nysol-mining 3.0.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,631 @@
1
+ #!/usr/bin/env ruby
2
+ #encoding:utf-8
3
+
4
+ require 'rubygems'
5
+ require 'nysol/mcmd'
6
+
7
+ # w=とclass=のバグ修正 20151209
8
+ $version=1.2
9
+ $revision="###VERSION###"
10
+
11
+
12
+ def help
13
+
14
+ STDERR.puts <<EOF
15
+ ------------------------------
16
+ mnb.rb version #{$version}
17
+ ------------------------------
18
+ 概要) Naive Bayesを利用した分類器
19
+ 特徴) 1) ベイズの定理による確率モデルを用いた教師あり学習の分類器
20
+ 2) アイテムの頻度情報を扱えるようにMultinominal Naive Bayesを利用
21
+ 3) ラプラススムージングによりゼロ頻度問題を調整(注1参照)
22
+ 4) complement Naive Bayesも利用可能
23
+ 用法1) モデル構築モード
24
+ mnb.rb [tid=] [item=] [w=] [class=] i= O= [seed=] [-complement] [-cv] [T=] [-mcmdenv] [--help]
25
+ 用法2) 予測モード
26
+ mnb.rb -predict i= I= o= [-complement] [T=] [--help] [-mcmdenv]
27
+
28
+ 例) mnb.rb tid=tid item=word w=freq class=class i=train.csv O=output seed=1 -cv
29
+ mnb.rb tid=tid item=word w=freq i=test.csv I=output o=rsl_predict_model -predict
30
+
31
+ ## モデル構築モード
32
+ i= : 入力データのファイル名【必須】
33
+ tid= : 1つのサンプルを表す項目名【デフォルト:"tid"】
34
+ item= : 1つの変数を表す項目名【デフォルト:"item"】
35
+ w= : 変数の重み項目名 【オプション】
36
+ : 指定しなければ、全行1とする。
37
+ class= : 目的変数の項目名(i=上の項目名)【デフォルト:"class"】
38
+ seed= : 乱数の種(0以上の整数,交差検証に影響)【オプション:default=-1(時間依存)】
39
+ O= : 出力ディレクト名 【必須】
40
+ -complement : complement Naive Bayesで実行【オプション】
41
+ -cv : 交差検証の実施。デフォルトではテストサンプル法を実施
42
+
43
+ その他
44
+ T= : 作業ディレクトリ【デフォルト:"/tmp"】
45
+ -mcmdenv : 内部のMCMDのコマンドメッセージを表示
46
+ --help : ヘルプの表示
47
+
48
+
49
+ ## 予測モード(-predict)
50
+ I= : モデル構築モードでの出力先ディレクトリパス 【必須】
51
+ o= : 予測結果出力ファイル名 [必須]
52
+ i= : 未知データのファイル名 [必須]
53
+ tid=,item=,w= については、モデル構築モードと同じ項目名を持つ入力ファイルが必要である。
54
+
55
+ 注1) ゼロ頻度問題は、テストで初めて出現したアイテムを含む場合に確率がゼロになる問題
56
+
57
+ 利用例)
58
+ $ more train.csv
59
+ tid,item,freq,class
60
+ 1,w1,2,M
61
+ 1,w2,4,M
62
+ 10,w1,1,F
63
+ 11,w2,1,F
64
+ 11,w1,2,F
65
+ 12,w1,4,M
66
+ 12,w2,4,M
67
+ 13,w3,3,M
68
+ 13,w2,2,M
69
+ 13,w1,4,M
70
+ 14,w1,5,M
71
+ 14,w2,3,M
72
+ 14,w3,2,M
73
+ 15,w1,1,F
74
+ 16,w1,2,F
75
+ 16,w2,1,F
76
+ 18,w2,4,F
77
+ 18,w1,2,F
78
+ 19,w2,2,F
79
+ 19,w1,1,F
80
+ 19,w3,3,F
81
+ 2,w2,2,M
82
+ 2,w1,3,M
83
+ 2,w3,3,M
84
+ 20,w1,1,F
85
+ 20,w2,3,F
86
+ 20,w3,2,F
87
+ 4,w3,2,M
88
+ 4,w2,3,M
89
+ 4,w1,3,M
90
+ 5,w1,1,F
91
+ 6,w2,1,F
92
+ 6,w1,1,F
93
+ 7,w1,3,M
94
+ 7,w2,4,M
95
+ 8,w2,2,M
96
+ 8,w3,3,M
97
+ 8,w1,4,M
98
+ 9,w1,3,M
99
+ 9,w3,2,M
100
+ 9,w2,3,M
101
+ 17,w2,1,M
102
+ 17,w1,2,M
103
+ 3,w1,1,F
104
+ 3,w2,1,F
105
+
106
+ $ mnb.rb tid=tid item=word w=freq class=class i=trainData.csv O=model seed=1
