nmatrix 0.0.8 → 0.0.9
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +3 -8
- data/.rspec +1 -1
- data/.travis.yml +12 -0
- data/CONTRIBUTING.md +27 -12
- data/Gemfile +1 -0
- data/History.txt +38 -0
- data/Manifest.txt +15 -15
- data/README.rdoc +7 -6
- data/Rakefile +40 -5
- data/ext/nmatrix/data/data.cpp +2 -37
- data/ext/nmatrix/data/data.h +19 -121
- data/ext/nmatrix/data/meta.h +70 -0
- data/ext/nmatrix/extconf.rb +40 -12
- data/ext/nmatrix/math/math.h +13 -103
- data/ext/nmatrix/nmatrix.cpp +10 -2018
- data/ext/nmatrix/nmatrix.h +16 -13
- data/ext/nmatrix/ruby_constants.cpp +12 -1
- data/ext/nmatrix/ruby_constants.h +7 -1
- data/ext/nmatrix/ruby_nmatrix.c +2169 -0
- data/ext/nmatrix/storage/dense.cpp +123 -14
- data/ext/nmatrix/storage/dense.h +10 -4
- data/ext/nmatrix/storage/list.cpp +265 -48
- data/ext/nmatrix/storage/list.h +6 -9
- data/ext/nmatrix/storage/storage.cpp +44 -54
- data/ext/nmatrix/storage/storage.h +2 -2
- data/ext/nmatrix/storage/yale/class.h +1070 -0
- data/ext/nmatrix/storage/yale/iterators/base.h +142 -0
- data/ext/nmatrix/storage/yale/iterators/iterator.h +130 -0
- data/ext/nmatrix/storage/yale/iterators/row.h +449 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored.h +139 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored_nd.h +167 -0
- data/ext/nmatrix/storage/yale/iterators/stored_diagonal.h +123 -0
- data/ext/nmatrix/storage/yale/math/transpose.h +110 -0
- data/ext/nmatrix/storage/yale/yale.cpp +1785 -0
- data/ext/nmatrix/storage/{yale.h → yale/yale.h} +23 -55
- data/ext/nmatrix/types.h +2 -0
- data/ext/nmatrix/util/io.cpp +27 -45
- data/ext/nmatrix/util/io.h +0 -2
- data/ext/nmatrix/util/sl_list.cpp +169 -28
- data/ext/nmatrix/util/sl_list.h +9 -3
- data/lib/nmatrix/blas.rb +20 -20
- data/lib/nmatrix/enumerate.rb +1 -1
- data/lib/nmatrix/io/mat5_reader.rb +8 -14
- data/lib/nmatrix/lapack.rb +3 -3
- data/lib/nmatrix/math.rb +3 -3
- data/lib/nmatrix/nmatrix.rb +19 -5
- data/lib/nmatrix/nvector.rb +2 -0
- data/lib/nmatrix/shortcuts.rb +90 -125
- data/lib/nmatrix/version.rb +1 -1
- data/nmatrix.gemspec +7 -8
- data/spec/{nmatrix_spec.rb → 00_nmatrix_spec.rb} +45 -208
- data/spec/01_enum_spec.rb +184 -0
- data/spec/{slice_spec.rb → 02_slice_spec.rb} +55 -39
- data/spec/blas_spec.rb +22 -54
- data/spec/elementwise_spec.rb +9 -8
- data/spec/io_spec.rb +6 -4
- data/spec/lapack_spec.rb +26 -26
- data/spec/math_spec.rb +9 -5
- data/spec/nmatrix_yale_spec.rb +29 -61
- data/spec/shortcuts_spec.rb +34 -22
- data/spec/slice_set_spec.rb +157 -0
- data/spec/spec_helper.rb +42 -2
- data/spec/stat_spec.rb +192 -0
- metadata +52 -55
- data/ext/nmatrix/storage/yale.cpp +0 -2284
- data/spec/nmatrix_list_spec.rb +0 -113
- data/spec/nvector_spec.rb +0 -112
data/ext/nmatrix/nmatrix.h
CHANGED
@@ -198,7 +198,6 @@
|
|
198
198
|
*/
|
199
199
|
|
200
200
|
#define NM_NUM_DTYPES 13 // data/data.h
|
201
|
-
#define NM_NUM_ITYPES 4 // data/data.h
|
202
201
|
#define NM_NUM_STYPES 3 // storage/storage.h
|
203
202
|
|
204
203
|
//#ifdef __cplusplus
|
@@ -225,12 +224,6 @@ NM_DEF_ENUM(dtype_t, BYTE = 0, // unsigned char
|
|
225
224
|
RATIONAL128 = 11, // Rational128 class
|
226
225
|
RUBYOBJ = 12); // Ruby VALUE type
|
227
226
|
|
228
|
-
/* Index Type for Yale Matrices */
|
229
|
-
NM_DEF_ENUM(itype_t, UINT8 = 0,
|
230
|
-
UINT16 = 1,
|
231
|
-
UINT32 = 2,
|
232
|
-
UINT64 = 3);
|
233
|
-
|
234
227
|
NM_DEF_ENUM(symm_t, NONSYMM = 0,
|
235
228
|
SYMM = 1,
|
236
229
|
SKEW = 2,
|
@@ -253,11 +246,10 @@ NM_DEF_STORAGE_STRUCT_POST(DENSE_STORAGE); // };
|
|
253
246
|
|
254
247
|
/* Yale Storage */
|
255
248
|
NM_DEF_STORAGE_CHILD_STRUCT_PRE(YALE_STORAGE);
|
256
|
-
void*
|
257
|
-
size_t
|
249
|
+
void* a; // should go first
|
250
|
+
size_t ndnz; // Strictly non-diagonal non-zero count!
|
258
251
|
size_t capacity;
|
259
|
-
|
260
|
-
void* ija;
|
252
|
+
size_t* ija;
|
261
253
|
NM_DEF_STORAGE_STRUCT_POST(YALE_STORAGE);
|
262
254
|
|
263
255
|
// FIXME: NODE and LIST should be put in some kind of namespace or something, at least in C++.
|
@@ -306,14 +298,14 @@ NM_DEF_STRUCT_POST(NMATRIX); // };
|
|
306
298
|
#define NM_SRC(val) (NM_STORAGE(val)->src)
|
307
299
|
#define NM_DIM(val) (NM_STORAGE(val)->dim)
|
308
300
|
#define NM_DTYPE(val) (NM_STORAGE(val)->dtype)
|
309
|
-
#define NM_ITYPE(val) (NM_STORAGE_YALE(val)->itype)
|
310
301
|
#define NM_STYPE(val) (NM_STRUCT(val)->stype)
|
311
302
|
#define NM_SHAPE(val,i) (NM_STORAGE(val)->shape[(i)])
|
312
303
|
#define NM_SHAPE0(val) (NM_STORAGE(val)->shape[0])
|
313
304
|
#define NM_SHAPE1(val) (NM_STORAGE(val)->shape[1])
|
314
305
|
#define NM_DEFAULT_VAL(val) (NM_STORAGE_LIST(val)->default_val)
|
315
306
|
|
316
|
-
#define NM_DENSE_COUNT(val) (
|
307
|
+
#define NM_DENSE_COUNT(val) (nm_storage_count_max_elements(NM_STORAGE_DENSE(val)))
|
308
|
+
#define NM_DENSE_ELEMENTS(val) (NM_STORAGE_DENSE(val)->elements)
|
317
309
|
#define NM_SIZEOF_DTYPE(val) (DTYPE_SIZES[NM_DTYPE(val)])
|
318
310
|
#define NM_REF(val,slice) (RefFuncs[NM_STYPE(val)]( NM_STORAGE(val), slice, NM_SIZEOF_DTYPE(val) ))
|
319
311
|
|
@@ -333,6 +325,10 @@ NM_DEF_STRUCT_POST(NMATRIX); // };
|
|
333
325
|
#define NM_IsNVector(obj) \
|
334
326
|
(rb_obj_is_kind_of(obj, cNVector) == Qtrue)
|
335
327
|
|
328
|
+
#define RB_P(OBJ) \
|
329
|
+
rb_funcall(rb_stderr, rb_intern("print"), 1, rb_funcall(OBJ, rb_intern("object_id"), 0)); \
|
330
|
+
rb_funcall(rb_stderr, rb_intern("puts"), 1, rb_funcall(OBJ, rb_intern("inspect"), 0));
|
331
|
+
|
336
332
|
|
337
333
|
#ifdef __cplusplus
|
338
334
|
typedef VALUE (*METHOD)(...);
|
@@ -345,6 +341,7 @@ typedef VALUE (*METHOD)(...);
|
|
345
341
|
*/
|
346
342
|
|
347
343
|
#ifdef __cplusplus
|
344
|
+
|
348
345
|
extern "C" {
|
349
346
|
#endif
|
350
347
|
|
@@ -359,8 +356,14 @@ extern "C" {
|
|
359
356
|
|
360
357
|
// Non-API functions needed by other cpp files.
|
361
358
|
NMATRIX* nm_create(nm::stype_t stype, STORAGE* storage);
|
359
|
+
NMATRIX* nm_cast_with_ctype_args(NMATRIX* self, nm::stype_t new_stype, nm::dtype_t new_dtype, void* init_ptr);
|
360
|
+
VALUE nm_cast(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol, VALUE init);
|
361
|
+
void nm_mark(NMATRIX* mat);
|
362
362
|
void nm_delete(NMATRIX* mat);
|
363
363
|
void nm_delete_ref(NMATRIX* mat);
|
364
|
+
void nm_mark(NMATRIX* mat);
|
365
|
+
void nm_register_values(VALUE* vals, size_t n);
|
366
|
+
void nm_unregister_values(VALUE* vals, size_t n);
|
364
367
|
|
365
368
|
#ifdef __cplusplus
|
366
369
|
}
|
@@ -35,7 +35,13 @@
|
|
35
35
|
* Global Variables
|
36
36
|
*/
|
37
37
|
|
38
|
-
ID
|
38
|
+
ID nm_rb_dtype,
|
39
|
+
nm_rb_stype,
|
40
|
+
|
41
|
+
nm_rb_capacity,
|
42
|
+
nm_rb_default,
|
43
|
+
|
44
|
+
nm_rb_real,
|
39
45
|
nm_rb_imag,
|
40
46
|
|
41
47
|
nm_rb_numer,
|
@@ -93,6 +99,11 @@ VALUE cNMatrix,
|
|
93
99
|
*/
|
94
100
|
|
95
101
|
void nm_init_ruby_constants(void) {
|
102
|
+
nm_rb_dtype = rb_intern("dtype");
|
103
|
+
nm_rb_stype = rb_intern("stype");
|
104
|
+
|
105
|
+
nm_rb_capacity = rb_intern("capacity");
|
106
|
+
nm_rb_default = rb_intern("default");
|
96
107
|
|
97
108
|
nm_rb_real = rb_intern("real");
|
98
109
|
nm_rb_imag = rb_intern("imag");
|
@@ -0,0 +1,2169 @@
|
|
1
|
+
/////////////////////////////////////////////////////////////////////
|
2
|
+
// = NMatrix
|
3
|
+
//
|
4
|
+
// A linear algebra library for scientific computation in Ruby.
|
5
|
+
// NMatrix is part of SciRuby.
|
6
|
+
//
|
7
|
+
// NMatrix was originally inspired by and derived from NArray, by
|
8
|
+
// Masahiro Tanaka: http://narray.rubyforge.org
|
9
|
+
//
|
10
|
+
// == Copyright Information
|
11
|
+
//
|
12
|
+
// SciRuby is Copyright (c) 2010 - 2013, Ruby Science Foundation
|
13
|
+
// NMatrix is Copyright (c) 2013, Ruby Science Foundation
|
14
|
+
//
|
15
|
+
// Please see LICENSE.txt for additional copyright notices.
|
16
|
+
//
|
17
|
+
// == Contributing
|
18
|
+
//
|
19
|
+
// By contributing source code to SciRuby, you agree to be bound by
|
20
|
+
// our Contributor Agreement:
|
21
|
+
//
|
22
|
+
// * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
23
|
+
//
|
24
|
+
// == ruby_nmatrix.c
|
25
|
+
//
|
26
|
+
// Ruby-facing NMatrix C functions. Not compiled directly -- included
|
27
|
+
// into nmatrix.cpp.
|
28
|
+
//
|
29
|
+
|
30
|
+
/*
|
31
|
+
* Forward Declarations
|
32
|
+
*/
|
33
|
+
|
34
|
+
static VALUE nm_init(int argc, VALUE* argv, VALUE nm);
|
35
|
+
static VALUE nm_init_copy(VALUE copy, VALUE original);
|
36
|
+
static VALUE nm_init_transposed(VALUE self);
|
37
|
+
static VALUE nm_read(int argc, VALUE* argv, VALUE self);
|
38
|
+
static VALUE nm_write(int argc, VALUE* argv, VALUE self);
|
39
|
+
static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm);
|
40
|
+
static VALUE nm_alloc(VALUE klass);
|
41
|
+
static VALUE nm_dtype(VALUE self);
|
42
|
+
static VALUE nm_stype(VALUE self);
|
43
|
+
static VALUE nm_default_value(VALUE self);
|
44
|
+
static size_t effective_dim(STORAGE* s);
|
45
|
+
static VALUE nm_effective_dim(VALUE self);
|
46
|
+
static VALUE nm_dim(VALUE self);
|
47
|
+
static VALUE nm_offset(VALUE self);
|
48
|
+
static VALUE nm_shape(VALUE self);
|
49
|
+
static VALUE nm_supershape(VALUE self);
|
50
|
+
static VALUE nm_capacity(VALUE self);
|
51
|
+
static VALUE nm_each_with_indices(VALUE nmatrix);
|
52
|
+
static VALUE nm_each_stored_with_indices(VALUE nmatrix);
|
53
|
+
static VALUE nm_each_ordered_stored_with_indices(VALUE nmatrix);
|
54
|
+
|
55
|
+
static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape);
|
56
|
+
static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(const STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self);
|
57
|
+
static VALUE nm_mset(int argc, VALUE* argv, VALUE self);
|
58
|
+
static VALUE nm_mget(int argc, VALUE* argv, VALUE self);
|
59
|
+
static VALUE nm_mref(int argc, VALUE* argv, VALUE self);
|
60
|
+
static VALUE nm_is_ref(VALUE self);
|
61
|
+
|
62
|
+
static VALUE is_symmetric(VALUE self, bool hermitian);
|
63
|
+
|
64
|
+
static VALUE nm_guess_dtype(VALUE self, VALUE v);
|
65
|
+
static VALUE nm_min_dtype(VALUE self, VALUE v);
|
66
|
+
|
67
|
+
/*
|
68
|
+
* Macro defines an element-wise accessor function for some operation.
|
69
|
+
*
|
70
|
+
* This is only responsible for the Ruby accessor! You still have to write the actual functions, obviously.
|
71
|
+
*/
|
72
|
+
#define DEF_ELEMENTWISE_RUBY_ACCESSOR(oper, name) \
|
73
|
+
static VALUE nm_ew_##name(VALUE left_val, VALUE right_val) { \
|
74
|
+
return elementwise_op(nm::EW_##oper, left_val, right_val); \
|
75
|
+
}
|
76
|
+
|
77
|
+
/*
|
78
|
+
* Macro declares a corresponding accessor function prototype for some element-wise operation.
