numo-libsvm 1.1.2 → 2.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,578 +0,0 @@
1
- /**
2
- * LIBSVM interface for Numo::NArray
3
- */
4
- #include "libsvmext.h"
5
-
6
- VALUE mNumo;
7
- VALUE mLibsvm;
8
-
9
- void print_null(const char *s) {}
10
-
11
- /**
12
- * Train the SVM model according to the given training data.
13
- *
14
- * @overload train(x, y, param) -> Hash
15
- * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for training the model.
16
- * @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
17
- * @param param [Hash] The parameters of an SVM model.
18
- *
19
- * @example
20
- * require 'numo/libsvm'
21
- *
22
- * # Prepare XOR data.
23
- * x = Numo::DFloat[[-0.8, -0.7], [0.9, 0.8], [-0.7, 0.9], [0.8, -0.9]]
24
- * y = Numo::Int32[-1, -1, 1, 1]
25
- *
26
- * # Train C-Support Vector Classifier with RBF kernel.
27
- * param = {
28
- * svm_type: Numo::Libsvm::SvmType::C_SVC,
29
- * kernel_type: Numo::Libsvm::KernelType::RBF,
30
- * gamma: 2.0,
31
- * C: 1,
32
- * random_seed: 1
33
- * }
34
- * model = Numo::Libsvm.train(x, y, param)
35
- *
36
- * # Predict labels of test data.
37
- * x_test = Numo::DFloat[[-0.4, -0.5], [0.5, -0.4]]
38
- * result = Numo::Libsvm.predict(x_test, param, model)
39
- * p result
40
- * # Numo::DFloat#shape=[2]
41
- * # [-1, 1]
42
- *
43
- * @raise [ArgumentError] If the sample array is not 2-dimensional, the label array is not 1-dimensional,
44
- * the sample array and label array do not have the same number of samples, or
45
- * the hyperparameter has an invalid value, this error is raised.
46
- * @return [Hash] The model obtained from the training procedure.
47
- */
48
- static
49
- VALUE train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash)
50
- {
51
- struct svm_problem* problem;
52
- struct svm_parameter* param;
53
- struct svm_model* model;
54
- narray_t* x_nary;
55
- narray_t* y_nary;
56
- char* err_msg;
57
- VALUE random_seed;
58
- VALUE verbose;
59
- VALUE model_hash;
60
-
61
- if (CLASS_OF(x_val) != numo_cDFloat) {
62
- x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
63
- }
64
- if (CLASS_OF(y_val) != numo_cDFloat) {
65
- y_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, y_val);
66
- }
67
- if (!RTEST(nary_check_contiguous(x_val))) {
68
- x_val = nary_dup(x_val);
69
- }
70
- if (!RTEST(nary_check_contiguous(y_val))) {
71
- y_val = nary_dup(y_val);
72
- }
73
-
74
- GetNArray(x_val, x_nary);
75
- GetNArray(y_val, y_nary);
76
- if (NA_NDIM(x_nary) != 2) {
77
- rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
78
- return Qnil;
79
- }
80
- if (NA_NDIM(y_nary) != 1) {
81
- rb_raise(rb_eArgError, "Expect label or target values to be 1-D arrray.");
82
- return Qnil;
83
- }
84
- if (NA_SHAPE(x_nary)[0] != NA_SHAPE(y_nary)[0]) {
85
- rb_raise(rb_eArgError, "Expect to have the same number of samples for samples and labels.");
86
- return Qnil;
87
- }
88
-
89
- random_seed = rb_hash_aref(param_hash, ID2SYM(rb_intern("random_seed")));
90
- if (!NIL_P(random_seed)) {
91
- srand(NUM2UINT(random_seed));
92
- }
93
-
94
- param = rb_hash_to_svm_parameter(param_hash);
95
- problem = dataset_to_svm_problem(x_val, y_val);
96
-
97
- err_msg = svm_check_parameter(problem, param);
98
- if (err_msg) {
99
- xfree_svm_problem(problem);
100
- xfree_svm_parameter(param);
101
- rb_raise(rb_eArgError, "Invalid LIBSVM parameter is given: %s", err_msg);
102
- return Qnil;
103
- }
104
-
105
- verbose = rb_hash_aref(param_hash, ID2SYM(rb_intern("verbose")));
106
- if (verbose != Qtrue) {
107
- svm_set_print_string_function(print_null);
108
- }
109
-
110
- model = svm_train(problem, param);
111
- model_hash = svm_model_to_rb_hash(model);
112
- svm_free_and_destroy_model(&model);
113
-
114
- xfree_svm_problem(problem);
115
- xfree_svm_parameter(param);
116
-
117
- RB_GC_GUARD(x_val);
118
- RB_GC_GUARD(y_val);
119
-
120
- return model_hash;
121
- }
122
-
123
- /**
124
- * Perform cross validation under given parameters. The given samples are separated to n_fols folds.
