nmatrix 0.0.8 → 0.0.9

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +3 -8
  3. data/.rspec +1 -1
  4. data/.travis.yml +12 -0
  5. data/CONTRIBUTING.md +27 -12
  6. data/Gemfile +1 -0
  7. data/History.txt +38 -0
  8. data/Manifest.txt +15 -15
  9. data/README.rdoc +7 -6
  10. data/Rakefile +40 -5
  11. data/ext/nmatrix/data/data.cpp +2 -37
  12. data/ext/nmatrix/data/data.h +19 -121
  13. data/ext/nmatrix/data/meta.h +70 -0
  14. data/ext/nmatrix/extconf.rb +40 -12
  15. data/ext/nmatrix/math/math.h +13 -103
  16. data/ext/nmatrix/nmatrix.cpp +10 -2018
  17. data/ext/nmatrix/nmatrix.h +16 -13
  18. data/ext/nmatrix/ruby_constants.cpp +12 -1
  19. data/ext/nmatrix/ruby_constants.h +7 -1
  20. data/ext/nmatrix/ruby_nmatrix.c +2169 -0
  21. data/ext/nmatrix/storage/dense.cpp +123 -14
  22. data/ext/nmatrix/storage/dense.h +10 -4
  23. data/ext/nmatrix/storage/list.cpp +265 -48
  24. data/ext/nmatrix/storage/list.h +6 -9
  25. data/ext/nmatrix/storage/storage.cpp +44 -54
  26. data/ext/nmatrix/storage/storage.h +2 -2
  27. data/ext/nmatrix/storage/yale/class.h +1070 -0
  28. data/ext/nmatrix/storage/yale/iterators/base.h +142 -0
  29. data/ext/nmatrix/storage/yale/iterators/iterator.h +130 -0
  30. data/ext/nmatrix/storage/yale/iterators/row.h +449 -0
  31. data/ext/nmatrix/storage/yale/iterators/row_stored.h +139 -0
  32. data/ext/nmatrix/storage/yale/iterators/row_stored_nd.h +167 -0
  33. data/ext/nmatrix/storage/yale/iterators/stored_diagonal.h +123 -0
  34. data/ext/nmatrix/storage/yale/math/transpose.h +110 -0
  35. data/ext/nmatrix/storage/yale/yale.cpp +1785 -0
  36. data/ext/nmatrix/storage/{yale.h → yale/yale.h} +23 -55
  37. data/ext/nmatrix/types.h +2 -0
  38. data/ext/nmatrix/util/io.cpp +27 -45
  39. data/ext/nmatrix/util/io.h +0 -2
  40. data/ext/nmatrix/util/sl_list.cpp +169 -28
  41. data/ext/nmatrix/util/sl_list.h +9 -3
  42. data/lib/nmatrix/blas.rb +20 -20
  43. data/lib/nmatrix/enumerate.rb +1 -1
  44. data/lib/nmatrix/io/mat5_reader.rb +8 -14
  45. data/lib/nmatrix/lapack.rb +3 -3
  46. data/lib/nmatrix/math.rb +3 -3
  47. data/lib/nmatrix/nmatrix.rb +19 -5
  48. data/lib/nmatrix/nvector.rb +2 -0
  49. data/lib/nmatrix/shortcuts.rb +90 -125
  50. data/lib/nmatrix/version.rb +1 -1
  51. data/nmatrix.gemspec +7 -8
  52. data/spec/{nmatrix_spec.rb → 00_nmatrix_spec.rb} +45 -208
  53. data/spec/01_enum_spec.rb +184 -0
  54. data/spec/{slice_spec.rb → 02_slice_spec.rb} +55 -39
  55. data/spec/blas_spec.rb +22 -54
  56. data/spec/elementwise_spec.rb +9 -8
  57. data/spec/io_spec.rb +6 -4
  58. data/spec/lapack_spec.rb +26 -26
  59. data/spec/math_spec.rb +9 -5
  60. data/spec/nmatrix_yale_spec.rb +29 -61
  61. data/spec/shortcuts_spec.rb +34 -22
  62. data/spec/slice_set_spec.rb +157 -0
  63. data/spec/spec_helper.rb +42 -2
  64. data/spec/stat_spec.rb +192 -0
  65. metadata +52 -55
  66. data/ext/nmatrix/storage/yale.cpp +0 -2284
  67. data/spec/nmatrix_list_spec.rb +0 -113
  68. data/spec/nvector_spec.rb +0 -112
@@ -198,7 +198,6 @@
198
198
  */
199
199
 
200
200
  #define NM_NUM_DTYPES 13 // data/data.h
201
- #define NM_NUM_ITYPES 4 // data/data.h
202
201
  #define NM_NUM_STYPES 3 // storage/storage.h
203
202
 
204
203
  //#ifdef __cplusplus
@@ -225,12 +224,6 @@ NM_DEF_ENUM(dtype_t, BYTE = 0, // unsigned char
225
224
  RATIONAL128 = 11, // Rational128 class
226
225
  RUBYOBJ = 12); // Ruby VALUE type
227
226
 
228
- /* Index Type for Yale Matrices */
229
- NM_DEF_ENUM(itype_t, UINT8 = 0,
230
- UINT16 = 1,
231
- UINT32 = 2,
232
- UINT64 = 3);
233
-
234
227
  NM_DEF_ENUM(symm_t, NONSYMM = 0,
235
228
  SYMM = 1,
236
229
  SKEW = 2,
@@ -253,11 +246,10 @@ NM_DEF_STORAGE_STRUCT_POST(DENSE_STORAGE); // };
253
246
 
254
247
  /* Yale Storage */
255
248
  NM_DEF_STORAGE_CHILD_STRUCT_PRE(YALE_STORAGE);
256
- void* a; // should go first
257
- size_t ndnz; // Strictly non-diagonal non-zero count!
249
+ void* a; // should go first
250
+ size_t ndnz; // Strictly non-diagonal non-zero count!
258
251
  size_t capacity;
259
- NM_DECL_ENUM(itype_t, itype);
260
- void* ija;
252
+ size_t* ija;
261
253
  NM_DEF_STORAGE_STRUCT_POST(YALE_STORAGE);
262
254
 
263
255
  // FIXME: NODE and LIST should be put in some kind of namespace or something, at least in C++.
@@ -306,14 +298,14 @@ NM_DEF_STRUCT_POST(NMATRIX); // };
306
298
  #define NM_SRC(val) (NM_STORAGE(val)->src)
307
299
  #define NM_DIM(val) (NM_STORAGE(val)->dim)
308
300
  #define NM_DTYPE(val) (NM_STORAGE(val)->dtype)
309
- #define NM_ITYPE(val) (NM_STORAGE_YALE(val)->itype)
310
301
  #define NM_STYPE(val) (NM_STRUCT(val)->stype)
311
302
  #define NM_SHAPE(val,i) (NM_STORAGE(val)->shape[(i)])
312
303
  #define NM_SHAPE0(val) (NM_STORAGE(val)->shape[0])
313
304
  #define NM_SHAPE1(val) (NM_STORAGE(val)->shape[1])
314
305
  #define NM_DEFAULT_VAL(val) (NM_STORAGE_LIST(val)->default_val)
315
306
 
316
- #define NM_DENSE_COUNT(val) (storage_count_max_elements(NM_STORAGE_DENSE(val)))
307
+ #define NM_DENSE_COUNT(val) (nm_storage_count_max_elements(NM_STORAGE_DENSE(val)))
308
+ #define NM_DENSE_ELEMENTS(val) (NM_STORAGE_DENSE(val)->elements)
317
309
  #define NM_SIZEOF_DTYPE(val) (DTYPE_SIZES[NM_DTYPE(val)])
318
310
  #define NM_REF(val,slice) (RefFuncs[NM_STYPE(val)]( NM_STORAGE(val), slice, NM_SIZEOF_DTYPE(val) ))
319
311
 
@@ -333,6 +325,10 @@ NM_DEF_STRUCT_POST(NMATRIX); // };
333
325
  #define NM_IsNVector(obj) \
334
326
  (rb_obj_is_kind_of(obj, cNVector) == Qtrue)
335
327
 
328
+ #define RB_P(OBJ) \
329
+ rb_funcall(rb_stderr, rb_intern("print"), 1, rb_funcall(OBJ, rb_intern("object_id"), 0)); \
330
+ rb_funcall(rb_stderr, rb_intern("puts"), 1, rb_funcall(OBJ, rb_intern("inspect"), 0));
331
+
336
332
 
337
333
  #ifdef __cplusplus
338
334
  typedef VALUE (*METHOD)(...);
@@ -345,6 +341,7 @@ typedef VALUE (*METHOD)(...);
345
341
  */
346
342
 
347
343
  #ifdef __cplusplus
344
+
348
345
  extern "C" {
349
346
  #endif
350
347
 
@@ -359,8 +356,14 @@ extern "C" {
359
356
 
360
357
  // Non-API functions needed by other cpp files.
361
358
  NMATRIX* nm_create(nm::stype_t stype, STORAGE* storage);
359
+ NMATRIX* nm_cast_with_ctype_args(NMATRIX* self, nm::stype_t new_stype, nm::dtype_t new_dtype, void* init_ptr);
360
+ VALUE nm_cast(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol, VALUE init);
361
+ void nm_mark(NMATRIX* mat);
362
362
  void nm_delete(NMATRIX* mat);
363
363
  void nm_delete_ref(NMATRIX* mat);
364
+ void nm_mark(NMATRIX* mat);
365
+ void nm_register_values(VALUE* vals, size_t n);
366
+ void nm_unregister_values(VALUE* vals, size_t n);
364
367
 
365
368
  #ifdef __cplusplus
366
369
  }
@@ -35,7 +35,13 @@
35
35
  * Global Variables
36
36
  */
37
37
 
38
- ID nm_rb_real,
38
+ ID nm_rb_dtype,
39
+ nm_rb_stype,
40
+
41
+ nm_rb_capacity,
42
+ nm_rb_default,
43
+
44
+ nm_rb_real,
39
45
  nm_rb_imag,
40
46
 
41
47
  nm_rb_numer,
@@ -93,6 +99,11 @@ VALUE cNMatrix,
93
99
  */
94
100
 
95
101
  void nm_init_ruby_constants(void) {
102
+ nm_rb_dtype = rb_intern("dtype");
103
+ nm_rb_stype = rb_intern("stype");
104
+
105
+ nm_rb_capacity = rb_intern("capacity");
106
+ nm_rb_default = rb_intern("default");
96
107
 
97
108
  nm_rb_real = rb_intern("real");
98
109
  nm_rb_imag = rb_intern("imag");
@@ -38,7 +38,13 @@
38
38
  * Data
39
39
  */
40
40
 
41
- extern ID nm_rb_real,
41
+ extern ID nm_rb_dtype,
42
+ nm_rb_stype,
43
+
44
+ nm_rb_capacity,
45
+ nm_rb_default,
46
+
47
+ nm_rb_real,
42
48
  nm_rb_imag,
43
49
 