|
79
|
+
*/
|
80
|
+
#define DECL_ELEMENTWISE_RUBY_ACCESSOR(name) static VALUE nm_ew_##name(VALUE left_val, VALUE right_val);
|
81
|
+
|
82
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(add)
|
83
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(subtract)
|
84
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(multiply)
|
85
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(divide)
|
86
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(power)
|
87
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(mod)
|
88
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(eqeq)
|
89
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(neq)
|
90
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(lt)
|
91
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(gt)
|
92
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(leq)
|
93
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(geq)
|
94
|
+
|
95
|
+
static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val);
|
96
|
+
|
97
|
+
static VALUE nm_symmetric(VALUE self);
|
98
|
+
static VALUE nm_hermitian(VALUE self);
|
99
|
+
|
100
|
+
static VALUE nm_eqeq(VALUE left, VALUE right);
|
101
|
+
|
102
|
+
static VALUE matrix_multiply_scalar(NMATRIX* left, VALUE scalar);
|
103
|
+
static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right);
|
104
|
+
static VALUE nm_multiply(VALUE left_v, VALUE right_v);
|
105
|
+
static VALUE nm_det_exact(VALUE self);
|
106
|
+
static VALUE nm_complex_conjugate_bang(VALUE self);
|
107
|
+
|
108
|
+
static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype);
|
109
|
+
static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype);
|
110
|
+
static size_t* interpret_shape(VALUE arg, size_t* dim);
|
111
|
+
static nm::stype_t interpret_stype(VALUE arg);
|
112
|
+
|
113
|
+
/* Singleton methods */
|
114
|
+
static VALUE nm_upcast(VALUE self, VALUE t1, VALUE t2);
|
115
|
+
|
116
|
+
|
117
|
+
#ifdef BENCHMARK
|
118
|
+
static double get_time(void);
|
119
|
+
#endif
|
120
|
+
|
121
|
+
///////////////////
|
122
|
+
// Ruby Bindings //
|
123
|
+
///////////////////
|
124
|
+
|
125
|
+
void Init_nmatrix() {
|
126
|
+
|
127
|
+
|
128
|
+
///////////////////////
|
129
|
+
// Class Definitions //
|
130
|
+
///////////////////////
|
131
|
+
|
132
|
+
cNMatrix = rb_define_class("NMatrix", rb_cObject);
|
133
|
+
//cNVector = rb_define_class("NVector", cNMatrix);
|
134
|
+
|
135
|
+
// Special exceptions
|
136
|
+
|
137
|
+
/*
|
138
|
+
* Exception raised when there's a problem with data.
|
139
|
+
*/
|
140
|
+
nm_eDataTypeError = rb_define_class("DataTypeError", rb_eStandardError);
|
141
|
+
|
142
|
+
/*
|
143
|
+
* Exception raised when something goes wrong with the storage of a matrix.
|
144
|
+
*/
|
145
|
+
nm_eStorageTypeError = rb_define_class("StorageTypeError", rb_eStandardError);
|
146
|
+
|
147
|
+
///////////////////
|
148
|
+
// Class Methods //
|
149
|
+
///////////////////
|
150
|
+
|
151
|
+
rb_define_alloc_func(cNMatrix, nm_alloc);
|
152
|
+
|
153
|
+
///////////////////////
|
154
|
+
// Singleton Methods //
|
155
|
+
///////////////////////
|
156
|
+
|
157
|
+
rb_define_singleton_method(cNMatrix, "upcast", (METHOD)nm_upcast, 2); /* in ext/nmatrix/nmatrix.cpp */
|
158
|
+
rb_define_singleton_method(cNMatrix, "guess_dtype", (METHOD)nm_guess_dtype, 1);
|
159
|
+
rb_define_singleton_method(cNMatrix, "min_dtype", (METHOD)nm_min_dtype, 1);
|
160
|
+
|
161
|
+
//////////////////////
|
162
|
+
// Instance Methods //
|
163
|
+
//////////////////////
|
164
|
+
|
165
|
+
rb_define_method(cNMatrix, "initialize", (METHOD)nm_init, -1);
|
166
|
+
rb_define_method(cNMatrix, "initialize_copy", (METHOD)nm_init_copy, 1);
|
167
|
+
rb_define_singleton_method(cNMatrix, "read", (METHOD)nm_read, -1);
|
168
|
+
|
169
|
+
rb_define_method(cNMatrix, "write", (METHOD)nm_write, -1);
|
170
|
+
|
171
|
+
// Technically, the following function is a copy constructor.
|
172
|
+
rb_define_method(cNMatrix, "transpose", (METHOD)nm_init_transposed, 0);
|
173
|
+
|
174
|
+
rb_define_method(cNMatrix, "dtype", (METHOD)nm_dtype, 0);
|
175
|
+
rb_define_method(cNMatrix, "stype", (METHOD)nm_stype, 0);
|
176
|
+
rb_define_method(cNMatrix, "cast_full", (METHOD)nm_cast, 3);
|
177
|
+
rb_define_method(cNMatrix, "default_value", (METHOD)nm_default_value, 0);
|
178
|
+
rb_define_protected_method(cNMatrix, "__list_default_value__", (METHOD)nm_list_default_value, 0);
|
179
|
+
rb_define_protected_method(cNMatrix, "__yale_default_value__", (METHOD)nm_yale_default_value, 0);
|
180
|
+
|
181
|
+
rb_define_method(cNMatrix, "[]", (METHOD)nm_mref, -1);
|
182
|
+
rb_define_method(cNMatrix, "slice", (METHOD)nm_mget, -1);
|
183
|
+
rb_define_method(cNMatrix, "[]=", (METHOD)nm_mset, -1);
|
184
|
+
rb_define_method(cNMatrix, "is_ref?", (METHOD)nm_is_ref, 0);
|
185
|
+
rb_define_method(cNMatrix, "dimensions", (METHOD)nm_dim, 0);
|
186
|
+
rb_define_method(cNMatrix, "effective_dimensions", (METHOD)nm_effective_dim, 0);
|
187
|
+
|
188
|
+
rb_define_protected_method(cNMatrix, "__list_to_hash__", (METHOD)nm_to_hash, 0); // handles list and dense, which are n-dimensional
|
189
|
+
|
190
|
+
rb_define_method(cNMatrix, "shape", (METHOD)nm_shape, 0);
|
191
|
+
rb_define_method(cNMatrix, "supershape", (METHOD)nm_supershape, 0);
|
192
|
+
rb_define_method(cNMatrix, "offset", (METHOD)nm_offset, 0);
|
193
|
+
rb_define_method(cNMatrix, "det_exact", (METHOD)nm_det_exact, 0);
|
194
|
+
rb_define_method(cNMatrix, "complex_conjugate!", (METHOD)nm_complex_conjugate_bang, 0);
|
195
|
+
|
196
|
+
rb_define_protected_method(cNMatrix, "__dense_each__", (METHOD)nm_dense_each, 0);
|
197
|
+
rb_define_protected_method(cNMatrix, "__dense_map__", (METHOD)nm_dense_map, 0);
|
198
|
+
rb_define_protected_method(cNMatrix, "__dense_map_pair__", (METHOD)nm_dense_map_pair, 1);
|
199
|
+
rb_define_method(cNMatrix, "each_with_indices", (METHOD)nm_each_with_indices, 0);
|
200
|
+
rb_define_method(cNMatrix, "each_stored_with_indices", (METHOD)nm_each_stored_with_indices, 0);
|
201
|
+
rb_define_method(cNMatrix, "each_ordered_stored_with_indices", (METHOD)nm_each_ordered_stored_with_indices, 0);
|
202
|
+
rb_define_protected_method(cNMatrix, "__list_map_merged_stored__", (METHOD)nm_list_map_merged_stored, 2);
|
203
|
+
rb_define_protected_method(cNMatrix, "__yale_map_merged_stored__", (METHOD)nm_yale_map_merged_stored, 2);
|
204
|
+
rb_define_protected_method(cNMatrix, "__yale_map_stored__", (METHOD)nm_yale_map_stored, 0);
|
205
|
+
rb_define_protected_method(cNMatrix, "__yale_stored_diagonal_each_with_indices__", (METHOD)nm_yale_stored_diagonal_each_with_indices, 0);
|
206
|
+
rb_define_protected_method(cNMatrix, "__yale_stored_nondiagonal_each_with_indices__", (METHOD)nm_yale_stored_nondiagonal_each_with_indices, 0);
|
207
|
+
|
208
|
+
rb_define_method(cNMatrix, "==", (METHOD)nm_eqeq, 1);
|
209
|
+
|
210
|
+
rb_define_method(cNMatrix, "+", (METHOD)nm_ew_add, 1);
|
211
|
+
rb_define_method(cNMatrix, "-", (METHOD)nm_ew_subtract, 1);
|
212
|
+
rb_define_method(cNMatrix, "*", (METHOD)nm_ew_multiply, 1);
|
213
|
+
rb_define_method(cNMatrix, "/", (METHOD)nm_ew_divide, 1);
|
214
|
+
rb_define_method(cNMatrix, "**", (METHOD)nm_ew_power, 1);
|
215
|
+
rb_define_method(cNMatrix, "%", (METHOD)nm_ew_mod, 1);
|
216
|
+
|
217
|
+
rb_define_method(cNMatrix, "=~", (METHOD)nm_ew_eqeq, 1);
|
218
|
+
rb_define_method(cNMatrix, "!~", (METHOD)nm_ew_neq, 1);
|
219
|
+
rb_define_method(cNMatrix, "<=", (METHOD)nm_ew_leq, 1);
|
220
|
+
rb_define_method(cNMatrix, ">=", (METHOD)nm_ew_geq, 1);
|
221
|
+
rb_define_method(cNMatrix, "<", (METHOD)nm_ew_lt, 1);
|
222
|
+
rb_define_method(cNMatrix, ">", (METHOD)nm_ew_gt, 1);
|
223
|
+
|
224
|
+
/////////////////////////////
|
225
|
+
// Helper Instance Methods //
|
226
|
+
/////////////////////////////
|
227
|
+
rb_define_protected_method(cNMatrix, "__yale_vector_set__", (METHOD)nm_vector_set, -1);
|
228
|
+
|
229
|
+
/////////////////////////
|
230
|
+
// Matrix Math Methods //
|
231
|
+
/////////////////////////
|
232
|
+
rb_define_method(cNMatrix, "dot", (METHOD)nm_multiply, 1);
|
233
|
+
|
234
|
+
rb_define_method(cNMatrix, "symmetric?", (METHOD)nm_symmetric, 0);
|
235
|
+
rb_define_method(cNMatrix, "hermitian?", (METHOD)nm_hermitian, 0);
|
236
|
+
|
237
|
+
rb_define_method(cNMatrix, "capacity", (METHOD)nm_capacity, 0);
|
238
|
+
|
239
|
+
/////////////
|
240
|
+
// Aliases //
|
241
|
+
/////////////
|
242
|
+
|
243
|
+
rb_define_alias(cNMatrix, "dim", "dimensions");
|
244
|
+
rb_define_alias(cNMatrix, "effective_dim", "effective_dimensions");
|
245
|
+
rb_define_alias(cNMatrix, "equal?", "eql?");
|
246
|
+
|
247
|
+
///////////////////////
|
248
|
+
// Symbol Generation //
|
249
|
+
///////////////////////
|
250
|
+
|
251
|
+
nm_init_ruby_constants();
|
252
|
+
|
253
|
+
//////////////////////////
|
254
|
+
// YaleFunctions module //
|
255
|
+
//////////////////////////
|
256
|
+
|
257
|
+
nm_init_yale_functions();
|
258
|
+
|
259
|
+
/////////////////
|
260
|
+
// BLAS module //
|
261
|
+
/////////////////
|
262
|
+
|
263
|
+
nm_math_init_blas();
|
264
|
+
|
265
|
+
///////////////
|
266
|
+
// IO module //
|
267
|
+
///////////////
|
268
|
+
nm_init_io();
|
269
|
+
|
270
|
+
/////////////////////////////////////////////////
|
271
|
+
// Force compilation of necessary constructors //
|
272
|
+
/////////////////////////////////////////////////
|
273
|
+
nm_init_data();
|
274
|
+
}
|
275
|
+
|
276
|
+
|
277
|
+
//////////////////
|
278
|
+
// Ruby Methods //
|
279
|
+
//////////////////
|
280
|
+
|
281
|
+
|
282
|
+
/*
|
283
|
+
* Slice constructor.
|
284
|
+
*/
|
285
|
+
static SLICE* alloc_slice(size_t dim) {
|
286
|
+
SLICE* slice = ALLOC(SLICE);
|
287
|
+
slice->coords = ALLOC_N(size_t, dim);
|
288
|
+
slice->lengths = ALLOC_N(size_t, dim);
|
289
|
+
return slice;
|
290
|
+
}
|
291
|
+
|
292
|
+
|
293
|
+
/*
|
294
|
+
* Slice destructor.
|
295
|
+
*/
|
296
|
+
static void free_slice(SLICE* slice) {
|
297
|
+
xfree(slice->coords);
|
298
|
+
xfree(slice->lengths);
|
299
|
+
xfree(slice);
|
300
|
+
}
|
301
|
+
|
302
|
+
|
303
|
+
/*
|
304
|
+
* Allocator.
|
305
|
+
*/
|
306
|
+
static VALUE nm_alloc(VALUE klass) {
|
307
|
+
NMATRIX* mat = ALLOC(NMATRIX);
|
308
|
+
mat->storage = NULL;
|
309
|
+
|
310
|
+
// DO NOT MARK This STRUCT. It has no storage allocated, and no stype, so mark will do an invalid something.
|
311
|
+
return Data_Wrap_Struct(klass, NULL, nm_delete, mat);
|
312
|
+
}
|
313
|
+
|
314
|
+
/*
|
315
|
+
* Find the capacity of an NMatrix. The capacity only differs from the size for
|
316
|
+
* Yale matrices, which occasionally allocate more space than they need. For
|
317
|
+
* list and dense, capacity gives the number of elements in the matrix.
|
318
|
+
*
|
319
|
+
* If you call this on a slice, it may behave unpredictably. Most likely it'll
|
320
|
+
* just return the original matrix's capacity.
|
321
|
+
*/
|
322
|
+
static VALUE nm_capacity(VALUE self) {
|
323
|
+
VALUE cap;
|
324
|
+
|
325
|
+
switch(NM_STYPE(self)) {
|
326
|
+
case nm::YALE_STORE:
|
327
|
+
cap = UINT2NUM(reinterpret_cast<YALE_STORAGE*>(NM_STORAGE_YALE(self)->src)->capacity);
|
328
|
+
break;
|
329
|
+
|
330
|
+
case nm::DENSE_STORE:
|
331
|
+
cap = UINT2NUM(nm_storage_count_max_elements( NM_STORAGE_DENSE(self) ));
|
332
|
+
break;
|
333
|
+
|
334
|
+
case nm::LIST_STORE:
|
335
|
+
cap = UINT2NUM(nm_list_storage_count_elements( NM_STORAGE_LIST(self) ));
|
336
|
+
break;
|
337
|
+
|
338
|
+
default:
|
339
|
+
rb_raise(nm_eStorageTypeError, "unrecognized stype in nm_capacity()");
|
340
|
+
}
|
341
|
+
|
342
|
+
return cap;
|
343
|
+
}
|
344
|
+
|
345
|
+
|
346
|
+
/*
|
347
|
+
* Mark function.
|
348
|
+
*/
|
349
|
+
void nm_mark(NMATRIX* mat) {
|
350
|
+
STYPE_MARK_TABLE(mark)
|
351
|
+
mark[mat->stype](mat->storage);
|
352
|
+
}
|
353
|
+
|
354
|
+
|
355
|
+
/*
|
356
|
+
* Destructor.
|
357
|
+
*/
|
358
|
+
void nm_delete(NMATRIX* mat) {
|
359
|
+
static void (*ttable[nm::NUM_STYPES])(STORAGE*) = {
|
360
|
+
nm_dense_storage_delete,
|
361
|
+
nm_list_storage_delete,
|
362
|
+
nm_yale_storage_delete
|
363
|
+
};
|
364
|
+
ttable[mat->stype](mat->storage);
|
365
|
+
|
366
|
+
xfree(mat);
|
367
|
+
}
|
368
|
+
|
369
|
+
/*
|
370
|
+
* Slicing destructor.
|
371
|
+
*/
|
372
|
+
void nm_delete_ref(NMATRIX* mat) {
|
373
|
+
static void (*ttable[nm::NUM_STYPES])(STORAGE*) = {
|
374
|
+
nm_dense_storage_delete_ref,
|
375
|
+
nm_list_storage_delete_ref,
|
376
|
+
nm_yale_storage_delete_ref
|
377
|
+
};
|
378
|
+
ttable[mat->stype](mat->storage);
|
379
|
+
|
380
|
+
xfree(mat);
|
381
|
+
}
|
382
|
+
|
383
|
+
/*
|
384
|
+
* Register the addresses of an array of VALUEs with the gc to avoid collection
|
385
|
+
* while using them internally.
