are returned first).
390
+ c
391
+ c istate = an index used for input and output to specify the
392
+ c the state of the calculation.
393
+ c
394
+ c on input, the values of istate are as follows.
395
+ c 1 means this is the first call for the problem
396
+ c (initializations will be done). see note below.
397
+ c 2 means this is not the first call, and the calculation
398
+ c is to continue normally, with no change in any input
399
+ c parameters except possibly tout and itask.
400
+ c (if itol, rtol, and/or atol are changed between calls
401
+ c with istate = 2, the new values will be used but not
402
+ c tested for legality.)
403
+ c 3 means this is not the first call, and the
404
+ c calculation is to continue normally, but with
405
+ c a change in input parameters other than
406
+ c tout and itask. changes are allowed in
407
+ c neq, itol, rtol, atol, iopt, lrw, liw, jt, ml, mu,
408
+ c and any optional inputs except h0, mxordn, and mxords.
409
+ c (see iwork description for ml and mu.)
410
+ c note.. a preliminary call with tout = t is not counted
411
+ c as a first call here, as no initialization or checking of
412
+ c input is done. (such a call is sometimes useful for the
413
+ c purpose of outputting the initial conditions.)
414
+ c thus the first call for which tout .ne. t requires
415
+ c istate = 1 on input.
416
+ c
417
+ c on output, istate has the following values and meanings.
418
+ c 1 means nothing was done, as tout was equal to t with
419
+ c istate = 1 on input. (however, an internal counter was
420
+ c set to detect and prevent repeated calls of this type.)
421
+ c 2 means the integration was performed successfully.
422
+ c -1 means an excessive amount of work (more than mxstep
423
+ c steps) was done on this call, before completing the
424
+ c requested task, but the integration was otherwise
425
+ c successful as far as t. (mxstep is an optional input
426
+ c and is normally 500.) to continue, the user may
427
+ c simply reset istate to a value .gt. 1 and call again
428
+ c (the excess work step counter will be reset to 0).
429
+ c in addition, the user may increase mxstep to avoid
430
+ c this error return (see below on optional inputs).
431
+ c -2 means too much accuracy was requested for the precision
432
+ c of the machine being used. this was detected before
433
+ c completing the requested task, but the integration
434
+ c was successful as far as t. to continue, the tolerance
435
+ c parameters must be reset, and istate must be set
436
+ c to 3. the optional output tolsf may be used for this
437
+ c purpose. (note.. if this condition is detected before
438
+ c taking any steps, then an illegal input return
439
+ c (istate = -3) occurs instead.)
440
+ c -3 means illegal input was detected, before taking any
441
+ c integration steps. see written message for details.
442
+ c note.. if the solver detects an infinite loop of calls
443
+ c to the solver with illegal input, it will cause
444
+ c the run to stop.
445
+ c -4 means there were repeated error test failures on
446
+ c one attempted step, before completing the requested
447
+ c task, but the integration was successful as far as t.
448
+ c the problem may have a singularity, or the input
449
+ c may be inappropriate.
450
+ c -5 means there were repeated convergence test failures on
451
+ c one attempted step, before completing the requested
452
+ c task, but the integration was successful as far as t.
453
+ c this may be caused by an inaccurate jacobian matrix,
454
+ c if one is being used.
455
+ c -6 means ewt(i) became zero for some i during the
456
+ c integration. pure relative error control (atol(i)=0.0)
457
+ c was requested on a variable which has now vanished.
458
+ c the integration was successful as far as t.
459
+ c -7 means the length of rwork and/or iwork was too small to
460
+ c proceed, but the integration was successful as far as t.
461
+ c this happens when lsoda chooses to switch methods
462
+ c but lrw and/or liw is too small for the new method.
463
+ c
464
+ c note.. since the normal output value of istate is 2,
465
+ c it does not need to be reset for normal continuation.
466
+ c also, since a negative input value of istate will be
467
+ c regarded as illegal, a negative output value requires the
468
+ c user to change it, and possibly other inputs, before
469
+ c calling the solver again.
470
+ c
471
+ c iopt = an integer flag to specify whether or not any optional
472
+ c inputs are being used on this call. input only.
473
+ c the optional inputs are listed separately below.
474
+ c iopt = 0 means no optional inputs are being used.
475
+ c default values will be used in all cases.
476
+ c iopt = 1 means one or more optional inputs are being used.
477
+ c
478
+ c rwork = a real array (double precision) for work space, and (in the
479
+ c first 20 words) for conditional and optional inputs and
480
+ c optional outputs.
481
+ c as lsoda switches automatically between stiff and nonstiff
482
+ c methods, the required length of rwork can change during the
483
+ c problem. thus the rwork array passed to lsoda can either
484
+ c have a static (fixed) length large enough for both methods,
485
+ c or have a dynamic (changing) length altered by the calling
486
+ c program in response to output from lsoda.
487
+ c
488
+ c --- fixed length case ---
489
+ c if the rwork length is to be fixed, it should be at least
490
+ c max (lrn, lrs),
491
+ c where lrn and lrs are the rwork lengths required when the
492
+ c current method is nonstiff or stiff, respectively.
493
+ c
494
+ c the separate rwork length requirements lrn and lrs are
495
+ c as follows..
496
+ c if neq is constant and the maximum method orders have
497
+ c their default values, then
498
+ c lrn = 20 + 16*neq,
499
+ c lrs = 22 + 9*neq + neq**2 if jt = 1 or 2,
500
+ c lrs = 22 + 10*neq + (2*ml+mu)*neq if jt = 4 or 5.
501
+ c under any other conditions, lrn and lrs are given by..
502
+ c lrn = 20 + nyh*(mxordn+1) + 3*neq,
503
+ c lrs = 20 + nyh*(mxords+1) + 3*neq + lmat,
504
+ c where
505
+ c nyh = the initial value of neq,
506
+ c mxordn = 12, unless a smaller value is given as an
507
+ c optional input,
508
+ c mxords = 5, unless a smaller value is given as an
509
+ c optional input,
510
+ c lmat = length of matrix work space..
511
+ c lmat = neq**2 + 2 if jt = 1 or 2,
512
+ c lmat = (2*ml + mu + 1)*neq + 2 if jt = 4 or 5.
513
+ c
514
+ c --- dynamic length case ---
515
+ c if the length of rwork is to be dynamic, then it should
516
+ c be at least lrn or lrs, as defined above, depending on the
517
+ c current method. initially, it must be at least lrn (since
518
+ c lsoda starts with the nonstiff method). on any return
519
+ c from lsoda, the optional output mcur indicates the current
520
+ c method. if mcur differs from the value it had on the
521
+ c previous return, or if there has only been one call to
522
+ c lsoda and mcur is now 2, then lsoda has switched
523
+ c methods during the last call, and the length of rwork
524
+ c should be reset (to lrn if mcur = 1, or to lrs if
525
+ c mcur = 2). (an increase in the rwork length is required
526
+ c if lsoda returned istate = -7, but not otherwise.)
527
+ c after resetting the length, call lsoda with istate = 3
528
+ c to signal that change.
529
+ c
530
+ c lrw = the length of the array rwork, as declared by the user.
531
+ c (this will be checked by the solver.)
532
+ c
533
+ c iwork = an integer array for work space.
534
+ c as lsoda switches automatically between stiff and nonstiff
535
+ c methods, the required length of iwork can change during
536
+ c problem, between
537
+ c lis = 20 + neq and lin = 20,
538
+ c respectively. thus the iwork array passed to lsoda can
539
+ c either have a fixed length of at least 20 + neq, or have a
540
+ c dynamic length of at least lin or lis, depending on the
541
+ c current method. the comments on dynamic length under
542
+ c rwork above apply here. initially, this length need
543
+ c only be at least lin = 20.
544
+ c
545
+ c the first few words of iwork are used for conditional and
546
+ c optional inputs and optional outputs.
547
+ c
548
+ c the following 2 words in iwork are conditional inputs..
549
+ c iwork(1) = ml these are the lower and upper
550
+ c iwork(2) = mu half-bandwidths, respectively, of the
551
+ c banded jacobian, excluding the main diagonal.
552
+ c the band is defined by the matrix locations
553
+ c (i,j) with i-ml .le. j .le. i+mu. ml and mu
554
+ c must satisfy 0 .le. ml,mu .le. neq-1.
555
+ c these are required if jt is 4 or 5, and
556
+ c ignored otherwise. ml and mu may in fact be
557
+ c the band parameters for a matrix to which
558
+ c df/dy is only approximately equal.
559
+ c
560
+ c liw = the length of the array iwork, as declared by the user.
561
+ c (this will be checked by the solver.)