44
50
  nm_rb_numer,
@@ -0,0 +1,2169 @@
1
+ /////////////////////////////////////////////////////////////////////
2
+ // = NMatrix
3
+ //
4
+ // A linear algebra library for scientific computation in Ruby.
5
+ // NMatrix is part of SciRuby.
6
+ //
7
+ // NMatrix was originally inspired by and derived from NArray, by
8
+ // Masahiro Tanaka: http://narray.rubyforge.org
9
+ //
10
+ // == Copyright Information
11
+ //
12
+ // SciRuby is Copyright (c) 2010 - 2013, Ruby Science Foundation
13
+ // NMatrix is Copyright (c) 2013, Ruby Science Foundation
14
+ //
15
+ // Please see LICENSE.txt for additional copyright notices.
16
+ //
17
+ // == Contributing
18
+ //
19
+ // By contributing source code to SciRuby, you agree to be bound by
20
+ // our Contributor Agreement:
21
+ //
22
+ // * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
23
+ //
24
+ // == ruby_nmatrix.c
25
+ //
26
+ // Ruby-facing NMatrix C functions. Not compiled directly -- included
27
+ // into nmatrix.cpp.
28
+ //
29
+
30
+ /*
31
+ * Forward Declarations
32
+ */
33
+
34
+ static VALUE nm_init(int argc, VALUE* argv, VALUE nm);
35
+ static VALUE nm_init_copy(VALUE copy, VALUE original);
36
+ static VALUE nm_init_transposed(VALUE self);
37
+ static VALUE nm_read(int argc, VALUE* argv, VALUE self);
38
+ static VALUE nm_write(int argc, VALUE* argv, VALUE self);
39
+ static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm);
40
+ static VALUE nm_alloc(VALUE klass);
41
+ static VALUE nm_dtype(VALUE self);
42
+ static VALUE nm_stype(VALUE self);
43
+ static VALUE nm_default_value(VALUE self);
44
+ static size_t effective_dim(STORAGE* s);
45
+ static VALUE nm_effective_dim(VALUE self);
46
+ static VALUE nm_dim(VALUE self);
47
+ static VALUE nm_offset(VALUE self);
48
+ static VALUE nm_shape(VALUE self);
49
+ static VALUE nm_supershape(VALUE self);
50
+ static VALUE nm_capacity(VALUE self);
51
+ static VALUE nm_each_with_indices(VALUE nmatrix);
52
+ static VALUE nm_each_stored_with_indices(VALUE nmatrix);
53
+ static VALUE nm_each_ordered_stored_with_indices(VALUE nmatrix);
54
+
55
+ static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape);
56
+ static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(const STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self);
57
+ static VALUE nm_mset(int argc, VALUE* argv, VALUE self);
58
+ static VALUE nm_mget(int argc, VALUE* argv, VALUE self);
59
+ static VALUE nm_mref(int argc, VALUE* argv, VALUE self);
60
+ static VALUE nm_is_ref(VALUE self);
61
+
62
+ static VALUE is_symmetric(VALUE self, bool hermitian);
63
+
64
+ static VALUE nm_guess_dtype(VALUE self, VALUE v);
65
+ static VALUE nm_min_dtype(VALUE self, VALUE v);
66
+
67
+ /*
68
+ * Macro defines an element-wise accessor function for some operation.
69
+ *
70
+ * This is only responsible for the Ruby accessor! You still have to write the actual functions, obviously.
71
+ */
72
+ #define DEF_ELEMENTWISE_RUBY_ACCESSOR(oper, name) \
73
+ static VALUE nm_ew_##name(VALUE left_val, VALUE right_val) { \
74
+ return elementwise_op(nm::EW_##oper, left_val, right_val); \
75
+ }
76
+
77
+ /*
78
+ * Macro declares a corresponding accessor function prototype for some element-wise operation.
79
+ */
80
+ #define DECL_ELEMENTWISE_RUBY_ACCESSOR(name) static VALUE nm_ew_##name(VALUE left_val, VALUE right_val);
81
+
82
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(add)
83
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(subtract)
84
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(multiply)
85
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(divide)
86
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(power)
87
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(mod)
88
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(eqeq)
89
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(neq)
90
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(lt)
91
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(gt)
92
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(leq)
93
+ DECL_ELEMENTWISE_RUBY_ACCESSOR(geq)
94
+
95
+ static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val);
96
+
97
+ static VALUE nm_symmetric(VALUE self);
98
+ static VALUE nm_hermitian(VALUE self);
99
+
100
+ static VALUE nm_eqeq(VALUE left, VALUE right);
101
+
102
+ static VALUE matrix_multiply_scalar(NMATRIX* left, VALUE scalar);
103
+ static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right);
104
+ static VALUE nm_multiply(VALUE left_v, VALUE right_v);
105
+ static VALUE nm_det_exact(VALUE self);
106
+ static VALUE nm_complex_conjugate_bang(VALUE self);
107
+
108
+ static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype);
109
+ static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype);
110
+ static size_t* interpret_shape(VALUE arg, size_t* dim);
111
+ static nm::stype_t interpret_stype(VALUE arg);
112
+
113
+ /* Singleton methods */
114
+ static VALUE nm_upcast(VALUE self, VALUE t1, VALUE t2);
115
+
116
+
117
+ #ifdef BENCHMARK
118
+ static double get_time(void);
119
+ #endif
120
+
121
+ ///////////////////
122
+ // Ruby Bindings //
123
+ ///////////////////
124
+
125
+ void Init_nmatrix() {
126
+
127
+
128
+ ///////////////////////
129
+ // Class Definitions //
130
+ ///////////////////////
131
+
132
+ cNMatrix = rb_define_class("NMatrix", rb_cObject);
133
+ //cNVector = rb_define_class("NVector", cNMatrix);
134
+
135
+ // Special exceptions
136
+
137
+ /*
138
+ * Exception raised when there's a problem with data.
139
+ */
140
+ nm_eDataTypeError = rb_define_class("DataTypeError", rb_eStandardError);
141
+
142
+ /*
143
+ * Exception raised when something goes wrong with the storage of a matrix.
144
+ */
145
+ nm_eStorageTypeError = rb_define_class("StorageTypeError", rb_eStandardError);
146
+
147
+ ///////////////////
148
+ // Class Methods //
149
+ ///////////////////
150
+
151
+ rb_define_alloc_func(cNMatrix, nm_alloc);
152
+
153
+ ///////////////////////
154
+ // Singleton Methods //
155
+ ///////////////////////
156
+
157
+ rb_define_singleton_method(cNMatrix, "upcast", (METHOD)nm_upcast, 2); /* in ext/nmatrix/nmatrix.cpp */
158
+ rb_define_singleton_method(cNMatrix, "guess_dtype", (METHOD)nm_guess_dtype, 1);
159
+ rb_define_singleton_method(cNMatrix, "min_dtype", (METHOD)nm_min_dtype, 1);
160
+
161
+ //////////////////////
162
+ // Instance Methods //
163
+ //////////////////////
164
+
165
+ rb_define_method(cNMatrix, "initialize", (METHOD)nm_init, -1);
166
+ rb_define_method(cNMatrix, "initialize_copy", (METHOD)nm_init_copy, 1);
167
+ rb_define_singleton_method(cNMatrix, "read", (METHOD)nm_read, -1);
168
+
169
+ rb_define_method(cNMatrix, "write", (METHOD)nm_write, -1);
170
+
171
+ // Technically, the following function is a copy constructor.
172
+ rb_define_method(cNMatrix, "transpose", (METHOD)nm_init_transposed, 0);
173
+
174
+ rb_define_method(cNMatrix, "dtype", (METHOD)nm_dtype, 0);
175
+ rb_define_method(cNMatrix, "stype", (METHOD)nm_stype, 0);
176
+ rb_define_method(cNMatrix, "cast_full", (METHOD)nm_cast, 3);
177
+ rb_define_method(cNMatrix, "default_value", (METHOD)nm_default_value, 0);
178
+ rb_define_protected_method(cNMatrix, "__list_default_value__", (METHOD)nm_list_default_value, 0);
179
+ rb_define_protected_method(cNMatrix, "__yale_default_value__", (METHOD)nm_yale_default_value, 0);
180
+
181
+ rb_define_method(cNMatrix, "[]", (METHOD)nm_mref, -1);
182
+ rb_define_method(cNMatrix, "slice", (METHOD)nm_mget, -1);
183
+ rb_define_method(cNMatrix, "[]=", (METHOD)nm_mset, -1);
184
+ rb_define_method(cNMatrix, "is_ref?", (METHOD)nm_is_ref, 0);
185
+ rb_define_method(cNMatrix, "dimensions", (METHOD)nm_dim, 0);
186
+ rb_define_method(cNMatrix, "effective_dimensions", (METHOD)nm_effective_dim, 0);
187
+
188
+ rb_define_protected_method(cNMatrix, "__list_to_hash__", (METHOD)nm_to_hash, 0); // handles list and dense, which are n-dimensional
189
+
190
+ rb_define_method(cNMatrix, "shape", (METHOD)nm_shape, 0);
191
+ rb_define_method(cNMatrix, "supershape", (METHOD)nm_supershape, 0);
192
+ rb_define_method(cNMatrix, "offset", (METHOD)nm_offset, 0);
193
+ rb_define_method(cNMatrix, "det_exact", (METHOD)nm_det_exact, 0);
194
+ rb_define_method(cNMatrix, "complex_conjugate!", (METHOD)nm_complex_conjugate_bang, 0);
195
+
196
+ rb_define_protected_method(cNMatrix, "__dense_each__", (METHOD)nm_dense_each, 0);
197
+ rb_define_protected_method(cNMatrix, "__dense_map__", (METHOD)nm_dense_map, 0);
198
+ rb_define_protected_method(cNMatrix, "__dense_map_pair__", (METHOD)nm_dense_map_pair, 1);
199
+ rb_define_method(cNMatrix, "each_with_indices", (METHOD)nm_each_with_indices, 0);
200
+ rb_define_method(cNMatrix, "each_stored_with_indices", (METHOD)nm_each_stored_with_indices, 0);
201
+ rb_define_method(cNMatrix, "each_ordered_stored_with_indices", (METHOD)nm_each_ordered_stored_with_indices, 0);
202
+ rb_define_protected_method(cNMatrix, "__list_map_merged_stored__", (METHOD)nm_list_map_merged_stored, 2);
203
+ rb_define_protected_method(cNMatrix, "__yale_map_merged_stored__", (METHOD)nm_yale_map_merged_stored, 2);
204
+ rb_define_protected_method(cNMatrix, "__yale_map_stored__", (METHOD)nm_yale_map_stored, 0);
205
+ rb_define_protected_method(cNMatrix, "__yale_stored_diagonal_each_with_indices__", (METHOD)nm_yale_stored_diagonal_each_with_indices, 0);
206
+ rb_define_protected_method(cNMatrix, "__yale_stored_nondiagonal_each_with_indices__", (METHOD)nm_yale_stored_nondiagonal_each_with_indices, 0);
207
+
208
+ rb_define_method(cNMatrix, "==", (METHOD)nm_eqeq, 1);
209
+
210
+ rb_define_method(cNMatrix, "+", (METHOD)nm_ew_add, 1);
211
+ rb_define_method(cNMatrix, "-", (METHOD)nm_ew_subtract, 1);
212
+ rb_define_method(cNMatrix, "*", (METHOD)nm_ew_multiply, 1);
213
+ rb_define_method(cNMatrix, "/", (METHOD)nm_ew_divide, 1);
214
+ rb_define_method(cNMatrix, "**", (METHOD)nm_ew_power, 1);
215
+ rb_define_method(cNMatrix, "%", (METHOD)nm_ew_mod, 1);
216
+
217
+ rb_define_method(cNMatrix, "=~", (METHOD)nm_ew_eqeq, 1);
218
+ rb_define_method(cNMatrix, "!~", (METHOD)nm_ew_neq, 1);
219
+ rb_define_method(cNMatrix, "<=", (METHOD)nm_ew_leq, 1);
220
+ rb_define_method(cNMatrix, ">=", (METHOD)nm_ew_geq, 1);
221
+ rb_define_method(cNMatrix, "<", (METHOD)nm_ew_lt, 1);
222
+ rb_define_method(cNMatrix, ">", (METHOD)nm_ew_gt, 1);
223
+
224
+ /////////////////////////////
225
+ // Helper Instance Methods //
226
+ /////////////////////////////
227
+ rb_define_protected_method(cNMatrix, "__yale_vector_set__", (METHOD)nm_vector_set, -1);
228
+
229
+ /////////////////////////
230
+ // Matrix Math Methods //
231
+ /////////////////////////
232
