numo-libsvm 1.1.2 → 2.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +13 -0
- data/LICENSE.txt +1 -1
- data/README.md +1 -5
- data/ext/numo/libsvm/extconf.rb +6 -16
- data/ext/numo/libsvm/libsvmext.cpp +220 -0
- data/ext/numo/libsvm/libsvmext.hpp +721 -0
- data/ext/numo/libsvm/src/COPYRIGHT +31 -0
- data/ext/numo/libsvm/{libsvm → src}/svm.cpp +134 -18
- data/ext/numo/libsvm/{libsvm → src}/svm.h +2 -1
- data/lib/numo/libsvm/version.rb +1 -1
- data/sig/numo/libsvm.rbs +1 -0
- metadata +12 -31
- data/.github/workflows/build.yml +0 -29
- data/.gitignore +0 -20
- data/.gitmodules +0 -3
- data/.rspec +0 -3
- data/CODE_OF_CONDUCT.md +0 -74
- data/Gemfile +0 -11
- data/Rakefile +0 -15
- data/Steepfile +0 -20
- data/ext/numo/libsvm/converter.c +0 -204
- data/ext/numo/libsvm/converter.h +0 -20
- data/ext/numo/libsvm/kernel_type.c +0 -22
- data/ext/numo/libsvm/kernel_type.h +0 -9
- data/ext/numo/libsvm/libsvmext.c +0 -578
- data/ext/numo/libsvm/libsvmext.h +0 -18
- data/ext/numo/libsvm/svm_model.c +0 -89
- data/ext/numo/libsvm/svm_model.h +0 -15
- data/ext/numo/libsvm/svm_parameter.c +0 -88
- data/ext/numo/libsvm/svm_parameter.h +0 -15
- data/ext/numo/libsvm/svm_problem.c +0 -90
- data/ext/numo/libsvm/svm_problem.h +0 -12
- data/ext/numo/libsvm/svm_type.c +0 -22
- data/ext/numo/libsvm/svm_type.h +0 -9
- data/numo-libsvm.gemspec +0 -47
@@ -0,0 +1,721 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) 2019-2022 Atsushi Tatsuma
|
3
|
+
* All rights reserved.
|
4
|
+
*
|
5
|
+
* Redistribution and use in source and binary forms, with or without
|
6
|
+
* modification, are permitted provided that the following conditions are met:
|
7
|
+
*
|
8
|
+
* * Redistributions of source code must retain the above copyright notice, this
|
9
|
+
* list of conditions and the following disclaimer.
|
10
|
+
*
|
11
|
+
* * Redistributions in binary form must reproduce the above copyright notice,
|
12
|
+
* this list of conditions and the following disclaimer in the documentation
|
13
|
+
* and/or other materials provided with the distribution.
|
14
|
+
*
|
15
|
+
* * Neither the name of the copyright holder nor the names of its
|
16
|
+
* contributors may be used to endorse or promote products derived from
|
17
|
+
* this software without specific prior written permission.
|
18
|
+
*
|
19
|
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20
|
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21
|
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22
|
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23
|
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24
|
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25
|
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26
|
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27
|
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28
|
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29
|
+
*/
|
30
|
+
|
31
|
+
#ifndef LIBSVMEXT_HPP
|
32
|
+
#define LIBSVMEXT_HPP 1
|
33
|
+
|
34
|
+
#include <cmath>
|
35
|
+
#include <cstring>
|
36
|
+
|
37
|
+
#include <ruby.h>
|
38
|
+
|
39
|
+
#include <numo/narray.h>
|
40
|
+
#include <numo/template.h>
|
41
|
+
|
42
|
+
#include <svm.h>
|
43
|
+
|
44
|
+
typedef struct svm_model LibSvmModel;
|
45
|
+
typedef struct svm_node LibSvmNode;
|
46
|
+
typedef struct svm_parameter LibSvmParameter;
|
47
|
+
typedef struct svm_problem LibSvmProblem;
|
48
|
+
|
49
|
+
void printNull(const char* s) {}
|
50
|
+
|
51
|
+
#define NR_MARKS 10
|
52
|
+
|
53
|
+
/** CONVERTERS */
|
54
|
+
VALUE convertVectorXiToNArray(const int* const arr, const int size) {
|
55
|
+
size_t shape[1] = {(size_t)size};
|
56
|
+
VALUE vec_val = rb_narray_new(numo_cInt32, 1, shape);
|
57
|
+
int32_t* vec_ptr = (int32_t*)na_get_pointer_for_write(vec_val);
|
58
|
+
for (int i = 0; i < size; i++) vec_ptr[i] = (int32_t)arr[i];
|
59
|
+
return vec_val;
|
60
|
+
}
|
61
|
+
|
62
|
+
int* convertNArrayToVectorXi(VALUE vec_val) {
|
63
|
+
if (NIL_P(vec_val)) return NULL;
|
64
|
+
|
65
|
+
narray_t* vec_nary;
|
66
|
+
GetNArray(vec_val, vec_nary);
|
67
|
+
const size_t n_elements = NA_SHAPE(vec_nary)[0];
|
68
|
+
int* arr = ALLOC_N(int, n_elements);
|
69
|
+