|
386
|
+
*/
|
387
|
+
void nm_register_values(VALUE* values, size_t n) {
|
388
|
+
if (values) {
|
389
|
+
for (size_t i = n; i-- > 0;) {
|
390
|
+
rb_gc_register_address(values + i);
|
391
|
+
}
|
392
|
+
}
|
393
|
+
}
|
394
|
+
|
395
|
+
/*
|
396
|
+
* Unregister the addresses of an array of VALUEs with the gc to allow normal
|
397
|
+
* garbage collection to occur again.
|
398
|
+
*/
|
399
|
+
void nm_unregister_values(VALUE* values, size_t n) {
|
400
|
+
if (values) {
|
401
|
+
for (size_t i = n; i-- > 0;) {
|
402
|
+
rb_gc_unregister_address(values + i);
|
403
|
+
}
|
404
|
+
}
|
405
|
+
}
|
406
|
+
|
407
|
+
/*
|
408
|
+
* call-seq:
|
409
|
+
* dtype -> Symbol
|
410
|
+
*
|
411
|
+
* Get the data type (dtype) of a matrix, e.g., :byte, :int8, :int16, :int32,
|
412
|
+
* :int64, :float32, :float64, :complex64, :complex128, :rational32,
|
413
|
+
* :rational64, :rational128, or :object (the last is a Ruby object).
|
414
|
+
*/
|
415
|
+
static VALUE nm_dtype(VALUE self) {
|
416
|
+
ID dtype = rb_intern(DTYPE_NAMES[NM_DTYPE(self)]);
|
417
|
+
return ID2SYM(dtype);
|
418
|
+
}
|
419
|
+
|
420
|
+
|
421
|
+
/*
|
422
|
+
* call-seq:
|
423
|
+
* upcast(first_dtype, second_dtype) -> Symbol
|
424
|
+
*
|
425
|
+
* Given a binary operation between types t1 and t2, what type will be returned?
|
426
|
+
*
|
427
|
+
* This is a singleton method on NMatrix, e.g., NMatrix.upcast(:int32, :int64)
|
428
|
+
*/
|
429
|
+
static VALUE nm_upcast(VALUE self, VALUE t1, VALUE t2) {
|
430
|
+
|
431
|
+
nm::dtype_t d1 = nm_dtype_from_rbsymbol(t1),
|
432
|
+
d2 = nm_dtype_from_rbsymbol(t2);
|
433
|
+
|
434
|
+
return ID2SYM(rb_intern( DTYPE_NAMES[ Upcast[d1][d2] ] ));
|
435
|
+
}
|
436
|
+
|
437
|
+
|
438
|
+
/*
|
439
|
+
* call-seq:
|
440
|
+
default_value -> ...
|
441
|
+
*
|
442
|
+
* Get the default value for the matrix. For dense, this is undefined and will return Qnil. For list, it is user-defined.
|
443
|
+
* For yale, it's going to be some variation on zero, but may be Qfalse or Qnil.
|
444
|
+
*/
|
445
|
+
static VALUE nm_default_value(VALUE self) {
|
446
|
+
switch(NM_STYPE(self)) {
|
447
|
+
case nm::YALE_STORE:
|
448
|
+
return nm_yale_default_value(self);
|
449
|
+
case nm::LIST_STORE:
|
450
|
+
return nm_list_default_value(self);
|
451
|
+
case nm::DENSE_STORE:
|
452
|
+
default:
|
453
|
+
return Qnil;
|
454
|
+
}
|
455
|
+
}
|
456
|
+
|
457
|
+
|
458
|
+
/*
|
459
|
+
* call-seq:
|
460
|
+
* each_with_indices -> Enumerator
|
461
|
+
*
|
462
|
+
* Iterate over all entries of any matrix in standard storage order (as with #each), and include the indices.
|
463
|
+
*/
|
464
|
+
static VALUE nm_each_with_indices(VALUE nmatrix) {
|
465
|
+
volatile VALUE nm = nmatrix;
|
466
|
+
|
467
|
+
switch(NM_STYPE(nm)) {
|
468
|
+
case nm::YALE_STORE:
|
469
|
+
return nm_yale_each_with_indices(nm);
|
470
|
+
case nm::DENSE_STORE:
|
471
|
+
return nm_dense_each_with_indices(nm);
|
472
|
+
case nm::LIST_STORE:
|
473
|
+
return nm_list_each_with_indices(nm, false);
|
474
|
+
default:
|
475
|
+
rb_raise(nm_eDataTypeError, "Not a proper storage type");
|
476
|
+
}
|
477
|
+
}
|
478
|
+
|
479
|
+
/*
|
480
|
+
* call-seq:
|
481
|
+
* each_stored_with_indices -> Enumerator
|
482
|
+
*
|
483
|
+
* Iterate over the stored entries of any matrix. For dense and yale, this iterates over non-zero
|
484
|
+
* entries; for list, this iterates over non-default entries. Yields dim+1 values for each entry:
|
485
|
+
* i, j, ..., and the entry itself.
|
486
|
+
*/
|
487
|
+
static VALUE nm_each_stored_with_indices(VALUE nmatrix) {
|
488
|
+
volatile VALUE nm = nmatrix;
|
489
|
+
|
490
|
+
switch(NM_STYPE(nm)) {
|
491
|
+
case nm::YALE_STORE:
|
492
|
+
return nm_yale_each_stored_with_indices(nm);
|
493
|
+
case nm::DENSE_STORE:
|
494
|
+
return nm_dense_each_with_indices(nm);
|
495
|
+
case nm::LIST_STORE:
|
496
|
+
return nm_list_each_with_indices(nm, true);
|
497
|
+
default:
|
498
|
+
rb_raise(nm_eDataTypeError, "Not a proper storage type");
|
499
|
+
}
|
500
|
+
}
|
501
|
+
|
502
|
+
|
503
|
+
/*
|
504
|
+
* call-seq:
|
505
|
+
* each_ordered_stored_with_indices -> Enumerator
|
506
|
+
*
|
507
|
+
* Very similar to #each_stored_with_indices. The key difference is that it enforces matrix ordering rather
|
508
|
+
* than storage ordering, which only matters if your matrix is Yale.
|
509
|
+
*/
|
510
|
+
static VALUE nm_each_ordered_stored_with_indices(VALUE nmatrix) {
|
511
|
+
volatile VALUE nm = nmatrix;
|
512
|
+
|
513
|
+
switch(NM_STYPE(nm)) {
|
514
|
+
case nm::YALE_STORE:
|
515
|
+
return nm_yale_each_ordered_stored_with_indices(nm);
|
516
|
+
case nm::DENSE_STORE:
|
517
|
+
return nm_dense_each_with_indices(nm);
|
518
|
+
case nm::LIST_STORE:
|
519
|
+
return nm_list_each_with_indices(nm, true);
|
520
|
+
default:
|
521
|
+
rb_raise(nm_eDataTypeError, "Not a proper storage type");
|
522
|
+
}
|
523
|
+
}
|
524
|
+
|
525
|
+
|
526
|
+
/*
|
527
|
+
* Equality operator. Returns a single true or false value indicating whether
|
528
|
+
* the matrices are equivalent.
|
529
|
+
*
|
530
|
+
* For elementwise, use =~ instead.
|
531
|
+
*
|
532
|
+
* This method will raise an exception if dimensions do not match.
|
533
|
+
*/
|
534
|
+
static VALUE nm_eqeq(VALUE left, VALUE right) {
|
535
|
+
NMATRIX *l, *r;
|
536
|
+
|
537
|
+
CheckNMatrixType(left);
|
538
|
+
CheckNMatrixType(right);
|
539
|
+
|
540
|
+
UnwrapNMatrix(left, l);
|
541
|
+
UnwrapNMatrix(right, r);
|
542
|
+
|
543
|
+
if (l->stype != r->stype)
|
544
|
+
rb_raise(rb_eNotImpError, "comparison between different matrix stypes not yet implemented");
|
545
|
+
|
546
|
+
bool result = false;
|
547
|
+
|
548
|
+
switch(l->stype) {
|
549
|
+
case nm::DENSE_STORE:
|
550
|
+
result = nm_dense_storage_eqeq(l->storage, r->storage);
|
551
|
+
break;
|
552
|
+
case nm::LIST_STORE:
|
553
|
+
result = nm_list_storage_eqeq(l->storage, r->storage);
|
554
|
+
break;
|
555
|
+
case nm::YALE_STORE:
|
556
|
+
result = nm_yale_storage_eqeq(l->storage, r->storage);
|
557
|
+
break;
|
558
|
+
}
|
559
|
+
|
560
|
+
return result ? Qtrue : Qfalse;
|
561
|
+
}
|
562
|
+
|
563
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(ADD, add)
|
564
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(SUB, subtract)
|
565
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(MUL, multiply)
|
566
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(DIV, divide)
|
567
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(POW, power)
|
568
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(MOD, mod)
|
569
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(EQEQ, eqeq)
|
570
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(NEQ, neq)
|
571
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(LEQ, leq)
|
572
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(GEQ, geq)
|
573
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(LT, lt)
|
574
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(GT, gt)
|
575
|
+
|
576
|
+
/*
|
577
|
+
* call-seq:
|
578
|
+
* hermitian? -> Boolean
|
579
|
+
*
|
580
|
+
* Is this matrix hermitian?
|
581
|
+
*
|
582
|
+
* Definition: http://en.wikipedia.org/wiki/Hermitian_matrix
|
583
|
+
*
|
584
|
+
* For non-complex matrices, this function should return the same result as symmetric?.
|
585
|
+
*/
|
586
|
+
static VALUE nm_hermitian(VALUE self) {
|
587
|
+
return is_symmetric(self, true);
|
588
|
+
}
|
589
|
+
|
590
|
+
|
591
|
+
/*
|
592
|
+
* call-seq:
|
593
|
+
* complex_conjugate -> NMatrix
|
594
|
+
*
|
595
|
+
* Transform the matrix (in-place) to its complex conjugate. Only works on complex matrices.
|
596
|
+
*
|
597
|
+
* FIXME: For non-complex matrices, someone needs to implement a non-in-place complex conjugate (which doesn't use a bang).
|
598
|
+
* Bang should imply that no copy is being made, even temporarily.
|
599
|
+
*/
|
600
|
+
static VALUE nm_complex_conjugate_bang(VALUE self) {
|
601
|
+
NMATRIX* m;
|
602
|
+
void* elem;
|
603
|
+
size_t size, p;
|
604
|
+
|
605
|
+
UnwrapNMatrix(self, m);
|
606
|
+
|
607
|
+
if (m->stype == nm::DENSE_STORE) {
|
608
|
+
|
609
|
+
size = nm_storage_count_max_elements(NM_STORAGE(self));
|
610
|
+
elem = NM_STORAGE_DENSE(self)->elements;
|
611
|
+
|
612
|
+
} else if (m->stype == nm::YALE_STORE) {
|
613
|
+
|
614
|
+
size = nm_yale_storage_get_size(NM_STORAGE_YALE(self));
|
615
|
+
elem = NM_STORAGE_YALE(self)->a;
|
616
|
+
|
617
|
+
} else {
|
618
|
+
rb_raise(rb_eNotImpError, "please cast to yale or dense (complex) first");
|
619
|
+
}
|
620
|
+
|
621
|
+
// Walk through and negate the imaginary component
|
622
|
+
if (NM_DTYPE(self) == nm::COMPLEX64) {
|
623
|
+
|
624
|
+
for (p = 0; p < size; ++p) {
|
625
|
+
reinterpret_cast<nm::Complex64*>(elem)[p].i = -reinterpret_cast<nm::Complex64*>(elem)[p].i;
|
626
|
+
}
|
627
|
+
|
628
|
+
} else if (NM_DTYPE(self) == nm::COMPLEX128) {
|
629
|
+
|
630
|
+
for (p = 0; p < size; ++p) {
|
631
|
+
reinterpret_cast<nm::Complex128*>(elem)[p].i = -reinterpret_cast<nm::Complex128*>(elem)[p].i;
|
632
|
+
}
|
633
|
+
|
634
|
+
} else {
|
635
|
+
rb_raise(nm_eDataTypeError, "can only calculate in-place complex conjugate on matrices of type :complex64 or :complex128");
|
636
|
+
}
|
637
|
+
|
638
|
+
return self;
|
639
|
+
}
|
640
|
+
|
641
|
+
/*
|
642
|
+
* Helper function for creating a matrix. You have to create the storage and pass it in, but you don't
|
643
|
+
* need to worry about deleting it.
|
644
|
+
*/
|
645
|
+
NMATRIX* nm_create(nm::stype_t stype, STORAGE* storage) {
|
646
|
+
NMATRIX* mat = ALLOC(NMATRIX);
|
647
|
+
|
648
|
+
mat->stype = stype;
|
649
|
+
mat->storage = storage;
|
650
|
+
|
651
|
+
return mat;
|
652
|
+
}
|
653
|
+
|
654
|
+
/*
|
655
|
+
* @see nm_init
|
656
|
+
*/
|
657
|
+
static VALUE nm_init_new_version(int argc, VALUE* argv, VALUE self) {
|
658
|
+
VALUE shape_ary, initial_ary, hash;
|
659
|
+
//VALUE shape_ary, default_val, capacity, initial_ary, dtype_sym, stype_sym;
|
660
|
+
// Mandatory args: shape, dtype, stype
|
661
|
+
// FIXME: This is the one line of code standing between Ruby 1.9.2 and 1.9.3.
|
662
|
+
#ifndef OLD_RB_SCAN_ARGS // Ruby 1.9.3 and higher
|
663
|
+
rb_scan_args(argc, argv, "11:", &shape_ary, &initial_ary, &hash); // &stype_sym, &dtype_sym, &default_val, &capacity);
|
664
|
+
#else // Ruby 1.9.2 and lower
|
665
|
+
if (argc == 3)
|
666
|
+
rb_scan_args(argc, argv, "12", &shape_ary, &initial_ary, &hash);
|
667
|
+
else if (argc == 2) {
|
668
|
+
VALUE unknown_arg;
|
669
|
+
rb_scan_args(argc, argv, "11", &shape_ary, &unknown_arg);
|
670
|
+
if (!NIL_P(unknown_arg) && TYPE(unknown_arg) == T_HASH) {
|
671
|
+
hash = unknown_arg;
|
672
|
+
initial_ary = Qnil;
|
673
|
+
} else {
|
674
|
+
initial_ary = unknown_arg;
|
675
|
+
hash = Qnil;
|
676
|
+
}
|
677
|
+
}
|
678
|
+
#endif
|
679
|
+
|
680
|
+
// Get the shape.
|
681
|
+
size_t dim;
|
682
|
+
size_t* shape = interpret_shape(shape_ary, &dim);
|
683
|
+
void* init;
|
684
|
+
void* v = NULL;
|
685
|
+
size_t v_size = 0;
|
686
|
+
|
687
|
+
nm::stype_t stype = nm::DENSE_STORE;
|
688
|
+
nm::dtype_t dtype = nm::RUBYOBJ;
|
689
|
+
VALUE dtype_sym = Qnil, stype_sym = Qnil, default_val_num = Qnil, capacity_num = Qnil;
|
690
|
+
size_t capacity = 0;
|
691
|
+
if (!NIL_P(hash)) {
|
692
|
+
dtype_sym = rb_hash_aref(hash, ID2SYM(nm_rb_dtype));
|
693
|
+
stype_sym = rb_hash_aref(hash, ID2SYM(nm_rb_stype));
|
694
|
+
capacity_num = rb_hash_aref(hash, ID2SYM(nm_rb_capacity));
|
695
|
+
default_val_num = rb_hash_aref(hash, ID2SYM(nm_rb_default));
|
696
|
+
}
|
697
|
+
|
698
|
+
// stype ||= :dense
|
699
|
+
stype = !NIL_P(stype_sym) ? nm_stype_from_rbsymbol(stype_sym) : nm::DENSE_STORE;
|
700
|
+
|
701
|
+
// dtype ||= h[:dtype] || guess_dtype(initial_ary) || :object
|
702
|
+
if (NIL_P(initial_ary) && NIL_P(dtype_sym))
|
703
|
+
dtype = nm::RUBYOBJ;
|
704
|
+
else if (NIL_P(dtype_sym))
|
705
|
+
dtype = nm_dtype_guess(initial_ary);
|
706
|
+
else
|
707
|
+
dtype = nm_dtype_from_rbsymbol(dtype_sym);
|
708
|
+
|
709
|
+
// if stype != :dense
|
710
|
+
// if initial_ary.nil?
