numo-libsvm 1.1.2 → 2.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: f321e889c3d7a6a617f6700885d5c39f00272a4cd2aad82e2efadb6818fe78aa
4
- data.tar.gz: bc8062c42b4f20cc1b6cfe11a2cebff4fc2881be180c92ca287e5f3c85b74a76
3
+ metadata.gz: 37613a10119b2974024687c3f781d271ebaa30b15ccff6100df17c32642dcd2d
4
+ data.tar.gz: 210e072576d4fa859364fdb522e6f02c9be12458e5ed0647fcd8bebedfdb3e84
5
5
  SHA512:
6
- metadata.gz: faa13722b019804975e539f4f10a64bb602a3052529d885e168e343801a61a074af186efa6f0c8e124f03ed8b95cfc7067a7c06eda334d89a9c41f4775d18c2c
7
- data.tar.gz: 28b0830bd53f280c6511013ca838bf29ed510cf8062b7f47425d15aa287418452c14ea7f98567ee459518be9aa946cee40d3401a9011169e3f51d64f64f96ca8
6
+ metadata.gz: 142e15fe744460f679f7bd7978f1654e2e71a40a49ce3a414c3c0e68b507d6d9c286eec9edd37a10f5b9fc60a940079c42e59d1283ba607cd7748b80d16fa12f
7
+ data.tar.gz: 67909b309d9a186e77dc716cc2e8b1299d0be3baf10be7be87fc89f2bc67a47b087063827be2f8ba750378d354f745c58dec0feb072f8eea73c883c3c034a669
data/CHANGELOG.md CHANGED
@@ -1,3 +1,16 @@
1
+ # 2.1.0
2
+ - Update bundled LIBSVM to 3.30.
3
+ - Support for probilistic outputs of one-class SVM.
4
+
5
+ # 2.0.1
6
+ - Chnage to use memcpy to copy vector.
7
+ - Refactor codes and configs with RuboCop.
8
+
9
+ # 2.0.0
10
+ - Redesign native extension codes.
11
+ - Change not ot use git submodule for LIBSVM codes bundle.
12
+ - Introduce conventional commits.
13
+
1
14
  # 1.1.2
2
15
  - Remove dependent gem's type declaration file from installation files.
3
16
 
data/LICENSE.txt CHANGED
@@ -1,4 +1,4 @@
1
- Copyright (c) 2019-2021 Atsushi Tatsuma
1
+ Copyright (c) 2019-2022 Atsushi Tatsuma
2
2
  All rights reserved.
3
3
 
4
4
  Redistribution and use in source and binary forms, with or without
data/README.md CHANGED
@@ -189,12 +189,8 @@ param = {
189
189
 
190
190
  ## Contributing
191
191
 
192
- Bug reports and pull requests are welcome on GitHub at https://github.com/yoshoku/numo-libsvm. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
192
+ Bug reports and pull requests are welcome on GitHub at https://github.com/yoshoku/numo-libsvm. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](https://contributor-covenant.org) code of conduct.
193
193
 
194
194
  ## License
195
195
 
196
196
  The gem is available as open source under the terms of the [BSD-3-Clause License](https://opensource.org/licenses/BSD-3-Clause).
197
-
198
- ## Code of Conduct
199
-
200
- Everyone interacting in the Numo::Libsvm project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/yoshoku/numo-libsvm/blob/main/CODE_OF_CONDUCT.md).
@@ -8,10 +8,7 @@ $LOAD_PATH.each do |lp|
8
8
  end
9
9
  end
10
10
 
11
- unless have_header('numo/narray.h')
12
- puts 'numo/narray.h not found.'
13
- exit(1)
14
- end
11
+ abort 'numo/narray.h not found.' unless have_header('numo/narray.h')
15
12
 
16
13
  if RUBY_PLATFORM =~ /mswin|cygwin|mingw/
17
14
  $LOAD_PATH.each do |lp|
@@ -20,20 +17,13 @@ if RUBY_PLATFORM =~ /mswin|cygwin|mingw/
20
17
  break
21
18
  end
22
19
  end
23
- unless have_library('narray', 'nary_new')
24
- puts 'libnarray.a not found.'
25
- exit(1)
26
- end
20
+ abort 'libnarray.a not found.' unless have_library('narray', 'nary_new')
27
21
  end
28
22
 