107
+ #MSG# separating data 1; 2014/08/18 12:17:38
108
+ #MSG# separating data 2; 2014/08/18 12:17:38
109
+ #MSG# separating data 3; 2014/08/18 12:17:38
110
+ #MSG# separating data 4; 2014/08/18 12:17:38
111
+ #MSG# separating data 5; 2014/08/18 12:17:38
112
+ #MSG# separating data 6; 2014/08/18 12:17:38
113
+ #MSG# separating data 7; 2014/08/18 12:17:38
114
+ #MSG# separating data 8; 2014/08/18 12:17:38
115
+ #MSG# separating data 9; 2014/08/18 12:17:38
116
+ #MSG# separating data 10; 2014/08/18 12:17:38
117
+ #MSG# Naive Bayes start using training data 1; 2014/08/18 12:17:38
118
+ #MSG# Naive Bayes start using test data 1; 2014/08/18 12:17:38
119
+ #END# ./mnb.rb tid=tid item=word w=freq class=class i=trainData.csv O=model seed=1; 2014/08/18 12:17:39
120
+ #MSG# Naive Bayes start using original data; 2014/08/18 12:17:39
121
+ #END# ./mnb.rb tid=tid item=word w=freq class=class i=trainData.csv O=model seed=1; 2014/08/18 12:17:39
122
+
123
+ $ more model/rsl_model.csv
124
+ tid,F,M,class,predictCls
125
+ 1,0.5149523047,0.4850476955,M,F
126
+ 10,0.4929065867,0.5070934133,F,M
127
+ 11,0.5019607343,0.4980392657,F,F
128
+ 12,0.5089038694,0.4910961304,M,F
129
+ 13,0.4918393826,0.5081606174,M,M
130
+ 14,0.4966021486,0.5033978514,M,M
131
+ 15,0.4929065867,0.5070934133,F,M
132
+ ...
133
+ ...
134
+
135
+ Copyright(c) NYSOL 2012- All Rights Reserved.
136
+ EOF
137
+ exit
138
+ end
139
+
140
+ def ver()
141
+ $revision ="0" if $revision =~ /VERSION/
142
+ STDERR.puts "version #{$version} revision #{$revision}"
143
+ exit
144
+ end
145
+
146
+ help() if ARGV[0]=="--help" or ARGV.size <= 0
147
+ ver() if ARGV[0]=="--version"
148
+
149
+
150
+ def mktsData(ifile,oPath,ratio,seed)
151
+ system "mkdir -p #{oPath}"
152
+
153
+ f=""
154
+ f << "msortf f=#{@cls},#{@tid} i=#{ifile} |"
155
+ f << "msep d='#{oPath}/xxts-${class}'"
156
+ system(f)
157
+
158
+ # class毎に分けたファイルからratioの件数分ランダムに選択
159
+ Dir::glob("#{oPath}/xxts-*").each {|ef|
160
+
161
+ fName=File::basename("#{ef}") #ファイル名
162
+ f=""
163
+ f << "mselrand k=tid p=#{ratio} -B S=#{seed} i=#{ef} o=#{oPath}/xxtest-#{fName} u=#{oPath}/xxtrain-#{fName}"
164
+ system(f)
165
+
166
+ }
167
+ system "mcat i=#{oPath}/xxtest-* o=#{oPath}/1_test.csv"
168
+ system "mcat i=#{oPath}/xxtrain-* o=#{oPath}/1_train.csv"
169
+
170
+ system "rm #{oPath}/xxt*"
171
+ end
172
+
173
+ def mkcvData(train,oPath,foldNum,seed)
174
+
175
+ keyCnt=nil
176
+ system "mkdir -p #{oPath}"
177
+
178
+ #clsを分けるためにfold数にあわせてcls番号をふる
179