|
711
|
+
// init = h[:default] || 0
|
712
|
+
// elsif initial_ary.is_a?(Array)
|
713
|
+
// init = initial_ary.size > 1 ? (h[:default] || 0) : initial_ary[0]
|
714
|
+
// else
|
715
|
+
// init = initial_ary # not an array, just a value
|
716
|
+
// end
|
717
|
+
// end
|
718
|
+
if (stype != nm::DENSE_STORE) {
|
719
|
+
if (!NIL_P(default_val_num))
|
720
|
+
init = rubyobj_to_cval(default_val_num, dtype);
|
721
|
+
else if (NIL_P(initial_ary))
|
722
|
+
init = NULL;
|
723
|
+
else if (TYPE(initial_ary) == T_ARRAY)
|
724
|
+
init = RARRAY_LEN(initial_ary) == 1 ? rubyobj_to_cval(rb_ary_entry(initial_ary, 0), dtype) : NULL;
|
725
|
+
else
|
726
|
+
init = rubyobj_to_cval(initial_ary, dtype);
|
727
|
+
}
|
728
|
+
|
729
|
+
// capacity = h[:capacity] || 0
|
730
|
+
if (stype == nm::YALE_STORE) {
|
731
|
+
if (!NIL_P(capacity_num)) capacity = FIX2INT(capacity_num);
|
732
|
+
}
|
733
|
+
|
734
|
+
if (!NIL_P(initial_ary)) {
|
735
|
+
v = interpret_initial_value(initial_ary, dtype);
|
736
|
+
|
737
|
+
if (TYPE(initial_ary) == T_ARRAY) v_size = RARRAY_LEN(initial_ary);
|
738
|
+
else v_size = 1;
|
739
|
+
}
|
740
|
+
|
741
|
+
// :object matrices MUST be initialized.
|
742
|
+
else if (stype == nm::DENSE_STORE && dtype == nm::RUBYOBJ) {
|
743
|
+
// Pretend [nil] was passed for RUBYOBJ.
|
744
|
+
v = ALLOC(VALUE);
|
745
|
+
*(VALUE*)v = Qnil;
|
746
|
+
|
747
|
+
v_size = 1;
|
748
|
+
|
749
|
+
}
|
750
|
+
|
751
|
+
NMATRIX* nmatrix;
|
752
|
+
UnwrapNMatrix(self, nmatrix);
|
753
|
+
|
754
|
+
nmatrix->stype = stype;
|
755
|
+
|
756
|
+
switch (stype) {
|
757
|
+
case nm::DENSE_STORE:
|
758
|
+
nmatrix->storage = (STORAGE*)nm_dense_storage_create(dtype, shape, dim, v, v_size);
|
759
|
+
break;
|
760
|
+
|
761
|
+
case nm::LIST_STORE:
|
762
|
+
nmatrix->storage = (STORAGE*)nm_list_storage_create(dtype, shape, dim, init);
|
763
|
+
break;
|
764
|
+
|
765
|
+
case nm::YALE_STORE:
|
766
|
+
nmatrix->storage = (STORAGE*)nm_yale_storage_create(dtype, shape, dim, capacity);
|
767
|
+
nm_yale_storage_init((YALE_STORAGE*)(nmatrix->storage), init);
|
768
|
+
break;
|
769
|
+
}
|
770
|
+
|
771
|
+
// If we're not creating a dense, and an initial array was provided, use that and multi-slice-set
|
772
|
+
// to set the contents of the matrix right now.
|
773
|
+
if (stype != nm::DENSE_STORE && v_size > 1) {
|
774
|
+
VALUE* slice_argv = ALLOCA_N(VALUE, dim);
|
775
|
+
size_t* tmp_shape = ALLOC_N(size_t, dim);
|
776
|
+
for (size_t m = 0; m < dim; ++m) {
|
777
|
+
slice_argv[m] = ID2SYM(nm_rb_mul); // :* -- full range
|
778
|
+
tmp_shape[m] = shape[m];
|
779
|
+
}
|
780
|
+
|
781
|
+
SLICE* slice = get_slice(dim, dim, slice_argv, shape);
|
782
|
+
// Create a temporary dense matrix and use it to do a slice assignment on self.
|
783
|
+
NMATRIX* tmp = nm_create(nm::DENSE_STORE, (STORAGE*)nm_dense_storage_create(dtype, tmp_shape, dim, v, v_size));
|
784
|
+
volatile VALUE rb_tmp = Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, tmp);
|
785
|
+
if (stype == nm::YALE_STORE) nm_yale_storage_set(self, slice, rb_tmp);
|
786
|
+
else nm_list_storage_set(self, slice, rb_tmp);
|
787
|
+
|
788
|
+
free_slice(slice);
|
789
|
+
|
790
|
+
// We need to free v if it's not the same size as tmp -- because tmp will have made a copy instead.
|
791
|
+
if (nm_storage_count_max_elements(tmp->storage) != v_size)
|
792
|
+
xfree(v);
|
793
|
+
|
794
|
+
// nm_delete(tmp); // This seems to enrage the garbage collector (because rb_tmp is still available). It'd be better if we could force it to free immediately, but no sweat.
|
795
|
+
}
|
796
|
+
|
797
|
+
return self;
|
798
|
+
}
|
799
|
+
|
800
|
+
/*
|
801
|
+
* call-seq:
|
802
|
+
* new(shape) -> NMatrix
|
803
|
+
* new(shape, initial_value) -> NMatrix
|
804
|
+
* new(shape, initial_array) -> NMatrix
|
805
|
+
* new(shape, initial_value, options) -> NMatrix
|
806
|
+
* new(shape, initial_array, options) -> NMatrix
|
807
|
+
*
|
808
|
+
* Create a new NMatrix.
|
809
|
+
*
|
810
|
+
* The only mandatory argument is shape, which may be a positive integer or an array of positive integers.
|
811
|
+
*
|
812
|
+
* It is recommended that you supply an initialization value or array of values. Without one, Yale and List matrices will
|
813
|
+
* be initialized to 0; and dense matrices will be undefined.
|
814
|
+
*
|
815
|
+
* Additional options may be provided using keyword arguments. The keywords are +:dtype, +:stype+, +:capacity+, and
|
816
|
+
* +:default+. Only Yale uses a capacity argument, which is used to reserve the initial size of its storage vectors.
|
817
|
+
* List and Yale both accept a default value (which itself defaults to 0). This default is taken from the initial value
|
818
|
+
* if such a value is given; it is more likely to be required when an initial array is provided.
|
819
|
+
*
|
820
|
+
* The storage type, or stype, is used to specify whether we want a +:dense+, +:list+, or +:yale+ matrix; dense is the
|
821
|
+
* default.
|
822
|
+
*
|
823
|
+
* The data type, or dtype, can be one of: :byte, :int8, :int16, :int32, :int64, :float32, :float64, :complex64,
|
824
|
+
* :complex128, :rational128, or :object. The constructor will attempt to guess it from the initial value/array/default
|
825
|
+
* provided, if any. Otherwise, the default is :object, which stores any type of Ruby object.
|
826
|
+
*
|
827
|
+
* In addition to the above, there is a legacy constructor from the alpha version. To use that version, you must be
|
828
|
+
* providing exactly four arguments. It is now deprecated.
|
829
|
+
*
|
830
|
+
* There is one additional constructor for advanced users, which takes seven arguments and is only for creating Yale
|
831
|
+
* matrices with known IA, JA, and A arrays. This is used primarily internally for IO, e.g., reading Matlab matrices,
|
832
|
+
* which are stored in old Yale (not our Yale) format. But be careful; there are no overflow warnings. All of these
|
833
|
+
* constructors are defined for power-users. Everyone else should probably resort to the shortcut functions defined in
|
834
|
+
* shortcuts.rb.
|
835
|
+
*/
|
836
|
+
static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
|
837
|
+
|
838
|
+
if (argc <= 3) { // Call the new constructor unless all four arguments are given (or the 7-arg version is given)
|
839
|
+
return nm_init_new_version(argc, argv, nm);
|
840
|
+
}
|
841
|
+
|
842
|
+
/* First, determine stype (dense by default) */
|
843
|
+
nm::stype_t stype;
|
844
|
+
size_t offset = 0;
|
845
|
+
|
846
|
+
if (!SYMBOL_P(argv[0]) && TYPE(argv[0]) != T_STRING) {
|
847
|
+
stype = nm::DENSE_STORE;
|
848
|
+
|
849
|
+
} else {
|
850
|
+
// 0: String or Symbol
|
851
|
+
stype = interpret_stype(argv[0]);
|
852
|
+
offset = 1;
|
853
|
+
}
|
854
|
+
|
855
|
+
// If there are 7 arguments and Yale, refer to a different init function with fewer sanity checks.
|
856
|
+
if (argc == 7) {
|
857
|
+
if (stype == nm::YALE_STORE) {
|
858
|
+
return nm_init_yale_from_old_yale(argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], nm);
|
859
|
+
|
860
|
+
} else {
|
861
|
+
rb_raise(rb_eArgError, "Expected 2-4 arguments (or 7 for internal Yale creation)");
|
862
|
+
}
|
863
|
+
}
|
864
|
+
|
865
|
+
// 1: Array or Fixnum
|
866
|
+
size_t dim;
|
867
|
+
size_t* shape = interpret_shape(argv[offset], &dim);
|
868
|
+
|
869
|
+
// 2-3: dtype
|
870
|
+
nm::dtype_t dtype = interpret_dtype(argc-1-offset, argv+offset+1, stype);
|
871
|
+
|
872
|
+
size_t init_cap = 0, init_val_len = 0;
|
873
|
+
void* init_val = NULL;
|
874
|
+
if (!SYMBOL_P(argv[1+offset]) || TYPE(argv[1+offset]) == T_ARRAY) {
|
875
|
+
// Initial value provided (could also be initial capacity, if yale).
|
876
|
+
|
877
|
+
if (stype == nm::YALE_STORE && NM_RUBYVAL_IS_NUMERIC(argv[1+offset])) {
|
878
|
+
init_cap = FIX2UINT(argv[1+offset]);
|
879
|
+
|
880
|
+
} else {
|
881
|
+
// 4: initial value / dtype
|
882
|
+
init_val = interpret_initial_value(argv[1+offset], dtype);
|
883
|
+
|
884
|
+
if (TYPE(argv[1+offset]) == T_ARRAY) init_val_len = RARRAY_LEN(argv[1+offset]);
|
885
|
+
else init_val_len = 1;
|
886
|
+
}
|
887
|
+
|
888
|
+
} else {
|
889
|
+
// DType is RUBYOBJ.
|
890
|
+
|
891
|
+
if (stype == nm::DENSE_STORE) {
|
892
|
+
/*
|
893
|
+
* No need to initialize dense with any kind of default value unless it's
|
894
|
+
* an RUBYOBJ matrix.
|
895
|
+
*/
|
896
|
+
if (dtype == nm::RUBYOBJ) {
|
897
|
+
// Pretend [nil] was passed for RUBYOBJ.
|
898
|
+
init_val = ALLOC(VALUE);
|
899
|
+
*(VALUE*)init_val = Qnil;
|
900
|
+
|
901
|
+
init_val_len = 1;
|
902
|
+
|
903
|
+
} else {
|
904
|
+
init_val = NULL;
|
905
|
+
}
|
906
|
+
} else if (stype == nm::LIST_STORE) {
|
907
|
+
init_val = ALLOC_N(char, DTYPE_SIZES[dtype]);
|
908
|
+
std::memset(init_val, 0, DTYPE_SIZES[dtype]);
|
909
|
+
}
|
910
|
+
}
|
911
|
+
|
912
|
+
// TODO: Update to allow an array as the initial value.
|
913
|
+
NMATRIX* nmatrix;
|
914
|
+
UnwrapNMatrix(nm, nmatrix);
|
915
|
+
|
916
|
+
nmatrix->stype = stype;
|
917
|
+
|
918
|
+
switch (stype) {
|
919
|
+
case nm::DENSE_STORE:
|
920
|
+
nmatrix->storage = (STORAGE*)nm_dense_storage_create(dtype, shape, dim, init_val, init_val_len);
|
921
|
+
break;
|
922
|
+
|
923
|
+
case nm::LIST_STORE:
|
924
|
+
nmatrix->storage = (STORAGE*)nm_list_storage_create(dtype, shape, dim, init_val);
|
925
|
+
break;
|
926
|
+
|
927
|
+
case nm::YALE_STORE:
|
928
|
+
nmatrix->storage = (STORAGE*)nm_yale_storage_create(dtype, shape, dim, init_cap);
|
929
|
+
nm_yale_storage_init((YALE_STORAGE*)(nmatrix->storage), NULL);
|
930
|
+
break;
|
931
|
+
}
|
932
|
+
|
933
|
+
return nm;
|
934
|
+
}
|
935
|
+
|
936
|
+
|
937
|
+
/*
|
938
|
+
* Helper for nm_cast which uses the C types instead of the Ruby objects. Called by nm_cast.
|
939
|
+
*/
|
940
|
+
NMATRIX* nm_cast_with_ctype_args(NMATRIX* self, nm::stype_t new_stype, nm::dtype_t new_dtype, void* init_ptr) {
|
941
|
+
NMATRIX* lhs = ALLOC(NMATRIX);
|
942
|
+
lhs->stype = new_stype;
|
943
|
+
|
944
|
+
// Copy the storage
|
945
|
+
CAST_TABLE(cast_copy);
|
946
|
+
lhs->storage = cast_copy[lhs->stype][self->stype](self->storage, new_dtype, init_ptr);
|
947
|
+
|
948
|
+
return lhs;
|
949
|
+
}
|
950
|
+
|
951
|
+
|
952
|
+
/*
|
953
|
+
* call-seq:
|
954
|
+
* cast_full(stype) -> NMatrix
|
955
|
+
* cast_full(stype, dtype, sparse_basis) -> NMatrix
|
956
|
+
*
|
957
|
+
* Copy constructor for changing dtypes and stypes.
|
958
|
+
*/
|
959
|
+
VALUE nm_cast(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol, VALUE init) {
|
960
|
+
nm::dtype_t new_dtype = nm_dtype_from_rbsymbol(new_dtype_symbol);
|
961
|
+
nm::stype_t new_stype = nm_stype_from_rbsymbol(new_stype_symbol);
|
962
|
+
|
963
|
+
CheckNMatrixType(self);
|
964
|
+
NMATRIX *rhs;
|
965
|
+
|
966
|
+
UnwrapNMatrix( self, rhs );
|
967
|
+
|
968
|
+
void* init_ptr = ALLOCA_N(char, DTYPE_SIZES[new_dtype]);
|
969
|
+
rubyval_to_cval(init, new_dtype, init_ptr);
|
970
|
+
|
971
|
+
return Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, nm_cast_with_ctype_args(rhs, new_stype, new_dtype, init_ptr));
|
972
|
+
}
|
973
|
+
|
974
|
+
/*
|
975
|
+
* Copy constructor for transposing.
|
976
|
+
*/
|
977
|
+
static VALUE nm_init_transposed(VALUE self) {
|
978
|
+
static STORAGE* (*storage_copy_transposed[nm::NUM_STYPES])(const STORAGE* rhs_base) = {
|
979
|
+
nm_dense_storage_copy_transposed,
|
980
|
+
nm_list_storage_copy_transposed,
|
981
|
+
nm_yale_storage_copy_transposed
|
982
|
+
};
|
983
|
+
|
984
|
+
NMATRIX* lhs = nm_create( NM_STYPE(self),
|
985
|
+
storage_copy_transposed[NM_STYPE(self)]( NM_STORAGE(self) )
|
986
|
+
);
|
987
|
+
|
988
|
+
return Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, lhs);
|
989
|
+
}
|
990
|
+
|
991
|
+
/*
|
992
|
+
* Copy constructor for no change of dtype or stype (used for #initialize_copy hook).