+ rb_define_method(cNMatrix, "dot", (METHOD)nm_multiply, 1);
233
+
234
+ rb_define_method(cNMatrix, "symmetric?", (METHOD)nm_symmetric, 0);
235
+ rb_define_method(cNMatrix, "hermitian?", (METHOD)nm_hermitian, 0);
236
+
237
+ rb_define_method(cNMatrix, "capacity", (METHOD)nm_capacity, 0);
238
+
239
+ /////////////
240
+ // Aliases //
241
+ /////////////
242
+
243
+ rb_define_alias(cNMatrix, "dim", "dimensions");
244
+ rb_define_alias(cNMatrix, "effective_dim", "effective_dimensions");
245
+ rb_define_alias(cNMatrix, "equal?", "eql?");
246
+
247
+ ///////////////////////
248
+ // Symbol Generation //
249
+ ///////////////////////
250
+
251
+ nm_init_ruby_constants();
252
+
253
+ //////////////////////////
254
+ // YaleFunctions module //
255
+ //////////////////////////
256
+
257
+ nm_init_yale_functions();
258
+
259
+ /////////////////
260
+ // BLAS module //
261
+ /////////////////
262
+
263
+ nm_math_init_blas();
264
+
265
+ ///////////////
266
+ // IO module //
267
+ ///////////////
268
+ nm_init_io();
269
+
270
+ /////////////////////////////////////////////////
271
+ // Force compilation of necessary constructors //
272
+ /////////////////////////////////////////////////
273
+ nm_init_data();
274
+ }
275
+
276
+
277
+ //////////////////
278
+ // Ruby Methods //
279
+ //////////////////
280
+
281
+
282
+ /*
283
+ * Slice constructor.
284
+ */
285
+ static SLICE* alloc_slice(size_t dim) {
286
+ SLICE* slice = ALLOC(SLICE);
287
+ slice->coords = ALLOC_N(size_t, dim);
288
+ slice->lengths = ALLOC_N(size_t, dim);
289
+ return slice;
290
+ }
291
+
292
+
293
+ /*
294
+ * Slice destructor.
295
+ */
296
+ static void free_slice(SLICE* slice) {
297
+ xfree(slice->coords);
298
+ xfree(slice->lengths);
299
+ xfree(slice);
300
+ }
301
+
302
+
303
+ /*
304
+ * Allocator.
305
+ */
306
+ static VALUE nm_alloc(VALUE klass) {
307
+ NMATRIX* mat = ALLOC(NMATRIX);
308
+ mat->storage = NULL;
309
+
310
+ // DO NOT MARK This STRUCT. It has no storage allocated, and no stype, so mark will do an invalid something.
311
+ return Data_Wrap_Struct(klass, NULL, nm_delete, mat);
312
+ }
313
+
314
+ /*
315
+ * Find the capacity of an NMatrix. The capacity only differs from the size for
316
+ * Yale matrices, which occasionally allocate more space than they need. For
317
+ * list and dense, capacity gives the number of elements in the matrix.
318
+ *
319
+ * If you call this on a slice, it may behave unpredictably. Most likely it'll
320
+ * just return the original matrix's capacity.
321
+ */
322
+ static VALUE nm_capacity(VALUE self) {
323
+ VALUE cap;
324
+
325
+ switch(NM_STYPE(self)) {
326
+ case nm::YALE_STORE:
327
+ cap = UINT2NUM(reinterpret_cast<YALE_STORAGE*>(NM_STORAGE_YALE(self)->src)->capacity);
328
+ break;
329
+
330
+ case nm::DENSE_STORE:
331
+ cap = UINT2NUM(nm_storage_count_max_elements( NM_STORAGE_DENSE(self) ));
332
+ break;
333
+
334
+ case nm::LIST_STORE:
335
+ cap = UINT2NUM(nm_list_storage_count_elements( NM_STORAGE_LIST(self) ));
336
+ break;
337
+
338
+ default:
339
+ rb_raise(nm_eStorageTypeError, "unrecognized stype in nm_capacity()");
340
+ }
341
+
342
+ return cap;
343
+ }
344
+
345
+
346
+ /*
347
+ * Mark function.
348
+ */
349
+ void nm_mark(NMATRIX* mat) {
350
+ STYPE_MARK_TABLE(mark)
351
+ mark[mat->stype](mat->storage);
352
+ }
353
+
354
+
355
+ /*
356
+ * Destructor.
357
+ */
358
+ void nm_delete(NMATRIX* mat) {
359
+ static void (*ttable[nm::NUM_STYPES])(STORAGE*) = {
360
+ nm_dense_storage_delete,
361
+ nm_list_storage_delete,
362
+ nm_yale_storage_delete
363
+ };
364
+ ttable[mat->stype](mat->storage);
365
+
366
+ xfree(mat);
367
+ }
368
+
369
+ /*
370
+ * Slicing destructor.
371
+ */
372
+ void nm_delete_ref(NMATRIX* mat) {
373
+ static void (*ttable[nm::NUM_STYPES])(STORAGE*) = {
374
+ nm_dense_storage_delete_ref,
375
+ nm_list_storage_delete_ref,
376
+ nm_yale_storage_delete_ref
377
+ };
378
+ ttable[mat->stype](mat->storage);
379
+
380
+ xfree(mat);
381
+ }
382
+
383
+ /*
384
+ * Register the addresses of an array of VALUEs with the gc to avoid collection
385
+ * while using them internally.
386
+ */
387
+ void nm_register_values(VALUE* values, size_t n) {
388
+ if (values) {
389
+ for (size_t i = n; i-- > 0;) {
390
+ rb_gc_register_address(values + i);
391
+ }
392
+ }
393
+ }
394
+
395
+ /*
396
+ * Unregister the addresses of an array of VALUEs with the gc to allow normal
397
+ * garbage collection to occur again.
398
+ */
399
+ void nm_unregister_values(VALUE* values, size_t n) {
400
+ if (values) {
401
+ for (size_t i = n; i-- > 0;) {
402
+ rb_gc_unregister_address(values + i);
403
+ }
404
+ }
405
+ }
406
+
407
+ /*
408
+ * call-seq:
409
+ * dtype -> Symbol
410
+ *
411
+ * Get the data type (dtype) of a matrix, e.g., :byte, :int8, :int16, :int32,
412
+ * :int64, :float32, :float64, :complex64, :complex128, :rational32,
413
+ * :rational64, :rational128, or :object (the last is a Ruby object).
414
+ */
415
+ static VALUE nm_dtype(VALUE self) {
416
+ ID dtype = rb_intern(DTYPE_NAMES[NM_DTYPE(self)]);
417
+ return ID2SYM(dtype);
418
+ }
419
+
420
+
421
+ /*
422
+ * call-seq:
423
+ * upcast(first_dtype, second_dtype) -> Symbol
424
+ *
425
+ * Given a binary operation between types t1 and t2, what type will be returned?
426
+ *
427
+ * This is a singleton method on NMatrix, e.g., NMatrix.upcast(:int32, :int64)
428
+ */
429
+ static VALUE nm_upcast(VALUE self, VALUE t1, VALUE t2) {
430
+
431
+ nm::dtype_t d1 = nm_dtype_from_rbsymbol(t1),
432
+ d2 = nm_dtype_from_rbsymbol(t2);
433
+
434
+ return ID2SYM(rb_intern( DTYPE_NAMES[ Upcast[d1][d2] ] ));
435
+ }
436
+
437
+
438
+ /*
439
+ * call-seq:
440
+ default_value -> ...
441
+ *
442
+ * Get the default value for the matrix. For dense, this is undefined and will return Qnil. For list, it is user-defined.
443
+ * For yale, it's going to be some variation on zero, but may be Qfalse or Qnil.
444
+ */
445
+ static VALUE nm_default_value(VALUE self) {
446
+ switch(NM_STYPE(self)) {
447
+ case nm::YALE_STORE:
448
+ return nm_yale_default_value(self);
449
+ case nm::LIST_STORE:
450
+ return nm_list_default_value(self);
451
+ case nm::DENSE_STORE:
452
+ default:
453
+ return Qnil;
454
+ }
455
+ }
456
+
457
+
458
+ /*
459
+ * call-seq:
460
+ * each_with_indices -> Enumerator
461
+ *
462
+ * Iterate over all entries of any matrix in standard storage order (as with #each), and include the indices.
463
+ */
464
+ static VALUE nm_each_with_indices(VALUE nmatrix) {
465
+ volatile VALUE nm = nmatrix;
466
+
467
+ switch(NM_STYPE(nm)) {
468
+ case nm::YALE_STORE:
469
+ return nm_yale_each_with_indices(nm);
470
+ case nm::DENSE_STORE:
471
+ return nm_dense_each_with_indices(nm);
472
+ case nm::LIST_STORE:
473
+ return nm_list_each_with_indices(nm, false);
474
+ default:
475
+ rb_raise(nm_eDataTypeError, "Not a proper storage type");
476
+ }
477
+ }
478
+
479
+ /*
480
+ * call-seq:
481
+ * each_stored_with_indices -> Enumerator
482
+ *
483
+ * Iterate over the stored entries of any matrix. For dense and yale, this iterates over non-zero
484
+ * entries; for list, this iterates over non-default entries. Yields dim+1 values for each entry:
485
+ * i, j, ..., and the entry itself.
486
+ */
487
+ static VALUE nm_each_stored_with_indices(VALUE nmatrix) {
488
+ volatile VALUE nm = nmatrix;
489
+
490
+ switch(NM_STYPE(nm)) {
491
+ case nm::YALE_STORE:
492
+ return nm_yale_each_stored_with_indices(nm);
493
+ case nm::DENSE_STORE:
494
+ return nm_dense_each_with_indices(nm);
495
+ case nm::LIST_STORE:
496
+ return nm_list_each_with_indices(nm, true);
497
+ default:
498
+ rb_raise(nm_eDataTypeError, "Not a proper storage type");
499
+ }
500
+ }
501
+
502
+
503
+ /*
504
+ * call-seq:
505
+ * each_ordered_stored_with_indices -> Enumerator
506
+ *
507
+ * Very similar to #each_stored_with_indices. The key difference is that it enforces matrix ordering rather
508
+ * than storage ordering, which only matters if your matrix is Yale.
509
+ */
510
+ static VALUE nm_each_ordered_stored_with_indices(VALUE nmatrix) {
511
+ volatile VALUE nm = nmatrix;
512
+
513
+ switch(NM_STYPE(nm)) {
514
+ case nm::YALE_STORE:
515
+ return nm_yale_each_ordered_stored_with_indices(nm);
516
+ case nm::DENSE_STORE:
517
+ return nm_dense_each_with_indices(nm);
518
+ case nm::LIST_STORE:
519
+ return nm_list_each_with_indices(nm, true);
520
+ default:
521
+ rb_raise(nm_eDataTypeError, "Not a proper storage type");
522
+ }
523
+ }
524
+
525
+
526
+ /*
527
+ * Equality operator. Returns a single true or false value indicating whether
528
+ * the matrices are equivalent.
529
+ *
530
+ * For elementwise, use =~ instead.
531
+ *
532
+ * This method will raise an exception if dimensions do not match.
533
+ */
534
+ static VALUE nm_eqeq(VALUE left, VALUE right) {
535
+ NMATRIX *l, *r;
536
+
537
+ CheckNMatrixType(left);
538
+ CheckNMatrixType(right);
539
+
540
+ UnwrapNMatrix(left, l);
541
+ UnwrapNMatrix(right, r);
542
+
543
+ if (l->stype != r->stype)
544
+ rb_raise(rb_eNotImpError, "comparison between different matrix stypes not yet implemented");
545
+
546
+ bool result = false;
547
+
548
+ switch(l->stype) {
549
+ case nm::DENSE_STORE:
550
+ result = nm_dense_storage_eqeq(l->storage, r->storage);
551
+ break;
552
+ case nm::LIST_STORE:
553
+ result = nm_list_storage_eqeq(l->storage, r->storage);
554
+ break;
555
+ case nm::YALE_STORE:
556
+ result = nm_yale_storage_eqeq(l->storage, r->storage);
557
+ break;
558
+ }
559
+
560
+ return result ? Qtrue : Qfalse;
561
+ }
562
+
563
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(ADD, add)
564
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(SUB, subtract)
565
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(MUL, multiply)
566
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(DIV, divide)
567
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(POW, power)
568
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(MOD, mod)
569
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(EQEQ, eqeq)
570
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(NEQ, neq)
571
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(LEQ, leq)
572
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(GEQ, geq)
573
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(LT, lt)
574
+ DEF_ELEMENTWISE_RUBY_ACCESSOR(GT, gt)
575
+
576
+ /*
577
+ * call-seq:
578
+ * hermitian? -> Boolean
579
+ *
580
+ * Is this matrix hermitian?
581
+ *
582
+ * Definition: http://en.wikipedia.org/wiki/Hermitian_matrix
583
+ *
584
+ * For non-complex matrices, this function should return the same result as symmetric?.
585
+ */
586
+ static VALUE nm_hermitian(VALUE self) {
587
+ return is_symmetric(self, true);
588
