nysol-mining 3.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/bin/mbopt.rb +522 -0
- data/bin/mburst.rb +716 -0
- data/bin/mgfeatures.rb +340 -0
- data/bin/mglmnet.rb +843 -0
- data/bin/mgnfeatures.rb +369 -0
- data/bin/mgpmetis.rb +449 -0
- data/bin/midxmine.rb +484 -0
- data/bin/mnb.rb +631 -0
- data/bin/mnetsimile.rb +572 -0
- data/bin/mnewman.rb +345 -0
- data/bin/msketchsort.rb +243 -0
- data/bin/msm.rb +172 -0
- data/ext/sketchsortrun/Main.cpp +161 -0
- data/ext/sketchsortrun/Main.hpp +24 -0
- data/ext/sketchsortrun/SketchSort.cpp +526 -0
- data/ext/sketchsortrun/SketchSort.hpp +138 -0
- data/ext/sketchsortrun/extconf.rb +26 -0
- data/ext/sketchsortrun/sketchsortrun.cpp +56 -0
- data/lib/nysol/mining.rb +24 -0
- metadata +89 -0
data/bin/midxmine.rb
ADDED
@@ -0,0 +1,484 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
# encoding: utf-8
|
3
|
+
|
4
|
+
# 1.0 initial release: 2017/01/15
|
5
|
+
$version="1.0"
|
6
|
+
$revision="###VERSION###"
|
7
|
+
|
8
|
+
def help
|
9
|
+
|
10
|
+
STDERR.puts <<EOF
|
11
|
+
----------------------------
|
12
|
+
midxmine.rb version #{$version}
|
13
|
+
----------------------------
|
14
|
+
description) construct a regression model with optimally indexed itemset sequences
|
15
|
+
features) 1) using elastic-net regression (ridge to lasso regression)
|
16
|
+
2) exploring the best alphabet-index, which is mapping function from item to group
|
17
|
+
3) enumerate frequent itemset sequences, and use them as input variables for a model
|
18
|
+
4) linear regression and logistic regression can be chosed
|
19
|
+
usage1) model building mode
|
20
|
+
midxmine.rb -noidx i= tid= time= item= s= c= class= [family=binomial] [alpha=1.0] [idxSize=2] [seed=] O= [T=] [-mcmdenv] [--help]
|
21
|
+
usage2) prediction mode (not imprementaed yet)
|
22
|
+
mglmnet.rb -predict i= I= o= [T=] [-mcmdenv] [--help]
|
23
|
+
|
24
|
+
### model building mode
|
25
|
+
# parameters for input data
|
26
|
+
i= : transaction data file (mandatory)
|
27
|
+
tid= : field name for transaction ID in i= file (mandatory)
|
28
|
+
time= : field name for time in i= file (mandatory)
|
29
|
+
itme= : field name for item in i= file (mandatory)
|
30
|
+
|
31
|
+
# parameters for class data
|
32
|
+
c= : target variable file (mandatory)
|
33
|
+
: this file have to have the same field name as tid= in i= file (mandatory)
|
34
|
+
class= : field name for target variable in c= file (mandatory)
|
35
|
+
|
36
|
+
# parameters for itemset sequence enumeration
|
37
|
+
s= : minimum support for enumerating itemset sequences (mandatory)
|
38
|
+
|
39
|
+
# parameters for regression
|
40
|
+
family : link function for generalized linear regression model
|
41
|
+
"binomial" or "gaussian" can be chosen
|
42
|
+
alpha : weight of L1 and L2 regulalization in elastic-net
|
43
|
+
1.0: lasso regression (L1)
|
44
|
+
0.0: ridge regression (L2)
|
45
|
+
|
46
|
+
# parameters for indexing
|
47
|
+
idxSize : index size
|
48
|
+
seed= : random seed for initial index
|
49
|
+
|
50
|
+