29
- $LDFLAGS << ' -lstdc++ '
23
+ abort 'libstdc++ is not found.' unless have_library('stdc++')
30
24
 
31
- $srcs = Dir.glob("#{$srcdir}/*.c").map { |path| File.basename(path) }
32
- $srcs << 'svm.cpp'
33
- Dir.glob("#{$srcdir}/*/") do |path|
34
- dir = File.basename(path)
35
- $INCFLAGS << " -I$(srcdir)/#{dir}"
36
- $VPATH << "$(srcdir)/#{dir}"
37
- end
25
+ $srcs = Dir.glob("#{$srcdir}/**/*.cpp").map { |path| File.basename(path) }
26
+ $INCFLAGS << " -I$(srcdir)/src"
27
+ $VPATH << "$(srcdir)/src"
38
28
 
39
29
  create_makefile('numo/libsvm/libsvmext')
@@ -0,0 +1,220 @@
1
+ /**
2
+ * Copyright (c) 2019-2022 Atsushi Tatsuma
3
+ * All rights reserved.
4
+ *
5
+ * Redistribution and use in source and binary forms, with or without
6
+ * modification, are permitted provided that the following conditions are met:
7
+ *
8
+ * * Redistributions of source code must retain the above copyright notice, this
9
+ * list of conditions and the following disclaimer.
10
+ *
11
+ * * Redistributions in binary form must reproduce the above copyright notice,
12
+ * this list of conditions and the following disclaimer in the documentation
13
+ * and/or other materials provided with the distribution.
14
+ *
15
+ * * Neither the name of the copyright holder nor the names of its
16
+ * contributors may be used to endorse or promote products derived from
17
+ * this software without specific prior written permission.
18
+ *
19
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
23
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
26
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
+ */
30
+
31
+ #include "libsvmext.hpp"
32
+
33
+ extern "C" void Init_libsvmext(void) {
34
+ rb_require("numo/narray");
35
+
36
+ /**
37
+ * Document-module: Numo
38
+ * Numo is the top level namespace of NUmerical MOdules for Ruby.
39
+ */
40
+
41
+ /**
42
+ * Document-module: Numo::Libsvm
43
+ * Numo::Libsvm is a binding library for LIBSVM that handles dataset with Numo::NArray.
44
+ */
45
+ VALUE mLibsvm = rb_define_module_under(mNumo, "Libsvm");
46
+
47
+ /* The version of LIBSVM used in backgroud library. */
48
+ rb_define_const(mLibsvm, "LIBSVM_VERSION", INT2NUM(LIBSVM_VERSION));
49
+
50
+ /**
51
+ * Document-module: Numo::Libsvm::SvmType
52
+ * The module consisting of constants for SVM algorithm type that used for parameter of LIBSVM.
53
+ */
54
+ VALUE mSvmType = rb_define_module_under(mLibsvm, "SvmType");
55
+ /* C-SVM classification */
56
+ rb_define_const(mSvmType, "C_SVC", INT2NUM(C_SVC));
57
+ /* nu-SVM classification */
58
+ rb_define_const(mSvmType, "NU_SVC", INT2NUM(NU_SVC));
59
+ /* one-class-SVM */
60
+ rb_define_const(mSvmType, "ONE_CLASS", INT2NUM(ONE_CLASS));
61
+ /* epsilon-SVM regression */
62
+ rb_define_const(mSvmType, "EPSILON_SVR", INT2NUM(EPSILON_SVR));
63
+ /* nu-SVM regression */
64
+ rb_define_const(mSvmType, "NU_SVR", INT2NUM(NU_SVR));
65
+
66
+ /**
67
+ * Document-module: Numo::Libsvm::KernelType
68
+ * The module consisting of constants for kernel type that used for parameter of LIBSVM.
69
+ */
70
+ VALUE mKernelType = rb_define_module_under(mLibsvm, "KernelType");
71
+ /* Linear kernel; u' * v */
72
+ rb_define_const(mKernelType, "LINEAR", INT2NUM(LINEAR));
73
+ /* Polynomial kernel; (gamma * u' * v + coef0)^degree */
74
+ rb_define_const(mKernelType, "POLY", INT2NUM(POLY));
75
+ /* RBF kernel; exp(-gamma * ||u - v||^2) */
76
+ rb_define_const(mKernelType, "RBF", INT2NUM(RBF));