562
+ c
563
+ c note.. the base addresses of the work arrays must not be
564
+ c altered between calls to lsoda for the same problem.
565
+ c the contents of the work arrays must not be altered
566
+ c between calls, except possibly for the conditional and
567
+ c optional inputs, and except for the last 3*neq words of rwork.
568
+ c the latter space is used for internal scratch space, and so is
569
+ c available for use by the user outside lsoda between calls, if
570
+ c desired (but not for use by f or jac).
571
+ c
572
+ c jac = the name of the user-supplied routine to compute the
573
+ c jacobian matrix, df/dy, if jt = 1 or 4. the jac routine
574
+ c is optional, but if the problem is expected to be stiff much
575
+ c of the time, you are encouraged to supply jac, for the sake
576
+ c of efficiency. (alternatively, set jt = 2 or 5 to have
577
+ c lsoda compute df/dy internally by difference quotients.)
578
+ c if and when lsoda uses df/dy, if treats this neq by neq
579
+ c matrix either as full (jt = 1 or 2), or as banded (jt =
580
+ c 4 or 5) with half-bandwidths ml and mu (discussed under
581
+ c iwork above). in either case, if jt = 1 or 4, the jac
582
+ c routine must compute df/dy as a function of the scalar t
583
+ c and the vector y. it is to have the form
584
+ c subroutine jac (neq, t, y, ml, mu, pd, nrowpd)
585
+ c dimension y(1), pd(nrowpd,1)
586
+ c where neq, t, y, ml, mu, and nrowpd are input and the array
587
+ c pd is to be loaded with partial derivatives (elements of
588
+ c the jacobian matrix) on output. pd must be given a first
589
+ c dimension of nrowpd. t and y have the same meaning as in
590
+ c subroutine f. (in the dimension statement above, 1 is a
591
+ c dummy dimension.. it can be replaced by any value.)
592
+ c in the full matrix case (jt = 1), ml and mu are
593
+ c ignored, and the jacobian is to be loaded into pd in
594
+ c columnwise manner, with df(i)/dy(j) loaded into pd(i,j).
595
+ c in the band matrix case (jt = 4), the elements
596
+ c within the band are to be loaded into pd in columnwise
597
+ c manner, with diagonal lines of df/dy loaded into the rows
598
+ c of pd. thus df(i)/dy(j) is to be loaded into pd(i-j+mu+1,j).
599
+ c ml and mu are the half-bandwidth parameters (see iwork).
600
+ c the locations in pd in the two triangular areas which
601
+ c correspond to nonexistent matrix elements can be ignored
602
+ c or loaded arbitrarily, as they are overwritten by lsoda.
603
+ c jac need not provide df/dy exactly. a crude
604
+ c approximation (possibly with a smaller bandwidth) will do.
605
+ c in either case, pd is preset to zero by the solver,
606
+ c so that only the nonzero elements need be loaded by jac.
607
+ c each call to jac is preceded by a call to f with the same
608
+ c arguments neq, t, and y. thus to gain some efficiency,
609
+ c intermediate quantities shared by both calculations may be
610
+ c saved in a user common block by f and not recomputed by jac,
611
+ c if desired. also, jac may alter the y array, if desired.
612
+ c jac must be declared external in the calling program.
613
+ c subroutine jac may access user-defined quantities in
614
+ c neq(2),... and/or in y(neq(1)+1),... if neq is an array
615
+ c (dimensioned in jac) and/or y has length exceeding neq(1).
616
+ c see the descriptions of neq and y above.
617
+ c
618
+ c jt = jacobian type indicator. used only for input.
619
+ c jt specifies how the jacobian matrix df/dy will be
620
+ c treated, if and when lsoda requires this matrix.
621
+ c jt has the following values and meanings..
622
+ c 1 means a user-supplied full (neq by neq) jacobian.
623
+ c 2 means an internally generated (difference quotient) full
624
+ c jacobian (using neq extra calls to f per df/dy value).
625
+ c 4 means a user-supplied banded jacobian.
626
+ c 5 means an internally generated banded jacobian (using
627
+ c ml+mu+1 extra calls to f per df/dy evaluation).
628
+ c if jt = 1 or 4, the user must supply a subroutine jac
629
+ c (the name is arbitrary) as described above under jac.
630
+ c if jt = 2 or 5, a dummy argument can be used.
631
+ c-----------------------------------------------------------------------
632
+ c optional inputs.
633
+ c
634
+ c the following is a list of the optional inputs provided for in the
635
+ c call sequence. (see also part ii.) for each such input variable,
636
+ c this table lists its name as used in this documentation, its
637
+ c location in the call sequence, its meaning, and the default value.
638
+ c the use of any of these inputs requires iopt = 1, and in that
639
+ c case all of these inputs are examined. a value of zero for any
640
+ c of these optional inputs will cause the default value to be used.
641
+ c thus to use a subset of the optional inputs, simply preload
642
+ c locations 5 to 10 in rwork and iwork to 0.0 and 0 respectively, and
643
+ c then set those of interest to nonzero values.
644
+ c
645
+ c name location meaning and default value
646
+ c
647
+ c h0 rwork(5) the step size to be attempted on the first step.
648
+ c the default value is determined by the solver.
649
+ c
650
+ c hmax rwork(6) the maximum absolute step size allowed.
651
+ c the default value is infinite.
652
+ c
653
+ c hmin rwork(7) the minimum absolute step size allowed.
654
+ c the default value is 0. (this lower bound is not
655
+ c enforced on the final step before reaching tcrit
656
+ c when itask = 4 or 5.)
657
+ c
658
+ c ixpr iwork(5) flag to generate extra printing at method switches.
659
+ c ixpr = 0 means no extra printing (the default).
660
+ c ixpr = 1 means print data on each switch.
661
+ c t, h, and nst will be printed on the same logical
662
+ c unit as used for error messages.
663
+ c
664
+ c mxstep iwork(6) maximum number of (internally defined) steps
665
+ c allowed during one call to the solver.
666
+ c the default value is 500.
667
+ c
668
+ c mxhnil iwork(7) maximum number of messages printed (per problem)
669
+ c warning that t + h = t on a step (h = step size).
670
+ c this must be positive to result in a non-default
671
+ c value. the default value is 10.
672
+ c
673
+ c mxordn iwork(8) the maximum order to be allowed for the nonstiff
674
+ c (adams) method. the default value is 12.
675
+ c if mxordn exceeds the default value, it will
676
+ c be reduced to the default value.
677
+ c mxordn is held constant during the problem.
678
+ c
679
+ c mxords iwork(9) the maximum order to be allowed for the stiff
680
+ c (bdf) method. the default value is 5.
681
+ c if mxords exceeds the default value, it will
682
+ c be reduced to the default value.
683
+ c mxords is held constant during the problem.
684
+ c-----------------------------------------------------------------------
685
+ c optional outputs.
686
+ c
687
+ c as optional additional output from lsoda, the variables listed
688
+ c below are quantities related to the performance of lsoda
689
+ c which are available to the user. these are communicated by way of
690
+ c the work arrays, but also have internal mnemonic names as shown.
691
+ c except where stated otherwise, all of these outputs are defined
692
+ c on any successful return from lsoda, and on any return with
693
+ c istate = -1, -2, -4, -5, or -6. on an illegal input return
694
+ c (istate = -3), they will be unchanged from their existing values
695
+ c (if any), except possibly for tolsf, lenrw, and leniw.
696
+ c on any error return, outputs relevant to the error will be defined,
697
+ c as noted below.
698
+ c
699
+ c name location meaning
700
+ c
701
+ c hu rwork(11) the step size in t last used (successfully).
702
+ c
703
+ c hcur rwork(12) the step size to be attempted on the next step.
704
+ c
705
+ c tcur rwork(13) the current value of the independent variable
706
+ c which the solver has actually reached, i.e. the
707
+ c current internal mesh point in t. on output, tcur
708
+ c will always be at least as far as the argument
709
+ c t, but may be farther (if interpolation was done).
710
+ c
711
+ c tolsf rwork(14) a tolerance scale factor, greater than 1.0,
712
+ c computed when a request for too much accuracy was
713
+ c detected (istate = -3 if detected at the start of
714
+ c the problem, istate = -2 otherwise). if itol is
715
+ c left unaltered but rtol and atol are uniformly
716
+ c scaled up by a factor of tolsf for the next call,
717
+ c then the solver is deemed likely to succeed.
718
+ c (the user may also ignore tolsf and alter the
719
+ c tolerance parameters in any other way appropriate.)
720
+ c
721
+ c tsw rwork(15) the value of t at the time of the last method
722
+ c switch, if any.