+ }
589
+
590
+
591
+ /*
592
+ * call-seq:
593
+ * complex_conjugate -> NMatrix
594
+ *
595
+ * Transform the matrix (in-place) to its complex conjugate. Only works on complex matrices.
596
+ *
597
+ * FIXME: For non-complex matrices, someone needs to implement a non-in-place complex conjugate (which doesn't use a bang).
598
+ * Bang should imply that no copy is being made, even temporarily.
599
+ */
600
+ static VALUE nm_complex_conjugate_bang(VALUE self) {
601
+ NMATRIX* m;
602
+ void* elem;
603
+ size_t size, p;
604
+
605
+ UnwrapNMatrix(self, m);
606
+
607
+ if (m->stype == nm::DENSE_STORE) {
608
+
609
+ size = nm_storage_count_max_elements(NM_STORAGE(self));
610
+ elem = NM_STORAGE_DENSE(self)->elements;
611
+
612
+ } else if (m->stype == nm::YALE_STORE) {
613
+
614
+ size = nm_yale_storage_get_size(NM_STORAGE_YALE(self));
615
+ elem = NM_STORAGE_YALE(self)->a;
616
+
617
+ } else {
618
+ rb_raise(rb_eNotImpError, "please cast to yale or dense (complex) first");
619
+ }
620
+
621
+ // Walk through and negate the imaginary component
622
+ if (NM_DTYPE(self) == nm::COMPLEX64) {
623
+
624
+ for (p = 0; p < size; ++p) {
625
+ reinterpret_cast<nm::Complex64*>(elem)[p].i = -reinterpret_cast<nm::Complex64*>(elem)[p].i;
626
+ }
627
+
628
+ } else if (NM_DTYPE(self) == nm::COMPLEX128) {
629
+
630
+ for (p = 0; p < size; ++p) {
631
+ reinterpret_cast<nm::Complex128*>(elem)[p].i = -reinterpret_cast<nm::Complex128*>(elem)[p].i;
632
+ }
633
+
634
+ } else {
635
+ rb_raise(nm_eDataTypeError, "can only calculate in-place complex conjugate on matrices of type :complex64 or :complex128");
636
+ }
637
+
638
+ return self;
639
+ }
640
+
641
+ /*
642
+ * Helper function for creating a matrix. You have to create the storage and pass it in, but you don't
643
+ * need to worry about deleting it.
644
+ */
645
+ NMATRIX* nm_create(nm::stype_t stype, STORAGE* storage) {
646
+ NMATRIX* mat = ALLOC(NMATRIX);
647
+
648
+ mat->stype = stype;
649
+ mat->storage = storage;
650
+
651
+ return mat;
652
+ }
653
+
654
+ /*
655
+ * @see nm_init
656
+ */
657
+ static VALUE nm_init_new_version(int argc, VALUE* argv, VALUE self) {
658
+ VALUE shape_ary, initial_ary, hash;
659
+ //VALUE shape_ary, default_val, capacity, initial_ary, dtype_sym, stype_sym;
660
+ // Mandatory args: shape, dtype, stype
661
+ // FIXME: This is the one line of code standing between Ruby 1.9.2 and 1.9.3.
662
+ #ifndef OLD_RB_SCAN_ARGS // Ruby 1.9.3 and higher
663
+ rb_scan_args(argc, argv, "11:", &shape_ary, &initial_ary, &hash); // &stype_sym, &dtype_sym, &default_val, &capacity);
664
+ #else // Ruby 1.9.2 and lower
665
+ if (argc == 3)
666
+ rb_scan_args(argc, argv, "12", &shape_ary, &initial_ary, &hash);
667
+ else if (argc == 2) {
668
+ VALUE unknown_arg;
669
+ rb_scan_args(argc, argv, "11", &shape_ary, &unknown_arg);
670
+ if (!NIL_P(unknown_arg) && TYPE(unknown_arg) == T_HASH) {
671
+ hash = unknown_arg;
672
+ initial_ary = Qnil;
673
+ } else {
674
+ initial_ary = unknown_arg;
675
+ hash = Qnil;
676
+ }
677
+ }
678
+ #endif
679
+
680
+ // Get the shape.
681
+ size_t dim;
682
+ size_t* shape = interpret_shape(shape_ary, &dim);
683
+ void* init;
684
+ void* v = NULL;
685
+ size_t v_size = 0;
686
+
687
+ nm::stype_t stype = nm::DENSE_STORE;
688
+ nm::dtype_t dtype = nm::RUBYOBJ;
689
+ VALUE dtype_sym = Qnil, stype_sym = Qnil, default_val_num = Qnil, capacity_num = Qnil;
690
+ size_t capacity = 0;
691
+ if (!NIL_P(hash)) {
692
+ dtype_sym = rb_hash_aref(hash, ID2SYM(nm_rb_dtype));
693
+ stype_sym = rb_hash_aref(hash, ID2SYM(nm_rb_stype));
694
+ capacity_num = rb_hash_aref(hash, ID2SYM(nm_rb_capacity));
695
+ default_val_num = rb_hash_aref(hash, ID2SYM(nm_rb_default));
696
+ }
697
+
698
+ // stype ||= :dense
699
+ stype = !NIL_P(stype_sym) ? nm_stype_from_rbsymbol(stype_sym) : nm::DENSE_STORE;
700
+
701
+ // dtype ||= h[:dtype] || guess_dtype(initial_ary) || :object
702
+ if (NIL_P(initial_ary) && NIL_P(dtype_sym))
703
+ dtype = nm::RUBYOBJ;
704
+ else if (NIL_P(dtype_sym))
705
+ dtype = nm_dtype_guess(initial_ary);
706
+ else
707
+ dtype = nm_dtype_from_rbsymbol(dtype_sym);
708
+
709
+ // if stype != :dense
710
+ // if initial_ary.nil?
711
+ // init = h[:default] || 0
712
+ // elsif initial_ary.is_a?(Array)
713
+ // init = initial_ary.size > 1 ? (h[:default] || 0) : initial_ary[0]
714
+ // else
715
+ // init = initial_ary # not an array, just a value
716
+ // end
717
+ // end
718
+ if (stype != nm::DENSE_STORE) {
719
+ if (!NIL_P(default_val_num))
720
+ init = rubyobj_to_cval(default_val_num, dtype);
721
+ else if (NIL_P(initial_ary))
722
+ init = NULL;
723
+ else if (TYPE(initial_ary) == T_ARRAY)
724
+ init = RARRAY_LEN(initial_ary) == 1 ? rubyobj_to_cval(rb_ary_entry(initial_ary, 0), dtype) : NULL;
725
+ else
726
+ init = rubyobj_to_cval(initial_ary, dtype);
727
+ }
728
+
729
+ // capacity = h[:capacity] || 0
730
+ if (stype == nm::YALE_STORE) {
731
+ if (!NIL_P(capacity_num)) capacity = FIX2INT(capacity_num);
732
+ }
733
+
734
+ if (!NIL_P(initial_ary)) {
735
+ v = interpret_initial_value(initial_ary, dtype);
736
+
737
+ if (TYPE(initial_ary) == T_ARRAY) v_size = RARRAY_LEN(initial_ary);
738
+ else v_size = 1;
739
+ }
740
+
741
+ // :object matrices MUST be initialized.
742
+ else if (stype == nm::DENSE_STORE && dtype == nm::RUBYOBJ) {
743
+ // Pretend [nil] was passed for RUBYOBJ.
744
+ v = ALLOC(VALUE);
745
+ *(VALUE*)v = Qnil;
746
+
747
+ v_size = 1;
748
+
749
+ }
750
+
751
+ NMATRIX* nmatrix;
752
+ UnwrapNMatrix(self, nmatrix);
753
+
754
+ nmatrix->stype = stype;
755
+
756
+ switch (stype) {
757
+ case nm::DENSE_STORE:
758
+ nmatrix->storage = (STORAGE*)nm_dense_storage_create(dtype, shape, dim, v, v_size);
759
+ break;
760
+
761
+ case nm::LIST_STORE:
762
+ nmatrix->storage = (STORAGE*)nm_list_storage_create(dtype, shape, dim, init);
763
+ break;
764
+
765
+ case nm::YALE_STORE:
766
+ nmatrix->storage = (STORAGE*)nm_yale_storage_create(dtype, shape, dim, capacity);
767
+ nm_yale_storage_init((YALE_STORAGE*)(nmatrix->storage), init);
768
+ break;
769
+ }
770
+
771
+ // If we're not creating a dense, and an initial array was provided, use that and multi-slice-set
772
+ // to set the contents of the matrix right now.
773
+ if (stype != nm::DENSE_STORE && v_size > 1) {
774
+ VALUE* slice_argv = ALLOCA_N(VALUE, dim);
775
+ size_t* tmp_shape = ALLOC_N(size_t, dim);
776
+ for (size_t m = 0; m < dim; ++m) {
777
+ slice_argv[m] = ID2SYM(nm_rb_mul); // :* -- full range
778
+ tmp_shape[m] = shape[m];
779
+ }
780
+
781
+ SLICE* slice = get_slice(dim, dim, slice_argv, shape);
782
+ // Create a temporary dense matrix and use it to do a slice assignment on self.
783
+ NMATRIX* tmp = nm_create(nm::DENSE_STORE, (STORAGE*)nm_dense_storage_create(dtype, tmp_shape, dim, v, v_size));
784
+ volatile VALUE rb_tmp = Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, tmp);
785
+ if (stype == nm::YALE_STORE) nm_yale_storage_set(self, slice, rb_tmp);
786
+ else nm_list_storage_set(self, slice, rb_tmp);
787
+
788
+ free_slice(slice);
789
+
790
+ // We need to free v if it's not the same size as tmp -- because tmp will have made a copy instead.
791
+ if (nm_storage_count_max_elements(tmp->storage) != v_size)
792
+ xfree(v);
793
+
794
+ // nm_delete(tmp); // This seems to enrage the garbage collector (because rb_tmp is still available). It'd be better if we could force it to free immediately, but no sweat.
795
+ }
796
+
797
+ return self;
798
+ }
799
+
800
+ /*
801
+ * call-seq:
802
+ * new(shape) -> NMatrix
803
+ * new(shape, initial_value) -> NMatrix
804
+ * new(shape, initial_array) -> NMatrix
805
+ * new(shape, initial_value, options) -> NMatrix
806
+ * new(shape, initial_array, options) -> NMatrix
807
+ *
808
+ * Create a new NMatrix.
809
+ *
810
+ * The only mandatory argument is shape, which may be a positive integer or an array of positive integers.
811
+ *
812
+ * It is recommended that you supply an initialization value or array of values. Without one, Yale and List matrices will
813
+ * be initialized to 0; and dense matrices will be undefined.
814
+ *
815
+ * Additional options may be provided using keyword arguments. The keywords are +:dtype, +:stype+, +:capacity+, and
816
+ * +:default+. Only Yale uses a capacity argument, which is used to reserve the initial size of its storage vectors.
817
+ * List and Yale both accept a default value (which itself defaults to 0). This default is taken from the initial value
818
+ * if such a value is given; it is more likely to be required when an initial array is provided.
819
+ *
820
+ * The storage type, or stype, is used to specify whether we want a +:dense+, +:list+, or +:yale+ matrix; dense is the
821
+ * default.
822
+ *
823
+ * The data type, or dtype, can be one of: :byte, :int8, :int16, :int32, :int64, :float32, :float64, :complex64,
824
+ * :complex128, :rational128, or :object. The constructor will attempt to guess it from the initial value/array/default
825
+ * provided, if any. Otherwise, the default is :object, which stores any type of Ruby object.
826
+ *
827
+ * In addition to the above, there is a legacy constructor from the alpha version. To use that version, you must be
828
+ * providing exactly four arguments. It is now deprecated.
829
+ *
830
+ * There is one additional constructor for advanced users, which takes seven arguments and is only for creating Yale
831
+ * matrices with known IA, JA, and A arrays. This is used primarily internally for IO, e.g., reading Matlab matrices,
832
+ * which are stored in old Yale (not our Yale) format. But be careful; there are no overflow warnings. All of these
833
+ * constructors are defined for power-users. Everyone else should probably resort to the shortcut functions defined in
834
+ * shortcuts.rb.
835
+ */
836
+ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
837
+
838
+ if (argc <= 3) { // Call the new constructor unless all four arguments are given (or the 7-arg version is given)
839
+ return nm_init_new_version(argc, argv, nm);
840
+ }
841
+
842
+ /* First, determine stype (dense by default) */
843
+ nm::stype_t stype;
844
+ size_t offset = 0;
845
+
846
+ if (!SYMBOL_P(argv[0]) && TYPE(argv[0]) != T_STRING) {
847
+ stype = nm::DENSE_STORE;
848
+
849
+ } else {
850
+ // 0: String or Symbol
851
+ stype = interpret_stype(argv[0]);
852
+ offset = 1;
853
+ }
854
+
855
+ // If there are 7 arguments and Yale, refer to a different init function with fewer sanity checks.
856
+ if (argc == 7) {
857
+ if (stype == nm::YALE_STORE) {
858
+ return nm_init_yale_from_old_yale(argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], nm);
859
+
860
+ } else {
861