77
+ /* Sigmoid kernel; tanh(gamma * u' * v + coef0) */
78
+ rb_define_const(mKernelType, "SIGMOID", INT2NUM(SIGMOID));
79
+ /* Precomputed kernel */
80
+ rb_define_const(mKernelType, "PRECOMPUTED", INT2NUM(PRECOMPUTED));
81
+
82
+ /**
83
+ * Train the SVM model according to the given training data.
84
+ *
85
+ * @overload train(x, y, param) -> Hash
86
+ * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for training the model.
87
+ * @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
88
+ * @param param [Hash] The parameters of an SVM model.
89
+ *
90
+ * @example
91
+ * require 'numo/libsvm'
92
+ *
93
+ * # Prepare XOR data.
94
+ * x = Numo::DFloat[[-0.8, -0.7], [0.9, 0.8], [-0.7, 0.9], [0.8, -0.9]]
95
+ * y = Numo::Int32[-1, -1, 1, 1]
96
+ *
97
+ * # Train C-Support Vector Classifier with RBF kernel.
98
+ * param = {
99
+ * svm_type: Numo::Libsvm::SvmType::C_SVC,
100
+ * kernel_type: Numo::Libsvm::KernelType::RBF,
101
+ * gamma: 2.0,
102
+ * C: 1,
103
+ * random_seed: 1
104
+ * }
105
+ * model = Numo::Libsvm.train(x, y, param)
106
+ *
107
+ * # Predict labels of test data.
108
+ * x_test = Numo::DFloat[[-0.4, -0.5], [0.5, -0.4]]
109
+ * result = Numo::Libsvm.predict(x_test, param, model)
110
+ * p result
111
+ * # Numo::DFloat#shape=[2]
112
+ * # [-1, 1]
113
+ *
114
+ * @raise [ArgumentError] If the sample array is not 2-dimensional, the label array is not 1-dimensional,
115
+ * the sample array and label array do not have the same number of samples, or
116
+ * the hyperparameter has an invalid value, this error is raised.
117
+ * @return [Hash] The model obtained from the training procedure.
118
+ */
119
+ rb_define_module_function(mLibsvm, "train", RUBY_METHOD_FUNC(numo_libsvm_train), 3);
120
+ /**
121
+ * Perform cross validation under given parameters. The given samples are separated to n_fols folds.
122
+ * The predicted labels or values in the validation process are returned.
123
+ *
124
+ * @overload cv(x, y, param, n_folds) -> Numo::DFloat
125
+ * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for training the model.
126
+ * @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
127
+ * @param param [Hash] The parameters of an SVM model.
128
+ * @param n_folds [Integer] The number of folds.
129
+ *
130
+ * @example
131
+ * require 'numo/libsvm'
132
+ *
133
+ * # x: samples
134
+ * # y: labels
135
+ *
136
+ * # Define parameters of C-SVC with RBF Kernel.
137
+ * param = {
138
+ * svm_type: Numo::Libsvm::SvmType::C_SVC,
139
+ * kernel_type: Numo::Libsvm::KernelType::RBF,
140
+ * gamma: 1.0,
141
+ * C: 1,
142
+ * random_seed: 1,
143
+ * verbose: true
144
+ * }
145
+ *
146
+ * # Perform 5-cross validation.
147
+ * n_folds = 5
148
+ * res = Numo::Libsvm.cv(x, y, param, n_folds)
149
+ *
150
+ * # Print mean accuracy.
151
+ * mean_accuracy = y.eq(res).count.fdiv(y.size)
152
+ * puts "Accuracy: %.1f %%" % (100 * mean_accuracy)
153
+ *
154
+ * @raise [ArgumentError] If the sample array is not 2-dimensional, the label array is not 1-dimensional,
155
+ * the sample array and label array do not have the same number of samples, or
156
+ * the hyperparameter has an invalid value, this error is raised.
157
+ * @return [Numo::DFloat] (shape: [n_samples]) The predicted class label or value of each sample.
158
+ */
159
+ rb_define_module_function(mLibsvm, "cv", RUBY_METHOD_FUNC(numo_libsvm_cross_validation), 4);
160
+ /**
161
+ * Predict class labels or values for given samples.