+ if @tid # 縦型のデータ形式の場合
180
+ system "msortf f=#{@tid} i=#{train} o=#{@wf}-xx1"
181
+ system "mrand k=#{@tid} a=rand S=#{seed} i=#{@wf}-xx1 o=#{@wf}-rand"
182
+ # クラス別件数のカウント
183
+ f=""
184
+ f << "muniq k=#{@tid} i=#{@wf}-xx1 |"
185
+ f << "msortf f=#{@cls} |mcount k=#{@cls} a=keyCnt o=#{@wf}-keyCnt"
186
+ system(f)
187
+
188
+ keyCnt=`msortf f=keyCnt%n i=#{@wf}-keyCnt |mbest -q |mcut f=keyCnt -nfno |more`
189
+ if keyCnt.to_i < foldNum
190
+ MCMD::errorLog("#{File.basename($0)}: the number of tid is less than the number of fold")
191
+ exit
192
+ end
193
+ end
194
+
195
+ f=""
196
+ f << "msortf f=#{@cls},rand i=#{@wf}-rand |"
197
+ # class別のキー番号
198
+ f << "mnumber k=#{@cls} s=#{@cls},rand S=1 a=keyLine e=same |"
199
+ f << "mjoin k=#{@cls} f=keyCnt m=#{@wf}-keyCnt |"
200
+ f << "mcal c='ceil(${keyLine} / (${keyCnt} / #{foldNum}+0.00001),1)' a=val o=#{@wf}-xx2 "
201
+ system(f)
202
+
203
+ # クラス番号に合わせてファイルを出力
204
+ (1..foldNum).each{|loop|
205
+ MCMD::msgLog("separating data #{loop}")
206
+ system "msel c='${val} == #{loop}' i=#{@wf}-xx2 u=#{@wf}-train-#{loop} o=#{@wf}-test-#{loop}"
207
+ }
208
+
209
+ (1..foldNum).each{|loop|
210
+ system "mcut -r f=rand,keyLine,keyCnt,val i=#{@wf}-train-#{loop} o=#{oPath}/#{loop}_train.csv"
211
+ system "mcut -r f=rand,keyLine,keyCnt,val i=#{@wf}-test-#{loop} o=#{oPath}/#{loop}_test.csv"
212
+ }
213
+
214
+ system "rm #{@wf}-*"
215
+ end
216
+
217
+
218
+ def mkCompliData(input)
219
+ # ワード件数
220
+ f=""
221
+ f << "mcut f=#{@item},#{@w} i=#{input} |"
222
+ f << "msortf f=#{@item} |"
223
+ f << "msum k=#{@item} f=#{@w}:totalWord o=#{@wf}-xxtotalWord"
224
+ system(f)
225
+
226
+ # クラス別ワード別補集合の件数
227
+ f=""
228
+ f << "msortf f=#{@item},#{@cls} i=#{input} |"
229
+ f << "msum k=#{@item},#{@cls} f=#{@w}:wCnt o=#{@wf}-xxfreq"
230
+ system(f)
231
+ f=""
232
+ f << "mjoin -n k=#{@item},#{@cls} f=wCnt m=#{@wf}-xxfreq i=#{@wf}-xxwordClass |"
233
+ f << "mnullto f=wCnt v=0 |"
234
+ f << "msortf f=#{@item} |"
235
+ f << "mjoin k=#{@item} f=totalWord m=#{@wf}-xxtotalWord |"
236
+ f << "mcal c='${totalWord}-${wCnt}' a=compWcnt |"
237
+ f << "mcut f=#{@item},#{@cls},compWcnt:wCnt |"
238
+ f << "mfldname -q o=#{@wf}-xxsum"
239
+ system(f)
240
+ end
241
+
242
+ def mkNormalData(input)
243
+ # クラス別ワード別件数
244
+ f=""
245
+ f << "msortf f=#{@item},#{@cls} i=#{input} |"
246
+ f << "msum k=#{@item},#{@cls} f=#{@w}:wCnt o=#{@wf}-xxfreq"
247
+ system(f)
248
+ f=""
249
+ f << "mjoin -n k=#{@item},#{@cls} f=wCnt m=#{@wf}-xxfreq i=#{@wf}-xxwordClass |"
250