|
993
|
+
*/
|
994
|
+
static VALUE nm_init_copy(VALUE copy, VALUE original) {
|
995
|
+
NMATRIX *lhs, *rhs;
|
996
|
+
|
997
|
+
CheckNMatrixType(original);
|
998
|
+
|
999
|
+
if (copy == original) return copy;
|
1000
|
+
|
1001
|
+
UnwrapNMatrix( original, rhs );
|
1002
|
+
UnwrapNMatrix( copy, lhs );
|
1003
|
+
|
1004
|
+
lhs->stype = rhs->stype;
|
1005
|
+
|
1006
|
+
// Copy the storage
|
1007
|
+
CAST_TABLE(ttable);
|
1008
|
+
lhs->storage = ttable[lhs->stype][rhs->stype](rhs->storage, rhs->storage->dtype, NULL);
|
1009
|
+
|
1010
|
+
return copy;
|
1011
|
+
}
|
1012
|
+
|
1013
|
+
/*
|
1014
|
+
* Get major, minor, and release components of NMatrix::VERSION. Store in function parameters.
|
1015
|
+
*/
|
1016
|
+
static void get_version_info(uint16_t& major, uint16_t& minor, uint16_t& release) {
|
1017
|
+
// Get VERSION and split it on periods. Result is an Array.
|
1018
|
+
VALUE version = rb_funcall(rb_const_get(cNMatrix, rb_intern("VERSION")), rb_intern("split"), 1, rb_str_new_cstr("."));
|
1019
|
+
VALUE* ary = RARRAY_PTR(version); // major, minor, and release
|
1020
|
+
|
1021
|
+
// Convert each to an integer
|
1022
|
+
VALUE maj = rb_funcall(ary[0], rb_intern("to_i"), 0);
|
1023
|
+
VALUE min = rb_funcall(ary[1], rb_intern("to_i"), 0);
|
1024
|
+
VALUE rel = rb_funcall(ary[2], rb_intern("to_i"), 0);
|
1025
|
+
|
1026
|
+
major = static_cast<uint16_t>(nm::RubyObject(maj));
|
1027
|
+
minor = static_cast<uint16_t>(nm::RubyObject(min));
|
1028
|
+
release = static_cast<uint16_t>(nm::RubyObject(rel));
|
1029
|
+
}
|
1030
|
+
|
1031
|
+
|
1032
|
+
/*
|
1033
|
+
* Interpret the NMatrix::write symmetry argument (which should be nil or a symbol). Return a symm_t (enum).
|
1034
|
+
*/
|
1035
|
+
static nm::symm_t interpret_symm(VALUE symm) {
|
1036
|
+
if (symm == Qnil) return nm::NONSYMM;
|
1037
|
+
|
1038
|
+
ID rb_symm = rb_intern("symmetric"),
|
1039
|
+
rb_skew = rb_intern("skew"),
|
1040
|
+
rb_herm = rb_intern("hermitian");
|
1041
|
+
// nm_rb_upper, nm_rb_lower already set
|
1042
|
+
|
1043
|
+
ID symm_id = rb_to_id(symm);
|
1044
|
+
|
1045
|
+
if (symm_id == rb_symm) return nm::SYMM;
|
1046
|
+
else if (symm_id == rb_skew) return nm::SKEW;
|
1047
|
+
else if (symm_id == rb_herm) return nm::HERM;
|
1048
|
+
else if (symm_id == nm_rb_upper) return nm::UPPER;
|
1049
|
+
else if (symm_id == nm_rb_lower) return nm::LOWER;
|
1050
|
+
else rb_raise(rb_eArgError, "unrecognized symmetry argument");
|
1051
|
+
|
1052
|
+
return nm::NONSYMM;
|
1053
|
+
}
|
1054
|
+
|
1055
|
+
|
1056
|
+
|
1057
|
+
void read_padded_shape(std::ifstream& f, size_t dim, size_t* shape) {
|
1058
|
+
nm::read_padded_shape(f, dim, shape);
|
1059
|
+
}
|
1060
|
+
|
1061
|
+
|
1062
|
+
void write_padded_shape(std::ofstream& f, size_t dim, size_t* shape) {
|
1063
|
+
nm::write_padded_shape(f, dim, shape);
|
1064
|
+
}
|
1065
|
+
|
1066
|
+
|
1067
|
+
void read_padded_yale_elements(std::ifstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype) {
|
1068
|
+
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_yale_elements, void, std::ifstream&, YALE_STORAGE*, size_t, nm::symm_t)
|
1069
|
+
|
1070
|
+
ttable[dtype](f, storage, length, symm);
|
1071
|
+
}
|
1072
|
+
|
1073
|
+
|
1074
|
+
void write_padded_yale_elements(std::ofstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype) {
|
1075
|
+
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_yale_elements, void, std::ofstream& f, YALE_STORAGE*, size_t, nm::symm_t)
|
1076
|
+
|
1077
|
+
ttable[dtype](f, storage, length, symm);
|
1078
|
+
}
|
1079
|
+
|
1080
|
+
|
1081
|
+
void read_padded_dense_elements(std::ifstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
|
1082
|
+
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_dense_elements, void, std::ifstream&, DENSE_STORAGE*, nm::symm_t)
|
1083
|
+
|
1084
|
+
ttable[dtype](f, storage, symm);
|
1085
|
+
}
|
1086
|
+
|
1087
|
+
|
1088
|
+
void write_padded_dense_elements(std::ofstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
|
1089
|
+
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_dense_elements, void, std::ofstream& f, DENSE_STORAGE*, nm::symm_t)
|
1090
|
+
|
1091
|
+
ttable[dtype](f, storage, symm);
|
1092
|
+
}
|
1093
|
+
|
1094
|
+
|
1095
|
+
/*
|
1096
|
+
* Helper function to get exceptions in the module Errno (e.g., ENOENT). Example:
|
1097
|
+
*
|
1098
|
+
* rb_raise(rb_get_errno_exc("ENOENT"), RSTRING_PTR(filename));
|
1099
|
+
*/
|
1100
|
+
static VALUE rb_get_errno_exc(const char* which) {
|
1101
|
+
return rb_const_get(rb_const_get(rb_cObject, rb_intern("Errno")), rb_intern(which));
|
1102
|
+
}
|
1103
|
+
|
1104
|
+
|
1105
|
+
|
1106
|
+
/*
|
1107
|
+
* Binary file writer for NMatrix standard format. file should be a path, which we aren't going to
|
1108
|
+
* check very carefully (in other words, this function should generally be called from a Ruby
|
1109
|
+
* helper method). Function also takes a symmetry argument, which allows us to specify that we only want to
|
1110
|
+
* save the upper triangular portion of the matrix (or if the matrix is a lower triangular matrix, only
|
1111
|
+
* the lower triangular portion). nil means regular storage.
|
1112
|
+
*/
|
1113
|
+
static VALUE nm_write(int argc, VALUE* argv, VALUE self) {
|
1114
|
+
using std::ofstream;
|
1115
|
+
|
1116
|
+
if (argc < 1 || argc > 2) {
|
1117
|
+
rb_raise(rb_eArgError, "Expected one or two arguments");
|
1118
|
+
}
|
1119
|
+
VALUE file = argv[0],
|
1120
|
+
symm = argc == 1 ? Qnil : argv[1];
|
1121
|
+
|
1122
|
+
NMATRIX* nmatrix;
|
1123
|
+
UnwrapNMatrix( self, nmatrix );
|
1124
|
+
|
1125
|
+
nm::symm_t symm_ = interpret_symm(symm);
|
1126
|
+
|
1127
|
+
if (nmatrix->storage->dtype == nm::RUBYOBJ) {
|
1128
|
+
rb_raise(rb_eNotImpError, "Ruby Object writing is not implemented yet");
|
1129
|
+
}
|
1130
|
+
|
1131
|
+
// Get the dtype, stype, itype, and symm and ensure they're the correct number of bytes.
|
1132
|
+
uint8_t st = static_cast<uint8_t>(nmatrix->stype),
|
1133
|
+
dt = static_cast<uint8_t>(nmatrix->storage->dtype),
|
1134
|
+
sm = static_cast<uint8_t>(symm_);
|
1135
|
+
uint16_t dim = nmatrix->storage->dim;
|
1136
|
+
|
1137
|
+
//FIXME: Cast the matrix to the smallest possible index type. Write that in the place of IType.
|
1138
|
+
|
1139
|
+
// Check arguments before starting to write.
|
1140
|
+
if (nmatrix->stype == nm::LIST_STORE) rb_raise(nm_eStorageTypeError, "cannot save list matrix; cast to yale or dense first");
|
1141
|
+
if (symm_ != nm::NONSYMM) {
|
1142
|
+
if (dim != 2) rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-2D matrix");
|
1143
|
+
if (nmatrix->storage->shape[0] != nmatrix->storage->shape[1])
|
1144
|
+
rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-square matrix");
|
1145
|
+
if (symm_ == nm::HERM &&
|
1146
|
+
dt != static_cast<uint8_t>(nm::COMPLEX64) && dt != static_cast<uint8_t>(nm::COMPLEX128) && dt != static_cast<uint8_t>(nm::RUBYOBJ))
|
1147
|
+
rb_raise(rb_eArgError, "cannot save a non-complex matrix as hermitian");
|
1148
|
+
}
|
1149
|
+
|
1150
|
+
ofstream f(RSTRING_PTR(file), std::ios::out | std::ios::binary);
|
1151
|
+
|
1152
|
+
// Get the NMatrix version information.
|
1153
|
+
uint16_t major, minor, release, null16 = 0;
|
1154
|
+
get_version_info(major, minor, release);
|
1155
|
+
|
1156
|
+
// WRITE FIRST 64-BIT BLOCK
|
1157
|
+
f.write(reinterpret_cast<const char*>(&major), sizeof(uint16_t));
|
1158
|
+
f.write(reinterpret_cast<const char*>(&minor), sizeof(uint16_t));
|
1159
|
+
f.write(reinterpret_cast<const char*>(&release), sizeof(uint16_t));
|
1160
|
+
f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
|
1161
|
+
|
1162
|
+
uint8_t ZERO = 0;
|
1163
|
+
// WRITE SECOND 64-BIT BLOCK
|
1164
|
+
f.write(reinterpret_cast<const char*>(&dt), sizeof(uint8_t));
|
1165
|
+
f.write(reinterpret_cast<const char*>(&st), sizeof(uint8_t));
|
1166
|
+
f.write(reinterpret_cast<const char*>(&ZERO),sizeof(uint8_t));
|
1167
|
+
f.write(reinterpret_cast<const char*>(&sm), sizeof(uint8_t));
|
1168
|
+
f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
|
1169
|
+
f.write(reinterpret_cast<const char*>(&dim), sizeof(uint16_t));
|
1170
|
+
|
1171
|
+
// Write shape (in 64-bit blocks)
|
1172
|
+
write_padded_shape(f, nmatrix->storage->dim, nmatrix->storage->shape);
|
1173
|
+
|
1174
|
+
if (nmatrix->stype == nm::DENSE_STORE) {
|
1175
|
+
write_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(nmatrix->storage), symm_, nmatrix->storage->dtype);
|
1176
|
+
} else if (nmatrix->stype == nm::YALE_STORE) {
|
1177
|
+
YALE_STORAGE* s = reinterpret_cast<YALE_STORAGE*>(nmatrix->storage);
|
1178
|
+
uint32_t ndnz = s->ndnz,
|
1179
|
+
length = nm_yale_storage_get_size(s);
|
1180
|
+
f.write(reinterpret_cast<const char*>(&ndnz), sizeof(uint32_t));
|
1181
|
+
f.write(reinterpret_cast<const char*>(&length), sizeof(uint32_t));
|
1182
|
+
|
1183
|
+
write_padded_yale_elements(f, s, length, symm_, s->dtype);
|
1184
|
+
}
|
1185
|
+
|
1186
|
+
f.close();
|
1187
|
+
|
1188
|
+
return Qtrue;
|
1189
|
+
}
|
1190
|
+
|
1191
|
+
|
1192
|
+
/*
|
1193
|
+
* Binary file reader for NMatrix standard format. file should be a path, which we aren't going to
|
1194
|
+
* check very carefully (in other words, this function should generally be called from a Ruby
|
1195
|
+
* helper method).
|
1196
|
+
*
|
1197
|
+
* Note that currently, this function will by default refuse to read files that are newer than
|
1198
|
+
* your version of NMatrix. To force an override, set the second argument to anything other than nil.
|
1199
|
+
*
|
1200
|
+
* Returns an NMatrix Ruby object.
|
1201
|
+
*/
|
1202
|
+
static VALUE nm_read(int argc, VALUE* argv, VALUE self) {
|
1203
|
+
using std::ifstream;
|
1204
|
+
|
1205
|
+
VALUE file, force_;
|
1206
|
+
|
1207
|
+
// Read the arguments
|
1208
|
+
rb_scan_args(argc, argv, "11", &file, &force_);
|
1209
|
+
bool force = (force_ != Qnil && force_ != Qfalse);
|
1210
|
+
|
1211
|
+
|
1212
|
+
if (!RB_FILE_EXISTS(file)) { // FIXME: Errno::ENOENT
|
1213
|
+
rb_raise(rb_get_errno_exc("ENOENT"), "%s", RSTRING_PTR(file));
|
1214
|
+
}
|
1215
|
+
|
1216
|
+
// Open a file stream
|
1217
|
+
ifstream f(RSTRING_PTR(file), std::ios::in | std::ios::binary);
|
1218
|
+
|
1219
|
+
uint16_t major, minor, release;
|
1220
|
+
get_version_info(major, minor, release); // compare to NMatrix version
|
1221
|
+
|
1222
|
+
uint16_t fmajor, fminor, frelease, null16;
|
1223
|
+
|
1224
|
+
// READ FIRST 64-BIT BLOCK
|
1225
|
+
f.read(reinterpret_cast<char*>(&fmajor), sizeof(uint16_t));
|
1226
|
+
f.read(reinterpret_cast<char*>(&fminor), sizeof(uint16_t));
|
1227
|
+
f.read(reinterpret_cast<char*>(&frelease), sizeof(uint16_t));
|
1228
|
+
f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
|
1229
|
+
|
1230
|
+
int ver = major * 10000 + minor * 100 + release,
|
1231
|
+
fver = fmajor * 10000 + fminor * 100 + release;
|
1232
|
+
if (fver > ver && force == false) {
|
1233
|
+
rb_raise(rb_eIOError, "File was created in newer version of NMatrix than current");
|
1234
|
+
}
|
1235
|
+
if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
|
1236
|
+
|
1237
|
+
uint8_t dt, st, it, sm;
|
1238
|
+
uint16_t dim;
|
1239
|
+
|
1240
|
+
// READ SECOND 64-BIT BLOCK
|
1241
|
+
f.read(reinterpret_cast<char*>(&dt), sizeof(uint8_t));
|
1242
|
+
f.read(reinterpret_cast<char*>(&st), sizeof(uint8_t));
|
1243
|
+
f.read(reinterpret_cast<char*>(&it), sizeof(uint8_t)); // FIXME: should tell how few bytes indices are stored as
|
1244
|
+
f.read(reinterpret_cast<char*>(&sm), sizeof(uint8_t));
|
1245
|
+
f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
|
1246
|
+
f.read(reinterpret_cast<char*>(&dim), sizeof(uint16_t));
|
1247
|
+
|
1248
|
+
if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
|
1249
|
+
nm::stype_t stype = static_cast<nm::stype_t>(st);
|
1250
|
+
nm::dtype_t dtype = static_cast<nm::dtype_t>(dt);
|
1251
|
+
nm::symm_t symm = static_cast<nm::symm_t>(sm);
|
1252
|
+
//nm::itype_t itype = static_cast<nm::itype_t>(it);
|
1253
|
+
|
1254
|
+
// READ NEXT FEW 64-BIT BLOCKS
|
1255
|
+
size_t* shape = ALLOC_N(size_t, dim);
|
1256
|
+
read_padded_shape(f, dim, shape);
|
1257
|
+
|
1258
|
+
STORAGE* s;
|
1259
|
+
if (stype == nm::DENSE_STORE) {
|
1260
|
+
s = nm_dense_storage_create(dtype, shape, dim, NULL, 0);
|
1261
|
+
|
1262
|
+
read_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(s), symm, dtype);
|
1263
|
+
|
1264
|
+
} else if (stype == nm::YALE_STORE) {
|
1265
|
+
uint32_t ndnz, length;
|
1266
|
+
|
1267
|
+
// READ YALE-SPECIFIC 64-BIT BLOCK
|
1268
|
+
f.read(reinterpret_cast<char*>(&ndnz), sizeof(uint32_t));
|
1269
|
+
f.read(reinterpret_cast<char*>(&length), sizeof(uint32_t));
|
1270
|
+
|
1271
|
+
s = nm_yale_storage_create(dtype, shape, dim, length); // set length as init capacity
|
1272
|
+
|
1273
|
+
read_padded_yale_elements(f, reinterpret_cast<YALE_STORAGE*>(s), length, symm, dtype);
|
1274
|
+
} else {
|
1275
|
+
rb_raise(nm_eStorageTypeError, "please convert to yale or dense before saving");
|
1276
|
+
}
|
1277
|
+
|
1278
|
+
NMATRIX* nm = nm_create(stype, s);
|
1279
|
+
|
1280
|
+
// Return the appropriate matrix object (Ruby VALUE)
|
1281
|
+
// FIXME: This should probably return CLASS_OF(self) instead of cNMatrix, but I don't know how that works for
|
1282
|
+
// FIXME: class methods.