+ rb_raise(rb_eArgError, "Expected 2-4 arguments (or 7 for internal Yale creation)");
862
+ }
863
+ }
864
+
865
+ // 1: Array or Fixnum
866
+ size_t dim;
867
+ size_t* shape = interpret_shape(argv[offset], &dim);
868
+
869
+ // 2-3: dtype
870
+ nm::dtype_t dtype = interpret_dtype(argc-1-offset, argv+offset+1, stype);
871
+
872
+ size_t init_cap = 0, init_val_len = 0;
873
+ void* init_val = NULL;
874
+ if (!SYMBOL_P(argv[1+offset]) || TYPE(argv[1+offset]) == T_ARRAY) {
875
+ // Initial value provided (could also be initial capacity, if yale).
876
+
877
+ if (stype == nm::YALE_STORE && NM_RUBYVAL_IS_NUMERIC(argv[1+offset])) {
878
+ init_cap = FIX2UINT(argv[1+offset]);
879
+
880
+ } else {
881
+ // 4: initial value / dtype
882
+ init_val = interpret_initial_value(argv[1+offset], dtype);
883
+
884
+ if (TYPE(argv[1+offset]) == T_ARRAY) init_val_len = RARRAY_LEN(argv[1+offset]);
885
+ else init_val_len = 1;
886
+ }
887
+
888
+ } else {
889
+ // DType is RUBYOBJ.
890
+
891
+ if (stype == nm::DENSE_STORE) {
892
+ /*
893
+ * No need to initialize dense with any kind of default value unless it's
894
+ * an RUBYOBJ matrix.
895
+ */
896
+ if (dtype == nm::RUBYOBJ) {
897
+ // Pretend [nil] was passed for RUBYOBJ.
898
+ init_val = ALLOC(VALUE);
899
+ *(VALUE*)init_val = Qnil;
900
+
901
+ init_val_len = 1;
902
+
903
+ } else {
904
+ init_val = NULL;
905
+ }
906
+ } else if (stype == nm::LIST_STORE) {
907
+ init_val = ALLOC_N(char, DTYPE_SIZES[dtype]);
908
+ std::memset(init_val, 0, DTYPE_SIZES[dtype]);
909
+ }
910
+ }
911
+
912
+ // TODO: Update to allow an array as the initial value.
913
+ NMATRIX* nmatrix;
914
+ UnwrapNMatrix(nm, nmatrix);
915
+
916
+ nmatrix->stype = stype;
917
+
918
+ switch (stype) {
919
+ case nm::DENSE_STORE:
920
+ nmatrix->storage = (STORAGE*)nm_dense_storage_create(dtype, shape, dim, init_val, init_val_len);
921
+ break;
922
+
923
+ case nm::LIST_STORE:
924
+ nmatrix->storage = (STORAGE*)nm_list_storage_create(dtype, shape, dim, init_val);
925
+ break;
926
+
927
+ case nm::YALE_STORE:
928
+ nmatrix->storage = (STORAGE*)nm_yale_storage_create(dtype, shape, dim, init_cap);
929
+ nm_yale_storage_init((YALE_STORAGE*)(nmatrix->storage), NULL);
930
+ break;
931
+ }
932
+
933
+ return nm;
934
+ }
935
+
936
+
937
+ /*
938
+ * Helper for nm_cast which uses the C types instead of the Ruby objects. Called by nm_cast.
939
+ */
940
+ NMATRIX* nm_cast_with_ctype_args(NMATRIX* self, nm::stype_t new_stype, nm::dtype_t new_dtype, void* init_ptr) {
941
+ NMATRIX* lhs = ALLOC(NMATRIX);
942
+ lhs->stype = new_stype;
943
+
944
+ // Copy the storage
945
+ CAST_TABLE(cast_copy);
946
+ lhs->storage = cast_copy[lhs->stype][self->stype](self->storage, new_dtype, init_ptr);
947
+
948
+ return lhs;
949
+ }
950
+
951
+
952
+ /*
953
+ * call-seq:
954
+ * cast_full(stype) -> NMatrix
955
+ * cast_full(stype, dtype, sparse_basis) -> NMatrix
956
+ *
957
+ * Copy constructor for changing dtypes and stypes.
958
+ */
959
+ VALUE nm_cast(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol, VALUE init) {
960
+ nm::dtype_t new_dtype = nm_dtype_from_rbsymbol(new_dtype_symbol);
961
+ nm::stype_t new_stype = nm_stype_from_rbsymbol(new_stype_symbol);
962
+
963
+ CheckNMatrixType(self);
964
+ NMATRIX *rhs;
965
+
966
+ UnwrapNMatrix( self, rhs );
967
+
968
+ void* init_ptr = ALLOCA_N(char, DTYPE_SIZES[new_dtype]);
969
+ rubyval_to_cval(init, new_dtype, init_ptr);
970
+
971
+ return Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, nm_cast_with_ctype_args(rhs, new_stype, new_dtype, init_ptr));
972
+ }
973
+
974
+ /*
975
+ * Copy constructor for transposing.
976
+ */
977
+ static VALUE nm_init_transposed(VALUE self) {
978
+ static STORAGE* (*storage_copy_transposed[nm::NUM_STYPES])(const STORAGE* rhs_base) = {
979
+ nm_dense_storage_copy_transposed,
980
+ nm_list_storage_copy_transposed,
981
+ nm_yale_storage_copy_transposed
982
+ };
983
+
984
+ NMATRIX* lhs = nm_create( NM_STYPE(self),
985
+ storage_copy_transposed[NM_STYPE(self)]( NM_STORAGE(self) )
986
+ );
987
+
988
+ return Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, lhs);
989
+ }
990
+
991
+ /*
992
+ * Copy constructor for no change of dtype or stype (used for #initialize_copy hook).
993
+ */
994
+ static VALUE nm_init_copy(VALUE copy, VALUE original) {
995
+ NMATRIX *lhs, *rhs;
996
+
997
+ CheckNMatrixType(original);
998
+
999
+ if (copy == original) return copy;
1000
+
1001
+ UnwrapNMatrix( original, rhs );
1002
+ UnwrapNMatrix( copy, lhs );
1003
+
1004
+ lhs->stype = rhs->stype;
1005
+
1006
+ // Copy the storage
1007
+ CAST_TABLE(ttable);
1008
+ lhs->storage = ttable[lhs->stype][rhs->stype](rhs->storage, rhs->storage->dtype, NULL);
1009
+
1010
+ return copy;
1011
+ }
1012
+
1013
+ /*
1014
+ * Get major, minor, and release components of NMatrix::VERSION. Store in function parameters.
1015
+ */
1016
+ static void get_version_info(uint16_t& major, uint16_t& minor, uint16_t& release) {
1017
+ // Get VERSION and split it on periods. Result is an Array.
1018
+ VALUE version = rb_funcall(rb_const_get(cNMatrix, rb_intern("VERSION")), rb_intern("split"), 1, rb_str_new_cstr("."));
1019
+ VALUE* ary = RARRAY_PTR(version); // major, minor, and release
1020
+
1021
+ // Convert each to an integer
1022
+ VALUE maj = rb_funcall(ary[0], rb_intern("to_i"), 0);
1023
+ VALUE min = rb_funcall(ary[1], rb_intern("to_i"), 0);
1024
+ VALUE rel = rb_funcall(ary[2], rb_intern("to_i"), 0);
1025
+
1026
+ major = static_cast<uint16_t>(nm::RubyObject(maj));
1027
+ minor = static_cast<uint16_t>(nm::RubyObject(min));
1028
+ release = static_cast<uint16_t>(nm::RubyObject(rel));
1029
+ }
1030
+
1031
+
1032
+ /*
1033
+ * Interpret the NMatrix::write symmetry argument (which should be nil or a symbol). Return a symm_t (enum).
1034
+ */
1035
+ static nm::symm_t interpret_symm(VALUE symm) {
1036
+ if (symm == Qnil) return nm::NONSYMM;
1037
+
1038
+ ID rb_symm = rb_intern("symmetric"),
1039
+ rb_skew = rb_intern("skew"),
1040
+ rb_herm = rb_intern("hermitian");
1041
+ // nm_rb_upper, nm_rb_lower already set
1042
+
1043
+ ID symm_id = rb_to_id(symm);
1044
+
1045
+ if (symm_id == rb_symm) return nm::SYMM;
1046
+ else if (symm_id == rb_skew) return nm::SKEW;
1047
+ else if (symm_id == rb_herm) return nm::HERM;
1048
+ else if (symm_id == nm_rb_upper) return nm::UPPER;
1049
+ else if (symm_id == nm_rb_lower) return nm::LOWER;
1050
+ else rb_raise(rb_eArgError, "unrecognized symmetry argument");
1051
+
1052
+ return nm::NONSYMM;
1053
+ }
1054
+
1055
+
1056
+
1057
+ void read_padded_shape(std::ifstream& f, size_t dim, size_t* shape) {
1058
+ nm::read_padded_shape(f, dim, shape);
1059
+ }
1060
+
1061
+
1062
+ void write_padded_shape(std::ofstream& f, size_t dim, size_t* shape) {
1063
+ nm::write_padded_shape(f, dim, shape);
1064
+ }
1065
+
1066
+
1067
+ void read_padded_yale_elements(std::ifstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype) {
1068
+ NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_yale_elements, void, std::ifstream&, YALE_STORAGE*, size_t, nm::symm_t)
1069
+
1070
+ ttable[dtype](f, storage, length, symm);
1071
+ }
1072
+
1073
+
1074
+ void write_padded_yale_elements(std::ofstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype) {
1075
+ NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_yale_elements, void, std::ofstream& f, YALE_STORAGE*, size_t, nm::symm_t)
1076
+
1077
+ ttable[dtype](f, storage, length, symm);
1078
+ }
1079
+
1080
+
1081
+ void read_padded_dense_elements(std::ifstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
1082
+ NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_dense_elements, void, std::ifstream&, DENSE_STORAGE*, nm::symm_t)
1083
+
1084
+ ttable[dtype](f, storage, symm);
1085
+ }
1086
+
1087
+
1088
+ void write_padded_dense_elements(std::ofstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
1089
+ NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_dense_elements, void, std::ofstream& f, DENSE_STORAGE*, nm::symm_t)
1090
+
1091
+ ttable[dtype](f, storage, symm);
1092
+ }
1093
+
1094
+
1095
+ /*
1096
+ * Helper function to get exceptions in the module Errno (e.g., ENOENT). Example:
1097
+ *
1098
+ * rb_raise(rb_get_errno_exc("ENOENT"), RSTRING_PTR(filename));
1099
+ */
1100
+ static VALUE rb_get_errno_exc(const char* which) {
1101
+ return rb_const_get(rb_const_get(rb_cObject, rb_intern("Errno")), rb_intern(which));
1102
+ }
1103
+
1104
+
1105
+
1106
+ /*
1107
+ * Binary file writer for NMatrix standard format. file should be a path, which we aren't going to
1108
+ * check very carefully (in other words, this function should generally be called from a Ruby
1109
+ * helper method). Function also takes a symmetry argument, which allows us to specify that we only want to
1110
+ * save the upper triangular portion of the matrix (or if the matrix is a lower triangular matrix, only
1111
+ * the lower triangular portion). nil means regular storage.
1112
+ */
1113
+ static VALUE nm_write(int argc, VALUE* argv, VALUE self) {
1114
+ using std::ofstream;
1115
+
1116
+ if (argc < 1 || argc > 2) {
1117
+ rb_raise(rb_eArgError, "Expected one or two arguments");
1118
+ }
1119
+ VALUE file = argv[0],
1120
+ symm = argc == 1 ? Qnil : argv[1];
1121
+
1122
+ NMATRIX* nmatrix;
1123
+ UnwrapNMatrix( self, nmatrix );
1124
+
1125
+ nm::symm_t symm_ = interpret_symm(symm);
1126
+
1127
+ if (nmatrix->storage->dtype == nm::RUBYOBJ) {
1128
+ rb_raise(rb_eNotImpError, "Ruby Object writing is not implemented yet");
1129
+ }
1130
+
1131
+ // Get the dtype, stype, itype, and symm and ensure they're the correct number of bytes.
1132
+ uint8_t st = static_cast<uint8_t>(nmatrix->stype),
1133
+ dt = static_cast<uint8_t>(nmatrix->storage->dtype),
1134
+ sm = static_cast<uint8_t>(symm_);
1135
+ uint16_t dim = nmatrix->storage->dim;
1136
+
1137
+ //FIXME: Cast the matrix to the smallest possible index type. Write that in the place of IType.
1138
+
1139
+ // Check arguments before starting to write.
1140
+ if (nmatrix->stype == nm::LIST_STORE) rb_raise(nm_eStorageTypeError, "cannot save list matrix; cast to yale or dense first");
1141
+ if (symm_ != nm::NONSYMM) {
1142
+ if (dim != 2) rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-2D matrix");
1143
+ if (nmatrix->storage->shape[0] != nmatrix->storage->shape[1])
1144
+ rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-square matrix");
1145
+ if (symm_ == nm::HERM &&
1146
+ dt != static_cast<uint8_t>(nm::COMPLEX64) && dt != static_cast<uint8_t>(nm::COMPLEX128) && dt != static_cast<uint8_t>(nm::RUBYOBJ))
1147
+ rb_raise(rb_eArgError, "cannot save a non-complex matrix as hermitian");
1148
+ }
1149
+
1150
+ ofstream f(RSTRING_PTR(file), std::ios::out | std::ios::binary);