+ f << "mnullto f=wCnt v=0 |"
251
+ f << "mcut f=#{@item},#{@cls},wCnt |"
252
+ f << "mfldname -q o=#{@wf}-xxsum"
253
+ system(f)
254
+ end
255
+
256
+ def calAcc(input,outdir,oname)
257
+ system "mcount a=totalCnt i=#{input} o=#{@wf}-xxtotalCnt"
258
+ f=""
259
+ f << "mcal c='if($s{#{@cls}}==$s{predictCls},\"Match\",\"Unmatch\")' a=ans i=#{input} |"
260
+ f << "msortf f=ans |"
261
+ f << "mcount k=ans a=cnt |mproduct f=totalCnt m=#{@wf}-xxtotalCnt |"
262
+ f << "mcal c='${cnt}/${totalCnt}' a=accRate |"
263
+ f << "mcut f=ans,cnt,totalCnt,accRate |"
264
+ f << "mfldname -q o=#{outdir}/rsl_acc_#{oname}"
265
+ system(f)
266
+ end
267
+
268
+
269
+ def calAccAvg(outdir,type)
270
+
271
+ f=""
272
+ f << "mcat i=#{outdir}/rsl_acc_*_#{type}.csv -add_fname |"
273
+ f << "mselstr f=ans v=Match |"
274
+ f << "msed f=fileName c=\"/.*/\" v=\"\" |"
275
+ f << "msed f=fileName c=\"rsl_acc_\" v="" |"
276
+ f << "msed f=fileName c=_test.csv v="" |"
277
+ f << "mcut f=fileName:test,ans,cnt,totalCnt,accRate |"
278
+ f << "mfldname -q o=#{outdir}/acclist.csv"
279
+ system(f)
280
+ system "mavg f=accRate i=#{outdir}/acclist.csv |mcut f=accRate |mfldname -q o=#{outdir}/acc.csv"
281
+
282
+ system "rm #{outdir}/rsl_acc_*_*.csv"
283
+
284
+ end
285
+
286
+ def writeParam(temp,ifile,oPath,tid,item,w,cls,complement,ts,foldNum,seed)
287
+ fw = open("#{oPath}/param.csv", "w")
288
+ fw.puts "param,val"
289
+ fw.puts "i=,#{ifile}"
290
+ fw.puts "O=,#{oPath}"
291
+ fw.puts "tid=,#{tid}"
292
+ fw.puts "item=,#{item}"
293
+ fw.puts "w=,#{w}"
294
+ fw.puts "class=,#{cls}"
295
+ fw.puts "-complement,#{complement}"
296
+ fw.puts "ts=,#{ts}"
297
+ foldNum=nil if foldNum==1
298
+ fw.puts "cv=,#{foldNum}"
299
+ fw.puts "seed=,#{seed}"
300
+ fw.puts "T=,#{temp}"
301
+ fw.close
302
+ end
303
+
304
+
305
+ def run(input,output,odir,complement,trainFlg)
306
+
307
+ if trainFlg # モデル構築時のみ実行
308
+
309
+ # ワードとクラスの全組み合わせを生成
310
+ system "mcut f=#{@item} i=#{input} |msortf f=#{@item} |muniq k=#{@item} o=#{@wf}-xxword"
311
+ system "mcut f=#{@cls} i=#{input} |msortf f=#{@cls} |muniq k=#{@cls} o=#{@wf}-xxclass"
312
+ system "mproduct f=#{@cls} m=#{@wf}-xxclass i=#{@wf}-xxword o=#{@wf}-xxwordClass"
313
+
314
+ if complement
315
+ mkCompliData(input)
316
+ else
317
+ mkNormalData(input)
318
+ end
319
+
320
+ # クラス別合計数
321
+ f=""
322
+ f << "mcut f=#{@cls},wCnt i=#{@wf}-xxsum |"
323
+ f << "msortf f=#{@cls} |"
324
+ f << "msum k=#{@cls} f=wCnt:total |"
325
+ f << "mcut f=total,#{@cls} |"
326
+ f << "mfldname -q o=#{@wf}-xxtotal"