723
+ c
724
+ c nst iwork(11) the number of steps taken for the problem so far.
725
+ c
726
+ c nfe iwork(12) the number of f evaluations for the problem so far.
727
+ c
728
+ c nje iwork(13) the number of jacobian evaluations (and of matrix
729
+ c lu decompositions) for the problem so far.
730
+ c
731
+ c nqu iwork(14) the method order last used (successfully).
732
+ c
733
+ c nqcur iwork(15) the order to be attempted on the next step.
734
+ c
735
+ c imxer iwork(16) the index of the component of largest magnitude in
736
+ c the weighted local error vector ( e(i)/ewt(i) ),
737
+ c on an error return with istate = -4 or -5.
738
+ c
739
+ c lenrw iwork(17) the length of rwork actually required, assuming
740
+ c that the length of rwork is to be fixed for the
741
+ c rest of the problem, and that switching may occur.
742
+ c this is defined on normal returns and on an illegal
743
+ c input return for insufficient storage.
744
+ c
745
+ c leniw iwork(18) the length of iwork actually required, assuming
746
+ c that the length of iwork is to be fixed for the
747
+ c rest of the problem, and that switching may occur.
748
+ c this is defined on normal returns and on an illegal
749
+ c input return for insufficient storage.
750
+ c
751
+ c mused iwork(19) the method indicator for the last successful step..
752
+ c 1 means adams (nonstiff), 2 means bdf (stiff).
753
+ c
754
+ c mcur iwork(20) the current method indicator..
755
+ c 1 means adams (nonstiff), 2 means bdf (stiff).
756
+ c this is the method to be attempted
757
+ c on the next step. thus it differs from mused
758
+ c only if a method switch has just been made.
759
+ c
760
+ c the following two arrays are segments of the rwork array which
761
+ c may also be of interest to the user as optional outputs.
762
+ c for each array, the table below gives its internal name,
763
+ c its base address in rwork, and its description.
764
+ c
765
+ c name base address description
766
+ c
767
+ c yh 21 the nordsieck history array, of size nyh by
768
+ c (nqcur + 1), where nyh is the initial value
769
+ c of neq. for j = 0,1,...,nqcur, column j+1
770
+ c of yh contains hcur**j/factorial(j) times
771
+ c the j-th derivative of the interpolating
772
+ c polynomial currently representing the solution,
773
+ c evaluated at t = tcur.
774
+ c
775
+ c acor lacor array of size neq used for the accumulated
776
+ c (from common corrections on each step, scaled on output
777
+ c as noted) to represent the estimated local error in y
778
+ c on the last step. this is the vector e in
779
+ c the description of the error control. it is
780
+ c defined only on a successful return from lsoda.
781
+ c the base address lacor is obtained by
782
+ c including in the user-s program the
783
+ c following 3 lines..
784
+ c double precision rls
785
+ c common /ls0001/ rls(218), ils(39)
786
+ c lacor = ils(5)
787
+ c
788
+ c-----------------------------------------------------------------------
789
+ c part ii. other routines callable.
790
+ c
791
+ c the following are optional calls which the user may make to
792
+ c gain additional capabilities in conjunction with lsoda.
793
+ c (the routines xsetun and xsetf are designed to conform to the
794
+ c slatec error handling package.)
795
+ c
796
+ c form of call function
797
+ c call xsetun(lun) set the logical unit number, lun, for
798
+ c output of messages from lsoda, if
799
+ c the default is not desired.
800
+ c the default value of lun is 6.
801
+ c
802
+ c call xsetf(mflag) set a flag to control the printing of
803
+ c messages by lsoda.
804
+ c mflag = 0 means do not print. (danger..
805
+ c this risks losing valuable information.)
806
+ c mflag = 1 means print (the default).
807
+ c
808
+ c either of the above calls may be made at
809
+ c any time and will take effect immediately.
810
+ c
811
+ c call srcma(rsav,isav,job) saves and restores the contents of
812
+ c the internal common blocks used by
813
+ c lsoda (see part iii below).
814
+ c rsav must be a real array of length 240
815
+ c or more, and isav must be an integer
816
+ c array of length 50 or more.
817
+ c job=1 means save common into rsav/isav.
818
+ c job=2 means restore common from rsav/isav.
819
+ c srcma is useful if one is
820
+ c interrupting a run and restarting
821
+ c later, or alternating between two or
822
+ c more problems solved with lsoda.
823
+ c
824
+ c call intdy(,,,,,) provide derivatives of y, of various
825
+ c (see below) orders, at a specified point t, if
826
+ c desired. it may be called only after
827
+ c a successful return from lsoda.
828
+ c
829
+ c the detailed instructions for using intdy are as follows.
830
+ c the form of the call is..
831
+ c
832
+ c call intdy (t, k, rwork(21), nyh, dky, iflag)
833
+ c
834
+ c the input parameters are..
835
+ c
836
+ c t = value of independent variable where answers are desired
837
+ c (normally the same as the t last returned by lsoda).
838
+ c for valid results, t must lie between tcur - hu and tcur.
839
+ c (see optional outputs for tcur and hu.)
840
+ c k = integer order of the derivative desired. k must satisfy
841
+ c 0 .le. k .le. nqcur, where nqcur is the current order
842
+ c (see optional outputs). the capability corresponding
843
+ c to k = 0, i.e. computing y(t), is already provided
844
+ c by lsoda directly. since nqcur .ge. 1, the first
845
+ c derivative dy/dt is always available with intdy.
846
+ c rwork(21) = the base address of the history array yh.
847
+ c nyh = column length of yh, equal to the initial value of neq.
848
+ c
849
+ c the output parameters are..
850
+ c
851
+ c dky = a real array of length neq containing the computed value
852
+ c of the k-th derivative of y(t).
853
+ c iflag = integer flag, returned as 0 if k and t were legal,
854
+ c -1 if k was illegal, and -2 if t was illegal.
855
+ c on an error return, a message is also written.
856
+ c-----------------------------------------------------------------------
857
+ c part iii. common blocks.
858
+ c
859
+ c if lsoda is to be used in an overlay situation, the user
860
+ c must declare, in the primary overlay, the variables in..
861
+ c (1) the call sequence to lsoda,
862
+ c (2) the three internal common blocks
863
+ c /ls0001/ of length 257 (218 double precision words
864
+ c followed by 39 integer words),
865
+ c /lsa001/ of length 31 (22 double precision words
866
+ c followed by 9 integer words),
867
+ c /eh0001/ of length 2 (integer words).
868
+ c
869
+ c if lsoda is used on a system in which the contents of internal
870
+ c common blocks are not preserved between calls, the user should
871
+ c declare the above common blocks in his main program to insure
872
+ c that their contents are preserved.
873
+ c
874
+ c if the solution of a given problem by lsoda is to be interrupted
875
+ c and then later continued, such as when restarting an interrupted run
876
+ c or alternating between two or more problems, the user should save,
877
+ c following the return from the last lsoda call prior to the
878
+ c interruption, the contents of the call sequence variables and the
879
+ c internal common blocks, and later restore these values before the
880
+ c next lsoda call for that problem. to save and restore the common
881
+ c blocks, use subroutine srcma (see part ii above).
882
+ c
883
+ c-----------------------------------------------------------------------
884
+ c part iv. optionally replaceable solver routines.
885
+ c
886
+ c below is a description of a routine in the lsoda package which
887
+ c relates to the measurement of errors, and can be
888
+ c replaced by a user-supplied version, if desired. however, since such
889
+ c a replacement may have a major impact on performance, it should be
890
+ c done only when absolutely necessary, and only with great caution.
891
+ c (note.. the means by which the package version of a routine is
892
+ c superseded by the user-s version may be system-dependent.)
893
+ c
894
+ c (a) ewset.
895
+ c the following subroutine is called just before each internal
896
+ c integration step, and sets the array of error weights, ewt, as
897
+ c described under itol/rtol/atol above..
898
+ c subroutine ewset (neq, itol, rtol, atol, ycur, ewt)
899
+ c where neq, itol, rtol, and atol are as in the lsoda call sequence,
900
+ c ycur contains the current dependent variable vector, and
901
+ c ewt is the array of weights set by ewset.
902
+ c
903
+ c if the user supplies this subroutine, it must return in ewt(i)
904
+ c (i = 1,...,neq) a positive quantity suitable for comparing errors
905
+ c in y(i) to. the ewt array returned by ewset is passed to the
906
+ c vmnorm routine, and also used by lsoda in the computation
907
+ c of the optional output imxer, and the increments for difference
908
+ c quotient jacobians.