1151
+
1152
+ // Get the NMatrix version information.
1153
+ uint16_t major, minor, release, null16 = 0;
1154
+ get_version_info(major, minor, release);
1155
+
1156
+ // WRITE FIRST 64-BIT BLOCK
1157
+ f.write(reinterpret_cast<const char*>(&major), sizeof(uint16_t));
1158
+ f.write(reinterpret_cast<const char*>(&minor), sizeof(uint16_t));
1159
+ f.write(reinterpret_cast<const char*>(&release), sizeof(uint16_t));
1160
+ f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
1161
+
1162
+ uint8_t ZERO = 0;
1163
+ // WRITE SECOND 64-BIT BLOCK
1164
+ f.write(reinterpret_cast<const char*>(&dt), sizeof(uint8_t));
1165
+ f.write(reinterpret_cast<const char*>(&st), sizeof(uint8_t));
1166
+ f.write(reinterpret_cast<const char*>(&ZERO),sizeof(uint8_t));
1167
+ f.write(reinterpret_cast<const char*>(&sm), sizeof(uint8_t));
1168
+ f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
1169
+ f.write(reinterpret_cast<const char*>(&dim), sizeof(uint16_t));
1170
+
1171
+ // Write shape (in 64-bit blocks)
1172
+ write_padded_shape(f, nmatrix->storage->dim, nmatrix->storage->shape);
1173
+
1174
+ if (nmatrix->stype == nm::DENSE_STORE) {
1175
+ write_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(nmatrix->storage), symm_, nmatrix->storage->dtype);
1176
+ } else if (nmatrix->stype == nm::YALE_STORE) {
1177
+ YALE_STORAGE* s = reinterpret_cast<YALE_STORAGE*>(nmatrix->storage);
1178
+ uint32_t ndnz = s->ndnz,
1179
+ length = nm_yale_storage_get_size(s);
1180
+ f.write(reinterpret_cast<const char*>(&ndnz), sizeof(uint32_t));
1181
+ f.write(reinterpret_cast<const char*>(&length), sizeof(uint32_t));
1182
+
1183
+ write_padded_yale_elements(f, s, length, symm_, s->dtype);
1184
+ }
1185
+
1186
+ f.close();
1187
+
1188
+ return Qtrue;
1189
+ }
1190
+
1191
+
1192
+ /*
1193
+ * Binary file reader for NMatrix standard format. file should be a path, which we aren't going to
1194
+ * check very carefully (in other words, this function should generally be called from a Ruby
1195
+ * helper method).
1196
+ *
1197
+ * Note that currently, this function will by default refuse to read files that are newer than
1198
+ * your version of NMatrix. To force an override, set the second argument to anything other than nil.
1199
+ *
1200
+ * Returns an NMatrix Ruby object.
1201
+ */
1202
+ static VALUE nm_read(int argc, VALUE* argv, VALUE self) {
1203
+ using std::ifstream;
1204
+
1205
+ VALUE file, force_;
1206
+
1207
+ // Read the arguments
1208
+ rb_scan_args(argc, argv, "11", &file, &force_);
1209
+ bool force = (force_ != Qnil && force_ != Qfalse);
1210
+
1211
+
1212
+ if (!RB_FILE_EXISTS(file)) { // FIXME: Errno::ENOENT
1213
+ rb_raise(rb_get_errno_exc("ENOENT"), "%s", RSTRING_PTR(file));
1214
+ }
1215
+
1216
+ // Open a file stream
1217
+ ifstream f(RSTRING_PTR(file), std::ios::in | std::ios::binary);
1218
+
1219
+ uint16_t major, minor, release;
1220
+ get_version_info(major, minor, release); // compare to NMatrix version
1221
+
1222
+ uint16_t fmajor, fminor, frelease, null16;
1223
+
1224
+ // READ FIRST 64-BIT BLOCK
1225
+ f.read(reinterpret_cast<char*>(&fmajor), sizeof(uint16_t));
1226
+ f.read(reinterpret_cast<char*>(&fminor), sizeof(uint16_t));
1227
+ f.read(reinterpret_cast<char*>(&frelease), sizeof(uint16_t));
1228
+ f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
1229
+
1230
+ int ver = major * 10000 + minor * 100 + release,
1231
+ fver = fmajor * 10000 + fminor * 100 + release;
1232
+ if (fver > ver && force == false) {
1233
+ rb_raise(rb_eIOError, "File was created in newer version of NMatrix than current");
1234
+ }
1235
+ if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
1236
+
1237
+ uint8_t dt, st, it, sm;
1238
+ uint16_t dim;
1239
+
1240
+ // READ SECOND 64-BIT BLOCK
1241
+ f.read(reinterpret_cast<char*>(&dt), sizeof(uint8_t));
1242
+ f.read(reinterpret_cast<char*>(&st), sizeof(uint8_t));
1243
+ f.read(reinterpret_cast<char*>(&it), sizeof(uint8_t)); // FIXME: should tell how few bytes indices are stored as
1244
+ f.read(reinterpret_cast<char*>(&sm), sizeof(uint8_t));
1245
+ f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
1246
+ f.read(reinterpret_cast<char*>(&dim), sizeof(uint16_t));
1247
+
1248
+ if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
1249
+ nm::stype_t stype = static_cast<nm::stype_t>(st);
1250
+ nm::dtype_t dtype = static_cast<nm::dtype_t>(dt);
1251
+ nm::symm_t symm = static_cast<nm::symm_t>(sm);
1252
+ //nm::itype_t itype = static_cast<nm::itype_t>(it);
1253
+
1254
+ // READ NEXT FEW 64-BIT BLOCKS
1255
+ size_t* shape = ALLOC_N(size_t, dim);
1256
+ read_padded_shape(f, dim, shape);
1257
+
1258
+ STORAGE* s;
1259
+ if (stype == nm::DENSE_STORE) {
1260
+ s = nm_dense_storage_create(dtype, shape, dim, NULL, 0);
1261
+
1262
+ read_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(s), symm, dtype);
1263
+
1264
+ } else if (stype == nm::YALE_STORE) {
1265
+ uint32_t ndnz, length;
1266
+
1267
+ // READ YALE-SPECIFIC 64-BIT BLOCK
1268
+ f.read(reinterpret_cast<char*>(&ndnz), sizeof(uint32_t));
1269
+ f.read(reinterpret_cast<char*>(&length), sizeof(uint32_t));
1270
+
1271
+ s = nm_yale_storage_create(dtype, shape, dim, length); // set length as init capacity
1272
+
1273
+ read_padded_yale_elements(f, reinterpret_cast<YALE_STORAGE*>(s), length, symm, dtype);
1274
+ } else {
1275
+ rb_raise(nm_eStorageTypeError, "please convert to yale or dense before saving");
1276
+ }
1277
+
1278
+ NMATRIX* nm = nm_create(stype, s);
1279
+
1280
+ // Return the appropriate matrix object (Ruby VALUE)
1281
+ // FIXME: This should probably return CLASS_OF(self) instead of cNMatrix, but I don't know how that works for
1282
+ // FIXME: class methods.
1283
+ switch(stype) {
1284
+ case nm::DENSE_STORE:
1285
+ case nm::YALE_STORE:
1286
+ return Data_Wrap_Struct(cNMatrix, nm_mark, nm_delete, nm);
1287
+ default: // this case never occurs (due to earlier rb_raise)
1288
+ return Qnil;
1289
+ }
1290
+
1291
+ }
1292
+
1293
+
1294
+
1295
+ /*
1296
+ * Create a new NMatrix helper for handling internal ia, ja, and a arguments.
1297
+ *
1298
+ * This constructor is only called by Ruby code, so we can skip most of the
1299
+ * checks.
1300
+ */
1301
+ static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm) {
1302
+ size_t dim = 2;
1303
+ size_t* shape_ = interpret_shape(shape, &dim);
1304
+ nm::dtype_t dtype_ = nm_dtype_from_rbsymbol(dtype);
1305
+ char *ia_ = RSTRING_PTR(ia),
1306
+ *ja_ = RSTRING_PTR(ja),
1307
+ *a_ = RSTRING_PTR(a);
1308
+ nm::dtype_t from_dtype_ = nm_dtype_from_rbsymbol(from_dtype);
1309
+ NMATRIX* nmatrix;
1310
+
1311
+ UnwrapNMatrix( nm, nmatrix );
1312
+
1313
+ nmatrix->stype = nm::YALE_STORE;
1314
+ nmatrix->storage = (STORAGE*)nm_yale_storage_create_from_old_yale(dtype_, shape_, ia_, ja_, a_, from_dtype_);
1315
+
1316
+ return nm;
1317
+ }
1318
+
1319
+ /*
1320
+ * Check to determine whether matrix is a reference to another matrix.
1321
+ */
1322
+ static VALUE nm_is_ref(VALUE self) {
1323
+ if (NM_SRC(self) == NM_STORAGE(self)) return Qfalse;
1324
+ else return Qtrue;
1325
+ }
1326
+
1327
+ /*
1328
+ * call-seq:
1329
+ * slice -> ...
1330
+ *
1331
+ * Access the contents of an NMatrix at given coordinates, using copying.
1332
+ *
1333
+ * n.slice(3,3) # => 5.0
1334
+ * n.slice(0..1,0..1) #=> matrix [2,2]
1335
+ *
1336
+ */
1337
+ static VALUE nm_mget(int argc, VALUE* argv, VALUE self) {
1338
+ static void* (*ttable[nm::NUM_STYPES])(const STORAGE*, SLICE*) = {
1339
+ nm_dense_storage_get,
1340
+ nm_list_storage_get,
1341
+ nm_yale_storage_get
1342
+ };
1343
+ return nm_xslice(argc, argv, ttable[NM_STYPE(self)], nm_delete, self);
1344
+ }
1345
+
1346
+ /*
1347
+ * call-seq:
1348
+ * matrix[indices] -> ...
1349
+ *
1350
+ * Access the contents of an NMatrix at given coordinates by reference.
1351
+ *
1352
+ * n[3,3] # => 5.0
1353
+ * n[0..1,0..1] #=> matrix [2,2]
1354
+ *
1355
+ */
1356
+ static VALUE nm_mref(int argc, VALUE* argv, VALUE self) {
1357
+ static void* (*ttable[nm::NUM_STYPES])(const STORAGE*, SLICE*) = {
1358
+ nm_dense_storage_ref,
1359
+ nm_list_storage_ref,
1360
+ nm_yale_storage_ref
1361
+ };
1362
+ return nm_xslice(argc, argv, ttable[NM_STYPE(self)], nm_delete_ref, self);
1363
+ }
1364
+
1365
+ /*
1366
+ * Modify the contents of an NMatrix in the given cell
1367
+ *
1368
+ * n[3,3] = 5.0
1369
+ *
1370
+ * Also returns the new contents, so you can chain:
1371
+ *
1372
+ * n[3,3] = n[2,3] = 5.0
1373
+ */
1374
+ static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
1375
+ size_t dim = NM_DIM(self); // last arg is the value
1376
+
1377
+ if ((size_t)(argc) > NM_DIM(self)+1) {
1378
+ rb_raise(rb_eArgError, "wrong number of arguments (%d for %u)", argc, effective_dim(NM_STORAGE(self))+1);
1379
+ } else {
1380
+ SLICE* slice = get_slice(dim, argc-1, argv, NM_STORAGE(self)->shape);
1381
+
1382
+ static void (*ttable[nm::NUM_STYPES])(VALUE, SLICE*, VALUE) = {
1383
+ nm_dense_storage_set,
1384
+ nm_list_storage_set,
1385
+ nm_yale_storage_set
1386
+ };
1387
+
1388
+ ttable[NM_STYPE(self)](self, slice, argv[argc-1]);
1389
+
1390
+ free_slice(slice);
1391
+
1392
+ return argv[argc-1];
1393
+ }
1394
+ return Qnil;
1395
+ }
1396
+
1397
+ /*
1398
+ * Matrix multiply (dot product): against another matrix or a vector.
1399
+ *
1400
+ * For elementwise, use * instead.
1401
+ *
1402
+ * The two matrices must be of the same stype (for now). If dtype differs, an upcast will occur.
1403
+ */
1404
+ static VALUE nm_multiply(VALUE left_v, VALUE right_v) {
1405
+ NMATRIX *left, *right;
1406
+
1407
+ UnwrapNMatrix( left_v, left );
1408
+
1409
+ if (NM_RUBYVAL_IS_NUMERIC(right_v))
1410
+ return matrix_multiply_scalar(left, right_v);
1411
+
1412
+ else if (TYPE(right_v) == T_ARRAY)
1413
+ rb_raise(rb_eNotImpError, "please convert array to nx1 or 1xn NMatrix first");
1414
+
1415
+ else { // both are matrices (probably)
1416
+ CheckNMatrixType(right_v);
1417
+ UnwrapNMatrix( right_v, right );
1418
+
1419
+ if (left->storage->shape[1] != right->storage->shape[0])
1420
+ rb_raise(rb_eArgError, "incompatible dimensions");
1421
+
1422
+ if (left->stype != right->stype)
1423
+ rb_raise(rb_eNotImpError, "matrices must have same stype");
1424
+
1425
+ return matrix_multiply(left, right);
1426
+
1427
+ }
1428
+
1429
+ return Qnil;
1430
+ }
1431
+
1432
+
1433
+ /*
1434
+ * call-seq:
1435
+ * dim -> Integer
1436
+ *
1437
+ * Get the number of dimensions of a matrix.
1438
+ *
1439
+ * In other words, if you set your matrix to be 3x4, the dim is 2. If the
1440
+ * matrix was initialized as 3x4x3, the dim is 3.
1441
+ *
1442
+ * Use #effective_dim to get the dimension of an NMatrix which acts as a vector (e.g., a column or row).