327
+ system(f)
328
+
329
+ # スムージングのために全ワード種類数を計算
330
+ f=""
331
+ f << "mcut f=#{@item} i=#{input} |"
332
+ f << "msortf f=#{@item} |"
333
+ f << "muniq k=#{@item} |"
334
+ f << "mcount a=wCategory |"
335
+ f << "mcut f=wCategory o=#{@wf}-xxcategory"
336
+ system(f)
337
+
338
+ # クラスの出現確率Pr[c]を計算 (各クラスのID数/全ID件数)
339
+ f=""
340
+ f << "mcut f=#{@tid},#{@cls} i=#{input} |"
341
+ f << "msortf f=#{@cls},#{@tid} |muniq k=#{@cls},#{@tid} o=#{@wf}-xx1"
342
+ system(f)
343
+ system "mcount a=totalId i=#{@wf}-xx1 o=#{@wf}-xxtotalID"
344
+ f=""
345
+ f << "mcount k=#{@cls} a=memberNum i=#{@wf}-xx1 |"
346
+ f << "mproduct f=totalId m=#{@wf}-xxtotalID |"
347
+ f << "mcal c='ln(${memberNum}/${totalId})' a=prob |"
348
+ f << "mcut -r f=#{@tid} |"
349
+ f << "mfldname -q o=#{@wf}-xxprob"
350
+ system(f)
351
+
352
+ # クラス別ワード件数を予測データ用に保存
353
+ system "cp #{@wf}-xxsum #{odir}/clsWord.csv"
354
+ system "cp #{@wf}-xxtotal #{odir}/totalCnt.csv"
355
+ system "cp #{@wf}-xxprob #{odir}/clsProb.csv"
356
+ system "cp #{@wf}-xxcategory #{odir}/category.csv"
357
+ end
358
+
359
+ f=""
360
+ f << "mproduct f=wCategory m=#{odir}/category.csv i=#{input} |"
361
+ f << "msortf f=#{@item} |"
362
+ if trainFlg # 訓練データ実行中
363
+ f << "mnjoin k=#{@item} f=wCnt,#{@cls}:keyCls m=#{@wf}-xxsum |"
364
+ f << "msortf f=keyCls |"
365
+ f << "mnjoin k=keyCls K=#{@cls} f=total m=#{@wf}-xxtotal |"
366
+ f << "msortf f=#{@tid},#{@item},#{@cls} o=#{@wf}-xxdat"
367
+ else # 予測データ実行中
368
+ f << "mnjoin k=#{@item} f=wCnt,#{@cls}:keyCls m=#{odir}/clsWord.csv |"
369
+ f << "msortf f=keyCls |"
370
+ f << "mnjoin k=keyCls K=#{@cls} f=total m=#{odir}/totalCnt.csv |"
371
+ f << "msortf f=#{@tid},#{@item} o=#{@wf}-xxdat"
372
+ end
373
+ system(f)
374
+
375
+ # xxdat
376
+ # id,word,freq,class,wCategory,wCnt,keyCls,total
377
+ # 1,w1,2,M,3,4,F,30
378
+ # 1,w1,2,M,3,6,M,30
379
+ # 1,w2,4,M,3,4,F,30
380
+ # 1,w2,4,M,3,17,M,30
381
+ # 1,w3,0,M,3,7,M,30
382
+ # 1,w3,0,M,3,0,F,30
383
+ # 2,w1,1,M,3,6,M,30
384
+ # 2,w1,1,M,3,4,F,30
385
+ # 2,w2,2,M,3,17,M,30
386
+ #
387
+ # データの意味: ex.)1行目
388
+ # id1(文章1)のclassはMで,文章中にw1という語が2回出現し、語の出現種類数は3である
389
+ # F(keyCls)に属する文章の中で語w1は4回出現している。classMの総出現語数は30
390
+ #
391
+ # 上記のデータを用いて
392
+ # argmax c = Ln Pr[c]+Σx_ij Ln(θcj)を計算
393
+
394
+ # Pr[c] (各クラスのID数/全ID件数)は計算済み
395
+ # Σx_ij Ln(θcj)を計算
396
+ f=""
397
+ f << "msortf f=keyCls i=#{@wf}-xxdat |"
398
+ if trainFlg # 訓練データ実行中
399
+ f << "mjoin k=keyCls K=#{@cls} f=prob m=#{@wf}-xxprob |"
400
+ else
401