const int32_t* const vec_ptr = (int32_t*)na_get_pointer_for_read(vec_val);
|
70
|
+
for (size_t i = 0; i < n_elements; i++) arr[i] = (int)vec_ptr[i];
|
71
|
+
|
72
|
+
RB_GC_GUARD(vec_val);
|
73
|
+
|
74
|
+
return arr;
|
75
|
+
}
|
76
|
+
|
77
|
+
VALUE convertVectorXdToNArray(const double* const arr, const int size) {
|
78
|
+
size_t shape[1] = {(size_t)size};
|
79
|
+
VALUE vec_val = rb_narray_new(numo_cDFloat, 1, shape);
|
80
|
+
double* vec_ptr = (double*)na_get_pointer_for_write(vec_val);
|
81
|
+
memcpy(vec_ptr, arr, size * sizeof(double));
|
82
|
+
return vec_val;
|
83
|
+
}
|
84
|
+
|
85
|
+
double* convertNArrayToVectorXd(VALUE vec_val) {
|
86
|
+
if (NIL_P(vec_val)) return NULL;
|
87
|
+
|
88
|
+
narray_t* vec_nary;
|
89
|
+
GetNArray(vec_val, vec_nary);
|
90
|
+
const size_t n_elements = NA_SHAPE(vec_nary)[0];
|
91
|
+
double* arr = ALLOC_N(double, n_elements);
|
92
|
+
const double* const vec_ptr = (double*)na_get_pointer_for_read(vec_val);
|
93
|
+
memcpy(arr, vec_ptr, n_elements * sizeof(double));
|
94
|
+
|
95
|
+
RB_GC_GUARD(vec_val);
|
96
|
+
|
97
|
+
return arr;
|
98
|
+
}
|
99
|
+
|
100
|
+
VALUE convertMatrixXdToNArray(const double* const* mat, const int n_rows, const int n_cols) {
|
101
|
+
size_t shape[2] = {(size_t)n_rows, (size_t)n_cols};
|
102
|
+
VALUE mat_val = rb_narray_new(numo_cDFloat, 2, shape);
|
103
|
+
double* mat_ptr = (double*)na_get_pointer_for_write(mat_val);
|
104
|
+
for (int i = 0; i < n_rows; i++) memcpy(&mat_ptr[i * n_cols], mat[i], n_cols * sizeof(double));
|
105
|
+
return mat_val;
|
106
|
+
}
|
107
|
+
|
108
|
+
double** convertNArrayToMatrixXd(VALUE mat_val) {
|
109
|
+
if (NIL_P(mat_val)) return NULL;
|
110
|
+
|
111
|
+
narray_t* mat_nary;
|
112
|
+
GetNArray(mat_val, mat_nary);
|
113
|
+
const size_t n_rows = NA_SHAPE(mat_nary)[0];
|
114
|
+
const size_t n_cols = NA_SHAPE(mat_nary)[1];
|
115
|
+
const double* const mat_ptr = (double*)na_get_pointer_for_read(mat_val);
|
116
|
+
double** mat = ALLOC_N(double*, n_rows);
|
117
|
+
for (size_t i = 0; i < n_rows; i++) {
|
118
|
+
mat[i] = ALLOC_N(double, n_cols);
|
119
|
+
memcpy(mat[i], &mat_ptr[i * n_cols], n_cols * sizeof(double));
|
120
|
+
}
|
121
|
+
|
122
|
+
RB_GC_GUARD(mat_val);
|
123
|
+
|
124
|
+
return mat;
|
125
|
+
}
|
126
|
+
|
127
|
+
VALUE convertLibSvmNodeToNArray(const LibSvmNode* const* support_vecs, const int n_support_vecs) {
|
128
|
+
int n_dimensions = 0;
|
129
|
+
for (int i = 0; i < n_support_vecs; i++) {
|
130
|
+
for (int j = 0; support_vecs[i][j].index != -1; j++) {
|
131
|
+
if (n_dimensions < support_vecs[i][j].index) {
|
132
|
+
n_dimensions = support_vecs[i][j].index;
|
133
|
+
}
|
134
|
+
}
|
135
|
+
}
|
136
|
+
|
137
|
+
size_t shape[2] = {(size_t)n_support_vecs, (size_t)n_dimensions};
|
138
|
+
VALUE vec_val = rb_narray_new(numo_cDFloat, 2, shape);
|
139
|
+
double* vec_ptr = (double*)na_get_pointer_for_write(vec_val);
|
140
|
+
memset(vec_ptr, 0, n_support_vecs * n_dimensions * sizeof(double));
|
141
|
+
for (int i = 0; i < n_support_vecs; i++) {
|
142
|
+
for (int j = 0; support_vecs[i][j].index != -1; j++) {
|
143
|
+
vec_ptr[i * n_dimensions + support_vecs[i][j].index - 1] = support_vecs[i][j].value;
|
144
|
+
}
|
145
|
+
}
|
146
|
+
|
147
|
+
return vec_val;
|
148
|
+
}
|
149
|
+
|
150
|
+
LibSvmNode** convertNArrayToLibSvmNode(VALUE vec_val) {
|
151
|
+
if (NIL_P(vec_val)) return NULL;
|
152
|
+
|
153
|
+
narray_t* vec_nary;
|
154
|
+
GetNArray(vec_val, vec_nary);
|
155
|
+
const size_t n_rows = NA_SHAPE(vec_nary)[0];
|
156
|
+
const size_t n_cols = NA_SHAPE(vec_nary)[1];
|
157
|
+
const double* const vec_ptr = (double*)na_get_pointer_for_read(vec_val);
|
158
|
+
LibSvmNode** support_vecs = ALLOC_N(LibSvmNode*, n_rows);
|
159
|
+
for (size_t i = 0; i < n_rows; i++) {
|
160
|
+
int n_nonzero_cols = 0;
|
161
|
+
for (size_t j = 0; j < n_cols; j++) {
|
162
|
+
if (vec_ptr[i * n_cols + j] != 0) {
|
163
|
+
n_nonzero_cols++;
|
164
|
+
}
|
165
|
+
}
|
166
|
+
support_vecs[i] = ALLOC_N(LibSvmNode, n_nonzero_cols + 1);
|
167
|
+
for (size_t j = 0, k = 0; j < n_cols; j++) {
|
168
|
+
if (vec_ptr[i * n_cols + j] != 0) {
|
169
|
+
support_vecs[i][k].index = j + 1;
|
170
|