909
+ c
910
+ c in the user-supplied version of ewset, it may be desirable to use
911
+ c the current values of derivatives of y. derivatives up to order nq
912
+ c are available from the history array yh, described above under
913
+ c optional outputs. in ewset, yh is identical to the ycur array,
914
+ c extended to nq + 1 columns with a column length of nyh and scale
915
+ c factors of h**j/factorial(j). on the first call for the problem,
916
+ c given by nst = 0, nq is 1 and h is temporarily set to 1.0.
917
+ c the quantities nq, nyh, h, and nst can be obtained by including
918
+ c in ewset the statements..
919
+ c double precision h, rls
920
+ c common /ls0001/ rls(218),ils(39)
921
+ c nq = ils(35)
922
+ c nyh = ils(14)
923
+ c nst = ils(36)
924
+ c h = rls(212)
925
+ c thus, for example, the current value of dy/dt can be obtained as
926
+ c ycur(nyh+i)/h (i=1,...,neq) (and the division by h is
927
+ c unnecessary when nst = 0).
928
+ c-----------------------------------------------------------------------
929
+ c-----------------------------------------------------------------------
930
+ c other routines in the lsoda package.
931
+ c
932
+ c in addition to subroutine lsoda, the lsoda package includes the
933
+ c following subroutines and function routines..
934
+ c intdy computes an interpolated value of the y vector at t = tout.
935
+ c stoda is the core integrator, which does one step of the
936
+ c integration and the associated error control.
937
+ c cfode sets all method coefficients and test constants.
938
+ c prja computes and preprocesses the jacobian matrix j = df/dy
939
+ c and the newton iteration matrix p = i - h*l0*j.
940
+ c solsy manages solution of linear system in chord iteration.
941
+ c ewset sets the error weight vector ewt before each step.
942
+ c vmnorm computes the weighted max-norm of a vector.
943
+ c fnorm computes the norm of a full matrix consistent with the
944
+ c weighted max-norm on vectors.
945
+ c bnorm computes the norm of a band matrix consistent with the
946
+ c weighted max-norm on vectors.
947
+ c srcma is a user-callable routine to save and restore
948
+ c the contents of the internal common blocks.
949
+ c dgetrf and dgetrs are routines from lapack for solving full
950
+ c systems of linear algebraic equations.
951
+ c dgbtrf and dgbtrs are routines from lapack for solving banded
952
+ c linear systems.
953
+ c daxpy, dscal, idamax, and ddot are basic linear algebra modules
954
+ c (blas) used by the above linpack routines.
955
+ c d1mach computes the unit roundoff in a machine-independent manner.
956
+ c xerrwv, xsetun, and xsetf handle the printing of all error
957
+ c messages and warnings. xerrwv is machine-dependent.
958
+ c note.. vmnorm, fnorm, bnorm, idamax, ddot, and d1mach are function
959
+ c routines. all the others are subroutines.
960
+ c
961
+ c the intrinsic and external routines used by lsoda are..
962
+ c dabs, dmax1, dmin1, dfloat, max0, min0, mod, dsign, dsqrt, and write.
963
+ c
964
+ c a block data subprogram is also included with the package,
965
+ c for loading some of the variables in internal common.
966
+ c
967
+ c-----------------------------------------------------------------------
968
+ c the following card is for optimized compilation on lll compilers.
969
+ clll. optimize
970
+ c-----------------------------------------------------------------------
971
+ external prja, solsy
972
+ integer illin, init, lyh, lewt, lacor, lsavf, lwm, liwm,
973
+ 1 mxstep, mxhnil, nhnil, ntrep, nslast, nyh, iowns
974
+ integer icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
975
+ 1 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
976
+ integer insufr, insufi, ixpr, iowns2, jtyp, mused, mxordn, mxords
977
+ integer i, i1, i2, iflag, imxer, kgo, lf0,
978
+ 1 leniw, lenrw, lenwm, ml, mord, mu, mxhnl0, mxstp0
979
+ integer len1, len1c, len1n, len1s, len2, leniwc,
980
+ 1 lenrwc, lenrwn, lenrws
981
+ double precision rowns,
982
+ 1 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround
983
+ double precision tsw, rowns2, pdnorm
984
+ double precision atoli, ayi, big, ewti, h0, hmax, hmx, rh, rtoli,
985
+ 1 tcrit, tdist, tnext, tol, tolsf, tp, size, sum, w0,
986
+ 2 d1mach, vmnorm
987
+ dimension mord(2)
988
+ logical ihit
989
+ c-----------------------------------------------------------------------
990
+ c the following two internal common blocks contain
991
+ c (a) variables which are local to any subroutine but whose values must
992
+ c be preserved between calls to the routine (own variables), and
993
+ c (b) variables which are communicated between subroutines.
994
+ c the structure of each block is as follows.. all real variables are
995
+ c listed first, followed by all integers. within each type, the
996
+ c variables are grouped with those local to subroutine lsoda first,
997
+ c then those local to subroutine stoda, and finally those used
998
+ c for communication. the block ls0001 is declared in subroutines
999
+ c lsoda, intdy, stoda, prja, and solsy. the block lsa001 is declared
1000
+ c in subroutines lsoda, stoda, and prja. groups of variables are
1001
+ c replaced by dummy arrays in the common declarations in routines
1002
+ c where those variables are not used.
1003
+ c-----------------------------------------------------------------------
1004
+ common /ls0001/ rowns(209),
1005
+ 1 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround,
1006
+ 2 illin, init, lyh, lewt, lacor, lsavf, lwm, liwm,
1007
+ 3 mxstep, mxhnil, nhnil, ntrep, nslast, nyh, iowns(6),
1008
+ 4 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
1009
+ 5 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
1010
+ common /lsa001/ tsw, rowns2(20), pdnorm,
1011
+ 1 insufr, insufi, ixpr, iowns2(2), jtyp, mused, mxordn, mxords
1012
+ c
1013
+ data mord(1),mord(2)/12,5/, mxstp0/500/, mxhnl0/10/
1014
+ c-----------------------------------------------------------------------
1015
+ c block a.
1016
+ c this code block is executed on every call.
1017
+ c it tests istate and itask for legality and branches appropriately.
1018
+ c if istate .gt. 1 but the flag init shows that initialization has
1019
+ c not yet been done, an error return occurs.
1020
+ c if istate = 1 and tout = t, jump to block g and return immediately.
1021
+ c-----------------------------------------------------------------------
1022
+ if (istate .lt. 1 .or. istate .gt. 3) go to 601
1023
+ if (itask .lt. 1 .or. itask .gt. 5) go to 602
1024
+ if (istate .eq. 1) go to 10
1025
+ if (init .eq. 0) go to 603
1026
+ if (istate .eq. 2) go to 200
1027
+ go to 20
1028
+ 10 init = 0
1029
+ if (tout .eq. t) go to 430
1030
+ 20 ntrep = 0
1031
+ c-----------------------------------------------------------------------
1032
+ c block b.
1033
+ c the next code block is executed for the initial call (istate = 1),
1034
+ c or for a continuation call with parameter changes (istate = 3).
1035
+ c it contains checking of all inputs and various initializations.
1036
+ c
1037
+ c first check legality of the non-optional inputs neq, itol, iopt,
1038
+ c jt, ml, and mu.