125
- * The predicted labels or values in the validation process are returned.
126
- *
127
- * @overload cv(x, y, param, n_folds) -> Numo::DFloat
128
- * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for training the model.
129
- * @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
130
- * @param param [Hash] The parameters of an SVM model.
131
- * @param n_folds [Integer] The number of folds.
132
- *
133
- * @example
134
- * require 'numo/libsvm'
135
- *
136
- * # x: samples
137
- * # y: labels
138
- *
139
- * # Define parameters of C-SVC with RBF Kernel.
140
- * param = {
141
- * svm_type: Numo::Libsvm::SvmType::C_SVC,
142
- * kernel_type: Numo::Libsvm::KernelType::RBF,
143
- * gamma: 1.0,
144
- * C: 1,
145
- * random_seed: 1,
146
- * verbose: true
147
- * }
148
- *
149
- * # Perform 5-cross validation.
150
- * n_folds = 5
151
- * res = Numo::Libsvm.cv(x, y, param, n_folds)
152
- *
153
- * # Print mean accuracy.
154
- * mean_accuracy = y.eq(res).count.fdiv(y.size)
155
- * puts "Accuracy: %.1f %%" % (100 * mean_accuracy)
156
- *
157
- * @raise [ArgumentError] If the sample array is not 2-dimensional, the label array is not 1-dimensional,
158
- * the sample array and label array do not have the same number of samples, or
159
- * the hyperparameter has an invalid value, this error is raised.
160
- * @return [Numo::DFloat] (shape: [n_samples]) The predicted class label or value of each sample.
161
- */
162
- static
163
- VALUE cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash, VALUE nr_folds)
164
- {
165
- const int n_folds = NUM2INT(nr_folds);
166
- size_t t_shape[1];
167
- VALUE t_val;
168
- double* t_pt;
169
- narray_t* x_nary;
170
- narray_t* y_nary;
171
- char* err_msg;
172
- VALUE random_seed;
173
- VALUE verbose;
174
- struct svm_problem* problem;
175
- struct svm_parameter* param;
176
-
177
- if (CLASS_OF(x_val) != numo_cDFloat) {
178
- x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
179
- }
180
- if (CLASS_OF(y_val) != numo_cDFloat) {
181
- y_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, y_val);
182
- }
183
- if (!RTEST(nary_check_contiguous(x_val))) {
184
- x_val = nary_dup(x_val);
185
- }
186
- if (!RTEST(nary_check_contiguous(y_val))) {
187
- y_val = nary_dup(y_val);
188
- }
189
-
190
- GetNArray(x_val, x_nary);
191
- GetNArray(y_val, y_nary);
192
- if (NA_NDIM(x_nary) != 2) {
193
- rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
194
- return Qnil;
195
- }
196
- if (NA_NDIM(y_nary) != 1) {
197
- rb_raise(rb_eArgError, "Expect label or target values to be 1-D arrray.");
198
- return Qnil;
199
- }
200
- if (NA_SHAPE(x_nary)[0] != NA_SHAPE(y_nary)[0]) {
201
- rb_raise(rb_eArgError, "Expect to have the same number of samples for samples and labels.");
202
- return Qnil;
203
- }
204
-
205
- random_seed = rb_hash_aref(param_hash, ID2SYM(rb_intern("random_seed")));
206
- if (!NIL_P(random_seed)) {
207
- srand(NUM2UINT(random_seed));
208
- }
209
-
210
- param = rb_hash_to_svm_parameter(param_hash);
211
- problem = dataset_to_svm_problem(x_val, y_val);
212
-
213
- err_msg = svm_check_parameter(problem, param);
214
- if (err_msg) {
215
- xfree_svm_problem(problem);
216
- xfree_svm_parameter(param);
217
- rb_raise(rb_eArgError, "Invalid LIBSVM parameter is given: %s", err_msg);