+
support_vecs[i][k].value = vec_ptr[i * n_cols + j];
|
171
|
+
k++;
|
172
|
+
}
|
173
|
+
}
|
174
|
+
support_vecs[i][n_nonzero_cols].index = -1;
|
175
|
+
support_vecs[i][n_nonzero_cols].value = 0.0;
|
176
|
+
}
|
177
|
+
|
178
|
+
RB_GC_GUARD(vec_val);
|
179
|
+
|
180
|
+
return support_vecs;
|
181
|
+
}
|
182
|
+
|
183
|
+
LibSvmNode* convertVectorXdToLibSvmNode(const double* const arr, const int size) {
|
184
|
+
int n_nonzero_elements = 0;
|
185
|
+
for (int i = 0; i < size; i++) {
|
186
|
+
if (arr[i] != 0.0) n_nonzero_elements++;
|
187
|
+
}
|
188
|
+
|
189
|
+
LibSvmNode* node = ALLOC_N(LibSvmNode, n_nonzero_elements + 1);
|
190
|
+
for (int i = 0, j = 0; i < size; i++) {
|
191
|
+
if (arr[i] != 0.0) {
|
192
|
+
node[j].index = i + 1;
|
193
|
+
node[j].value = arr[i];
|
194
|
+
j++;
|
195
|
+
}
|
196
|
+
}
|
197
|
+
node[n_nonzero_elements].index = -1;
|
198
|
+
node[n_nonzero_elements].value = 0.0;
|
199
|
+
|
200
|
+
return node;
|
201
|
+
}
|
202
|
+
|
203
|
+
LibSvmModel* convertHashToLibSvmModel(VALUE model_hash) {
|
204
|
+
LibSvmModel* model = ALLOC(LibSvmModel);
|
205
|
+
VALUE el;
|
206
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("nr_class")));
|
207
|
+
model->nr_class = !NIL_P(el) ? NUM2INT(el) : 0;
|
208
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("l")));
|
209
|
+
model->l = !NIL_P(el) ? NUM2INT(el) : 0;
|
210
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("SV")));
|
211
|
+
model->SV = convertNArrayToLibSvmNode(el);
|
212
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("sv_coef")));
|
213
|
+
model->sv_coef = convertNArrayToMatrixXd(el);
|
214
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("rho")));
|
215
|
+
model->rho = convertNArrayToVectorXd(el);
|
216
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("probA")));
|
217
|
+
model->probA = convertNArrayToVectorXd(el);
|
218
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("probB")));
|
219
|
+
model->probB = convertNArrayToVectorXd(el);
|
220
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("prob_density_marks")));
|
221
|
+
model->prob_density_marks = convertNArrayToVectorXd(el);
|
222
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("sv_indices")));
|
223
|
+
model->sv_indices = convertNArrayToVectorXi(el);
|
224
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("label")));
|
225
|
+
model->label = convertNArrayToVectorXi(el);
|
226
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("nSV")));
|
227
|
+
model->nSV = convertNArrayToVectorXi(el);
|
228
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("free_sv")));
|
229
|
+
model->free_sv = !NIL_P(el) ? NUM2INT(el) : 0;
|
230
|
+
return model;
|
231
|
+
}
|
232
|
+
|
233
|
+
VALUE convertLibSvmModelToHash(const LibSvmModel* const model) {
|
234
|
+
const int n_classes = model->nr_class;
|
235
|
+
const int n_support_vecs = model->l;
|
236
|
+
VALUE support_vecs = model->SV ? convertLibSvmNodeToNArray(model->SV, n_support_vecs) : Qnil;
|
237
|
+
VALUE coefficients = model->sv_coef ? convertMatrixXdToNArray(model->sv_coef, n_classes - 1, n_support_vecs) : Qnil;
|
238
|
+
VALUE intercepts = model->rho ? convertVectorXdToNArray(model->rho, n_classes * (n_classes - 1) / 2) : Qnil;
|
239
|
+
VALUE prob_alpha = model->probA ? convertVectorXdToNArray(model->probA, n_classes * (n_classes - 1) / 2) : Qnil;
|
240
|
+
VALUE prob_beta = model->probB ? convertVectorXdToNArray(model->probB, n_classes * (n_classes - 1) / 2) : Qnil;
|
241
|
+
VALUE prob_density_marks = model->prob_density_marks ? convertVectorXdToNArray(model->prob_density_marks, NR_MARKS) : Qnil;
|
242
|
+
VALUE sv_indices = model->sv_indices ? convertVectorXiToNArray(model->sv_indices, n_support_vecs) : Qnil;
|
243
|
+
VALUE labels = model->label ? convertVectorXiToNArray(model->label, n_classes) : Qnil;
|
244
|
+
VALUE n_support_vecs_each_class = model->nSV ? convertVectorXiToNArray(model->nSV, n_classes) : Qnil;
|
245
|
+
VALUE model_hash = rb_hash_new();
|
246
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("nr_class")), INT2NUM(n_classes));
|
247
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("l")), INT2NUM(n_support_vecs));
|
248