1039
+ c-----------------------------------------------------------------------
1040
+ if (neq(1) .le. 0) go to 604
1041
+ if (istate .eq. 1) go to 25
1042
+ if (neq(1) .gt. n) go to 605
1043
+ 25 n = neq(1)
1044
+ if (itol .lt. 1 .or. itol .gt. 4) go to 606
1045
+ if (iopt .lt. 0 .or. iopt .gt. 1) go to 607
1046
+ if (jt .eq. 3 .or. jt .lt. 1 .or. jt .gt. 5) go to 608
1047
+ jtyp = jt
1048
+ if (jt .le. 2) go to 30
1049
+ ml = iwork(1)
1050
+ mu = iwork(2)
1051
+ if (ml .lt. 0 .or. ml .ge. n) go to 609
1052
+ if (mu .lt. 0 .or. mu .ge. n) go to 610
1053
+ 30 continue
1054
+ c next process and check the optional inputs. --------------------------
1055
+ if (iopt .eq. 1) go to 40
1056
+ ixpr = 0
1057
+ mxstep = mxstp0
1058
+ mxhnil = mxhnl0
1059
+ hmxi = 0.0d0
1060
+ hmin = 0.0d0
1061
+ if (istate .ne. 1) go to 60
1062
+ h0 = 0.0d0
1063
+ mxordn = mord(1)
1064
+ mxords = mord(2)
1065
+ go to 60
1066
+ 40 ixpr = iwork(5)
1067
+ if (ixpr .lt. 0 .or. ixpr .gt. 1) go to 611
1068
+ mxstep = iwork(6)
1069
+ if (mxstep .lt. 0) go to 612
1070
+ if (mxstep .eq. 0) mxstep = mxstp0
1071
+ mxhnil = iwork(7)
1072
+ if (mxhnil .lt. 0) go to 613
1073
+ if (mxhnil .eq. 0) mxhnil = mxhnl0
1074
+ if (istate .ne. 1) go to 50
1075
+ h0 = rwork(5)
1076
+ mxordn = iwork(8)
1077
+ if (mxordn .lt. 0) go to 628
1078
+ if (mxordn .eq. 0) mxordn = 100
1079
+ mxordn = min0(mxordn,mord(1))
1080
+ mxords = iwork(9)
1081
+ if (mxords .lt. 0) go to 629
1082
+ if (mxords .eq. 0) mxords = 100
1083
+ mxords = min0(mxords,mord(2))
1084
+ if ((tout - t)*h0 .lt. 0.0d0) go to 614
1085
+ 50 hmax = rwork(6)
1086
+ if (hmax .lt. 0.0d0) go to 615
1087
+ hmxi = 0.0d0
1088
+ if (hmax .gt. 0.0d0) hmxi = 1.0d0/hmax
1089
+ hmin = rwork(7)
1090
+ if (hmin .lt. 0.0d0) go to 616
1091
+ c-----------------------------------------------------------------------
1092
+ c set work array pointers and check lengths lrw and liw.
1093
+ c if istate = 1, meth is initialized to 1 here to facilitate the
1094
+ c checking of work space lengths.
1095
+ c pointers to segments of rwork and iwork are named by prefixing l to
1096
+ c the name of the segment. e.g., the segment yh starts at rwork(lyh).
1097
+ c segments of rwork (in order) are denoted yh, wm, ewt, savf, acor.
1098
+ c if the lengths provided are insufficient for the current method,
1099
+ c an error return occurs. this is treated as illegal input on the
1100
+ c first call, but as a problem interruption with istate = -7 on a
1101
+ c continuation call. if the lengths are sufficient for the current
1102
+ c method but not for both methods, a warning message is sent.
1103
+ c-----------------------------------------------------------------------
1104
+ 60 if (istate .eq. 1) meth = 1
1105
+ if (istate .eq. 1) nyh = n
1106
+ lyh = 21
1107
+ len1n = 20 + (mxordn + 1)*nyh
1108
+ len1s = 20 + (mxords + 1)*nyh
1109
+ lwm = len1s + 1
1110
+ if (jt .le. 2) lenwm = n*n + 2
1111
+ if (jt .ge. 4) lenwm = (2*ml + mu + 1)*n + 2
1112
+ len1s = len1s + lenwm
1113
+ len1c = len1n
1114
+ if (meth .eq. 2) len1c = len1s
1115
+ len1 = max0(len1n,len1s)
1116
+ len2 = 3*n
1117
+ lenrw = len1 + len2
1118
+ lenrwn = len1n + len2
1119
+ lenrws = len1s + len2
1120
+ lenrwc = len1c + len2
1121
+ iwork(17) = lenrw
1122
+ liwm = 1
1123
+ leniw = 20 + n
1124
+ leniwc = 20
1125
+ if (meth .eq. 2) leniwc = leniw
1126
+ iwork(18) = leniw
1127
+ if (istate .eq. 1 .and. lrw .lt. lenrwc) go to 617
1128
+ if (istate .eq. 1 .and. liw .lt. leniwc) go to 618
1129
+ if (istate .eq. 3 .and. lrw .lt. lenrwc) go to 550
1130
+ if (istate .eq. 3 .and. liw .lt. leniwc) go to 555
1131
+ lewt = len1 + 1
1132
+ insufr = 0
1133
+ if (lrw .ge. lenrw) go to 65
1134
+ insufr = 2
1135
+ lewt = len1c + 1
1136
+ call xerrwv(
1137
+ 1 'lsoda-- warning.. rwork length is sufficient for now, but ',
1138
+ 1 60, 103, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1139
+ call xerrwv(
1140
+ 1 ' may not be later. integration will proceed anyway. ',
1141
+ 1 60, 103, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1142
+ call xerrwv(
1143
+ 1 ' length needed is lenrw = i1, while lrw = i2.',
1144
+ 1 50, 103, 0, 2, lenrw, lrw, 0, 0.0d0, 0.0d0)
1145
+ 65 lsavf = lewt + n
1146
+ lacor = lsavf + n
1147
+ insufi = 0
1148
+ if (liw .ge. leniw) go to 70
1149
+ insufi = 2
1150
+ call xerrwv(
1151
+ 1 'lsoda-- warning.. iwork length is sufficient for now, but ',
1152
+ 1 60, 104, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1153
+ call xerrwv(
1154
+ 1 ' may not be later. integration will proceed anyway. ',
1155
+ 1 60, 104, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1156
+ call xerrwv(
1157
+ 1 ' length needed is leniw = i1, while liw = i2.',
1158
+ 1 50, 104, 0, 2, leniw, liw, 0, 0.0d0, 0.0d0)
1159
+ 70 continue
1160
+ c check rtol and atol for legality. ------------------------------------
1161
+ rtoli = rtol(1)
1162
+ atoli = atol(1)
1163
+ do 75 i = 1,n
1164
+ if (itol .ge. 3) rtoli = rtol(i)
1165
+ if (itol .eq. 2 .or. itol .eq. 4) atoli = atol(i)
1166
+ if (rtoli .lt. 0.0d0) go to 619
1167
+ if (atoli .lt. 0.0d0) go to 620
1168
+ 75 continue
1169
+ if (istate .eq. 1) go to 100
1170
+ c if istate = 3, set flag to signal parameter changes to stoda. --------
1171
+ jstart = -1
1172
+ if (n .eq. nyh) go to 200
1173
+ c neq was reduced. zero part of yh to avoid undefined references. -----
1174
+ i1 = lyh + l*nyh
1175
+ i2 = lyh + (maxord + 1)*nyh - 1
1176
+ if (i1 .gt. i2) go to 200
1177
+ do 95 i = i1,i2
1178
+ 95 rwork(i) = 0.0d0
1179
+ go to 200
1180
+ c-----------------------------------------------------------------------
1181
+ c block c.
1182
+ c the next block is for the initial call only (istate = 1).
1183
+ c it contains all remaining initializations, the initial call to f,
1184
+ c and the calculation of the initial step size.
1185
+ c the error weights in ewt are inverted after being loaded.
1186
+ c-----------------------------------------------------------------------
1187
+ 100 uround = d1mach(4)
1188
+ tn = t
1189
+ tsw = t
1190
+ maxord = mxordn
1191
+ if (itask .ne. 4 .and. itask .ne. 5) go to 110
1192
+ tcrit = rwork(1)
1193
+ if ((tcrit - tout)*(tout - t) .lt. 0.0d0) go to 625
1194
+ if (h0 .ne. 0.0d0 .and. (t + h0 - tcrit)*h0 .gt. 0.0d0)
1195
+ 1 h0 = tcrit - t
1196
+ 110 jstart = 0
1197
+ nhnil = 0
1198
+ nst = 0
1199
+ nje = 0
1200
+ nslast = 0
1201
+ hu = 0.0d0
1202
+ nqu = 0
1203
+ mused = 0
1204
+ miter = 0
1205
+ ccmax = 0.3d0
1206
+ maxcor = 3
1207
+ msbp = 20
1208
+ mxncf = 10
1209
+ c initial call to f. (lf0 points to yh(*,2).) -------------------------
1210
+ lf0 = lyh + nyh
1211
+ call srcma(rsav, isav, 1)
1212
+ call f (neq, t, y, rwork(lf0))
1213
+ call srcma(rsav, isav, 2)
1214
+ nfe = 1
1215
+ c load the initial value vector in yh. ---------------------------------
1216
+ do 115 i = 1,n
1217
+ 115 rwork(i+lyh-1) = y(i)
1218
+ c load and invert the ewt array. (h is temporarily set to 1.0.) -------
1219
+ nq = 1
1220
+ h = 1.0d0
1221
+ call ewset (n, itol, rtol, atol, rwork(lyh), rwork(lewt))
1222
+ do 120 i = 1,n
1223
+ if (rwork(i+lewt-1) .le. 0.0d0) go to 621
1224
+ 120 rwork(i+lewt-1) = 1.0d0/rwork(i+lewt-1)
1225
+ c-----------------------------------------------------------------------
1226
+ c the coding below computes the step size, h0, to be attempted on the
1227
+ c first step, unless the user has supplied a value for this.