O= : directory name for ouput (mandatory)
|
51
|
+
|
52
|
+
### prediction mode (not impremented yet)
|
53
|
+
|
54
|
+
### other parameters
|
55
|
+
T= : directory name for temporal files (default=/tmp)
|
56
|
+
mcmdenv : show messages of mcmd
|
57
|
+
-help : show help
|
58
|
+
|
59
|
+
necessary software)
|
60
|
+
1) R
|
61
|
+
2) glmnet package in R
|
62
|
+
2) arulesSequences package in R
|
63
|
+
|
64
|
+
example)
|
65
|
+
$ cat zaki.csv
|
66
|
+
tid,time,item
|
67
|
+
1,10,C
|
68
|
+
1,10,D
|
69
|
+
1,15,A
|
70
|
+
1,15,B
|
71
|
+
1,15,C
|
72
|
+
1,20,A
|
73
|
+
1,20,B
|
74
|
+
1,20,F
|
75
|
+
1,25,A
|
76
|
+
1,25,C
|
77
|
+
1,25,D
|
78
|
+
1,25,F
|
79
|
+
2,15,A
|
80
|
+
2,15,B
|
81
|
+
2,15,F
|
82
|
+
2,20,E
|
83
|
+
3,10,A
|
84
|
+
3,10,B
|
85
|
+
3,10,F
|
86
|
+
4,10,D
|
87
|
+
4,10,G
|
88
|
+
4,10,H
|
89
|
+
4,20,B
|
90
|
+
4,20,F
|
91
|
+
4,25,A
|
92
|
+
4,25,G
|
93
|
+
4,25,H
|
94
|
+
$ cat zaki_c.csv
|
95
|
+
tid,class
|
96
|
+
1,1
|
97
|
+
2,1
|
98
|
+
3,0
|
99
|
+
4,0
|
100
|
+
|
101
|
+
$ midxmine.rb i=zaki.csv c=zaki_c.csv O=result1 tid=tid item=item time=time class=class idxSize=2 seed=111 s=0.1↩
|
102
|
+
|
103
|
+
$ ls result1
|
104
|
+
alphabetIndex.csv
|
105
|
+
beta.txt
|
106
|
+
coef.png
|
107
|
+
const.txt
|
108
|
+
info.txt
|
109
|
+
lambda.png
|
110
|
+
model.obj
|
111
|
+
|
112
|
+
# Copyright(c) NYSOL 2012- All Rights Reserved.
|
113
|
+
EOF
|
114
|
+
exit
|
115
|
+
end
|
116
|
+
|
117
|
+
def ver()
|
118
|
+
$revision ="0" if $revision =~ /VERSION/
|
119
|
+
STDERR.puts "version #{$version} revision #{$revision}"
|
120
|
+
exit
|
121
|
+
end
|
122
|
+
|
123
|
+
help() if ARGV[0]=="--help" or ARGV.size <= 0
|
124
|
+
ver() if ARGV[0]=="--version"
|
125
|
+
|
126
|
+
require "rubygems"
|
127
|
+
require "nysol/mcmd"
|
128
|
+
require "json"
|
129
|
+
|
130
|
+
# Rライブラリ実行可能確認
|
131
|
+
exit(1) unless(MCMD::chkRexe("glmnet"))
|
132
|
+
exit(1) unless(MCMD::chkRexe("arulesSequences"))
|
133
|
+
|
134
|
+
class Index
|
135
|
+
attr_reader :size
|
136
|
+
def show
|
137
|
+
puts "@ifile=#{@ifile}"
|
138
|
+
puts "@idxSize=#{@idxSize}"
|
139
|
+
puts "@seed=#{@seed}"
|
140
|
+
puts "@alphabets=#{@alphabets}"
|
141
|
+
end
|
142
|
+
|
143
|
+
# constructor
|
144
|
+
def initialize(ifile,idxSize,seed)
|
145
|
+
@ifile=ifile
|
146
|
+
@idxSize=idxSize
|
147
|
+
|
148
|
+
# setting up random object
|
149
|
+
unless seed
|
150
|
+
@seed=Random.new_seed
|
151
|
+
else
|
152
|
+
@seed=seed
|
153
|
+
end
|
154
|
+
@random = Random.new(@seed)
|
155
|
+
@done=[]
|
156
|
+
|
157
|
+
# setting alphabet vector and its size
|
158
|
+
temp=MCMD::Mtemp.new
|
159
|
+
xxitem=temp.file
|
160
|
+
f=""
|
161
|
+
f << "mcut f=item i=#{ifile} |"
|
162
|
+
f << "muniq k=item o=#{xxitem}"
|
163
|
+
system(f)
|
164
|
+
iCSV=MCMD::Mcsvin.new("i=#{xxitem}")
|
165
|
+
@alphabets=[]
|
166
|
+
iCSV.each{|flds|
|
167
|
+
@alphabets << flds["item"]
|
168
|
+
}
|
169
|
+
@size=@alphabets.size
|
170
|
+
end
|
171
|
+
|
172
|
+
# generate random index
|
173
|
+
def firstIdx(noidx)