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("SV")), support_vecs);
|
249
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("sv_coef")), coefficients);
|
250
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("rho")), intercepts);
|
251
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("probA")), prob_alpha);
|
252
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("probB")), prob_beta);
|
253
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("prob_density_marks")), prob_density_marks);
|
254
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("sv_indices")), sv_indices);
|
255
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("label")), labels);
|
256
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("nSV")), n_support_vecs_each_class);
|
257
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("free_sv")), INT2NUM(model->free_sv));
|
258
|
+
return model_hash;
|
259
|
+
}
|
260
|
+
|
261
|
+
LibSvmParameter* convertHashToLibSvmParameter(VALUE param_hash) {
|
262
|
+
LibSvmParameter* param = ALLOC(LibSvmParameter);
|
263
|
+
VALUE el;
|
264
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("svm_type")));
|
265
|
+
param->svm_type = !NIL_P(el) ? NUM2INT(el) : C_SVC;
|
266
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("kernel_type")));
|
267
|
+
param->kernel_type = !NIL_P(el) ? NUM2INT(el) : RBF;
|
268
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("degree")));
|
269
|
+
param->degree = !NIL_P(el) ? NUM2INT(el) : 3;
|
270
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("gamma")));
|
271
|
+
param->gamma = !NIL_P(el) ? NUM2DBL(el) : 1;
|
272
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("coef0")));
|
273
|
+
param->coef0 = !NIL_P(el) ? NUM2DBL(el) : 0;
|
274
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("cache_size")));
|
275
|
+
param->cache_size = !NIL_P(el) ? NUM2DBL(el) : 100;
|
276
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("eps")));
|
277
|
+
param->eps = !NIL_P(el) ? NUM2DBL(el) : 1e-3;
|
278
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("C")));
|
279
|
+
param->C = !NIL_P(el) ? NUM2DBL(el) : 1;
|
280
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("nr_weight")));
|
281
|
+
param->nr_weight = !NIL_P(el) ? NUM2INT(el) : 0;
|
282
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("nu")));
|
283
|
+
param->nu = !NIL_P(el) ? NUM2DBL(el) : 0.5;
|
284
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("p")));
|
285
|
+
param->p = !NIL_P(el) ? NUM2DBL(el) : 0.1;
|
286
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("shrinking")));
|
287
|
+
param->shrinking = RB_TYPE_P(el, T_FALSE) ? 0 : 1;
|
288
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("probability")));
|
289
|
+
param->probability = RB_TYPE_P(el, T_TRUE) ? 1 : 0;
|
290
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("weight_label")));
|
291
|
+
param->weight_label = NULL;
|
292
|
+
if (!NIL_P(el)) {
|
293
|
+
param->weight_label = ALLOC_N(int, param->nr_weight);
|
294
|
+
memcpy(param->weight_label, (int32_t*)na_get_pointer_for_read(el), param->nr_weight * sizeof(int32_t));
|
295
|
+
}
|
296
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("weight")));
|
297
|
+
param->weight = NULL;
|
298
|
+
if (!NIL_P(el)) {
|
299
|
+
param->weight = ALLOC_N(double, param->nr_weight);
|
300
|
+
memcpy(param->weight, (double*)na_get_pointer_for_read(el), param->nr_weight * sizeof(double));
|
301
|
+
}
|
302
|
+
return param;
|
303
|
+
}
|
304
|
+
|
305
|
+
VALUE convertLibSvmParameterToHash(const LibSvmParameter* const param) {
|
306
|
+
VALUE param_hash = rb_hash_new();
|
307
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("svm_type")), INT2NUM(param->svm_type));
|
308
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("kernel_type")), INT2NUM(param->kernel_type));
|
309
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("degree")), INT2NUM(param->degree));
|
310
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("gamma")), DBL2NUM(param->gamma));
|
311
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("coef0")), DBL2NUM(param->coef0));
|
312
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("cache_size")), DBL2NUM(param->cache_size));