218
- return Qnil;
219
- }
220
-
221
- t_shape[0] = problem->l;
222
- t_val = rb_narray_new(numo_cDFloat, 1, t_shape);
223
- t_pt = (double*)na_get_pointer_for_write(t_val);
224
-
225
- verbose = rb_hash_aref(param_hash, ID2SYM(rb_intern("verbose")));
226
- if (verbose != Qtrue) {
227
- svm_set_print_string_function(print_null);
228
- }
229
-
230
- svm_cross_validation(problem, param, n_folds, t_pt);
231
-
232
- xfree_svm_problem(problem);
233
- xfree_svm_parameter(param);
234
-
235
- RB_GC_GUARD(x_val);
236
- RB_GC_GUARD(y_val);
237
-
238
- return t_val;
239
- }
240
-
241
- /**
242
- * Predict class labels or values for given samples.
243
- *
244
- * @overload predict(x, param, model) -> Numo::DFloat
245
- * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the scores.
246
- * @param param [Hash] The parameters of the trained SVM model.
247
- * @param model [Hash] The model obtained from the training procedure.
248
- *
249
- * @raise [ArgumentError] If the sample array is not 2-dimensional, this error is raised.
250
- * @return [Numo::DFloat] (shape: [n_samples]) The predicted class label or value of each sample.
251
- */
252
- static
253
- VALUE predict(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash)
254
- {
255
- struct svm_parameter* param;
256
- struct svm_model* model;
257
- struct svm_node* x_nodes;
258
- narray_t* x_nary;
259
- double* x_pt;
260
- size_t y_shape[1];
261
- VALUE y_val;
262
- double* y_pt;
263
- int i, j, k;
264
- int n_samples;
265
- int n_features;
266
- int n_nonzero_features;
267
-
268
- /* Obtain C data structures. */
269
- if (CLASS_OF(x_val) != numo_cDFloat) {
270
- x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
271
- }
272
- if (!RTEST(nary_check_contiguous(x_val))) {
273
- x_val = nary_dup(x_val);
274
- }
275
-
276
- GetNArray(x_val, x_nary);
277
- if (NA_NDIM(x_nary) != 2) {
278
- rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
279
- return Qnil;
280
- }
281
-
282
- param = rb_hash_to_svm_parameter(param_hash);
283
- model = rb_hash_to_svm_model(model_hash);
284
- model->param = *param;
285
-
286
- /* Initialize some variables. */
287
- n_samples = (int)NA_SHAPE(x_nary)[0];
288
- n_features = (int)NA_SHAPE(x_nary)[1];
289
- y_shape[0] = n_samples;
290
- y_val = rb_narray_new(numo_cDFloat, 1, y_shape);
291
- y_pt = (double*)na_get_pointer_for_write(y_val);
292
- x_pt = (double*)na_get_pointer_for_read(x_val);
293
-
294
- /* Predict values. */
295
- for (i = 0; i < n_samples; i++) {
296
- x_nodes = dbl_vec_to_svm_node(&x_pt[i * n_features], n_features);
297
- y_pt[i] = svm_predict(model, x_nodes);
298
- xfree(x_nodes);
299
- }
300
-
301
- xfree_svm_model(model);
302
- xfree_svm_parameter(param);
303
-
304
- RB_GC_GUARD(x_val);
305
-
306
- return y_val;
307
- }
308
-
309
- /**
310
- * Calculate decision values for given samples.
311
- *
312
- * @overload decision_function(x, param, model) -> Numo::DFloat
313
- * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the scores.
314
- * @param param [Hash] The parameters of the trained SVM model.
315
- * @param model [Hash] The model obtained from the training procedure.
316
- *
317
- * @raise [ArgumentError] If the sample array is not 2-dimensional, this error is raised.