1228
+ c first check that tout - t differs significantly from zero.
1229
+ c a scalar tolerance quantity tol is computed, as max(rtol(i))
1230
+ c if this is positive, or max(atol(i)/abs(y(i))) otherwise, adjusted
1231
+ c so as to be between 100*uround and 1.0e-3.
1232
+ c then the computed value h0 is given by..
1233
+ c
1234
+ c h0**(-2) = 1./(tol * w0**2) + tol * (norm(f))**2
1235
+ c
1236
+ c where w0 = max ( abs(t), abs(tout) ),
1237
+ c f = the initial value of the vector f(t,y), and
1238
+ c norm() = the weighted vector norm used throughout, given by
1239
+ c the vmnorm function routine, and weighted by the
1240
+ c tolerances initially loaded into the ewt array.
1241
+ c the sign of h0 is inferred from the initial values of tout and t.
1242
+ c abs(h0) is made .le. abs(tout-t) in any case.
1243
+ c-----------------------------------------------------------------------
1244
+ if (h0 .ne. 0.0d0) go to 180
1245
+ tdist = dabs(tout - t)
1246
+ w0 = dmax1(dabs(t),dabs(tout))
1247
+ if (tdist .lt. 2.0d0*uround*w0) go to 622
1248
+ tol = rtol(1)
1249
+ if (itol .le. 2) go to 140
1250
+ do 130 i = 1,n
1251
+ 130 tol = dmax1(tol,rtol(i))
1252
+ 140 if (tol .gt. 0.0d0) go to 160
1253
+ atoli = atol(1)
1254
+ do 150 i = 1,n
1255
+ if (itol .eq. 2 .or. itol .eq. 4) atoli = atol(i)
1256
+ ayi = dabs(y(i))
1257
+ if (ayi .ne. 0.0d0) tol = dmax1(tol,atoli/ayi)
1258
+ 150 continue
1259
+ 160 tol = dmax1(tol,100.0d0*uround)
1260
+ tol = dmin1(tol,0.001d0)
1261
+ sum = vmnorm (n, rwork(lf0), rwork(lewt))
1262
+ sum = 1.0d0/(tol*w0*w0) + tol*sum**2
1263
+ h0 = 1.0d0/dsqrt(sum)
1264
+ h0 = dmin1(h0,tdist)
1265
+ h0 = dsign(h0,tout-t)
1266
+ c adjust h0 if necessary to meet hmax bound. ---------------------------
1267
+ 180 rh = dabs(h0)*hmxi
1268
+ if (rh .gt. 1.0d0) h0 = h0/rh
1269
+ c load h with h0 and scale yh(*,2) by h0. ------------------------------
1270
+ h = h0
1271
+ do 190 i = 1,n
1272
+ 190 rwork(i+lf0-1) = h0*rwork(i+lf0-1)
1273
+ go to 270
1274
+ c-----------------------------------------------------------------------
1275
+ c block d.
1276
+ c the next code block is for continuation calls only (istate = 2 or 3)
1277
+ c and is to check stop conditions before taking a step.
1278
+ c-----------------------------------------------------------------------
1279
+ 200 nslast = nst
1280
+ go to (210, 250, 220, 230, 240), itask
1281
+ 210 if ((tn - tout)*h .lt. 0.0d0) go to 250
1282
+ call intdy (tout, 0, rwork(lyh), nyh, y, iflag)
1283
+ if (iflag .ne. 0) go to 627
1284
+ t = tout
1285
+ go to 420
1286
+ 220 tp = tn - hu*(1.0d0 + 100.0d0*uround)
1287
+ if ((tp - tout)*h .gt. 0.0d0) go to 623
1288
+ if ((tn - tout)*h .lt. 0.0d0) go to 250
1289
+ t = tn
1290
+ go to 400
1291
+ 230 tcrit = rwork(1)
1292
+ if ((tn - tcrit)*h .gt. 0.0d0) go to 624
1293
+ if ((tcrit - tout)*h .lt. 0.0d0) go to 625
1294
+ if ((tn - tout)*h .lt. 0.0d0) go to 245
1295
+ call intdy (tout, 0, rwork(lyh), nyh, y, iflag)
1296
+ if (iflag .ne. 0) go to 627
1297
+ t = tout
1298
+ go to 420
1299
+ 240 tcrit = rwork(1)
1300
+ if ((tn - tcrit)*h .gt. 0.0d0) go to 624
1301
+ 245 hmx = dabs(tn) + dabs(h)
1302
+ ihit = dabs(tn - tcrit) .le. 100.0d0*uround*hmx
1303
+ if (ihit) t = tcrit
1304
+ if (ihit) go to 400
1305
+ tnext = tn + h*(1.0d0 + 4.0d0*uround)
1306
+ if ((tnext - tcrit)*h .le. 0.0d0) go to 250
1307
+ h = (tcrit - tn)*(1.0d0 - 4.0d0*uround)
1308
+ if (istate .eq. 2 .and. jstart .ge. 0) jstart = -2
1309
+ c-----------------------------------------------------------------------
1310
+ c block e.
1311
+ c the next block is normally executed for all calls and contains
1312
+ c the call to the one-step core integrator stoda.
1313
+ c
1314
+ c this is a looping point for the integration steps.
1315
+ c
1316
+ c first check for too many steps being taken, update ewt (if not at
1317
+ c start of problem), check for too much accuracy being requested, and
1318
+ c check for h below the roundoff level in t.
1319
+ c-----------------------------------------------------------------------
1320
+ 250 continue
1321
+ if (meth .eq. mused) go to 255
1322
+ if (insufr .eq. 1) go to 550
1323
+ if (insufi .eq. 1) go to 555
1324
+ 255 if ((nst-nslast) .ge. mxstep) go to 500
1325
+ call ewset (n, itol, rtol, atol, rwork(lyh), rwork(lewt))
1326
+ do 260 i = 1,n
1327
+ if (rwork(i+lewt-1) .le. 0.0d0) go to 510
1328
+ 260 rwork(i+lewt-1) = 1.0d0/rwork(i+lewt-1)
1329
+ 270 tolsf = uround*vmnorm (n, rwork(lyh), rwork(lewt))
1330
+ if (tolsf .le. 0.01d0) go to 280
1331
+ tolsf = tolsf*200.0d0
1332
+ if (nst .eq. 0) go to 626
1333
+ go to 520
1334
+ 280 if ((tn + h) .ne. tn) go to 290
1335
+ nhnil = nhnil + 1
1336
+ if (nhnil .gt. mxhnil) go to 290
1337
+ call xerrwv('lsoda-- warning..internal t (=r1) and h (=r2) are',
1338
+ 1 50, 101, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1339
+ call xerrwv(
1340
+ 1 ' such that in the machine, t + h = t on the next step ',
1341
+ 1 60, 101, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1342
+ call xerrwv(' (h = step size). solver will continue anyway',
1343
+ 1 50, 101, 0, 0, 0, 0, 2, tn, h)
1344
+ if (nhnil .lt. mxhnil) go to 290
1345
+ call xerrwv('lsoda-- above warning has been issued i1 times. ',
1346
+ 1 50, 102, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1347
+ call xerrwv(' it will not be issued again for this problem',
1348
+ 1 50, 102, 0, 1, mxhnil, 0, 0, 0.0d0, 0.0d0)
1349
+ 290 continue
1350
+ c-----------------------------------------------------------------------
1351
+ c call stoda(neq,y,yh,nyh,yh,ewt,savf,acor,wm,iwm,f,jac,prja,solsy)
1352
+ c-----------------------------------------------------------------------
1353
+ call stoda (neq, y, rwork(lyh), nyh, rwork(lyh), rwork(lewt),
1354
+ 1 rwork(lsavf), rwork(lacor), rwork(lwm), iwork(liwm),
1355
+ 2 f, jac, prja, solsy)
1356
+ kgo = 1 - kflag
1357
+ go to (300, 530, 540), kgo
1358
+ c-----------------------------------------------------------------------
1359
+ c block f.
1360
+ c the following block handles the case of a successful return from the
1361
+ c core integrator (kflag = 0).
1362
+ c if a method switch was just made, record tsw, reset maxord,
1363
+ c set jstart to -1 to signal stoda to complete the switch,
1364
+ c and do extra printing of data if ixpr = 1.
1365
+ c then, in any case, check for stop conditions.