1443
+ */
1444
+ static VALUE nm_dim(VALUE self) {
1445
+ return INT2FIX(NM_STORAGE(self)->dim);
1446
+ }
1447
+
1448
+ /*
1449
+ * call-seq:
1450
+ * shape -> Array
1451
+ *
1452
+ * Get the shape (dimensions) of a matrix.
1453
+ */
1454
+ static VALUE nm_shape(VALUE self) {
1455
+ STORAGE* s = NM_STORAGE(self);
1456
+
1457
+ // Copy elements into a VALUE array and then use those to create a Ruby array with rb_ary_new4.
1458
+ VALUE* shape = ALLOCA_N(VALUE, s->dim);
1459
+ for (size_t index = 0; index < s->dim; ++index)
1460
+ shape[index] = INT2FIX(s->shape[index]);
1461
+
1462
+ return rb_ary_new4(s->dim, shape);
1463
+ }
1464
+
1465
+
1466
+ /*
1467
+ * call-seq:
1468
+ * offset -> Array
1469
+ *
1470
+ * Get the offset (slice position) of a matrix. Typically all zeros, unless you have a reference slice.
1471
+ */
1472
+ static VALUE nm_offset(VALUE self) {
1473
+ STORAGE* s = NM_STORAGE(self);
1474
+
1475
+ // Copy elements into a VALUE array and then use those to create a Ruby array with rb_ary_new4.
1476
+ VALUE* offset = ALLOCA_N(VALUE, s->dim);
1477
+ for (size_t index = 0; index < s->dim; ++index)
1478
+ offset[index] = INT2FIX(s->offset[index]);
1479
+
1480
+ return rb_ary_new4(s->dim, offset);
1481
+ }
1482
+
1483
+
1484
+ /*
1485
+ * call-seq:
1486
+ * supershape -> Array
1487
+ *
1488
+ * Get the shape of a slice's parent.
1489
+ */
1490
+ static VALUE nm_supershape(VALUE self) {
1491
+
1492
+ STORAGE* s = NM_STORAGE(self);
1493
+ if (s->src == s) return nm_shape(self); // easy case (not a slice)
1494
+ else s = s->src;
1495
+
1496
+ VALUE* shape = ALLOCA_N(VALUE, s->dim);
1497
+ for (size_t index = 0; index < s->dim; ++index)
1498
+ shape[index] = INT2FIX(s->shape[index]);
1499
+
1500
+ return rb_ary_new4(s->dim, shape);
1501
+ }
1502
+
1503
+ /*
1504
+ * call-seq:
1505
+ * stype -> Symbol
1506
+ *
1507
+ * Get the storage type (stype) of a matrix, e.g., :yale, :dense, or :list.
1508
+ */
1509
+ static VALUE nm_stype(VALUE self) {
1510
+ ID stype = rb_intern(STYPE_NAMES[NM_STYPE(self)]);
1511
+ return ID2SYM(stype);
1512
+ }
1513
+
1514
+ /*
1515
+ * call-seq:
1516
+ * symmetric? -> Boolean
1517
+ *
1518
+ * Is this matrix symmetric?
1519
+ */
1520
+ static VALUE nm_symmetric(VALUE self) {
1521
+ return is_symmetric(self, false);
1522
+ }
1523
+
1524
+
1525
+ /*
1526
+ * Gets the dimension of a matrix which might be a vector (have one or more shape components of size 1).
1527
+ */
1528
+ static size_t effective_dim(STORAGE* s) {
1529
+ size_t d = 0;
1530
+ for (size_t i = 0; i < s->dim; ++i) {
1531
+ if (s->shape[i] != 1) d++;
1532
+ }
1533
+ return d;
1534
+ }
1535
+
1536
+
1537
+ /*
1538
+ * call-seq:
1539
+ * effective_dim -> Fixnum
1540
+ *
1541
+ * Returns the number of dimensions that don't have length 1. Guaranteed to be less than or equal to #dim.
1542
+ */
1543
+ static VALUE nm_effective_dim(VALUE self) {
1544
+ return INT2FIX(effective_dim(NM_STORAGE(self)));
1545
+ }
1546
+
1547
+
1548
+ /*
1549
+ * Get a slice of an NMatrix.
1550
+ */
1551
+ static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(const STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self) {
1552
+ VALUE result = Qnil;
1553
+ STORAGE* s = NM_STORAGE(self);
1554
+
1555
+ if (NM_DIM(self) < (size_t)(argc)) {
1556
+ rb_raise(rb_eArgError, "wrong number of arguments (%d for %u)", argc, effective_dim(s));
1557
+ } else {
1558
+ SLICE* slice = get_slice(NM_DIM(self), argc, argv, s->shape);
1559
+
1560
+ if (slice->single) {
1561
+ static void* (*ttable[nm::NUM_STYPES])(const STORAGE*, SLICE*) = {
1562
+ nm_dense_storage_ref,
1563
+ nm_list_storage_ref,
1564
+ nm_yale_storage_ref
1565
+ };
1566
+
1567
+ if (NM_DTYPE(self) == nm::RUBYOBJ) result = *reinterpret_cast<VALUE*>( ttable[NM_STYPE(self)](s, slice) );
1568
+ else result = rubyobj_from_cval( ttable[NM_STYPE(self)](s, slice), NM_DTYPE(self) ).rval;
1569
+
1570
+ } else {
1571
+
1572
+ NMATRIX* mat = ALLOC(NMATRIX);
1573
+ mat->stype = NM_STYPE(self);
1574
+ mat->storage = (STORAGE*)((*slice_func)( s, slice ));
1575
+
1576
+ result = Data_Wrap_Struct(CLASS_OF(self), nm_mark, delete_func, mat);
1577
+ }
1578
+
1579
+ free_slice(slice);
1580
+ }
1581
+
1582
+ return result;
1583
+ }
1584
+
1585
+ //////////////////////
1586
+ // Helper Functions //
1587
+ //////////////////////
1588
+
1589
+ static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val) {
1590
+
1591
+ NMATRIX* left;
1592
+ NMATRIX* result;
1593
+
1594
+ CheckNMatrixType(left_val);
1595
+ UnwrapNMatrix(left_val, left);
1596
+
1597
+ if (TYPE(right_val) != T_DATA || (RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete && RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete_ref)) {
1598
+ // This is a matrix-scalar element-wise operation.
1599
+ std::string sym;
1600
+ switch(left->stype) {
1601
+ case nm::DENSE_STORE:
1602
+ sym = "__dense_scalar_" + nm::EWOP_NAMES[op] + "__";
1603
+ break;
1604
+ case nm::YALE_STORE:
1605
+ sym = "__yale_scalar_" + nm::EWOP_NAMES[op] + "__";
1606
+ break;
1607
+ case nm::LIST_STORE:
1608
+ sym = "__list_scalar_" + nm::EWOP_NAMES[op] + "__";
1609
+ break;
1610
+ default:
1611
+ rb_raise(rb_eNotImpError, "unknown storage type requested scalar element-wise operation");
1612
+ }
1613
+ return rb_funcall(left_val, rb_intern(sym.c_str()), 1, right_val);
1614
+
1615
+ } else {
1616
+
1617
+ // Check that the left- and right-hand sides have the same dimensionality.
1618
+ if (NM_DIM(left_val) != NM_DIM(right_val)) {
1619
+ rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same dimensionality.");
1620
+ }
1621
+
1622
+ // Check that the left- and right-hand sides have the same shape.
1623
+ if (memcmp(&NM_SHAPE(left_val, 0), &NM_SHAPE(right_val, 0), sizeof(size_t) * NM_DIM(left_val)) != 0) {
1624
+ rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same shape.");
1625
+ }
1626
+
1627
+ NMATRIX* right;
1628
+ UnwrapNMatrix(right_val, right);
1629
+
1630
+ if (left->stype == right->stype) {
1631
+ std::string sym;
1632
+
1633
+ switch(left->stype) {
1634
+ case nm::DENSE_STORE:
1635
+ sym = "__dense_elementwise_" + nm::EWOP_NAMES[op] + "__";
1636
+ break;
1637
+ case nm::YALE_STORE:
1638
+ sym = "__yale_elementwise_" + nm::EWOP_NAMES[op] + "__";
1639
+ break;
1640
+ case nm::LIST_STORE:
1641
+ sym = "__list_elementwise_" + nm::EWOP_NAMES[op] + "__";
1642
+ break;
1643
+ default:
1644
+ rb_raise(rb_eNotImpError, "unknown storage type requested element-wise operation");
1645
+ }
1646
+ return rb_funcall(left_val, rb_intern(sym.c_str()), 1, right_val);
1647
+
1648
+ } else {
1649
+ rb_raise(rb_eArgError, "Element-wise operations are not currently supported between matrices with differing stypes.");
1650
+ }
1651
+ }
1652
+
1653
+ return Data_Wrap_Struct(CLASS_OF(left_val), nm_mark, nm_delete, result);
1654
+ }
1655
+
1656
+ /*
1657
+ * Check to determine whether matrix is a reference to another matrix.
1658
+ */
1659
+ bool is_ref(const NMATRIX* matrix) {
1660
+ return matrix->storage->src != matrix->storage;
1661
+ }
1662
+
1663
+ /*
1664
+ * Helper function for nm_symmetric and nm_hermitian.
1665
+ */
1666
+ static VALUE is_symmetric(VALUE self, bool hermitian) {
1667
+ NMATRIX* m;
1668
+ UnwrapNMatrix(self, m);
1669
+
1670
+ if (m->storage->shape[0] == m->storage->shape[1] and m->storage->dim == 2) {
1671
+ if (NM_STYPE(self) == nm::DENSE_STORE) {
1672
+ if (hermitian) {
1673
+ nm_dense_storage_is_hermitian((DENSE_STORAGE*)(m->storage), m->storage->shape[0]);
1674
+
1675
+ } else {
1676
+ nm_dense_storage_is_symmetric((DENSE_STORAGE*)(m->storage), m->storage->shape[0]);
1677
+ }
1678
+
1679
+ } else {
1680
+ // TODO: Implement, at the very least, yale_is_symmetric. Model it after yale/transp.template.c.
1681
+ rb_raise(rb_eNotImpError, "symmetric? and hermitian? only implemented for dense currently");
1682
+ }
1683
+
1684
+ }
1685
+
1686
+ return Qfalse;
1687
+ }
1688
+
1689
+ ///////////////////////
1690
+ // Utility Functions //
1691
+ ///////////////////////
1692
+
1693
+ /*
1694
+ * Guess the dtype given a Ruby VALUE and return it as a symbol.
1695
+ *
1696
+ * Not to be confused with nm_dtype_guess, which returns an nm::dtype_t. (This calls that.)
1697
+ */
1698
+ static VALUE nm_guess_dtype(VALUE self, VALUE v) {
1699
+ return ID2SYM(rb_intern(DTYPE_NAMES[nm_dtype_guess(v)]));
1700
+ }
1701
+
1702
+ /*
1703
+ * Get the minimum allowable dtype for a Ruby VALUE and return it as a symbol.
1704
+ */
1705
+ static VALUE nm_min_dtype(VALUE self, VALUE v) {
1706
+ return ID2SYM(rb_intern(DTYPE_NAMES[nm_dtype_min(v)]));
1707
+ }
1708
+
1709
+ /*
1710
+ * Helper for nm_dtype_min(), handling integers.
1711
+ */
1712
+ nm::dtype_t nm_dtype_min_fixnum(int64_t v) {
1713
+ if (v >= 0 && v <= UCHAR_MAX) return nm::BYTE;
1714
+ else {
1715
+ v = std::abs(v);
1716
+ if (v <= CHAR_MAX) return nm::INT8;
1717
+ else if (v <= SHRT_MAX) return nm::INT16;
1718
+ else if (v <= INT_MAX) return nm::INT32;
1719
+ else return nm::INT64;
1720
+ }
1721
+ }
1722
+
1723
+ /*
1724
+ * Helper for nm_dtype_min(), handling rationals.
1725
+ */
1726
+ nm::dtype_t nm_dtype_min_rational(VALUE vv) {
1727
+ nm::Rational128* v = ALLOCA_N(nm::Rational128, 1);
1728
+ rubyval_to_cval(vv, nm::RATIONAL128, v);
1729
+
1730
+ int64_t i = std::max(std::abs(v->n), v->d);
1731
+ if (i <= SHRT_MAX) return nm::INT16;
1732
+ else if (i <= INT_MAX) return nm::INT32;
1733
+ else return nm::INT64;
1734
+ }
1735
+
1736
+ /*
1737
+ * Return the minimum dtype required to store a given value.
1738
+ *
1739
+ * This is kind of arbitrary. For Float, it always returns :float32 for example, since in some cases neither :float64
1740
+ * not :float32 are sufficient.
1741
+ *
1742
+ * This function is used in upcasting for scalar math. We want to ensure that :int8 + 1 does not return an :int64, basically.
1743
+ *
1744
+ * FIXME: Eventually, this function should actually look at the value stored in Fixnums (for example), so that it knows
1745
+ * whether to return :int64 or :int32.
1746
+ */
1747
+ nm::dtype_t nm_dtype_min(VALUE v) {
1748
+
1749
+ switch(TYPE(v)) {
1750
+ case T_FIXNUM:
1751
+ return nm_dtype_min_fixnum(FIX2LONG(v));
1752
+ case T_BIGNUM:
1753
+ return nm::INT64;
1754
+ case T_FLOAT:
1755
+ return nm::FLOAT32;
1756
+ case T_COMPLEX:
1757
+ return nm::COMPLEX64;
1758
+ case T_RATIONAL:
1759
+ return nm_dtype_min_rational(v);
1760
+ case T_STRING:
1761
+ return RSTRING_LEN(v) == 1 ? nm::BYTE : nm::RUBYOBJ;
1762
+ case T_TRUE:
1763
+ case T_FALSE:
1764
+ case T_NIL:
1765
+ default:
1766
+ return nm::RUBYOBJ;
1767
+ }
1768
+ }
1769
+
1770
+
1771
+ /*
1772