318
- * @return [Numo::DFloat] (shape: [n_samples, n_classes * (n_classes - 1) / 2]) The decision value of each sample.
319
- */
320
- static
321
- VALUE decision_function(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash)
322
- {
323
- struct svm_parameter* param;
324
- struct svm_model* model;
325
- struct svm_node* x_nodes;
326
- narray_t* x_nary;
327
- double* x_pt;
328
- size_t y_shape[2];
329
- VALUE y_val;
330
- double* y_pt;
331
- double* dec_values;
332
- int y_cols;
333
- int i, j;
334
- int n_samples;
335
- int n_features;
336
-
337
- /* Obtain C data structures. */
338
- if (CLASS_OF(x_val) != numo_cDFloat) {
339
- x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
340
- }
341
- if (!RTEST(nary_check_contiguous(x_val))) {
342
- x_val = nary_dup(x_val);
343
- }
344
-
345
- GetNArray(x_val, x_nary);
346
- if (NA_NDIM(x_nary) != 2) {
347
- rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
348
- return Qnil;
349
- }
350
-
351
- param = rb_hash_to_svm_parameter(param_hash);
352
- model = rb_hash_to_svm_model(model_hash);
353
- model->param = *param;
354
-
355
- /* Initialize some variables. */
356
- n_samples = (int)NA_SHAPE(x_nary)[0];
357
- n_features = (int)NA_SHAPE(x_nary)[1];
358
-
359
- if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) {
360
- y_shape[0] = n_samples;
361
- y_shape[1] = 1;
362
- y_val = rb_narray_new(numo_cDFloat, 1, y_shape);
363
- } else {
364
- y_shape[0] = n_samples;
365
- y_shape[1] = model->nr_class * (model->nr_class - 1) / 2;
366
- y_val = rb_narray_new(numo_cDFloat, 2, y_shape);
367
- }
368
-
369
- x_pt = (double*)na_get_pointer_for_read(x_val);
370
- y_pt = (double*)na_get_pointer_for_write(y_val);
371
-
372
- /* Predict values. */
373
- if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) {
374
- for (i = 0; i < n_samples; i++) {
375
- x_nodes = dbl_vec_to_svm_node(&x_pt[i * n_features], n_features);
376
- svm_predict_values(model, x_nodes, &y_pt[i]);
377
- xfree(x_nodes);
378
- }
379
- } else {
380
- y_cols = (int)y_shape[1];
381
- dec_values = ALLOC_N(double, y_cols);
382
- for (i = 0; i < n_samples; i++) {
383
- x_nodes = dbl_vec_to_svm_node(&x_pt[i * n_features], n_features);
384
- svm_predict_values(model, x_nodes, dec_values);
385
- xfree(x_nodes);
386
- for (j = 0; j < y_cols; j++) {
387
- y_pt[i * y_cols + j] = dec_values[j];
388
- }
389
- }
390
- xfree(dec_values);
391
- }
392
-
393
- xfree_svm_model(model);
394
- xfree_svm_parameter(param);
395
-
396
- RB_GC_GUARD(x_val);
397
-
398
- return y_val;
399
- }
400
-
401
- /**
402
- * Predict class probability for given samples. The model must have probability information calcualted in training procedure.
403
- * The parameter ':probability' set to 1 in training procedure.
404
- *
405
- * @overload predict_proba(x, param, model) -> Numo::DFloat
406
- * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the class probabilities.
407
- * @param param [Hash] The parameters of the trained SVM model.
408
- * @param model [Hash] The model obtained from the training procedure.
409
- *
410
- * @raise [ArgumentError] If the sample array is not 2-dimensional, this error is raised.
411
- * @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probablity of each class per sample.