|
174
|
+
index=nil
|
175
|
+
if noidx
|
176
|
+
index=[]
|
177
|
+
(0...@alphabets.size).each{|i|
|
178
|
+
index << i
|
179
|
+
}
|
180
|
+
else
|
181
|
+
begin
|
182
|
+
index=[]
|
183
|
+
itemset=Set.new
|
184
|
+
(0...@alphabets.size).each{|i|
|
185
|
+
num=@random.rand(@idxSize)
|
186
|
+
itemset << num
|
187
|
+
index << num
|
188
|
+
}
|
189
|
+
end while itemset.size < @idxSize
|
190
|
+
end
|
191
|
+
return index
|
192
|
+
end
|
193
|
+
|
194
|
+
# enumerating adjacents indexes
|
195
|
+
# indexes processed before will be skipped
|
196
|
+
def adjacents(index,noidx)
|
197
|
+
adjIndexes=[]
|
198
|
+
if noidx
|
199
|
+
adjIndexes << index
|
200
|
+
else
|
201
|
+
(0...index.size).each{|pos|
|
202
|
+
[-1,+1].each{|dir|
|
203
|
+
num=index[pos]+dir
|
204
|
+
next if num < 0 or num >= @idxSize
|
205
|
+
adjIndex=[]
|
206
|
+
(0...index.size).each{|i|
|
207
|
+
if pos==i
|
208
|
+
adjIndex << num
|
209
|
+
else
|
210
|
+
adjIndex << index[i]
|
211
|
+
end
|
212
|
+
}
|
213
|
+
if not @done.index(adjIndex)
|
214
|
+
adjIndexes << adjIndex
|
215
|
+
else
|
216
|
+
@done << adjIndex
|
217
|
+
end
|
218
|
+
}
|
219
|
+
}
|
220
|
+
end
|
221
|
+
return adjIndexes
|
222
|
+
end
|
223
|
+
|
224
|
+
# write alphabet-index to oFile
|
225
|
+
def writeAlphaIndex(index,oFile)
|
226
|
+
MCMD::Mcsvout.new("o=#{oFile} f=alphabet,index"){|oCSV|
|
227
|
+
(0...@alphabets.size).each{|i|
|
228
|
+
oCSV.write([@alphabets[i],index[i]])
|
229
|
+
}
|
230
|
+
}
|
231
|
+
end
|
232
|
+
end
|
233
|
+
|
234
|
+
# convert original transaction data to one with indexed item
|
235
|
+
def convTra(ifile,idxObj,index,convTraFile)
|
236
|
+
temp=MCMD::Mtemp.new
|
237
|
+
xxmf=temp.file
|
238
|
+
idxObj.writeAlphaIndex(index,xxmf)
|
239
|
+
f=""
|
240
|
+
f << "mjoin k=item K=alphabet m=#{xxmf} f=index i=#{ifile} |"
|
241
|
+
f << "mcut f=tid,time,index |"
|
242
|
+
f << "muniq k=tid,time,index |"
|
243
|
+
f << "mtra k=tid,time f=index |"
|
244
|
+
f << "mvcount vf=index:size |"
|
245
|
+
f << "mcut f=tid,time,size,index -nfno o=#{convTraFile}"
|
246
|
+
system(f)
|
247
|
+
end
|
248
|
+
|
249
|
+
# estimate the best lambda
|
250
|
+
# 1. enumerate frequent sequences using all data
|
251
|
+
# 2. construct regression model with the sequences as input variable
|
252
|
+
# cross validation is used for getting the best lambda
|
253
|
+
# 3. return deviance and lambda
|
254
|
+
def mkCVmodel(convTra,minSupport,yFile,seed)
|
255
|
+
system "cp #{convTra} xxconvTra"
|
256
|
+
temp=MCMD::Mtemp.new
|
257
|
+
xxscp=temp.file
|
258
|
+
xxdev=temp.file
|
259
|
+
xxlam=temp.file
|
260
|
+
scp= <<"EOS"
|
261
|
+
library(arulesSequences)
|
262
|
+
library(glmnet)
|
263
|
+
EOS
|
264
|
+
scp << "\tset.seed(#{seed})\n" if seed
|
265
|
+
|
266
|
+
scp << <<"EOS"
|
267
|
+
x <- read_baskets(con="#{convTra}", sep=",",info=c("sequenceID","eventID","SIZE"))
|
268
|
+
as(x, "data.frame")
|
269
|
+
s1 <- cspade(x, parameter = list(support = #{minSupport}), control = list(verbose = TRUE))
|
270
|
+
#as(s1, "data.frame")