+ f << "mjoin k=keyCls K=#{@cls} f=prob m=#{odir}/clsProb.csv |"
402
+ end
403
+ f << "mcal c='${#{@w}}*ln((${wCnt}+1)/(${total}+${wCategory}))' a=2term |"
404
+ f << "msortf f=#{@tid},keyCls,#{@item} |"
405
+ f << "msum k=#{@tid},keyCls f=2term:sumVal |"
406
+ f << "mcal c='${prob}+${sumVal}' a=probCls o=#{@wf}-xxprobCls"
407
+ system(f)
408
+
409
+ f=""
410
+ if complement # 属さない確率が最も低いものを選択
411
+ f << "msortf f=#{@tid},probCls%n i=#{@wf}-xxprobCls |"
412
+ else # 属す確率が最も高いものを選択
413
+ f << "msortf f=#{@tid},probCls%nr i=#{@wf}-xxprobCls |"
414
+ end
415
+ f << "mbest k=#{@tid} -q R=1 |"
416
+ if trainFlg # 訓練データ実行中
417
+ f << "mcut f=#{@tid},#{@cls},keyCls:predictCls o=#{@wf}-xx#{output}"
418
+ else
419
+ f << "mcut f=#{@tid},keyCls:predictCls o=#{@wf}-xx#{output}"
420
+ end
421
+ system(f)
422
+
423
+ # 出力
424
+ f=""
425
+ f << "mcut f=#{@tid},keyCls,probCls i=#{@wf}-xxprobCls |"
426
+ f << "msum k=#{@tid} f=probCls:sumProb o=#{@wf}-xxProbagg"
427
+ system(f)
428
+
429
+ f=""
430
+ f << "mjoin k=#{@tid} f=sumProb m=#{@wf}-xxProbagg i=#{@wf}-xxprobCls |"
431
+ f << "mcal c='if(${sumProb}<0,1-(${probCls}/${sumProb}),${probCls}/${sumProb})' a=probability |"
432
+ f << "mcut f=#{@tid},keyCls,probability |"
433
+ f << "mcross k=#{@tid} f=probability s=keyCls |mcut -r f=fld o=#{@wf}-xxcross"
434
+ system(f)
435
+
436
+ f=""
437
+ if trainFlg # 訓練データ実行中
438
+ f << "mjoin k=#{@tid} f=#{@cls},predictCls m=#{@wf}-xx#{output} i=#{@wf}-xxcross |"
439
+ f << "mfldname -q o=#{odir}/#{output}"
440
+ else
441
+ f << "mjoin k=#{@tid} f=predictCls m=#{@wf}-xx#{output} i=#{@wf}-xxcross |"
442
+ f << "mfldname -q o=#{odir}/#{output}"
443
+ end
444
+ system(f)
445
+
446
+ unless ARGV.index("-predict")
447
+ ifile=File.basename(input) # ファイル名抽出
448
+ calAcc("#{odir}/#{output}","#{odir}","#{ifile}") # 正解率 = 正解した評価事例数 / 評価事例数
449
+ end
450
+
451
+ system "rm #{@wf}-*"
452
+ end
453
+
454
+ ##################################
455
+ # model predict mode
456
+ ##################################
457
+ if ARGV.index("-predict")
458
+ #args=MCMD::Margs.new(ARGV,"i=,I=,o=,item=,tid=,w=,class=,T=,-complement,-mcmdenv,-predict","i=,I=")
459
+ args=MCMD::Margs.new(ARGV,"i=,I=,o=,w=,T=,-complement,-verbose,-predict","i=,I=,o=")
460
+
461
+ # mcmdのメッセージは警告とエラーのみ
462
+ ENV["KG_VerboseLevel"]="2" unless args.bool("-verbose")
463
+ ENV["KG_ScpVerboseLevel"]="3" unless args.bool("-verbose")
464
+
465
+ #ワークファイルパス
466
+ if args.str("T=")!=nil then
467
+ @temp = args.str("T=").sub(/\/$/,"")
468
+ else
469
+ @temp="/tmp"
470