1366
+ c-----------------------------------------------------------------------
1367
+ 300 init = 1
1368
+ if (meth .eq. mused) go to 310
1369
+ tsw = tn
1370
+ maxord = mxordn
1371
+ if (meth .eq. 2) maxord = mxords
1372
+ if (meth .eq. 2) rwork(lwm) = dsqrt(uround)
1373
+ insufr = min0(insufr,1)
1374
+ insufi = min0(insufi,1)
1375
+ jstart = -1
1376
+ if (ixpr .eq. 0) go to 310
1377
+ if (meth .eq. 2) call xerrwv(
1378
+ 1 'lsoda-- a switch to the bdf (stiff) method has occurred ',
1379
+ 1 60, 105, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1380
+ if (meth .eq. 1) call xerrwv(
1381
+ 1 'lsoda-- a switch to the adams (nonstiff) method has occurred',
1382
+ 1 60, 106, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1383
+ call xerrwv(
1384
+ 1 ' at t = r1, tentative step size h = r2, step nst = i1 ',
1385
+ 1 60, 107, 0, 1, nst, 0, 2, tn, h)
1386
+ 310 go to (320, 400, 330, 340, 350), itask
1387
+ c itask = 1. if tout has been reached, interpolate. -------------------
1388
+ 320 if ((tn - tout)*h .lt. 0.0d0) go to 250
1389
+ call intdy (tout, 0, rwork(lyh), nyh, y, iflag)
1390
+ t = tout
1391
+ go to 420
1392
+ c itask = 3. jump to exit if tout was reached. ------------------------
1393
+ 330 if ((tn - tout)*h .ge. 0.0d0) go to 400
1394
+ go to 250
1395
+ c itask = 4. see if tout or tcrit was reached. adjust h if necessary.
1396
+ 340 if ((tn - tout)*h .lt. 0.0d0) go to 345
1397
+ call intdy (tout, 0, rwork(lyh), nyh, y, iflag)
1398
+ t = tout
1399
+ go to 420
1400
+ 345 hmx = dabs(tn) + dabs(h)
1401
+ ihit = dabs(tn - tcrit) .le. 100.0d0*uround*hmx
1402
+ if (ihit) go to 400
1403
+ tnext = tn + h*(1.0d0 + 4.0d0*uround)
1404
+ if ((tnext - tcrit)*h .le. 0.0d0) go to 250
1405
+ h = (tcrit - tn)*(1.0d0 - 4.0d0*uround)
1406
+ if (jstart .ge. 0) jstart = -2
1407
+ go to 250
1408
+ c itask = 5. see if tcrit was reached and jump to exit. ---------------
1409
+ 350 hmx = dabs(tn) + dabs(h)
1410
+ ihit = dabs(tn - tcrit) .le. 100.0d0*uround*hmx
1411
+ c-----------------------------------------------------------------------
1412
+ c block g.
1413
+ c the following block handles all successful returns from lsoda.
1414
+ c if itask .ne. 1, y is loaded from yh and t is set accordingly.
1415
+ c istate is set to 2, the illegal input counter is zeroed, and the
1416
+ c optional outputs are loaded into the work arrays before returning.
1417
+ c if istate = 1 and tout = t, there is a return with no action taken,
1418
+ c except that if this has happened repeatedly, the run is terminated.
1419
+ c-----------------------------------------------------------------------
1420
+ 400 do 410 i = 1,n
1421
+ 410 y(i) = rwork(i+lyh-1)
1422
+ t = tn
1423
+ if (itask .ne. 4 .and. itask .ne. 5) go to 420
1424
+ if (ihit) t = tcrit
1425
+ 420 istate = 2
1426
+ illin = 0
1427
+ rwork(11) = hu
1428
+ rwork(12) = h
1429
+ rwork(13) = tn
1430
+ rwork(15) = tsw
1431
+ iwork(11) = nst
1432
+ iwork(12) = nfe
1433
+ iwork(13) = nje
1434
+ iwork(14) = nqu
1435
+ iwork(15) = nq
1436
+ iwork(19) = mused
1437
+ iwork(20) = meth
1438
+ return
1439
+ c
1440
+ 430 ntrep = ntrep + 1
1441
+ if (ntrep .lt. 5) return
1442
+ call xerrwv(
1443
+ 1 'lsoda-- repeated calls with istate = 1 and tout = t (=r1) ',
1444
+ 1 60, 301, 0, 0, 0, 0, 1, t, 0.0d0)
1445
+ go to 800
1446
+ c-----------------------------------------------------------------------
1447
+ c block h.
1448
+ c the following block handles all unsuccessful returns other than
1449
+ c those for illegal input. first the error message routine is called.
1450
+ c if there was an error test or convergence test failure, imxer is set.
1451
+ c then y is loaded from yh, t is set to tn, and the illegal input
1452
+ c counter illin is set to 0. the optional outputs are loaded into
1453
+ c the work arrays before returning.
1454
+ c-----------------------------------------------------------------------
1455
+ c the maximum number of steps was taken before reaching tout. ----------
1456
+ 500 call xerrwv('lsoda-- at current t (=r1), mxstep (=i1) steps ',
1457
+ 1 50, 201, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1458
+ call xerrwv(' taken on this call before reaching tout ',
1459
+ 1 50, 201, 0, 1, mxstep, 0, 1, tn, 0.0d0)
1460
+ istate = -1
1461
+ go to 580
1462
+ c ewt(i) .le. 0.0 for some i (not at start of problem). ----------------
1463
+ 510 ewti = rwork(lewt+i-1)
1464
+ call xerrwv('lsoda-- at t (=r1), ewt(i1) has become r2 .le. 0.',
1465
+ 1 50, 202, 0, 1, i, 0, 2, tn, ewti)
1466
+ istate = -6
1467
+ go to 580
1468
+ c too much accuracy requested for machine precision. -------------------
1469
+ 520 call xerrwv('lsoda-- at t (=r1), too much accuracy requested ',
1470
+ 1 50, 203, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1471
+ call xerrwv(' for precision of machine.. see tolsf (=r2) ',
1472
+ 1 50, 203, 0, 0, 0, 0, 2, tn, tolsf)
1473
+ rwork(14) = tolsf
1474
+ istate = -2
1475
+ go to 580
1476
+ c kflag = -1. error test failed repeatedly or with abs(h) = hmin. -----
1477
+ 530 call xerrwv('lsoda-- at t(=r1) and step size h(=r2), the error',
1478
+ 1 50, 204, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1479
+ call xerrwv(' test failed repeatedly or with abs(h) = hmin',
1480
+ 1 50, 204, 0, 0, 0, 0, 2, tn, h)
1481
+ istate = -4
1482
+ go to 560
1483
+ c kflag = -2. convergence failed repeatedly or with abs(h) = hmin. ----
1484
+ 540 call xerrwv('lsoda-- at t (=r1) and step size h (=r2), the ',
1485
+ 1 50, 205, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1486
+ call xerrwv(' corrector convergence failed repeatedly ',
1487
+ 1 50, 205, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1488
+ call xerrwv(' or with abs(h) = hmin ',
1489
+ 1 30, 205, 0, 0, 0, 0, 2, tn, h)
1490
+ istate = -5
1491
+ go to 560
1492
+ c rwork length too small to proceed. -----------------------------------
1493
+ 550 call xerrwv('lsoda-- at current t(=r1), rwork length too small',
1494
+ 1 50, 206, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1495
+ call xerrwv(
1496
+ 1 ' to proceed. the integration was otherwise successful.',
1497
+ 1 60, 206, 0, 0, 0, 0, 1, tn, 0.0d0)
1498
+ istate = -7
1499
+ go to 580
1500
+ c iwork length too small to proceed. -----------------------------------
1501
+ 555 call xerrwv('lsoda-- at current t(=r1), iwork length too small',
1502
+ 1 50, 207, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1503
+ call xerrwv(
1504
+ 1 ' to proceed. the integration was otherwise successful.',
1505
+ 1 60, 207, 0, 0, 0, 0, 1, tn, 0.0d0)
1506
+ istate = -7
1507
+ go to 580
1508
+ c compute imxer if relevant. -------------------------------------------
1509
+ 560 big = 0.0d0
1510
+ imxer = 1
1511
+ do 570 i = 1,n
1512
+ size = dabs(rwork(i+lacor-1)*rwork(i+lewt-1))
1513
+ if (big .ge. size) go to 570
1514
+ big = size
1515
+ imxer = i
1516
+ 570 continue
1517
+ iwork(16) = imxer
1518
+ c set y vector, t, illin, and optional outputs. ------------------------
1519
+ 580 do 590 i = 1,n
1520
+ 590 y(i) = rwork(i+lyh-1)
1521
+ t = tn
1522
+ illin = 0
1523
+ rwork(11) = hu
1524
+ rwork(12) = h
1525
+ rwork(13) = tn
1526
+ rwork(15) = tsw
1527
+ iwork(11) = nst
1528
+ iwork(12) = nfe
1529
+ iwork(13) = nje
1530
+ iwork(14) = nqu
1531
+ iwork(15) = nq
1532
+ iwork(19) = mused
1533
+ iwork(20) = meth
1534
+ return
1535
+ c-----------------------------------------------------------------------
1536
+ c block i.