|
313
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("eps")), DBL2NUM(param->eps));
|
314
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("C")), DBL2NUM(param->C));
|
315
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("nr_weight")), INT2NUM(param->nr_weight));
|
316
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("nu")), DBL2NUM(param->nu));
|
317
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("p")), DBL2NUM(param->p));
|
318
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("shrinking")), param->shrinking == 1 ? Qtrue : Qfalse);
|
319
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("probability")), param->probability == 1 ? Qtrue : Qfalse);
|
320
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("weight_label")),
|
321
|
+
param->weight_label ? convertVectorXiToNArray(param->weight_label, param->nr_weight) : Qnil);
|
322
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("weight")),
|
323
|
+
param->weight ? convertVectorXdToNArray(param->weight, param->nr_weight) : Qnil);
|
324
|
+
return param_hash;
|
325
|
+
}
|
326
|
+
|
327
|
+
LibSvmProblem* convertDatasetToLibSvmProblem(VALUE x_val, VALUE y_val) {
|
328
|
+
narray_t* x_nary;
|
329
|
+
GetNArray(x_val, x_nary);
|
330
|
+
const int n_samples = (int)NA_SHAPE(x_nary)[0];
|
331
|
+
const int n_features = (int)NA_SHAPE(x_nary)[1];
|
332
|
+
const double* const x_ptr = (double*)na_get_pointer_for_read(x_val);
|
333
|
+
const double* const y_ptr = (double*)na_get_pointer_for_read(y_val);
|
334
|
+
|
335
|
+
LibSvmProblem* problem = ALLOC(LibSvmProblem);
|
336
|
+
problem->l = n_samples;
|
337
|
+
problem->x = ALLOC_N(LibSvmNode*, n_samples);
|
338
|
+
problem->y = ALLOC_N(double, n_samples);
|
339
|
+
|
340
|
+
int last_feature_id = 0;
|
341
|
+
bool is_padded = false;
|
342
|
+
for (int i = 0; i < n_samples; i++) {
|
343
|
+
int n_nonzero_features = 0;
|
344
|
+
for (int j = 0; j < n_features; j++) {
|
345
|
+
if (x_ptr[i * n_features + j] != 0.0) {
|
346
|
+
n_nonzero_features += 1;
|
347
|
+
last_feature_id = j + 1;
|
348
|
+
}
|
349
|
+
}
|
350
|
+
if (!is_padded && last_feature_id == n_features) is_padded = true;
|
351
|
+
if (is_padded) {
|
352
|
+
problem->x[i] = ALLOC_N(LibSvmNode, n_nonzero_features + 1);
|
353
|
+
} else {
|
354
|
+
problem->x[i] = ALLOC_N(LibSvmNode, n_nonzero_features + 2);
|
355
|
+
}
|
356
|
+
for (int j = 0, k = 0; j < n_features; j++) {
|
357
|
+
if (x_ptr[i * n_features + j] != 0.0) {
|
358
|
+
problem->x[i][k].index = j + 1;
|
359
|
+
problem->x[i][k].value = x_ptr[i * n_features + j];
|
360
|
+
k++;
|
361
|
+
}
|
362
|
+
}
|
363
|
+
if (is_padded) {
|
364
|
+
problem->x[i][n_nonzero_features].index = -1;
|
365
|
+
problem->x[i][n_nonzero_features].value = 0.0;
|
366
|
+
} else {
|
367
|
+
problem->x[i][n_nonzero_features].index = n_features;
|
368
|
+
problem->x[i][n_nonzero_features].value = 0.0;
|
369
|
+
problem->x[i][n_nonzero_features + 1].index = -1;
|
370
|
+
problem->x[i][n_nonzero_features + 1].value = 0.0;
|
371
|
+
}
|
372
|
+
problem->y[i] = y_ptr[i];
|
373
|
+
}
|
374
|
+
|
375
|
+
RB_GC_GUARD(x_val);
|
376
|
+
RB_GC_GUARD(y_val);
|
377
|
+
|
378
|
+
return problem;
|
379
|
+
}
|
380
|
+
|
381
|
+
/** UTILITIES */
|
382
|
+
bool isSignleOutputModel(LibSvmModel* model) {
|
383
|
+
return (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR);
|
384
|
+
}
|
385
|
+
|
386
|
+
bool isProbabilisticModel(LibSvmModel* model) { return svm_check_probability_model(model) != 0; }
|
387
|
+
|
388
|
+
void deleteLibSvmModel(LibSvmModel* model) {
|
389
|
+
if (model) {
|
390
|
+
if (model->SV) {
|
391
|
+
for (int i = 0; i < model->l; i++) xfree(model->SV[i]);
|
392
|
+
xfree(model->SV);
|
393
|
+
model->SV = NULL;
|
394
|
+
}
|
395
|
+
if (model->sv_coef) {
|
396
|
+
for (int i = 0; i < model->nr_class - 1; i++) xfree(model->sv_coef[i]);
|
397
|
+
xfree(model->sv_coef);
|
398
|
+
model->sv_coef = NULL;
|
399
|
+
}
|
400
|
+
xfree(model->rho);
|
401
|
+
model->rho = NULL;
|
402
|
+
xfree(model->probA);
|
403
|
+
model->probA = NULL;
|
404
|
+
xfree(model->probB);
|
405
|
+
model->probB = NULL;
|
406
|
+
xfree(model->prob_density_marks);