412
- */
413
- static
414
- VALUE predict_proba(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash)
415
- {
416
- struct svm_parameter* param;
417
- struct svm_model* model;
418
- struct svm_node* x_nodes;
419
- narray_t* x_nary;
420
- double* x_pt;
421
- size_t y_shape[2];
422
- VALUE y_val = Qnil;
423
- double* y_pt;
424
- double* probs;
425
- int i, j;
426
- int n_samples;
427
- int n_features;
428
-
429
- GetNArray(x_val, x_nary);
430
- if (NA_NDIM(x_nary) != 2) {
431
- rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
432
- return Qnil;
433
- }
434
-
435
- param = rb_hash_to_svm_parameter(param_hash);
436
- model = rb_hash_to_svm_model(model_hash);
437
- model->param = *param;
438
-
439
- if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA != NULL && model->probB != NULL) {
440
- /* Obtain C data structures. */
441
- if (CLASS_OF(x_val) != numo_cDFloat) {
442
- x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
443
- }
444
- if (!RTEST(nary_check_contiguous(x_val))) {
445
- x_val = nary_dup(x_val);
446
- }
447
-
448
- /* Initialize some variables. */
449
- n_samples = (int)NA_SHAPE(x_nary)[0];
450
- n_features = (int)NA_SHAPE(x_nary)[1];
451
- y_shape[0] = n_samples;
452
- y_shape[1] = model->nr_class;
453
- y_val = rb_narray_new(numo_cDFloat, 2, y_shape);
454
- x_pt = (double*)na_get_pointer_for_read(x_val);
455
- y_pt = (double*)na_get_pointer_for_write(y_val);
456
-
457
- /* Predict values. */
458
- probs = ALLOC_N(double, model->nr_class);
459
- for (i = 0; i < n_samples; i++) {
460
- x_nodes = dbl_vec_to_svm_node(&x_pt[i * n_features], n_features);
461
- svm_predict_probability(model, x_nodes, probs);
462
- xfree(x_nodes);
463
- for (j = 0; j < model->nr_class; j++) {
464
- y_pt[i * model->nr_class + j] = probs[j];
465
- }
466
- }
467
- xfree(probs);
468
- }
469
-
470
- xfree_svm_model(model);
471
- xfree_svm_parameter(param);
472
-
473
- RB_GC_GUARD(x_val);
474
-
475
- return y_val;
476
- }
477
-
478
- /**
479
- * Load the SVM parameters and model from a text file with LIBSVM format.
480
- *
481
- * @param filename [String] The path to a file to load.
482
- * @raise [IOError] This error raises when failed to load the model file.
483
- * @return [Array] Array contains the SVM parameters and model.
484
- */
485
- static
486
- VALUE load_svm_model(VALUE self, VALUE filename)
487
- {
488
- char* filename_ = StringValuePtr(filename);
489
- struct svm_model* model = svm_load_model(filename_);
490
- VALUE res = rb_ary_new2(2);
491
- VALUE param_hash = Qnil;
492
- VALUE model_hash = Qnil;
493
-
494
- if (model == NULL) {
495
- rb_raise(rb_eIOError, "Failed to load file '%s'", filename_);
496
- return Qnil;
497
- }
498
-
499
- if (model) {
500
- param_hash = svm_parameter_to_rb_hash(&(model->param));
501
- model_hash = svm_model_to_rb_hash(model);
502
- svm_free_and_destroy_model(&model);
503
- }
504
-
505
- rb_ary_store(res, 0, param_hash);
506
- rb_ary_store(res, 1, model_hash);
507
-
508
- RB_GC_GUARD(filename);
509
-
510
- return res;
511
- }
512
-
513
- /**
514
- * Save the SVM parameters and model as a text file with LIBSVM format. The saved file can be used with the libsvm tools.
515
- * Note that the svm_save_model saves only the parameters necessary for estimation with the trained model.
516
- *
517
- * @overload save_svm_model(filename, param, model) -> Boolean
518
- * @param filename [String] The path to a file to save.
519
- * @param param [Hash] The parameters of the trained SVM model.
520
- * @param model [Hash] The model obtained from the training procedure.
521
- *
522
- * @raise [IOError] This error raises when failed to save the model file.
523
- * @return [Boolean] true on success, or false if an error occurs.