|
1283
|
+
switch(stype) {
|
1284
|
+
case nm::DENSE_STORE:
|
1285
|
+
case nm::YALE_STORE:
|
1286
|
+
return Data_Wrap_Struct(cNMatrix, nm_mark, nm_delete, nm);
|
1287
|
+
default: // this case never occurs (due to earlier rb_raise)
|
1288
|
+
return Qnil;
|
1289
|
+
}
|
1290
|
+
|
1291
|
+
}
|
1292
|
+
|
1293
|
+
|
1294
|
+
|
1295
|
+
/*
|
1296
|
+
* Create a new NMatrix helper for handling internal ia, ja, and a arguments.
|
1297
|
+
*
|
1298
|
+
* This constructor is only called by Ruby code, so we can skip most of the
|
1299
|
+
* checks.
|
1300
|
+
*/
|
1301
|
+
static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm) {
|
1302
|
+
size_t dim = 2;
|
1303
|
+
size_t* shape_ = interpret_shape(shape, &dim);
|
1304
|
+
nm::dtype_t dtype_ = nm_dtype_from_rbsymbol(dtype);
|
1305
|
+
char *ia_ = RSTRING_PTR(ia),
|
1306
|
+
*ja_ = RSTRING_PTR(ja),
|
1307
|
+
*a_ = RSTRING_PTR(a);
|
1308
|
+
nm::dtype_t from_dtype_ = nm_dtype_from_rbsymbol(from_dtype);
|
1309
|
+
NMATRIX* nmatrix;
|
1310
|
+
|
1311
|
+
UnwrapNMatrix( nm, nmatrix );
|
1312
|
+
|
1313
|
+
nmatrix->stype = nm::YALE_STORE;
|
1314
|
+
nmatrix->storage = (STORAGE*)nm_yale_storage_create_from_old_yale(dtype_, shape_, ia_, ja_, a_, from_dtype_);
|
1315
|
+
|
1316
|
+
return nm;
|
1317
|
+
}
|
1318
|
+
|
1319
|
+
/*
|
1320
|
+
* Check to determine whether matrix is a reference to another matrix.
|
1321
|
+
*/
|
1322
|
+
static VALUE nm_is_ref(VALUE self) {
|
1323
|
+
if (NM_SRC(self) == NM_STORAGE(self)) return Qfalse;
|
1324
|
+
else return Qtrue;
|
1325
|
+
}
|
1326
|
+
|
1327
|
+
/*
|
1328
|
+
* call-seq:
|
1329
|
+
* slice -> ...
|
1330
|
+
*
|
1331
|
+
* Access the contents of an NMatrix at given coordinates, using copying.
|
1332
|
+
*
|
1333
|
+
* n.slice(3,3) # => 5.0
|
1334
|
+
* n.slice(0..1,0..1) #=> matrix [2,2]
|
1335
|
+
*
|
1336
|
+
*/
|
1337
|
+
static VALUE nm_mget(int argc, VALUE* argv, VALUE self) {
|
1338
|
+
static void* (*ttable[nm::NUM_STYPES])(const STORAGE*, SLICE*) = {
|
1339
|
+
nm_dense_storage_get,
|
1340
|
+
nm_list_storage_get,
|
1341
|
+
nm_yale_storage_get
|
1342
|
+
};
|
1343
|
+
return nm_xslice(argc, argv, ttable[NM_STYPE(self)], nm_delete, self);
|
1344
|
+
}
|
1345
|
+
|
1346
|
+
/*
|
1347
|
+
* call-seq:
|
1348
|
+
* matrix[indices] -> ...
|
1349
|
+
*
|
1350
|
+
* Access the contents of an NMatrix at given coordinates by reference.
|
1351
|
+
*
|
1352
|
+
* n[3,3] # => 5.0
|
1353
|
+
* n[0..1,0..1] #=> matrix [2,2]
|
1354
|
+
*
|
1355
|
+
*/
|
1356
|
+
static VALUE nm_mref(int argc, VALUE* argv, VALUE self) {
|
1357
|
+
static void* (*ttable[nm::NUM_STYPES])(const STORAGE*, SLICE*) = {
|
1358
|
+
nm_dense_storage_ref,
|
1359
|
+
nm_list_storage_ref,
|
1360
|
+
nm_yale_storage_ref
|
1361
|
+
};
|
1362
|
+
return nm_xslice(argc, argv, ttable[NM_STYPE(self)], nm_delete_ref, self);
|
1363
|
+
}
|
1364
|
+
|
1365
|
+
/*
|
1366
|
+
* Modify the contents of an NMatrix in the given cell
|
1367
|
+
*
|
1368
|
+
* n[3,3] = 5.0
|
1369
|
+
*
|
1370
|
+
* Also returns the new contents, so you can chain:
|
1371
|
+
*
|
1372
|
+
* n[3,3] = n[2,3] = 5.0
|
1373
|
+
*/
|
1374
|
+
static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
|
1375
|
+
size_t dim = NM_DIM(self); // last arg is the value
|
1376
|
+
|
1377
|
+
if ((size_t)(argc) > NM_DIM(self)+1) {
|
1378
|
+
rb_raise(rb_eArgError, "wrong number of arguments (%d for %u)", argc, effective_dim(NM_STORAGE(self))+1);
|
1379
|
+
} else {
|
1380
|
+
SLICE* slice = get_slice(dim, argc-1, argv, NM_STORAGE(self)->shape);
|
1381
|
+
|
1382
|
+
static void (*ttable[nm::NUM_STYPES])(VALUE, SLICE*, VALUE) = {
|
1383
|
+
nm_dense_storage_set,
|
1384
|
+
nm_list_storage_set,
|
1385
|
+
nm_yale_storage_set
|
1386
|
+
};
|
1387
|
+
|
1388
|
+
ttable[NM_STYPE(self)](self, slice, argv[argc-1]);
|
1389
|
+
|
1390
|
+
free_slice(slice);
|
1391
|
+
|
1392
|
+
return argv[argc-1];
|
1393
|
+
}
|
1394
|
+
return Qnil;
|
1395
|
+
}
|
1396
|
+
|
1397
|
+
/*
|
1398
|
+
* Matrix multiply (dot product): against another matrix or a vector.
|
1399
|
+
*
|
1400
|
+
* For elementwise, use * instead.
|
1401
|
+
*
|
1402
|
+
* The two matrices must be of the same stype (for now). If dtype differs, an upcast will occur.
|
1403
|
+
*/
|
1404
|
+
static VALUE nm_multiply(VALUE left_v, VALUE right_v) {
|
1405
|
+
NMATRIX *left, *right;
|
1406
|
+
|
1407
|
+
UnwrapNMatrix( left_v, left );
|
1408
|
+
|
1409
|
+
if (NM_RUBYVAL_IS_NUMERIC(right_v))
|
1410
|
+
return matrix_multiply_scalar(left, right_v);
|
1411
|
+
|
1412
|
+
else if (TYPE(right_v) == T_ARRAY)
|
1413
|
+
rb_raise(rb_eNotImpError, "please convert array to nx1 or 1xn NMatrix first");
|
1414
|
+
|
1415
|
+
else { // both are matrices (probably)
|
1416
|
+
CheckNMatrixType(right_v);
|
1417
|
+
UnwrapNMatrix( right_v, right );
|
1418
|
+
|
1419
|
+
if (left->storage->shape[1] != right->storage->shape[0])
|
1420
|
+
rb_raise(rb_eArgError, "incompatible dimensions");
|
1421
|
+
|
1422
|
+
if (left->stype != right->stype)
|
1423
|
+
rb_raise(rb_eNotImpError, "matrices must have same stype");
|
1424
|
+
|
1425
|
+
return matrix_multiply(left, right);
|
1426
|
+
|
1427
|
+
}
|
1428
|
+
|
1429
|
+
return Qnil;
|
1430
|
+
}
|
1431
|
+
|
1432
|
+
|
1433
|
+
/*
|
1434
|
+
* call-seq:
|
1435
|
+
* dim -> Integer
|
1436
|
+
*
|
1437
|
+
* Get the number of dimensions of a matrix.
|
1438
|
+
*
|
1439
|
+
* In other words, if you set your matrix to be 3x4, the dim is 2. If the
|
1440
|
+
* matrix was initialized as 3x4x3, the dim is 3.
|
1441
|
+
*
|
1442
|
+
* Use #effective_dim to get the dimension of an NMatrix which acts as a vector (e.g., a column or row).
|
1443
|
+
*/
|
1444
|
+
static VALUE nm_dim(VALUE self) {
|
1445
|
+
return INT2FIX(NM_STORAGE(self)->dim);
|
1446
|
+
}
|
1447
|
+
|
1448
|
+
/*
|
1449
|
+
* call-seq:
|
1450
|
+
* shape -> Array
|
1451
|
+
*
|
1452
|
+
* Get the shape (dimensions) of a matrix.
|
1453
|
+
*/
|
1454
|
+
static VALUE nm_shape(VALUE self) {
|
1455
|
+
STORAGE* s = NM_STORAGE(self);
|
1456
|
+
|
1457
|
+
// Copy elements into a VALUE array and then use those to create a Ruby array with rb_ary_new4.
|
1458
|
+
VALUE* shape = ALLOCA_N(VALUE, s->dim);
|
1459
|
+
for (size_t index = 0; index < s->dim; ++index)
|
1460
|
+
shape[index] = INT2FIX(s->shape[index]);
|
1461
|
+
|
1462
|
+
return rb_ary_new4(s->dim, shape);
|
1463
|
+
}
|
1464
|
+
|
1465
|
+
|
1466
|
+
/*
|
1467
|
+
* call-seq:
|
1468
|
+
* offset -> Array
|
1469
|
+
*
|
1470
|
+
* Get the offset (slice position) of a matrix. Typically all zeros, unless you have a reference slice.
|
1471
|
+
*/
|
1472
|
+
static VALUE nm_offset(VALUE self) {
|
1473
|
+
STORAGE* s = NM_STORAGE(self);
|
1474
|
+
|
1475
|
+
// Copy elements into a VALUE array and then use those to create a Ruby array with rb_ary_new4.
|
1476
|
+
VALUE* offset = ALLOCA_N(VALUE, s->dim);
|
1477
|
+
for (size_t index = 0; index < s->dim; ++index)
|
1478
|
+
offset[index] = INT2FIX(s->offset[index]);
|
1479
|
+
|
1480
|
+
return rb_ary_new4(s->dim, offset);
|
1481
|
+
}
|
1482
|
+
|
1483
|
+
|
1484
|
+
/*
|
1485
|
+
* call-seq:
|
1486
|
+
* supershape -> Array
|
1487
|
+
*
|
1488
|
+
* Get the shape of a slice's parent.
|
1489
|
+
*/
|
1490
|
+
static VALUE nm_supershape(VALUE self) {
|
1491
|
+
|
1492
|
+
STORAGE* s = NM_STORAGE(self);
|
1493
|
+
if (s->src == s) return nm_shape(self); // easy case (not a slice)
|
1494
|
+
else s = s->src;
|
1495
|
+
|
1496
|
+
VALUE* shape = ALLOCA_N(VALUE, s->dim);
|
1497
|
+
for (size_t index = 0; index < s->dim; ++index)
|
1498
|
+
shape[index] = INT2FIX(s->shape[index]);
|
1499
|
+
|
1500
|
+
return rb_ary_new4(s->dim, shape);
|
1501
|
+
}
|
1502
|
+
|
1503
|
+
/*
|
1504
|
+
* call-seq:
|
1505
|
+
* stype -> Symbol
|
1506
|
+
*
|
1507
|
+
* Get the storage type (stype) of a matrix, e.g., :yale, :dense, or :list.
|
1508
|
+
*/
|
1509
|
+
static VALUE nm_stype(VALUE self) {
|
1510
|
+
ID stype = rb_intern(STYPE_NAMES[NM_STYPE(self)]);
|
1511
|
+
return ID2SYM(stype);
|
1512
|
+
}
|
1513
|
+
|
1514
|
+
/*
|
1515
|
+
* call-seq:
|
1516
|
+
* symmetric? -> Boolean
|
1517
|
+
*
|
1518
|
+
* Is this matrix symmetric?
|
1519
|
+
*/
|
1520
|
+
static VALUE nm_symmetric(VALUE self) {
|
1521
|
+
return is_symmetric(self, false);
|
1522
|
+
}
|
1523
|
+
|
1524
|
+
|
1525
|
+
/*
|
1526
|
+
* Gets the dimension of a matrix which might be a vector (have one or more shape components of size 1).
|
1527
|
+
*/
|
1528
|
+
static size_t effective_dim(STORAGE* s) {
|
1529
|
+
size_t d = 0;
|
1530
|
+
for (size_t i = 0; i < s->dim; ++i) {
|
1531
|
+
if (s->shape[i] != 1) d++;
|
1532
|
+
}
|
1533
|
+
return d;
|
1534
|
+
}
|
1535
|
+
|
1536
|
+
|
1537
|
+
/*
|
1538
|
+
* call-seq:
|
1539
|
+
* effective_dim -> Fixnum
|
1540
|
+
*
|
1541
|
+
* Returns the number of dimensions that don't have length 1. Guaranteed to be less than or equal to #dim.
|
1542
|
+
*/
|
1543
|
+
static VALUE nm_effective_dim(VALUE self) {
|
1544
|
+
return INT2FIX(effective_dim(NM_STORAGE(self)));
|
1545
|
+
}
|
1546
|
+
|
1547
|
+
|
1548
|
+
/*
|
1549
|
+
* Get a slice of an NMatrix.