|
271
|
+
xMTX=as(as(supportingTransactions(s1,x),"ngCMatrix"),"matrix")
|
272
|
+
#print(xMTX)
|
273
|
+
yMTX=as.matrix(read.csv(\"#{yFile}\"))
|
274
|
+
model = cv.glmnet(xMTX,yMTX,family=\"binomial\",alpha=1.0)
|
275
|
+
mm=which(model$lambda==model$lambda.min)
|
276
|
+
write.table(model$cvm[mm] ,"#{xxdev}", quote=F, col.names=F,row.names=F)
|
277
|
+
write.table(model$lambda.min,"#{xxlam}", quote=F, col.names=F,row.names=F)
|
278
|
+
#print(mm)
|
279
|
+
#print(model$lambda)
|
280
|
+
#print(model$lambda.min)
|
281
|
+
#print(model$cvm)
|
282
|
+
#print(model$cvm[mm])
|
283
|
+
#print(str(model))
|
284
|
+
#print(summary(model))
|
285
|
+
#sink()
|
286
|
+
EOS
|
287
|
+
|
288
|
+
File.open(xxscp,"w"){|fpw| fpw.puts scp}
|
289
|
+
system "R --vanilla -q --slave < #{xxscp} &>/dev/null"
|
290
|
+
#system "R --vanilla -q < #{xxscp}"
|
291
|
+
# if all fields have same value for all records, glmnet fail and it doesn't output the result.
|
292
|
+
dev=Float::MAX
|
293
|
+
lam=nil
|
294
|
+
if File.exists?(xxdev)
|
295
|
+
dev=`cat #{xxdev}`.strip.to_f
|
296
|
+
lam=`cat #{xxlam}`.strip.to_f
|
297
|
+
end
|
298
|
+
return dev,lam
|
299
|
+
#system "cp #{convTra} xxconvTra"
|
300
|
+
#system "cp #{xxscp} xxscp"
|
301
|
+
# puts scp
|
302
|
+
end
|
303
|
+
|
304
|
+
# construct a regression model with specified lambda
|
305
|
+
def mkModel(convTra,lam,minSupport,yFile,oPath)
|
306
|
+
temp=MCMD::Mtemp.new
|
307
|
+
xxscp=temp.file
|
308
|
+
xxdev=temp.file
|
309
|
+
xxlam=temp.file
|
310
|
+
scp= <<"EOS"
|
311
|
+
library(arulesSequences)
|
312
|
+
library(glmnet)
|
313
|
+
x <- read_baskets(con="#{convTra}", sep=",",info=c("sequenceID","eventID","SIZE"))
|
314
|
+
as(x, "data.frame")
|
315
|
+
s1 <- cspade(x, parameter = list(support = #{minSupport}), control = list(verbose = TRUE))
|
316
|
+
#as(s1, "data.frame")
|
317
|
+
xMTX=as(as(supportingTransactions(s1,x),"ngCMatrix"),"matrix")
|
318
|
+
#print(xMTX)
|
319
|
+
yMTX=as.matrix(read.csv(\"#{yFile}\"))
|
320
|
+
|
321
|
+
cv = cv.glmnet(xMTX,yMTX,family=\"binomial\",alpha=1.0)
|
322
|
+
png("#{oPath}/lambda.png")
|
323
|
+
plot(cv)
|
324
|
+
supmsg=dev.off()
|
325
|
+
|
326
|
+
model = glmnet(xMTX,yMTX,family=\"binomial\",alpha=1.0,lambda=#{lam})
|
327
|
+
save(model ,file="#{oPath}/model.obj")
|
328
|
+
write.csv(as.matrix(model$a0),file="#{oPath}/const.txt",quote=FALSE)
|
329
|
+
write.csv(as.matrix(model$beta),file="#{oPath}/beta.txt",quote=FALSE)
|
330
|
+
png("#{oPath}/coef.png")
|
331
|
+
plot(model,"lambda")
|
332
|
+
supmsg=dev.off()
|
333
|
+
|
334
|
+
info=as.data.frame(model$nobs)
|
335
|
+
colnames(info)=c("nobs")
|
336
|
+
info$lambda=#{lam}
|
337
|
+
info$devRatio=model$dev.ratio
|
338
|
+
info$nulldev=model$nulldev
|
339
|
+
write.table(info,"#{oPath}/info.txt", quote=F, sep=",", col.names=T,row.names=F, append=F)
|
340
|
+
EOS
|
341
|
+
|
342
|
+
File.open(xxscp,"w"){|fpw| fpw.puts scp}
|
343
|
+
system "R --vanilla -q --slave < #{xxscp} &>/dev/null"
|
344
|
+
#system "R --vanilla -q < #{xxscp}"