524
- */
525
- static
526
- VALUE save_svm_model(VALUE self, VALUE filename, VALUE param_hash, VALUE model_hash)
527
- {
528
- char* filename_ = StringValuePtr(filename);
529
- struct svm_parameter* param = rb_hash_to_svm_parameter(param_hash);
530
- struct svm_model* model = rb_hash_to_svm_model(model_hash);
531
- int res;
532
-
533
- model->param = *param;
534
- res = svm_save_model(filename_, model);
535
-
536
- xfree_svm_model(model);
537
- xfree_svm_parameter(param);
538
-
539
- if (res < 0) {
540
- rb_raise(rb_eIOError, "Failed to save file '%s'", filename_);
541
- return Qfalse;
542
- }
543
-
544
- RB_GC_GUARD(filename);
545
-
546
- return Qtrue;
547
- }
548
-
549
- void Init_libsvmext()
550
- {
551
- rb_require("numo/narray");
552
-
553
- /**
554
- * Document-module: Numo
555
- * Numo is the top level namespace of NUmerical MOdules for Ruby.
556
- */
557
- mNumo = rb_define_module("Numo");
558
-
559
- /**
560
- * Document-module: Numo::Libsvm
561
- * Numo::Libsvm is a binding library for LIBSVM that handles dataset with Numo::NArray.
562
- */
563
- mLibsvm = rb_define_module_under(mNumo, "Libsvm");
564
-
565
- /* The version of LIBSVM used in backgroud library. */
566
- rb_define_const(mLibsvm, "LIBSVM_VERSION", INT2NUM(LIBSVM_VERSION));
567
-
568
- rb_define_module_function(mLibsvm, "train", train, 3);
569
- rb_define_module_function(mLibsvm, "cv", cross_validation, 4);
570
- rb_define_module_function(mLibsvm, "predict", predict, 3);
571
- rb_define_module_function(mLibsvm, "decision_function", decision_function, 3);
572
- rb_define_module_function(mLibsvm, "predict_proba", predict_proba, 3);
573
- rb_define_module_function(mLibsvm, "load_svm_model", load_svm_model, 1);
574
- rb_define_module_function(mLibsvm, "save_svm_model", save_svm_model, 3);
575
-
576
- rb_init_svm_type_module();
577
- rb_init_kernel_type_module();
578
- }
@@ -1,18 +0,0 @@
1
- #ifndef NUMO_LIBSVMEXT_H
2
- #define NUMO_LIBSVMEXT_H 1
3
-
4
- #include <math.h>
5
- #include <string.h>
6
- #include <svm.h>
7
- #include <ruby.h>
8
- #include <numo/narray.h>
9
- #include <numo/template.h>
10
-
11
- #include "converter.h"
12
- #include "svm_parameter.h"
13
- #include "svm_model.h"
14
- #include "svm_problem.h"
15
- #include "svm_type.h"
16
- #include "kernel_type.h"
17
-
18
- #endif /* NUMO_LIBSVMEXT_H */
@@ -1,89 +0,0 @@
1
-
2
- #include "svm_model.h"
3
-
4
- struct svm_model* rb_hash_to_svm_model(VALUE model_hash)
5
- {
6
- VALUE el;
7
- struct svm_model* model = ALLOC(struct svm_model);
8
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("nr_class")));
9
- model->nr_class = el != Qnil ? NUM2INT(el) : 0;
10
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("l")));
11
- model->l = el != Qnil ? NUM2INT(el) : 0;
12
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("SV")));
13
- model->SV = nary_to_svm_nodes(el);
14
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("sv_coef")));
15
- model->sv_coef = nary_to_dbl_mat(el);
16
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("rho")));
17
- model->rho = nary_to_dbl_vec(el);
18
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("probA")));
19
- model->probA = nary_to_dbl_vec(el);
20
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("probB")));
21
- model->probB = nary_to_dbl_vec(el);
22
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("sv_indices")));
23
- model->sv_indices = nary_to_int_vec(el);
24