|
1550
|
+
*/
|
1551
|
+
static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(const STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self) {
|
1552
|
+
VALUE result = Qnil;
|
1553
|
+
STORAGE* s = NM_STORAGE(self);
|
1554
|
+
|
1555
|
+
if (NM_DIM(self) < (size_t)(argc)) {
|
1556
|
+
rb_raise(rb_eArgError, "wrong number of arguments (%d for %u)", argc, effective_dim(s));
|
1557
|
+
} else {
|
1558
|
+
SLICE* slice = get_slice(NM_DIM(self), argc, argv, s->shape);
|
1559
|
+
|
1560
|
+
if (slice->single) {
|
1561
|
+
static void* (*ttable[nm::NUM_STYPES])(const STORAGE*, SLICE*) = {
|
1562
|
+
nm_dense_storage_ref,
|
1563
|
+
nm_list_storage_ref,
|
1564
|
+
nm_yale_storage_ref
|
1565
|
+
};
|
1566
|
+
|
1567
|
+
if (NM_DTYPE(self) == nm::RUBYOBJ) result = *reinterpret_cast<VALUE*>( ttable[NM_STYPE(self)](s, slice) );
|
1568
|
+
else result = rubyobj_from_cval( ttable[NM_STYPE(self)](s, slice), NM_DTYPE(self) ).rval;
|
1569
|
+
|
1570
|
+
} else {
|
1571
|
+
|
1572
|
+
NMATRIX* mat = ALLOC(NMATRIX);
|
1573
|
+
mat->stype = NM_STYPE(self);
|
1574
|
+
mat->storage = (STORAGE*)((*slice_func)( s, slice ));
|
1575
|
+
|
1576
|
+
result = Data_Wrap_Struct(CLASS_OF(self), nm_mark, delete_func, mat);
|
1577
|
+
}
|
1578
|
+
|
1579
|
+
free_slice(slice);
|
1580
|
+
}
|
1581
|
+
|
1582
|
+
return result;
|
1583
|
+
}
|
1584
|
+
|
1585
|
+
//////////////////////
|
1586
|
+
// Helper Functions //
|
1587
|
+
//////////////////////
|
1588
|
+
|
1589
|
+
static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val) {
|
1590
|
+
|
1591
|
+
NMATRIX* left;
|
1592
|
+
NMATRIX* result;
|
1593
|
+
|
1594
|
+
CheckNMatrixType(left_val);
|
1595
|
+
UnwrapNMatrix(left_val, left);
|
1596
|
+
|
1597
|
+
if (TYPE(right_val) != T_DATA || (RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete && RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete_ref)) {
|
1598
|
+
// This is a matrix-scalar element-wise operation.
|
1599
|
+
std::string sym;
|
1600
|
+
switch(left->stype) {
|
1601
|
+
case nm::DENSE_STORE:
|
1602
|
+
sym = "__dense_scalar_" + nm::EWOP_NAMES[op] + "__";
|
1603
|
+
break;
|
1604
|
+
case nm::YALE_STORE:
|
1605
|
+
sym = "__yale_scalar_" + nm::EWOP_NAMES[op] + "__";
|
1606
|
+
break;
|
1607
|
+
case nm::LIST_STORE:
|
1608
|
+
sym = "__list_scalar_" + nm::EWOP_NAMES[op] + "__";
|
1609
|
+
break;
|
1610
|
+
default:
|
1611
|
+
rb_raise(rb_eNotImpError, "unknown storage type requested scalar element-wise operation");
|
1612
|
+
}
|
1613
|
+
return rb_funcall(left_val, rb_intern(sym.c_str()), 1, right_val);
|
1614
|
+
|
1615
|
+
} else {
|
1616
|
+
|
1617
|
+
// Check that the left- and right-hand sides have the same dimensionality.
|
1618
|
+
if (NM_DIM(left_val) != NM_DIM(right_val)) {
|
1619
|
+
rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same dimensionality.");
|
1620
|
+
}
|
1621
|
+
|
1622
|
+
// Check that the left- and right-hand sides have the same shape.
|
1623
|
+
if (memcmp(&NM_SHAPE(left_val, 0), &NM_SHAPE(right_val, 0), sizeof(size_t) * NM_DIM(left_val)) != 0) {
|
1624
|
+
rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same shape.");
|
1625
|
+
}
|
1626
|
+
|
1627
|
+
NMATRIX* right;
|
1628
|
+
UnwrapNMatrix(right_val, right);
|
1629
|
+
|
1630
|
+
if (left->stype == right->stype) {
|
1631
|
+
std::string sym;
|
1632
|
+
|
1633
|
+
switch(left->stype) {
|
1634
|
+
case nm::DENSE_STORE:
|
1635
|
+
sym = "__dense_elementwise_" + nm::EWOP_NAMES[op] + "__";
|
1636
|
+
break;
|
1637
|
+
case nm::YALE_STORE:
|
1638
|
+
sym = "__yale_elementwise_" + nm::EWOP_NAMES[op] + "__";
|
1639
|
+
break;
|
1640
|
+
case nm::LIST_STORE:
|
1641
|
+
sym = "__list_elementwise_" + nm::EWOP_NAMES[op] + "__";
|
1642
|
+
break;
|
1643
|
+
default:
|
1644
|
+
rb_raise(rb_eNotImpError, "unknown storage type requested element-wise operation");
|
1645
|
+
}
|
1646
|
+
return rb_funcall(left_val, rb_intern(sym.c_str()), 1, right_val);
|
1647
|
+
|
1648
|
+
} else {
|
1649
|
+
rb_raise(rb_eArgError, "Element-wise operations are not currently supported between matrices with differing stypes.");
|
1650
|
+
}
|
1651
|
+
}
|
1652
|
+
|
1653
|
+
return Data_Wrap_Struct(CLASS_OF(left_val), nm_mark, nm_delete, result);
|
1654
|
+
}
|
1655
|
+
|
1656
|
+
/*
|
1657
|
+
* Check to determine whether matrix is a reference to another matrix.
|
1658
|
+
*/
|
1659
|
+
bool is_ref(const NMATRIX* matrix) {
|
1660
|
+
return matrix->storage->src != matrix->storage;
|
1661
|
+
}
|
1662
|
+
|
1663
|
+
/*
|
1664
|
+
* Helper function for nm_symmetric and nm_hermitian.
|
1665
|
+
*/
|
1666
|
+
static VALUE is_symmetric(VALUE self, bool hermitian) {
|
1667
|
+
NMATRIX* m;
|
1668
|
+
UnwrapNMatrix(self, m);
|
1669
|
+
|
1670
|
+
if (m->storage->shape[0] == m->storage->shape[1] and m->storage->dim == 2) {
|
1671
|
+
if (NM_STYPE(self) == nm::DENSE_STORE) {
|
1672
|
+
if (hermitian) {
|
1673
|
+
nm_dense_storage_is_hermitian((DENSE_STORAGE*)(m->storage), m->storage->shape[0]);
|
1674
|
+
|
1675
|
+
} else {
|
1676
|
+
nm_dense_storage_is_symmetric((DENSE_STORAGE*)(m->storage), m->storage->shape[0]);
|
1677
|
+
}
|
1678
|
+
|
1679
|
+
} else {
|
1680
|
+
// TODO: Implement, at the very least, yale_is_symmetric. Model it after yale/transp.template.c.
|
1681
|
+
rb_raise(rb_eNotImpError, "symmetric? and hermitian? only implemented for dense currently");
|
1682
|
+
}
|
1683
|
+
|
1684
|
+
}
|
1685
|
+
|
1686
|
+
return Qfalse;
|
1687
|
+
}
|
1688
|
+
|
1689
|
+
///////////////////////
|
1690
|
+
// Utility Functions //
|
1691
|
+
///////////////////////
|
1692
|
+
|
1693
|
+
/*
|
1694
|
+
* Guess the dtype given a Ruby VALUE and return it as a symbol.
|
1695
|
+
*
|
1696
|
+
* Not to be confused with nm_dtype_guess, which returns an nm::dtype_t. (This calls that.)
|
1697
|
+
*/
|
1698
|
+
static VALUE nm_guess_dtype(VALUE self, VALUE v) {
|
1699
|
+
return ID2SYM(rb_intern(DTYPE_NAMES[nm_dtype_guess(v)]));
|
1700
|
+
}
|
1701
|
+
|
1702
|
+
/*
|
1703
|
+
* Get the minimum allowable dtype for a Ruby VALUE and return it as a symbol.
|
1704
|
+
*/
|
1705
|
+
static VALUE nm_min_dtype(VALUE self, VALUE v) {
|
1706
|
+
return ID2SYM(rb_intern(DTYPE_NAMES[nm_dtype_min(v)]));
|
1707
|
+
}
|
1708
|
+
|
1709
|
+
/*
|
1710
|
+
* Helper for nm_dtype_min(), handling integers.
|
1711
|
+
*/
|
1712
|
+
nm::dtype_t nm_dtype_min_fixnum(int64_t v) {
|
1713
|
+
if (v >= 0 && v <= UCHAR_MAX) return nm::BYTE;
|
1714
|
+
else {
|
1715
|
+
v = std::abs(v);
|
1716
|
+
if (v <= CHAR_MAX) return nm::INT8;
|
1717
|
+
else if (v <= SHRT_MAX) return nm::INT16;
|
1718
|
+
else if (v <= INT_MAX) return nm::INT32;
|
1719
|
+
else return nm::INT64;
|
1720
|
+
}
|
1721
|
+
}
|
1722
|
+
|
1723
|
+
/*
|
1724
|
+
* Helper for nm_dtype_min(), handling rationals.
|
1725
|
+
*/
|
1726
|
+
nm::dtype_t nm_dtype_min_rational(VALUE vv) {
|
1727
|
+
nm::Rational128* v = ALLOCA_N(nm::Rational128, 1);
|
1728
|
+
rubyval_to_cval(vv, nm::RATIONAL128, v);
|
1729
|
+
|
1730
|
+
int64_t i = std::max(std::abs(v->n), v->d);
|
1731
|
+
if (i <= SHRT_MAX) return nm::INT16;
|
1732
|
+
else if (i <= INT_MAX) return nm::INT32;
|
1733
|
+
else return nm::INT64;
|
1734
|
+
}
|
1735
|
+
|
1736
|
+
/*
|
1737
|
+
* Return the minimum dtype required to store a given value.
|
1738
|
+
*
|
1739
|
+
* This is kind of arbitrary. For Float, it always returns :float32 for example, since in some cases neither :float64
|
1740
|
+
* not :float32 are sufficient.
|
1741
|
+
*
|
1742
|
+
* This function is used in upcasting for scalar math. We want to ensure that :int8 + 1 does not return an :int64, basically.
|
1743
|
+
*
|
1744
|
+
* FIXME: Eventually, this function should actually look at the value stored in Fixnums (for example), so that it knows
|
1745
|
+
* whether to return :int64 or :int32.
|
1746
|
+
*/
|
1747
|
+
nm::dtype_t nm_dtype_min(VALUE v) {
|
1748
|
+
|
1749
|
+
switch(TYPE(v)) {
|
1750
|
+
case T_FIXNUM:
|
1751
|
+
return nm_dtype_min_fixnum(FIX2LONG(v));
|
1752
|
+
case T_BIGNUM:
|
1753
|
+
return nm::INT64;
|
1754
|
+
case T_FLOAT:
|
1755
|
+
return nm::FLOAT32;
|
1756
|
+
case T_COMPLEX:
|
1757
|
+
return nm::COMPLEX64;
|
1758
|
+
case T_RATIONAL:
|
1759
|
+
return nm_dtype_min_rational(v);
|
1760
|
+
case T_STRING:
|
1761
|
+
return RSTRING_LEN(v) == 1 ? nm::BYTE : nm::RUBYOBJ;
|
1762
|
+
case T_TRUE:
|
1763
|
+
case T_FALSE:
|
1764
|
+
case T_NIL:
|
1765
|
+
default:
|
1766
|
+
return nm::RUBYOBJ;
|
1767
|
+
}
|
1768
|
+
}
|
1769
|
+
|
1770
|
+
|
1771
|
+
/*
|
1772
|
+
* Guess the data type given a value.
|
1773
|
+
*
|
1774
|
+
* TODO: Probably needs some work for Bignum.
|
1775
|
+
*/
|
1776
|
+
nm::dtype_t nm_dtype_guess(VALUE v) {
|
1777
|
+
switch(TYPE(v)) {
|
1778
|
+
case T_TRUE:
|
1779
|
+
case T_FALSE:
|
1780
|
+
case T_NIL:
|
1781
|
+
return nm::RUBYOBJ;
|
1782
|
+
case T_STRING:
|
1783
|
+
return RSTRING_LEN(v) == 1 ? nm::BYTE : nm::RUBYOBJ;
|
1784
|
+
|
1785
|
+
#if SIZEOF_INT == 8
|
1786
|
+
case T_FIXNUM:
|
1787
|
+
return nm::INT64;
|
1788
|
+
|
1789
|
+
case T_RATIONAL:
|
1790
|
+
return nm::RATIONAL128;
|
1791
|
+
|
1792
|
+
#else
|
1793
|
+
# if SIZEOF_INT == 4
|
1794
|
+
case T_FIXNUM:
|
1795
|
+
return nm::INT32;
|
1796
|
+
|
1797
|
+
case T_RATIONAL:
|
1798
|
+
return nm::RATIONAL64;
|
1799
|
+
|
1800
|
+
#else
|
1801
|
+
case T_FIXNUM:
|
1802
|
+
return nm::INT16;
|
1803
|
+
|
1804
|
+
case T_RATIONAL:
|
1805
|
+
return nm::RATIONAL32;
|
1806
|
+
# endif
|
1807
|
+
#endif
|
1808
|
+
|
1809
|
+
case T_BIGNUM:
|
1810
|
+
return nm::INT64;
|
1811
|
+
|
1812
|
+
#if SIZEOF_FLOAT == 4
|
1813
|
+
case T_COMPLEX:
|
1814
|
+
return nm::COMPLEX128;
|
1815
|
+
|
1816
|
+
case T_FLOAT:
|
1817
|
+
return nm::FLOAT64;
|
1818
|
+
|
1819
|
+
#else
|
1820
|
+
# if SIZEOF_FLOAT == 2
|
1821
|
+
case T_COMPLEX:
|
1822
|
+
return nm::COMPLEX64;
|
1823
|
+
|
1824
|
+
case T_FLOAT:
|
1825
|
+
return nm::FLOAT32;
|
1826
|
+
# endif
|
1827
|
+
#endif
|
1828
|
+
|
1829
|
+
case T_ARRAY:
|
1830
|
+
/*
|
1831
|
+
* May be passed for dense -- for now, just look at the first element.
|
1832
|
+
*
|
1833
|
+
* TODO: Look at entire array for most specific type.
|
1834
|
+
*/
|
1835
|
+
|
1836
|
+
return nm_dtype_guess(RARRAY_PTR(v)[0]);
|
1837
|
+
|
1838
|
+
default:
|
1839
|
+
RB_P(v);
|
1840
|
+
rb_raise(rb_eArgError, "Unable to guess a data type from provided parameters; data type must be specified manually.");
|
1841
|
+
}
|
1842
|
+
}
|
1843
|
+
|
1844
|
+
|
1845
|
+
|
1846
|
+
/*
|
1847
|
+
* Allocate and return a SLICE object, which will contain the appropriate coordinate and length information for
|
1848
|
+
* accessing some part of a matrix.
|
1849
|
+
*/
|
1850
|
+
static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape) {
|
1851
|
+
VALUE beg, end;
|
1852
|
+
int excl;
|
1853
|
+
|
1854
|
+
SLICE* slice = alloc_slice(dim);
|
1855
|
+
slice->single = true;
|
1856
|
+
|
1857
|
+
// r is the shape position; t is the slice position. They may differ when we're dealing with a
|
1858
|
+
// matrix where the effective dimension is less than the dimension (e.g., a vector).