+ end
471
+
472
+ @wf="#{@temp}/mcmd-mnb"
473
+
474
+ ifileBase = args.file("i=","r")
475
+ iPath = args.file("I=","r")
476
+ ofile = args.file("o=","w")
477
+
478
+ mcomplement=nil
479
+ # モデル構築時のパラメータチェック
480
+ MCMD::Mcsvin.new("i=#{iPath}/param.csv"){|csv|
481
+ csv.each{|val|
482
+ @tid =val["val"] if val["param"] == "tid="
483
+ @item =val["val"] if val["param"] == "item="
484
+ @w =val["val"] if val["param"] == "w="
485
+ @cls =val["val"] if val["param"] == "class="
486
+ mcomplement =val["val"] if val["param"] == "-complement"
487
+ }
488
+ }
489
+
490
+ if @w=="unit"
491
+ system "msetstr v=1 a=#{@w} i=#{ifileBase} o=#{@wf}_testFile"
492
+ ifile="#{@wf}_testFile"
493
+ else
494
+ ifile="#{ifileBase}"
495
+ end
496
+
497
+ # -complement オプション
498
+ complement=args.bool("-complement")
499
+
500
+ # model構築時のcomplementオプションの有無と異なる場合はERROR
501
+ if mcomplement.to_s != complement.to_s
502
+ MCMD::errorLog("#{File.basename($0)}: The complement option is different from usage of the model construction")
503
+ exit
504
+ end
505
+
506
+
507
+ if complement # complement naiveBaysの実行
508
+ MCMD::msgLog("Complemt Naive Bayes start using test data")
509
+ run(ifile,"#{ofile}",iPath,complement,nil)
510
+ MCMD::endLog("#{$0} #{args.argv.join(' ')}")
511
+ else # naiveBaysの実行
512
+ MCMD::msgLog("Naive Bayes start using test data")
513
+ run(ifile,"#{ofile}",iPath,complement,nil)
514
+ MCMD::endLog("#{$0} #{args.argv.join(' ')}")
515
+ end
516
+
517
+
518
+ ##################################
519
+ # model building mode
520
+ ##################################
521
+ else
522
+ # パラメータ設定
523
+ args=MCMD::Margs.new(ARGV,"i=,O=,-complement,item=,tid=,w=,class=,seed=,cv=,ts=,T=,-verbose","i=,O=")
524
+
525
+ # mcmdのメッセージは警告とエラーのみ
526
+ ENV["KG_VerboseLevel"]="2" unless args.bool("-verbose")
527
+ ENV["KG_ScpVerboseLevel"]="3" unless args.bool("-verbose")
528
+
529
+ #ワークファイルパス
530
+ if args.str("T=")!=nil then
531
+ @temp = args.str("T=").sub(/\/$/,"")
532
+ else
533
+ @temp="/tmp"
534
+ end
535
+
536
+ ifileBase = args.file("i=","r")
537
+ oPath = args.file("O=", "w")
538
+ system "mkdir -p #{oPath}"
539
+
540
+ # o=モデルの出力ファイル名
541
+ ofile ="rsl_model.csv"
542
+
543
+ # ---- tid field names
544
+ @tid = args.field("tid=" , ifileBase, "tid" , 1,1)["names"][0]
545
+
546
+ # ---- field name
547
+ @item = args.field("item=", ifileBase, "item", 1,1)["names"][0]
548
+
549
+ @cls = args.field("class=", ifileBase, "class", 1,1)["names"][0]
550
+
551
+ @wf="#{@temp}/mcmd-mnb"
552
+
553