|
407
|
+
model->prob_density_marks = NULL;
|
408
|
+
xfree(model->sv_indices);
|
409
|
+
model->sv_indices = NULL;
|
410
|
+
xfree(model->label);
|
411
|
+
model->label = NULL;
|
412
|
+
xfree(model->nSV);
|
413
|
+
model->nSV = NULL;
|
414
|
+
xfree(model);
|
415
|
+
model = NULL;
|
416
|
+
}
|
417
|
+
}
|
418
|
+
|
419
|
+
void deleteLibSvmParameter(LibSvmParameter* param) {
|
420
|
+
if (param) {
|
421
|
+
if (param->weight_label) {
|
422
|
+
xfree(param->weight_label);
|
423
|
+
param->weight_label = NULL;
|
424
|
+
}
|
425
|
+
if (param->weight) {
|
426
|
+
xfree(param->weight);
|
427
|
+
param->weight = NULL;
|
428
|
+
}
|
429
|
+
xfree(param);
|
430
|
+
param = NULL;
|
431
|
+
}
|
432
|
+
}
|
433
|
+
|
434
|
+
void deleteLibSvmProblem(LibSvmProblem* problem) {
|
435
|
+
if (problem) {
|
436
|
+
if (problem->x) {
|
437
|
+
for (int i = 0; i < problem->l; i++) {
|
438
|
+
if (problem->x[i]) {
|
439
|
+
xfree(problem->x[i]);
|
440
|
+
problem->x[i] = NULL;
|
441
|
+
}
|
442
|
+
}
|
443
|
+
xfree(problem->x);
|
444
|
+
problem->x = NULL;
|
445
|
+
}
|
446
|
+
if (problem->y) {
|
447
|
+
xfree(problem->y);
|
448
|
+
problem->y = NULL;
|
449
|
+
}
|
450
|
+
xfree(problem);
|
451
|
+
problem = NULL;
|
452
|
+
}
|
453
|
+
}
|
454
|
+
|
455
|
+
/** MODULE FUNCTIONS */
|
456
|
+
static VALUE numo_libsvm_train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash) {
|
457
|
+
if (CLASS_OF(x_val) != numo_cDFloat) x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
|
458
|
+
if (CLASS_OF(y_val) != numo_cDFloat) y_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, y_val);
|
459
|
+
if (!RTEST(nary_check_contiguous(x_val))) x_val = nary_dup(x_val);
|
460
|
+
if (!RTEST(nary_check_contiguous(y_val))) y_val = nary_dup(y_val);
|
461
|
+
|
462
|
+
narray_t* x_nary;
|
463
|
+
narray_t* y_nary;
|
464
|
+
GetNArray(x_val, x_nary);
|
465
|
+
GetNArray(y_val, y_nary);
|
466
|
+
if (NA_NDIM(x_nary) != 2) {
|
467
|
+
rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
|
468
|
+
return Qnil;
|
469
|
+
}
|
470
|
+
if (NA_NDIM(y_nary) != 1) {
|
471
|
+
rb_raise(rb_eArgError, "Expect label or target values to be 1-D arrray.");
|
472
|
+
return Qnil;
|
473
|
+
}
|
474
|
+
if (NA_SHAPE(x_nary)[0] != NA_SHAPE(y_nary)[0]) {
|
475
|
+
rb_raise(rb_eArgError, "Expect to have the same number of samples for samples and labels.");
|
476
|
+
return Qnil;
|
477
|
+
}
|
478
|
+
|
479
|
+
VALUE random_seed = rb_hash_aref(param_hash, ID2SYM(rb_intern("random_seed")));
|
480
|
+
if (!NIL_P(random_seed)) srand(NUM2UINT(random_seed));
|
481
|
+
|
482
|
+
LibSvmParameter* param = convertHashToLibSvmParameter(param_hash);
|
483
|
+
LibSvmProblem* problem = convertDatasetToLibSvmProblem(x_val, y_val);
|
484
|
+
|
485
|
+
const char* err_msg = svm_check_parameter(problem, param);
|
486
|
+
if (err_msg) {
|
487
|
+
deleteLibSvmProblem(problem);
|
488
|
+
deleteLibSvmParameter(param);
|
489
|
+
rb_raise(rb_eArgError, "Invalid LIBSVM parameter is given: %s", err_msg);
|
490
|
+
return Qnil;
|
491
|
+
}
|
492
|
+
|
493
|
+
VALUE verbose = rb_hash_aref(param_hash, ID2SYM(rb_intern("verbose")));
|
494
|
+
if (!RTEST(verbose)) svm_set_print_string_function(printNull);
|
495
|
+
|
496
|
+
LibSvmModel* model = svm_train(problem, param);
|
497
|
+
VALUE model_hash = convertLibSvmModelToHash(model);
|
498
|
+
svm_free_and_destroy_model(&model);
|
499
|
+
|
500
|
+
deleteLibSvmProblem(problem);
|
501
|
+
deleteLibSvmParameter(param);
|
502
|
+
|
503
|
+
RB_GC_GUARD(x_val);
|
504
|
+
RB_GC_GUARD(y_val);
|
505
|
+
|
506
|
+
return model_hash;
|
507
|
+
}
|
508
|
+
|
509
|
+
static VALUE numo_libsvm_cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash, VALUE nr_folds) {
|
510
|
+
if (CLASS_OF(x_val) != numo_cDFloat) x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
|
511
|
+
if (CLASS_OF(y_val) != numo_cDFloat) y_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, y_val);
|
512
|
+
if (!RTEST(nary_check_contiguous(x_val))) x_val = nary_dup(x_val);
|
513
|
+
if (!RTEST(nary_check_contiguous(y_val))) y_val = nary_dup(y_val);
|
514
|
+
|
515
|
+
narray_t* x_nary;
|
516
|
+
narray_t* y_nary;
|
517
|
+
GetNArray(x_val, x_nary);