|
1859
|
+
for (size_t r = 0, t = 0; r < dim; ++r) {
|
1860
|
+
VALUE v = t == argc ? Qnil : arg[t];
|
1861
|
+
|
1862
|
+
// if the current shape indicates a vector and fewer args were supplied than necessary, just use 0
|
1863
|
+
if (argc - t + r < dim && shape[r] == 1) {
|
1864
|
+
slice->coords[r] = 0;
|
1865
|
+
slice->lengths[r] = 1;
|
1866
|
+
|
1867
|
+
} else if (FIXNUM_P(v)) { // this used CLASS_OF before, which is inefficient for fixnum
|
1868
|
+
|
1869
|
+
slice->coords[r] = FIX2UINT(v);
|
1870
|
+
slice->lengths[r] = 1;
|
1871
|
+
t++;
|
1872
|
+
|
1873
|
+
} else if (SYMBOL_P(v) && rb_to_id(v) == nm_rb_mul) { // :* means the whole possible range
|
1874
|
+
|
1875
|
+
slice->coords[r] = 0;
|
1876
|
+
slice->lengths[r] = shape[r];
|
1877
|
+
slice->single = false;
|
1878
|
+
|
1879
|
+
} else if (TYPE(arg[t]) == T_HASH) { // 3:5 notation (inclusive)
|
1880
|
+
VALUE begin_end = rb_funcall(v, rb_intern("shift"), 0); // rb_hash_shift
|
1881
|
+
slice->coords[r] = FIX2UINT(rb_ary_entry(begin_end, 0));
|
1882
|
+
slice->lengths[r] = FIX2UINT(rb_ary_entry(begin_end, 1)) - slice->coords[r];
|
1883
|
+
|
1884
|
+
if (RHASH_EMPTY_P(v)) t++; // go on to the next
|
1885
|
+
|
1886
|
+
slice->single = false;
|
1887
|
+
|
1888
|
+
} else if (CLASS_OF(v) == rb_cRange) {
|
1889
|
+
rb_range_values(arg[t], &beg, &end, &excl);
|
1890
|
+
slice->coords[r] = FIX2UINT(beg);
|
1891
|
+
// Exclude last element for a...b range
|
1892
|
+
slice->lengths[r] = FIX2UINT(end) - slice->coords[r] + (excl ? 0 : 1);
|
1893
|
+
|
1894
|
+
slice->single = false;
|
1895
|
+
|
1896
|
+
t++;
|
1897
|
+
|
1898
|
+
} else {
|
1899
|
+
rb_raise(rb_eArgError, "expected Fixnum, Range, or Hash for slice component instead of %s", rb_obj_classname(v));
|
1900
|
+
}
|
1901
|
+
|
1902
|
+
if (slice->coords[r] > shape[r] || slice->coords[r] + slice->lengths[r] > shape[r])
|
1903
|
+
rb_raise(rb_eRangeError, "slice is larger than matrix in dimension %u (slice component %u)", r, t);
|
1904
|
+
}
|
1905
|
+
|
1906
|
+
return slice;
|
1907
|
+
}
|
1908
|
+
|
1909
|
+
#ifdef BENCHMARK
|
1910
|
+
/*
|
1911
|
+
* A simple function used when benchmarking NMatrix.
|
1912
|
+
*/
|
1913
|
+
static double get_time(void) {
|
1914
|
+
struct timeval t;
|
1915
|
+
struct timezone tzp;
|
1916
|
+
|
1917
|
+
gettimeofday(&t, &tzp);
|
1918
|
+
|
1919
|
+
return t.tv_sec + t.tv_usec*1e-6;
|
1920
|
+
}
|
1921
|
+
#endif
|
1922
|
+
|
1923
|
+
/*
|
1924
|
+
* The argv parameter will be either 1 or 2 elements. If 1, could be either
|
1925
|
+
* initial or dtype. If 2, is initial and dtype. This function returns the
|
1926
|
+
* dtype.
|
1927
|
+
*/
|
1928
|
+
static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype) {
|
1929
|
+
int offset;
|
1930
|
+
|
1931
|
+
switch (argc) {
|
1932
|
+
case 1:
|
1933
|
+
offset = 0;
|
1934
|
+
break;
|
1935
|
+
|
1936
|
+
case 2:
|
1937
|
+
offset = 1;
|
1938
|
+
break;
|
1939
|
+
|
1940
|
+
default:
|
1941
|
+
rb_raise(rb_eArgError, "Need an initial value or a dtype.");
|
1942
|
+
break;
|
1943
|
+
}
|
1944
|
+
|
1945
|
+
if (SYMBOL_P(argv[offset])) {
|
1946
|
+
return nm_dtype_from_rbsymbol(argv[offset]);
|
1947
|
+
|
1948
|
+
} else if (TYPE(argv[offset]) == T_STRING) {
|
1949
|
+
return nm_dtype_from_rbstring(StringValue(argv[offset]));
|
1950
|
+
|
1951
|
+
} else if (stype == nm::YALE_STORE) {
|
1952
|
+
rb_raise(rb_eArgError, "Yale storage class requires a dtype.");
|
1953
|
+
|
1954
|
+
} else {
|
1955
|
+
return nm_dtype_guess(argv[0]);
|
1956
|
+
}
|
1957
|
+
}
|
1958
|
+
|
1959
|
+
/*
|
1960
|
+
* Convert an Ruby value or an array of Ruby values into initial C values.
|
1961
|
+
*/
|
1962
|
+
static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype) {
|
1963
|
+
unsigned int index;
|
1964
|
+
void* init_val;
|
1965
|
+
|
1966
|
+
if (TYPE(arg) == T_ARRAY) {
|
1967
|
+
// Array
|
1968
|
+
init_val = ALLOC_N(char, DTYPE_SIZES[dtype] * RARRAY_LEN(arg));
|
1969
|
+
NM_CHECK_ALLOC(init_val);
|
1970
|
+
for (index = 0; index < RARRAY_LEN(arg); ++index) {
|
1971
|
+
rubyval_to_cval(RARRAY_PTR(arg)[index], dtype, (char*)init_val + (index * DTYPE_SIZES[dtype]));
|
1972
|
+
}
|
1973
|
+
|
1974
|
+
} else {
|
1975
|
+
// Single value
|
1976
|
+
init_val = rubyobj_to_cval(arg, dtype);
|
1977
|
+
}
|
1978
|
+
|
1979
|
+
return init_val;
|
1980
|
+
}
|
1981
|
+
|
1982
|
+
/*
|
1983
|
+
* Convert the shape argument, which may be either a Ruby value or an array of
|
1984
|
+
* Ruby values, into C values. The second argument is where the dimensionality
|
1985
|
+
* of the matrix will be stored. The function itself returns a pointer to the
|
1986
|
+
* array describing the shape, which must be freed manually.
|
1987
|
+
*/
|
1988
|
+
static size_t* interpret_shape(VALUE arg, size_t* dim) {
|
1989
|
+
size_t* shape;
|
1990
|
+
|
1991
|
+
if (TYPE(arg) == T_ARRAY) {
|
1992
|
+
*dim = RARRAY_LEN(arg);
|
1993
|
+
shape = ALLOC_N(size_t, *dim);
|
1994
|
+
|
1995
|
+
for (size_t index = 0; index < *dim; ++index) {
|
1996
|
+
shape[index] = FIX2UINT( RARRAY_PTR(arg)[index] );
|
1997
|
+
}
|
1998
|
+
|
1999
|
+
} else if (FIXNUM_P(arg)) {
|
2000
|
+
*dim = 2;
|
2001
|
+
shape = ALLOC_N(size_t, *dim);
|
2002
|
+
|
2003
|
+
shape[0] = FIX2UINT(arg);
|
2004
|
+
shape[1] = FIX2UINT(arg);
|
2005
|
+
|
2006
|
+
} else {
|
2007
|
+
rb_raise(rb_eArgError, "Expected an array of numbers or a single Fixnum for matrix shape");
|
2008
|
+
}
|
2009
|
+
|
2010
|
+
return shape;
|
2011
|
+
}
|
2012
|
+
|
2013
|
+
/*
|
2014
|
+
* Convert a Ruby symbol or string into an storage type.
|
2015
|
+
*/
|
2016
|
+
static nm::stype_t interpret_stype(VALUE arg) {
|
2017
|
+
if (SYMBOL_P(arg)) {
|
2018
|
+
return nm_stype_from_rbsymbol(arg);
|
2019
|
+
|
2020
|
+
} else if (TYPE(arg) == T_STRING) {
|
2021
|
+
return nm_stype_from_rbstring(StringValue(arg));
|
2022
|
+
|
2023
|
+
} else {
|
2024
|
+
rb_raise(rb_eArgError, "Expected storage type");
|
2025
|
+
}
|
2026
|
+
}
|
2027
|
+
|
2028
|
+
//////////////////
|
2029
|
+
// Math Helpers //
|
2030
|
+
//////////////////
|
2031
|
+
|
2032
|
+
STORAGE* matrix_storage_cast_alloc(NMATRIX* matrix, nm::dtype_t new_dtype) {
|
2033
|
+
if (matrix->storage->dtype == new_dtype && !is_ref(matrix))
|
2034
|
+
return matrix->storage;
|
2035
|
+
|
2036
|
+
CAST_TABLE(cast_copy_storage);
|
2037
|
+
return cast_copy_storage[matrix->stype][matrix->stype](matrix->storage, new_dtype, NULL);
|
2038
|
+
}
|
2039
|
+
|
2040
|
+
STORAGE_PAIR binary_storage_cast_alloc(NMATRIX* left_matrix, NMATRIX* right_matrix) {
|
2041
|
+
STORAGE_PAIR casted;
|
2042
|
+
nm::dtype_t new_dtype = Upcast[left_matrix->storage->dtype][right_matrix->storage->dtype];
|
2043
|
+
|
2044
|
+
casted.left = matrix_storage_cast_alloc(left_matrix, new_dtype);
|
2045
|
+
casted.right = matrix_storage_cast_alloc(right_matrix, new_dtype);
|
2046
|
+
|
2047
|
+
return casted;
|
2048
|
+
}
|
2049
|
+
|
2050
|
+
static VALUE matrix_multiply_scalar(NMATRIX* left, VALUE scalar) {
|
2051
|
+
rb_raise(rb_eNotImpError, "matrix-scalar multiplication not implemented yet");
|
2052
|
+
return Qnil;
|
2053
|
+
}
|
2054
|
+
|
2055
|
+
static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right) {
|
2056
|
+
///TODO: multiplication for non-dense and/or non-decimal matrices
|
2057
|
+
|
2058
|
+
// Make sure both of our matrices are of the correct type.
|
2059
|
+
STORAGE_PAIR casted = binary_storage_cast_alloc(left, right);
|
2060
|
+
|
2061
|
+
size_t* resulting_shape = ALLOC_N(size_t, 2);
|
2062
|
+
resulting_shape[0] = left->storage->shape[0];
|
2063
|
+
resulting_shape[1] = right->storage->shape[1];
|
2064
|
+
|
2065
|
+
// Sometimes we only need to use matrix-vector multiplication (e.g., GEMM versus GEMV). Find out.
|
2066
|
+
bool vector = false;
|
2067
|
+
if (resulting_shape[1] == 1) vector = true;
|
2068
|
+
|
2069
|
+
static STORAGE* (*storage_matrix_multiply[nm::NUM_STYPES])(const STORAGE_PAIR&, size_t*, bool) = {
|
2070
|
+
nm_dense_storage_matrix_multiply,
|
2071
|
+
nm_list_storage_matrix_multiply,
|
2072
|
+
nm_yale_storage_matrix_multiply
|
2073
|
+
};
|
2074
|
+
|
2075
|
+
STORAGE* resulting_storage = storage_matrix_multiply[left->stype](casted, resulting_shape, vector);
|
2076
|
+
NMATRIX* result = nm_create(left->stype, resulting_storage);
|
2077
|
+
|
2078
|
+
// Free any casted-storage we created for the multiplication.
|
2079
|
+
// TODO: Can we make the Ruby GC take care of this stuff now that we're using it?
|
2080
|
+
// If we did that, we night not have to re-create these every time, right? Or wrong? Need to do
|
2081
|
+
// more research.
|
2082
|
+
static void (*free_storage[nm::NUM_STYPES])(STORAGE*) = {
|
2083
|
+
nm_dense_storage_delete,
|
2084
|
+
nm_list_storage_delete,
|
2085
|
+
nm_yale_storage_delete
|
2086
|
+
};
|
2087
|
+
|
2088
|
+
if (left->storage != casted.left) free_storage[result->stype](casted.left);
|
2089
|
+
if (right->storage != casted.right) free_storage[result->stype](casted.right);
|
2090
|
+
|
2091
|
+
if (result) return Data_Wrap_Struct(cNMatrix, nm_mark, nm_delete, result);
|
2092
|
+
return Qnil; // Only if we try to multiply list matrices should we return Qnil.
|
2093
|
+
}
|
2094
|
+
|
2095
|
+
/*
|
2096
|
+
* Calculate the exact determinant of a dense matrix.
|
2097
|
+
*
|
2098
|
+
* Returns nil for dense matrices which are not square or number of dimensions other than 2.
|
2099
|
+
*
|
2100
|
+
* Note: Currently only implemented for 2x2 and 3x3 matrices.
|
2101
|
+
*/
|
2102
|
+
static VALUE nm_det_exact(VALUE self) {
|
2103
|
+
if (NM_STYPE(self) != nm::DENSE_STORE) rb_raise(nm_eStorageTypeError, "can only calculate exact determinant for dense matrices");
|
2104
|
+
|
2105
|
+
if (NM_DIM(self) != 2 || NM_SHAPE0(self) != NM_SHAPE1(self)) return Qnil;
|
2106
|
+
|
2107
|
+
// Calculate the determinant and then assign it to the return value
|
2108
|
+
void* result = ALLOCA_N(char, DTYPE_SIZES[NM_DTYPE(self)]);
|
2109
|
+
nm_math_det_exact(NM_SHAPE0(self), NM_STORAGE_DENSE(self)->elements, NM_SHAPE0(self), NM_DTYPE(self), result);
|
2110
|
+
|
2111
|
+
return rubyobj_from_cval(result, NM_DTYPE(self)).rval;
|
2112
|
+
}
|
2113
|
+
|
2114
|
+
/////////////////
|
2115
|
+
// Exposed API //
|
2116
|
+
/////////////////
|
2117
|
+
|
2118
|
+
/*
|
2119
|
+
* Create a dense matrix. Used by the NMatrix GSL fork. Unlike nm_create, this one copies all of the
|
2120
|
+
* arrays and such passed in -- so you don't have to allocate and pass a new shape object for every
|
2121
|
+
* matrix you want to create, for example. Same goes for elements.
|
2122
|
+
*
|
2123
|
+
* Returns a properly-wrapped Ruby object as a VALUE.
|
2124
|
+
*
|
2125
|
+
* *** Note that this function is for API only. Please do not use it internally.
|
2126
|
+
*
|
2127
|
+
* TODO: Add a column-major option for libraries that use column-major matrices.
|
2128
|
+
*/
|
2129
|
+
VALUE rb_nmatrix_dense_create(nm::dtype_t dtype, size_t* shape, size_t dim, void* elements, size_t length) {
|
2130
|
+
NMATRIX* nm;
|
2131
|
+
size_t nm_dim;
|
2132
|
+
size_t* shape_copy;
|
2133
|
+
|
2134
|
+
// Do not allow a dim of 1. Treat it as a column or row matrix.
|
2135
|
+
if (dim == 1) {
|
2136
|
+
nm_dim = 2;
|
2137
|
+
shape_copy = ALLOC_N(size_t, nm_dim);
|
2138
|
+
shape_copy[0] = shape[0];
|
2139
|
+
shape_copy[1] = 1;
|
2140
|
+
|
2141
|
+
} else {
|
2142
|
+
nm_dim = dim;
|
2143
|
+
shape_copy = ALLOC_N(size_t, nm_dim);
|
2144
|
+
memcpy(shape_copy, shape, sizeof(size_t)*nm_dim);
|
2145
|
+
}
|
2146
|
+
|
2147
|
+
// Copy elements
|
2148
|
+
void* elements_copy = ALLOC_N(char, DTYPE_SIZES[dtype]*length);
|
2149
|
+
memcpy(elements_copy, elements, DTYPE_SIZES[dtype]*length);
|
2150
|
+
|
2151
|
+
// allocate and create the matrix and its storage
|
2152
|
+
nm = nm_create(nm::DENSE_STORE, nm_dense_storage_create(dtype, shape_copy, dim, elements_copy, length));
|
2153
|
+
|
2154
|
+
// tell Ruby about the matrix and its storage, particularly how to garbage collect it.
|
2155
|
+
return Data_Wrap_Struct(cNMatrix, nm_mark, nm_delete, nm);
|
2156
|
+
}
|
2157
|
+
|
2158
|
+
/*
|
2159
|
+
* Create a dense vector. Used by the NMatrix GSL fork.
|
2160
|
+
*
|
2161
|
+
* Basically just a convenience wrapper for rb_nmatrix_dense_create().
|
2162
|
+
*
|
2163
|
+
* Returns a properly-wrapped Ruby NMatrix object as a VALUE. Included for backwards compatibility
|
2164
|
+
* for when NMatrix had an NVector class.
|
2165
|
+
*/
|
2166
|
+
VALUE rb_nvector_dense_create(nm::dtype_t dtype, void* elements, size_t length) {
|
2167
|
+
size_t dim = 1, shape = length;
|
2168
|
+
return rb_nmatrix_dense_create(dtype, &shape, dim, elements, length);
|
2169
|
+
}
|