|
345
|
+
# if all fields have same value for all records, glmnet fail and it doesn't output the result.
|
346
|
+
dev=Float::MAX
|
347
|
+
lam=nil
|
348
|
+
if File.exists?(xxdev)
|
349
|
+
dev=`cat #{xxdev}`.strip.to_f
|
350
|
+
lam=`cat #{xxlam}`.strip.to_f
|
351
|
+
end
|
352
|
+
#p dev
|
353
|
+
#p lam
|
354
|
+
return dev,lam
|
355
|
+
#system "cp #{convTra} xxconvTra"
|
356
|
+
#system "cp #{xxscp} xxscp"
|
357
|
+
# puts scp
|
358
|
+
end
|
359
|
+
|
360
|
+
#################################################################################################
|
361
|
+
#### Entry point
|
362
|
+
st=Time.new
|
363
|
+
|
364
|
+
########################
|
365
|
+
## predict mode
|
366
|
+
if ARGV.index("-predict")
|
367
|
+
;
|
368
|
+
########################
|
369
|
+
#### model building mode
|
370
|
+
else
|
371
|
+
args=MCMD::Margs.new(ARGV,"-noidx,i=,c=,tid=,time=,item=,s=,class=,alpha=,family=,O=,idxSize=,seed=,mp=,T=,-verbose,T=,seed=","tid=,item=,time=,c=,s=,class=,i=,O=")
|
372
|
+
|
373
|
+
# mcmdのメッセージは警告とエラーのみ
|
374
|
+
ENV["KG_VerboseLevel"]="2" unless args.bool("-verbose")
|
375
|
+
ENV["KG_ScpVerboseLevel"]="3" unless args.bool("-verbose")
|
376
|
+
|
377
|
+
#ワークファイルパス
|
378
|
+
if args.str("T=")!=nil then
|
379
|
+
ENV["KG_TmpPath"] = args.str("T=").sub(/\/$/,"")
|
380
|
+
end
|
381
|
+
|
382
|
+
ifile =args.file("i=","r")
|
383
|
+
cfile =args.file("c=","r")
|
384
|
+
oPath =args.file("O=", "w")
|
385
|
+
|
386
|
+
tid = args.field("tid=" , ifile, nil , 1,1)["names"].join(",")
|
387
|
+
item = args.field("item=", ifile, nil , 1,1)["names"].join(",")
|
388
|
+
klass= args.field("class=",cfile, nil , 1,1)["names"].join(",")
|
389
|
+
time = args.field("time=", ifile, nil , 1,1)
|
390
|
+
|
391
|
+
if time
|
392
|
+
time=time["names"].join(",")
|
393
|
+
end
|
394
|
+
|
395
|
+
# ---- other paramters
|
396
|
+
alpha = args.float("alpha=", 1.0, 0.0, 1.0)
|
397
|
+
family = args.str("family=", "binomial")
|
398
|
+
minSupport= args.int("s=")
|
399
|
+
seed = args.int("seed=")
|
400
|
+
idxSize= args.int("idxSize=", 2)
|
401
|
+
mp = args.int("mp=", 8)
|
402
|
+
noidx = args.bool("-noidx")
|
403
|
+
#param = args.str("param=")
|
404
|
+
#param = ","+param if param
|
405
|
+
MCMD::mkDir(oPath)
|
406
|
+
|
407
|
+
wf=MCMD::Mtemp.new
|
408
|
+
xxifile =wf.file
|
409
|
+
xxyfile =wf.file
|
410
|
+
xxconvTra=wf.file
|
411
|