|
518
|
+
GetNArray(y_val, y_nary);
|
519
|
+
if (NA_NDIM(x_nary) != 2) {
|
520
|
+
rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
|
521
|
+
return Qnil;
|
522
|
+
}
|
523
|
+
if (NA_NDIM(y_nary) != 1) {
|
524
|
+
rb_raise(rb_eArgError, "Expect label or target values to be 1-D arrray.");
|
525
|
+
return Qnil;
|
526
|
+
}
|
527
|
+
if (NA_SHAPE(x_nary)[0] != NA_SHAPE(y_nary)[0]) {
|
528
|
+
rb_raise(rb_eArgError, "Expect to have the same number of samples for samples and labels.");
|
529
|
+
return Qnil;
|
530
|
+
}
|
531
|
+
|
532
|
+
VALUE random_seed = rb_hash_aref(param_hash, ID2SYM(rb_intern("random_seed")));
|
533
|
+
if (!NIL_P(random_seed)) srand(NUM2UINT(random_seed));
|
534
|
+
|
535
|
+
LibSvmParameter* param = convertHashToLibSvmParameter(param_hash);
|
536
|
+
LibSvmProblem* problem = convertDatasetToLibSvmProblem(x_val, y_val);
|
537
|
+
|
538
|
+
const char* err_msg = svm_check_parameter(problem, param);
|
539
|
+
if (err_msg) {
|
540
|
+
deleteLibSvmProblem(problem);
|
541
|
+
deleteLibSvmParameter(param);
|
542
|
+
rb_raise(rb_eArgError, "Invalid LIBSVM parameter is given: %s", err_msg);
|
543
|
+
return Qnil;
|
544
|
+
}
|
545
|
+
|
546
|
+
size_t t_shape[1] = {(size_t)(problem->l)};
|
547
|
+
VALUE t_val = rb_narray_new(numo_cDFloat, 1, t_shape);
|
548
|
+
double* t_pt = (double*)na_get_pointer_for_write(t_val);
|
549
|
+
|
550
|
+
VALUE verbose = rb_hash_aref(param_hash, ID2SYM(rb_intern("verbose")));
|
551
|
+
if (!RTEST(verbose)) svm_set_print_string_function(printNull);
|
552
|
+
|
553
|
+
const int n_folds = NUM2INT(nr_folds);
|
554
|
+
svm_cross_validation(problem, param, n_folds, t_pt);
|
555
|
+
|
556
|
+
deleteLibSvmProblem(problem);
|
557
|
+
deleteLibSvmParameter(param);
|
558
|
+
|
559
|
+
RB_GC_GUARD(x_val);
|
560
|
+
RB_GC_GUARD(y_val);
|
561
|
+
|
562
|
+
return t_val;
|
563
|
+
}
|
564
|
+
|
565
|
+
static VALUE numo_libsvm_predict(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash) {
|
566
|
+
if (CLASS_OF(x_val) != numo_cDFloat) x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
|
567
|
+
if (!RTEST(nary_check_contiguous(x_val))) x_val = nary_dup(x_val);
|
568
|
+
|
569
|
+
narray_t* x_nary;
|
570
|
+
GetNArray(x_val, x_nary);
|
571
|
+
if (NA_NDIM(x_nary) != 2) {
|
572
|
+
rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
|
573
|
+
return Qnil;
|
574
|
+
}
|
575
|
+
|
576
|
+
LibSvmParameter* param = convertHashToLibSvmParameter(param_hash);
|
577
|
+
LibSvmModel* model = convertHashToLibSvmModel(model_hash);
|
578
|
+
model->param = *param;
|
579
|
+
|
580
|
+
const int n_samples = (int)NA_SHAPE(x_nary)[0];
|
581
|
+
const int n_features = (int)NA_SHAPE(x_nary)[1];
|
582
|
+
size_t y_shape[1] = {(size_t)n_samples};
|
583
|
+
VALUE y_val = rb_narray_new(numo_cDFloat, 1, y_shape);
|
584
|
+
double* y_ptr = (double*)na_get_pointer_for_write(y_val);
|
585
|
+
const double* const x_ptr = (double*)na_get_pointer_for_read(x_val);
|
586
|
+
for (int i = 0; i < n_samples; i++) {
|
587
|
+
LibSvmNode* x_nodes = convertVectorXdToLibSvmNode(&x_ptr[i * n_features], n_features);
|
588
|
+
y_ptr[i] = svm_predict(model, x_nodes);
|
589
|
+
xfree(x_nodes);
|
590
|
+
}
|
591
|
+
|
592
|
+
deleteLibSvmModel(model);
|
593
|
+
deleteLibSvmParameter(param);
|
594
|
+
|
595
|
+
RB_GC_GUARD(x_val);
|
596
|
+
|
597
|
+
return y_val;
|
598
|
+
}
|
599
|
+
|
600
|
+
static VALUE numo_libsvm_decision_function(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash) {
|
601
|
+
if (CLASS_OF(x_val) != numo_cDFloat) x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
|
602
|
+
if (!RTEST(nary_check_contiguous(x_val))) x_val = nary_dup(x_val);
|
603
|
+
|
604
|
+
narray_t* x_nary;
|
605
|
+
GetNArray(x_val, x_nary);
|
606
|
+
if (NA_NDIM(x_nary) != 2) {
|
607
|
+
rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
|
608
|
+
return Qnil;
|
609
|
+
}
|
610
|
+
|
611
|
+
LibSvmParameter* param = convertHashToLibSvmParameter(param_hash);
|
612
|
+
LibSvmModel* model = convertHashToLibSvmModel(model_hash);
|
613
|
+
model->param = *param;
|
614
|
+
|
615
|
+
const int n_samples = (int)NA_SHAPE(x_nary)[0];
|
616
|
+
const int n_features = (int)NA_SHAPE(x_nary)[1];