1537
+ c the following block handles all error returns due to illegal input
1538
+ c (istate = -3), as detected before calling the core integrator.
1539
+ c first the error message routine is called. then if there have been
1540
+ c 5 consecutive such returns just before this call to the solver,
1541
+ c the run is halted.
1542
+ c-----------------------------------------------------------------------
1543
+ 601 call xerrwv('lsoda-- istate (=i1) illegal ',
1544
+ 1 30, 1, 0, 1, istate, 0, 0, 0.0d0, 0.0d0)
1545
+ go to 700
1546
+ 602 call xerrwv('lsoda-- itask (=i1) illegal ',
1547
+ 1 30, 2, 0, 1, itask, 0, 0, 0.0d0, 0.0d0)
1548
+ go to 700
1549
+ 603 call xerrwv('lsoda-- istate .gt. 1 but lsoda not initialized ',
1550
+ 1 50, 3, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1551
+ go to 700
1552
+ 604 call xerrwv('lsoda-- neq (=i1) .lt. 1 ',
1553
+ 1 30, 4, 0, 1, neq(1), 0, 0, 0.0d0, 0.0d0)
1554
+ go to 700
1555
+ 605 call xerrwv('lsoda-- istate = 3 and neq increased (i1 to i2) ',
1556
+ 1 50, 5, 0, 2, n, neq(1), 0, 0.0d0, 0.0d0)
1557
+ go to 700
1558
+ 606 call xerrwv('lsoda-- itol (=i1) illegal ',
1559
+ 1 30, 6, 0, 1, itol, 0, 0, 0.0d0, 0.0d0)
1560
+ go to 700
1561
+ 607 call xerrwv('lsoda-- iopt (=i1) illegal ',
1562
+ 1 30, 7, 0, 1, iopt, 0, 0, 0.0d0, 0.0d0)
1563
+ go to 700
1564
+ 608 call xerrwv('lsoda-- jt (=i1) illegal ',
1565
+ 1 30, 8, 0, 1, jt, 0, 0, 0.0d0, 0.0d0)
1566
+ go to 700
1567
+ 609 call xerrwv('lsoda-- ml (=i1) illegal.. .lt.0 or .ge.neq (=i2)',
1568
+ 1 50, 9, 0, 2, ml, neq(1), 0, 0.0d0, 0.0d0)
1569
+ go to 700
1570
+ 610 call xerrwv('lsoda-- mu (=i1) illegal.. .lt.0 or .ge.neq (=i2)',
1571
+ 1 50, 10, 0, 2, mu, neq(1), 0, 0.0d0, 0.0d0)
1572
+ go to 700
1573
+ 611 call xerrwv('lsoda-- ixpr (=i1) illegal ',
1574
+ 1 30, 11, 0, 1, ixpr, 0, 0, 0.0d0, 0.0d0)
1575
+ go to 700
1576
+ 612 call xerrwv('lsoda-- mxstep (=i1) .lt. 0 ',
1577
+ 1 30, 12, 0, 1, mxstep, 0, 0, 0.0d0, 0.0d0)
1578
+ go to 700
1579
+ 613 call xerrwv('lsoda-- mxhnil (=i1) .lt. 0 ',
1580
+ 1 30, 13, 0, 1, mxhnil, 0, 0, 0.0d0, 0.0d0)
1581
+ go to 700
1582
+ 614 call xerrwv('lsoda-- tout (=r1) behind t (=r2) ',
1583
+ 1 40, 14, 0, 0, 0, 0, 2, tout, t)
1584
+ call xerrwv(' integration direction is given by h0 (=r1) ',
1585
+ 1 50, 14, 0, 0, 0, 0, 1, h0, 0.0d0)
1586
+ go to 700
1587
+ 615 call xerrwv('lsoda-- hmax (=r1) .lt. 0.0 ',
1588
+ 1 30, 15, 0, 0, 0, 0, 1, hmax, 0.0d0)
1589
+ go to 700
1590
+ 616 call xerrwv('lsoda-- hmin (=r1) .lt. 0.0 ',
1591
+ 1 30, 16, 0, 0, 0, 0, 1, hmin, 0.0d0)
1592
+ go to 700
1593
+ 617 call xerrwv(
1594
+ 1 'lsoda-- rwork length needed, lenrw (=i1), exceeds lrw (=i2)',
1595
+ 1 60, 17, 0, 2, lenrw, lrw, 0, 0.0d0, 0.0d0)
1596
+ go to 700
1597
+ 618 call xerrwv(
1598
+ 1 'lsoda-- iwork length needed, leniw (=i1), exceeds liw (=i2)',
1599
+ 1 60, 18, 0, 2, leniw, liw, 0, 0.0d0, 0.0d0)
1600
+ go to 700
1601
+ 619 call xerrwv('lsoda-- rtol(i1) is r1 .lt. 0.0 ',
1602
+ 1 40, 19, 0, 1, i, 0, 1, rtoli, 0.0d0)
1603
+ go to 700
1604
+ 620 call xerrwv('lsoda-- atol(i1) is r1 .lt. 0.0 ',
1605
+ 1 40, 20, 0, 1, i, 0, 1, atoli, 0.0d0)
1606
+ go to 700
1607
+ 621 ewti = rwork(lewt+i-1)
1608
+ call xerrwv('lsoda-- ewt(i1) is r1 .le. 0.0 ',
1609
+ 1 40, 21, 0, 1, i, 0, 1, ewti, 0.0d0)
1610
+ go to 700
1611
+ 622 call xerrwv(
1612
+ 1 'lsoda-- tout (=r1) too close to t(=r2) to start integration',
1613
+ 1 60, 22, 0, 0, 0, 0, 2, tout, t)
1614
+ go to 700
1615
+ 623 call xerrwv(
1616
+ 1 'lsoda-- itask = i1 and tout (=r1) behind tcur - hu (= r2) ',
1617
+ 1 60, 23, 0, 1, itask, 0, 2, tout, tp)
1618
+ go to 700
1619
+ 624 call xerrwv(
1620
+ 1 'lsoda-- itask = 4 or 5 and tcrit (=r1) behind tcur (=r2) ',
1621
+ 1 60, 24, 0, 0, 0, 0, 2, tcrit, tn)
1622
+ go to 700
1623
+ 625 call xerrwv(
1624
+ 1 'lsoda-- itask = 4 or 5 and tcrit (=r1) behind tout (=r2) ',
1625
+ 1 60, 25, 0, 0, 0, 0, 2, tcrit, tout)
1626
+ go to 700
1627
+ 626 call xerrwv('lsoda-- at start of problem, too much accuracy ',
1628
+ 1 50, 26, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1629
+ call xerrwv(
1630
+ 1 ' requested for precision of machine.. see tolsf (=r1) ',
1631
+ 1 60, 26, 0, 0, 0, 0, 1, tolsf, 0.0d0)
1632
+ rwork(14) = tolsf
1633
+ go to 700
1634
+ 627 call xerrwv('lsoda-- trouble from intdy. itask = i1, tout = r1',
1635
+ 1 50, 27, 0, 1, itask, 0, 1, tout, 0.0d0)
1636
+ go to 700
1637
+ 628 call xerrwv('lsoda-- mxordn (=i1) .lt. 0 ',
1638
+ 1 30, 28, 0, 1, mxordn, 0, 0, 0.0d0, 0.0d0)
1639
+ go to 700
1640
+ 629 call xerrwv('lsoda-- mxords (=i1) .lt. 0 ',
1641
+ 1 30, 29, 0, 1, mxords, 0, 0, 0.0d0, 0.0d0)
1642
+ c
1643
+ 700 if (illin .eq. 5) go to 710
1644
+ illin = illin + 1
1645
+ istate = -3
1646
+ return
1647
+ 710 call xerrwv('lsoda-- repeated occurrences of illegal input ',
1648
+ 1 50, 302, 0, 0, 0, 0, 0, 0.0d0, 0.0d0)
1649
+ c
1650
+ 800 call xerrwv('lsoda-- run aborted.. apparent infinite loop ',
1651
+ 1 50, 303, 2, 0, 0, 0, 0, 0.0d0, 0.0d0)
1652
+ return
1653
+ c----------------------- end of subroutine lsoda -----------------------
1654
+ end