+
xxrsl =wf.file
|
412
|
+
|
413
|
+
f=""
|
414
|
+
f << "msortf f=#{tid} i=#{cfile} |"
|
415
|
+
f << "mcut f=#{klass}:klass o=#{xxyfile}"
|
416
|
+
system(f)
|
417
|
+
|
418
|
+
if time
|
419
|
+
f=""
|
420
|
+
f << "mcut f=#{tid}:tid,#{time}:time,#{item}:item i=#{ifile} |"
|
421
|
+
f << "muniq k=tid,time,item |"
|
422
|
+
f << "msortf f=tid,time | mfldname -q o=#{xxifile}"
|
423
|
+
system(f)
|
424
|
+
else
|
425
|
+
f=""
|
426
|
+
f << "mcut f=#{tid}:tid,#{item}:item i=#{ifile} |"
|
427
|
+
f << "muniq k=tid,item |"
|
428
|
+
f << "msortf f=tid o=#{xxifile}"
|
429
|
+
system(f)
|
430
|
+
end
|
431
|
+
|
432
|
+
idxObj=Index.new(xxifile,idxSize,seed)
|
433
|
+
bestMSE=Float::MAX
|
434
|
+
bestLAM=nil
|
435
|
+
bestIDX=idxObj.firstIdx(noidx)
|
436
|
+
STDERR.puts "#{bestIDX.join("")} initial index"
|
437
|
+
|
438
|
+
while true
|
439
|
+
indexes=idxObj.adjacents(bestIDX,noidx)
|
440
|
+
# find the better model in multiple indexes
|
441
|
+
(0...indexes.size).to_a.meach(mp){|i|
|
442
|
+
convTra(xxifile,idxObj,indexes[i],"#{xxconvTra}_#{i}")
|
443
|
+
dev,lam=mkCVmodel("#{xxconvTra}_#{i}",minSupport,xxyfile,seed)
|
444
|
+
File.open("#{xxrsl}_#{i}", 'w'){|fpw|
|
445
|
+
JSON.dump([dev,lam], fpw)
|
446
|
+
}
|
447
|
+
STDERR.puts "#{indexes[i].join("")} deviance[#{i}]=#{dev}"
|
448
|
+
}
|
449
|
+
updated=false
|
450
|
+
(0...indexes.size).each{|i|
|
451
|
+
dev=lam=nil
|
452
|
+
File.open("#{xxrsl}_#{i}"){|fpr|
|
453
|
+
dev,lam=JSON.load(fpr)
|
454
|
+
}
|
455
|
+
if bestMSE>dev
|
456
|
+
updated=true
|
457
|
+
bestMSE=dev
|
458
|
+
bestLAM=lam
|
459
|
+
bestIDX=indexes[i]
|
460
|
+
end
|
461
|
+
}
|
462
|
+
system "rm -r #{xxrsl}_*"
|
463
|
+
if updated
|
464
|
+
STDERR.puts "#{bestIDX.join("")} improved (deviance=#{bestMSE} lambda=#{bestLAM})"
|
465
|
+
else
|
466
|
+
STDERR.puts "not improved and finished for exploring"
|
467
|
+
break
|
468
|
+
end
|
469
|
+
end
|
470
|
+
|
471
|
+
if bestLAM
|
472
|
+
convTra(xxifile,idxObj,bestIDX,xxconvTra)
|
473
|
+
mkModel(xxconvTra,bestLAM,minSupport,xxyfile,oPath)
|
474
|
+
idxObj.writeAlphaIndex(bestIDX,"#{oPath}/alphabetIndex.csv")
|
475
|
+
else
|
476
|
+
STDERR.puts "it could not find any good model"
|
477
|
+
end
|
478
|
+
end
|
479
|
+
|
480
|
+
STDERR.puts "elapsed time : #{Time.new-st} seconds"
|
481
|
+
|
482
|
+
# end message
|
483
|
+
MCMD::endLog(args.cmdline)
|
484
|
+
|