|
617
|
+
const int y_cols = isSignleOutputModel(model) ? 1 : model->nr_class * (model->nr_class - 1) / 2;
|
618
|
+
size_t y_shape[2] = {(size_t)n_samples, (size_t)y_cols};
|
619
|
+
const int n_dims = isSignleOutputModel(model) ? 1 : 2;
|
620
|
+
VALUE y_val = rb_narray_new(numo_cDFloat, n_dims, y_shape);
|
621
|
+
const double* const x_ptr = (double*)na_get_pointer_for_read(x_val);
|
622
|
+
double* y_ptr = (double*)na_get_pointer_for_write(y_val);
|
623
|
+
|
624
|
+
for (int i = 0; i < n_samples; i++) {
|
625
|
+
LibSvmNode* x_nodes = convertVectorXdToLibSvmNode(&x_ptr[i * n_features], n_features);
|
626
|
+
svm_predict_values(model, x_nodes, &y_ptr[i * y_cols]);
|
627
|
+
xfree(x_nodes);
|
628
|
+
}
|
629
|
+
|
630
|
+
deleteLibSvmModel(model);
|
631
|
+
deleteLibSvmParameter(param);
|
632
|
+
|
633
|
+
RB_GC_GUARD(x_val);
|
634
|
+
|
635
|
+
return y_val;
|
636
|
+
}
|
637
|
+
|
638
|
+
static VALUE numo_libsvm_predict_proba(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash) {
|
639
|
+
narray_t* x_nary;
|
640
|
+
GetNArray(x_val, x_nary);
|
641
|
+
if (NA_NDIM(x_nary) != 2) {
|
642
|
+
rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
|
643
|
+
return Qnil;
|
644
|
+
}
|
645
|
+
|
646
|
+
LibSvmParameter* param = convertHashToLibSvmParameter(param_hash);
|
647
|
+
LibSvmModel* model = convertHashToLibSvmModel(model_hash);
|
648
|
+
model->param = *param;
|
649
|
+
|
650
|
+
if (!isProbabilisticModel(model)) {
|
651
|
+
deleteLibSvmModel(model);
|
652
|
+
deleteLibSvmParameter(param);
|
653
|
+
return Qnil;
|
654
|
+
}
|
655
|
+
|
656
|
+
if (CLASS_OF(x_val) != numo_cDFloat) x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
|
657
|
+
if (!RTEST(nary_check_contiguous(x_val))) x_val = nary_dup(x_val);
|
658
|
+
|
659
|
+
const int n_samples = (int)NA_SHAPE(x_nary)[0];
|
660
|
+
const int n_features = (int)NA_SHAPE(x_nary)[1];
|
661
|
+
size_t y_shape[2] = {(size_t)n_samples, (size_t)(model->nr_class)};
|
662
|
+
VALUE y_val = rb_narray_new(numo_cDFloat, 2, y_shape);
|
663
|
+
const double* const x_ptr = (double*)na_get_pointer_for_read(x_val);
|
664
|
+
double* y_ptr = (double*)na_get_pointer_for_write(y_val);
|
665
|
+
for (int i = 0; i < n_samples; i++) {
|
666
|
+
LibSvmNode* x_nodes = convertVectorXdToLibSvmNode(&x_ptr[i * n_features], n_features);
|
667
|
+
svm_predict_probability(model, x_nodes, &y_ptr[i * model->nr_class]);
|
668
|
+
xfree(x_nodes);
|
669
|
+
}
|
670
|
+
|
671
|
+
deleteLibSvmModel(model);
|
672
|
+
deleteLibSvmParameter(param);
|
673
|
+
|
674
|
+
RB_GC_GUARD(x_val);
|
675
|
+
|
676
|
+
return y_val;
|
677
|
+
}
|
678
|
+
|
679
|
+
static VALUE numo_libsvm_load_model(VALUE self, VALUE filename) {
|
680
|
+
const char* const filename_ = StringValuePtr(filename);
|
681
|
+
LibSvmModel* model = svm_load_model(filename_);
|
682
|
+
if (model == NULL) {
|
683
|
+
rb_raise(rb_eIOError, "Failed to load file '%s'", filename_);
|
684
|
+
return Qnil;
|
685
|
+
}
|
686
|
+
|
687
|
+
VALUE param_hash = convertLibSvmParameterToHash(&(model->param));
|
688
|
+
VALUE model_hash = convertLibSvmModelToHash(model);
|
689
|
+
svm_free_and_destroy_model(&model);
|
690
|
+
|
691
|
+
VALUE res = rb_ary_new2(2);
|
692
|
+
rb_ary_store(res, 0, param_hash);
|
693
|
+
rb_ary_store(res, 1, model_hash);
|
694
|
+
|
695
|
+
RB_GC_GUARD(filename);
|
696
|
+
|
697
|
+
return res;
|
698
|
+
}
|
699
|
+
|
700
|
+
static VALUE numo_libsvm_save_model(VALUE self, VALUE filename, VALUE param_hash, VALUE model_hash) {
|
701
|
+
LibSvmParameter* param = convertHashToLibSvmParameter(param_hash);
|
702
|
+
LibSvmModel* model = convertHashToLibSvmModel(model_hash);
|
703
|
+
model->param = *param;
|
704
|
+
|
705
|
+
const char* const filename_ = StringValuePtr(filename);
|
706
|
+
const int res = svm_save_model(filename_, model);
|
707
|
+
|
708
|
+
deleteLibSvmModel(model);
|
709
|
+
deleteLibSvmParameter(param);
|
710
|
+
|
711
|
+
if (res < 0) {
|
712
|
+
rb_raise(rb_eIOError, "Failed to save file '%s'", filename_);
|
713
|
+
return Qfalse;
|
714
|
+
}
|
715
|
+
|
716
|
+
RB_GC_GUARD(filename);
|
717
|
+
|
718
|
+
return Qtrue;
|
719
|
+
}
|
720
|
+
|
721
|
+
#endif /* LIBSVMEXT_HPP */
|