+ @w = args.field("w=", ifileBase, nil, 1,1)
554
+ if @w # 重みが指定
555
+ @w = @w["names"][0]
556
+ ifile="#{ifileBase}"
557
+ else # 1の重みをつける
558
+ @w = "unit"
559
+ system "msetstr v=1 a=#{@w} i=#{ifileBase} o=#{@wf}_input"
560
+ ifile="#{@wf}_input"
561
+ end
562
+
563
+
564
+ # -complement オプション
565
+ complement=args.bool("-complement") #->true
566
+
567
+ # ts= オプション
568
+ # paraにts=が指定された場合は,ts=0.0
569
+ # paraにts=がない場合は,ts=nil
570
+ # paraにts=10が指定された場合は,ts=10.0
571
+ ts=args.float("ts=")
572
+
573
+ # cv= オプション
574
+ foldNum=args.int("cv=")
575
+
576
+ # 乱数の種
577
+ seed =args.int("seed=", -1)
578
+
579
+
580
+ if ts
581
+ ts=33.3 if ts == 0.0 # パラメータにts=だけが指定された場合は0.0
582
+ mktsData(ifile,"#{@temp}",ts,seed)
583
+ foldNum=1 # テストサンプル法なので1回だけ実行
584
+
585
+ elsif foldNum
586
+ # cv用にデータ・セットを生成
587
+ foldNum=10 if foldNum == 0
588
+ mkcvData(ifile,"#{@temp}",foldNum,seed)
589
+ else # 入力データを全て訓練データとみなす
590
+ system "cp #{ifile} #{@temp}/1_train.csv"
591
+ system "cp #{ifile} #{@temp}/1_test.csv"
592
+ foldNum=1 # 訓練データを全て利用するので1回だけ実行
593
+ end
594
+
595
+ writeParam(@temp,ifile,oPath,@tid,@item,@w,@cls,complement,ts,foldNum,seed)
596
+
597
+ (1..foldNum).each{|loop|
598
+ traFile ="#{@temp}/#{loop}_train.csv"
599
+ testFile="#{@temp}/#{loop}_test.csv"
600
+
601
+ if complement # complement naiveBaysの実行
602
+ MCMD::msgLog("Complemt Naive Bayes start using training data #{loop}")
603
+ run(traFile,ofile,oPath,complement,"true") # 訓練
604
+ MCMD::msgLog("Naive Bayes start using test data #{loop}")
605
+ run(testFile,ofile,oPath,complement,"false") # 検証
606
+ MCMD::endLog("#{$0} #{args.argv.join(' ')}")
607
+ else # naiveBaysの実行
608
+ MCMD::msgLog("Naive Bayes start using training data #{loop}")
609
+ run(traFile,ofile,oPath,complement,"true") # 訓練
610
+ MCMD::msgLog("Naive Bayes start using test data #{loop}")
611
+ run(testFile,ofile,oPath,complement,"false") # 検証
612
+ MCMD::endLog("#{$0} #{args.argv.join(' ')}")
613
+ end
614
+ }
615
+
616
+ calAccAvg(oPath,"test")
617
+
618
+ # 元データでモデル構築
619
+ if complement # complement naiveBaysの実行
620
+ MCMD::msgLog("Complement Naive Bayes start using original data")
621
+ run(ifile,ofile,oPath,complement,"true")
622
+ MCMD::endLog("#{$0} #{args.argv.join(' ')}")
623
+ else
624
+ MCMD::msgLog("Naive Bayes start using original data")
625
+ run(ifile,ofile,oPath,complement,"true")
626
+ MCMD::endLog("#{$0} #{args.argv.join(' ')}")
627
+ end
628
+
629
+ system "rm #{@temp}/*_train.csv"
630
+ system "rm #{@temp}/*_test.csv"
631
+ end