162
+ *
163
+ * @overload predict(x, param, model) -> Numo::DFloat
164
+ * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the scores.
165
+ * @param param [Hash] The parameters of the trained SVM model.
166
+ * @param model [Hash] The model obtained from the training procedure.
167
+ *
168
+ * @raise [ArgumentError] If the sample array is not 2-dimensional, this error is raised.
169
+ * @return [Numo::DFloat] (shape: [n_samples]) The predicted class label or value of each sample.
170
+ */
171
+ rb_define_module_function(mLibsvm, "predict", RUBY_METHOD_FUNC(numo_libsvm_predict), 3);
172
+ /**
173
+ * Calculate decision values for given samples.
174
+ *
175
+ * @overload decision_function(x, param, model) -> Numo::DFloat
176
+ * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the scores.
177
+ * @param param [Hash] The parameters of the trained SVM model.
178
+ * @param model [Hash] The model obtained from the training procedure.
179
+ *
180
+ * @raise [ArgumentError] If the sample array is not 2-dimensional, this error is raised.
181
+ * @return [Numo::DFloat] (shape: [n_samples, n_classes * (n_classes - 1) / 2]) The decision value of each sample.
182
+ */
183
+ rb_define_module_function(mLibsvm, "decision_function", RUBY_METHOD_FUNC(numo_libsvm_decision_function), 3);
184
+ /**
185
+ * Predict class probability for given samples. The model must have probability information calcualted in training procedure.
186
+ * The parameter ':probability' set to 1 in training procedure.
187
+ *
188
+ * @overload predict_proba(x, param, model) -> Numo::DFloat
189
+ * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the class probabilities.
190
+ * @param param [Hash] The parameters of the trained SVM model.
191
+ * @param model [Hash] The model obtained from the training procedure.
192
+ *
193
+ * @raise [ArgumentError] If the sample array is not 2-dimensional, this error is raised.
194
+ * @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probablity of each class per sample.
195
+ */
196
+ rb_define_module_function(mLibsvm, "predict_proba", RUBY_METHOD_FUNC(numo_libsvm_predict_proba), 3);
197
+ /**
198
+ * Load the SVM parameters and model from a text file with LIBSVM format.
199
+ *
200
+ * @overload load_svm_model(filename) -> Array
201
+ * @param filename [String] The path to a file to load.
202
+ *
203
+ * @raise [IOError] This error raises when failed to load the model file.
204
+ * @return [Array] Array contains the SVM parameters and model.
205
+ */
206
+ rb_define_module_function(mLibsvm, "load_svm_model", RUBY_METHOD_FUNC(numo_libsvm_load_model), 1);
207
+ /**
208
+ * Save the SVM parameters and model as a text file with LIBSVM format. The saved file can be used with the libsvm tools.
209
+ * Note that the svm_save_model saves only the parameters necessary for estimation with the trained model.
210
+ *
211
+ * @overload save_svm_model(filename, param, model) -> Boolean
212
+ * @param filename [String] The path to a file to save.
213
+ * @param param [Hash] The parameters of the trained SVM model.
214
+ * @param model [Hash] The model obtained from the training procedure.
215
+ *
216
+ * @raise [IOError] This error raises when failed to save the model file.
217
+ * @return [Boolean] true on success, or false if an error occurs.
218
+ */
219
+ rb_define_module_function(mLibsvm, "save_svm_model", RUBY_METHOD_FUNC(numo_libsvm_save_model), 3);
220
+ }