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("label")));
25
- model->label = nary_to_int_vec(el);
26
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("nSV")));
27
- model->nSV = nary_to_int_vec(el);
28
- el = rb_hash_aref(model_hash, ID2SYM(rb_intern("free_sv")));
29
- model->free_sv = el != Qnil ? NUM2INT(el) : 0;
30
- return model;
31
- }
32
-
33
- VALUE svm_model_to_rb_hash(struct svm_model* const model)
34
- {
35
- int const n_classes = model->nr_class;
36
- int const n_support_vecs = model->l;
37
- VALUE support_vecs = model->SV ? svm_nodes_to_nary(model->SV, n_support_vecs) : Qnil;
38
- VALUE coefficients = model->sv_coef ? dbl_mat_to_nary(model->sv_coef, n_classes - 1, n_support_vecs) : Qnil;
39
- VALUE intercepts = model->rho ? dbl_vec_to_nary(model->rho, n_classes * (n_classes - 1) / 2) : Qnil;
40
- VALUE prob_alpha = model->probA ? dbl_vec_to_nary(model->probA, n_classes * (n_classes - 1) / 2) : Qnil;
41
- VALUE prob_beta = model->probB ? dbl_vec_to_nary(model->probB, n_classes * (n_classes - 1) / 2) : Qnil;
42
- VALUE sv_indices = model->sv_indices ? int_vec_to_nary(model->sv_indices, n_support_vecs) : Qnil;
43
- VALUE labels = model->label ? int_vec_to_nary(model->label, n_classes) : Qnil;
44
- VALUE n_support_vecs_each_class = model->nSV ? int_vec_to_nary(model->nSV, n_classes) : Qnil;
45
- VALUE model_hash = rb_hash_new();
46
- rb_hash_aset(model_hash, ID2SYM(rb_intern("nr_class")), INT2NUM(n_classes));
47
- rb_hash_aset(model_hash, ID2SYM(rb_intern("l")), INT2NUM(n_support_vecs));
48
- rb_hash_aset(model_hash, ID2SYM(rb_intern("SV")), support_vecs);
49
- rb_hash_aset(model_hash, ID2SYM(rb_intern("sv_coef")), coefficients);
50
- rb_hash_aset(model_hash, ID2SYM(rb_intern("rho")), intercepts);
51
- rb_hash_aset(model_hash, ID2SYM(rb_intern("probA")), prob_alpha);
52
- rb_hash_aset(model_hash, ID2SYM(rb_intern("probB")), prob_beta);
53
- rb_hash_aset(model_hash, ID2SYM(rb_intern("sv_indices")), sv_indices);
54
- rb_hash_aset(model_hash, ID2SYM(rb_intern("label")), labels);
55
- rb_hash_aset(model_hash, ID2SYM(rb_intern("nSV")), n_support_vecs_each_class);
56
- rb_hash_aset(model_hash, ID2SYM(rb_intern("free_sv")), INT2NUM(model->free_sv));
57
- return model_hash;
58
- }
59
-
60
- void xfree_svm_model(struct svm_model* model)
61
- {
62
- int i;
63
- if (model) {
64
- if (model->SV) {
65
- for (i = 0; i < model->l; xfree(model->SV[i++]));
66
- xfree(model->SV);
67
- model->SV = NULL;
68
- }
69
- if (model->sv_coef) {
70
- for (i = 0; i < model->nr_class - 1; xfree(model->sv_coef[i++]));
71
- xfree(model->sv_coef);
72
- model->sv_coef = NULL;
73
- }
74
- xfree(model->rho);
75
- model->rho = NULL;
76
- xfree(model->probA);
77
- model->probA = NULL;
78
- xfree(model->probB);
79
- model->probB = NULL;
80
- xfree(model->sv_indices);
81
- model->sv_indices = NULL;
82
- xfree(model->label);
83
- model->label = NULL;
84
- xfree(model->nSV);
85
- model->nSV = NULL;
86
- xfree(model);
87
- model = NULL;
88
- }
89
- }
@@ -1,15 +0,0 @@
1
- #ifndef NUMO_LIBSVM_SVM_MODEL_H
2
- #define NUMO_LIBSVM_SVM_MODEL_H 1
3
-
4
- #include <svm.h>
5
- #include <ruby.h>
6
- #include <numo/narray.h>
7
- #include <numo/template.h>
8
-
9
- #include "converter.h"
10
-
11
- struct svm_model* rb_hash_to_svm_model(VALUE model_hash);
12
- VALUE svm_model_to_rb_hash(struct svm_model* const model);
13
- void xfree_svm_model(struct svm_model* model);
14
-
15
- #endif /* NUMO_LIBSVM_SVM_MODEL_H */