+ * Guess the data type given a value.
1773
+ *
1774
+ * TODO: Probably needs some work for Bignum.
1775
+ */
1776
+ nm::dtype_t nm_dtype_guess(VALUE v) {
1777
+ switch(TYPE(v)) {
1778
+ case T_TRUE:
1779
+ case T_FALSE:
1780
+ case T_NIL:
1781
+ return nm::RUBYOBJ;
1782
+ case T_STRING:
1783
+ return RSTRING_LEN(v) == 1 ? nm::BYTE : nm::RUBYOBJ;
1784
+
1785
+ #if SIZEOF_INT == 8
1786
+ case T_FIXNUM:
1787
+ return nm::INT64;
1788
+
1789
+ case T_RATIONAL:
1790
+ return nm::RATIONAL128;
1791
+
1792
+ #else
1793
+ # if SIZEOF_INT == 4
1794
+ case T_FIXNUM:
1795
+ return nm::INT32;
1796
+
1797
+ case T_RATIONAL:
1798
+ return nm::RATIONAL64;
1799
+
1800
+ #else
1801
+ case T_FIXNUM:
1802
+ return nm::INT16;
1803
+
1804
+ case T_RATIONAL:
1805
+ return nm::RATIONAL32;
1806
+ # endif
1807
+ #endif
1808
+
1809
+ case T_BIGNUM:
1810
+ return nm::INT64;
1811
+
1812
+ #if SIZEOF_FLOAT == 4
1813
+ case T_COMPLEX:
1814
+ return nm::COMPLEX128;
1815
+
1816
+ case T_FLOAT:
1817
+ return nm::FLOAT64;
1818
+
1819
+ #else
1820
+ # if SIZEOF_FLOAT == 2
1821
+ case T_COMPLEX:
1822
+ return nm::COMPLEX64;
1823
+
1824
+ case T_FLOAT:
1825
+ return nm::FLOAT32;
1826
+ # endif
1827
+ #endif
1828
+
1829
+ case T_ARRAY:
1830
+ /*
1831
+ * May be passed for dense -- for now, just look at the first element.
1832
+ *
1833
+ * TODO: Look at entire array for most specific type.
1834
+ */
1835
+
1836
+ return nm_dtype_guess(RARRAY_PTR(v)[0]);
1837
+
1838
+ default:
1839
+ RB_P(v);
1840
+ rb_raise(rb_eArgError, "Unable to guess a data type from provided parameters; data type must be specified manually.");
1841
+ }
1842
+ }
1843
+
1844
+
1845
+
1846
+ /*
1847
+ * Allocate and return a SLICE object, which will contain the appropriate coordinate and length information for
1848
+ * accessing some part of a matrix.
1849
+ */
1850
+ static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape) {
1851
+ VALUE beg, end;
1852
+ int excl;
1853
+
1854
+ SLICE* slice = alloc_slice(dim);
1855
+ slice->single = true;
1856
+
1857
+ // r is the shape position; t is the slice position. They may differ when we're dealing with a
1858
+ // matrix where the effective dimension is less than the dimension (e.g., a vector).
1859
+ for (size_t r = 0, t = 0; r < dim; ++r) {
1860
+ VALUE v = t == argc ? Qnil : arg[t];
1861
+
1862
+ // if the current shape indicates a vector and fewer args were supplied than necessary, just use 0
1863
+ if (argc - t + r < dim && shape[r] == 1) {
1864
+ slice->coords[r] = 0;
1865
+ slice->lengths[r] = 1;
1866
+
1867
+ } else if (FIXNUM_P(v)) { // this used CLASS_OF before, which is inefficient for fixnum
1868
+
1869
+ slice->coords[r] = FIX2UINT(v);
1870
+ slice->lengths[r] = 1;
1871
+ t++;
1872
+
1873
+ } else if (SYMBOL_P(v) && rb_to_id(v) == nm_rb_mul) { // :* means the whole possible range
1874
+
1875
+ slice->coords[r] = 0;
1876
+ slice->lengths[r] = shape[r];
1877
+ slice->single = false;
1878
+
1879
+ } else if (TYPE(arg[t]) == T_HASH) { // 3:5 notation (inclusive)
1880
+ VALUE begin_end = rb_funcall(v, rb_intern("shift"), 0); // rb_hash_shift
1881
+ slice->coords[r] = FIX2UINT(rb_ary_entry(begin_end, 0));
1882
+ slice->lengths[r] = FIX2UINT(rb_ary_entry(begin_end, 1)) - slice->coords[r];
1883
+
1884
+ if (RHASH_EMPTY_P(v)) t++; // go on to the next
1885
+
1886
+ slice->single = false;
1887
+
1888
+ } else if (CLASS_OF(v) == rb_cRange) {
1889
+ rb_range_values(arg[t], &beg, &end, &excl);
1890
+ slice->coords[r] = FIX2UINT(beg);
1891
+ // Exclude last element for a...b range
1892
+ slice->lengths[r] = FIX2UINT(end) - slice->coords[r] + (excl ? 0 : 1);
1893
+
1894
+ slice->single = false;
1895
+
1896
+ t++;
1897
+
1898
+ } else {
1899
+ rb_raise(rb_eArgError, "expected Fixnum, Range, or Hash for slice component instead of %s", rb_obj_classname(v));
1900
+ }
1901
+
1902
+ if (slice->coords[r] > shape[r] || slice->coords[r] + slice->lengths[r] > shape[r])
1903
+ rb_raise(rb_eRangeError, "slice is larger than matrix in dimension %u (slice component %u)", r, t);
1904
+ }
1905
+
1906
+ return slice;
1907
+ }
1908
+
1909
+ #ifdef BENCHMARK
1910
+ /*
1911
+ * A simple function used when benchmarking NMatrix.
1912
+ */
1913
+ static double get_time(void) {
1914
+ struct timeval t;
1915
+ struct timezone tzp;
1916
+
1917
+ gettimeofday(&t, &tzp);
1918
+
1919
+ return t.tv_sec + t.tv_usec*1e-6;
1920
+ }
1921
+ #endif
1922
+
1923
+ /*
1924
+ * The argv parameter will be either 1 or 2 elements. If 1, could be either
1925
+ * initial or dtype. If 2, is initial and dtype. This function returns the
1926
+ * dtype.
1927
+ */
1928
+ static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype) {
1929
+ int offset;
1930
+
1931
+ switch (argc) {
1932
+ case 1:
1933
+ offset = 0;
1934
+ break;
1935
+
1936
+ case 2:
1937
+ offset = 1;
1938
+ break;
1939
+
1940
+ default:
1941
+ rb_raise(rb_eArgError, "Need an initial value or a dtype.");
1942
+ break;
1943
+ }
1944
+
1945
+ if (SYMBOL_P(argv[offset])) {
1946
+ return nm_dtype_from_rbsymbol(argv[offset]);
1947
+
1948
+ } else if (TYPE(argv[offset]) == T_STRING) {
1949
+ return nm_dtype_from_rbstring(StringValue(argv[offset]));
1950
+
1951
+ } else if (stype == nm::YALE_STORE) {
1952
+ rb_raise(rb_eArgError, "Yale storage class requires a dtype.");
1953
+
1954
+ } else {
1955
+ return nm_dtype_guess(argv[0]);
1956
+ }
1957
+ }
1958
+
1959
+ /*
1960
+ * Convert an Ruby value or an array of Ruby values into initial C values.
1961
+ */
1962
+ static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype) {
1963
+ unsigned int index;
1964
+ void* init_val;
1965
+
1966
+ if (TYPE(arg) == T_ARRAY) {
1967
+ // Array
1968
+ init_val = ALLOC_N(char, DTYPE_SIZES[dtype] * RARRAY_LEN(arg));
1969
+ NM_CHECK_ALLOC(init_val);
1970
+ for (index = 0; index < RARRAY_LEN(arg); ++index) {
1971
+ rubyval_to_cval(RARRAY_PTR(arg)[index], dtype, (char*)init_val + (index * DTYPE_SIZES[dtype]));
1972
+ }
1973
+
1974
+ } else {
1975
+ // Single value
1976
+ init_val = rubyobj_to_cval(arg, dtype);
1977
+ }
1978
+
1979
+ return init_val;
1980
+ }
1981
+
1982
+ /*
1983
+ * Convert the shape argument, which may be either a Ruby value or an array of
1984
+ * Ruby values, into C values. The second argument is where the dimensionality
1985
+ * of the matrix will be stored. The function itself returns a pointer to the
1986
+ * array describing the shape, which must be freed manually.
1987
+ */
1988
+ static size_t* interpret_shape(VALUE arg, size_t* dim) {
1989
+ size_t* shape;
1990
+
1991
+ if (TYPE(arg) == T_ARRAY) {
1992
+ *dim = RARRAY_LEN(arg);
1993
+ shape = ALLOC_N(size_t, *dim);
1994
+
1995
+ for (size_t index = 0; index < *dim; ++index) {
1996
+ shape[index] = FIX2UINT( RARRAY_PTR(arg)[index] );
1997
+ }
1998
+
1999
+ } else if (FIXNUM_P(arg)) {
2000
+ *dim = 2;
2001
+ shape = ALLOC_N(size_t, *dim);
2002
+
2003
+ shape[0] = FIX2UINT(arg);
2004
+ shape[1] = FIX2UINT(arg);
2005
+
2006
+ } else {
2007
+ rb_raise(rb_eArgError, "Expected an array of numbers or a single Fixnum for matrix shape");
2008
+ }
2009
+
2010
+ return shape;
2011
+ }
2012
+
2013
+ /*
2014
+ * Convert a Ruby symbol or string into an storage type.
2015
+ */
2016
+ static nm::stype_t interpret_stype(VALUE arg) {
2017
+ if (SYMBOL_P(arg)) {
2018
+ return nm_stype_from_rbsymbol(arg);
2019
+
2020
+ } else if (TYPE(arg) == T_STRING) {
2021
+ return nm_stype_from_rbstring(StringValue(arg));
2022
+
2023
+ } else {
2024
+ rb_raise(rb_eArgError, "Expected storage type");
2025
+ }
2026
+ }
2027
+
2028
+ //////////////////
2029
+ // Math Helpers //
2030
+ //////////////////
2031
+
2032
+ STORAGE* matrix_storage_cast_alloc(NMATRIX* matrix, nm::dtype_t new_dtype) {
2033
+ if (matrix->storage->dtype == new_dtype && !is_ref(matrix))
2034
+ return matrix->storage;
2035
+
2036
+ CAST_TABLE(cast_copy_storage);
2037
+ return cast_copy_storage[matrix->stype][matrix->stype](matrix->storage, new_dtype, NULL);
2038
+ }
2039
+
2040
+ STORAGE_PAIR binary_storage_cast_alloc(NMATRIX* left_matrix, NMATRIX* right_matrix) {
2041
+ STORAGE_PAIR casted;
2042
+ nm::dtype_t new_dtype = Upcast[left_matrix->storage->dtype][right_matrix->storage->dtype];
2043
+
2044
+ casted.left = matrix_storage_cast_alloc(left_matrix, new_dtype);
2045
+ casted.right = matrix_storage_cast_alloc(right_matrix, new_dtype);
2046
+
2047
+ return casted;
2048
+ }
2049
+
2050
+ static VALUE matrix_multiply_scalar(NMATRIX* left, VALUE scalar) {
2051
+ rb_raise(rb_eNotImpError, "matrix-scalar multiplication not implemented yet");
2052
+ return Qnil;
2053
+ }
2054
+
2055
+ static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right) {
2056
+ ///TODO: multiplication for non-dense and/or non-decimal matrices
2057
+
2058
+ // Make sure both of our matrices are of the correct type.
2059
+ STORAGE_PAIR casted = binary_storage_cast_alloc(left, right);
2060
+
2061
+ size_t* resulting_shape = ALLOC_N(size_t, 2);
2062
+ resulting_shape[0] = left->storage->shape[0];
2063
+ resulting_shape[1] = right->storage->shape[1];
2064
+
2065
+ // Sometimes we only need to use matrix-vector multiplication (e.g., GEMM versus GEMV). Find out.
2066
+ bool vector = false;
2067
+ if (resulting_shape[1] == 1) vector = true;
2068
+
2069
+ static STORAGE* (*storage_matrix_multiply[nm::NUM_STYPES])(const STORAGE_PAIR&, size_t*, bool) = {
2070
+ nm_dense_storage_matrix_multiply,
2071
+ nm_list_storage_matrix_multiply,
2072
+ nm_yale_storage_matrix_multiply
2073
+ };
2074
+
2075
+ STORAGE* resulting_storage = storage_matrix_multiply[left->stype](casted, resulting_shape, vector);
2076
+ NMATRIX* result = nm_create(left->stype, resulting_storage);
2077
+
2078
+ // Free any casted-storage we created for the multiplication.
2079
+ // TODO: Can we make the Ruby GC take care of this stuff now that we're using it?
2080
+ // If we did that, we night not have to re-create these every time, right? Or wrong? Need to do
2081
+ // more research.
2082
+ static void (*free_storage[nm::NUM_STYPES])(STORAGE*) = {
2083
+ nm_dense_storage_delete,
2084
+ nm_list_storage_delete,
2085
+ nm_yale_storage_delete
2086
+ };
2087
+
2088
+ if (left->storage != casted.left) free_storage[result->stype](casted.left);
2089
+ if (right->storage != casted.right) free_storage[result->stype](casted.right);
2090
+
2091
+ if (result) return Data_Wrap_Struct(cNMatrix, nm_mark, nm_delete, result);
2092
+ return Qnil; // Only if we try to multiply list matrices should we return Qnil.
2093
+ }
2094
+
2095
+ /*
2096
+ * Calculate the exact determinant of a dense matrix.
2097
+ *
2098
+ * Returns nil for dense matrices which are not square or number of dimensions other than 2.
2099
+ *
2100
+ * Note: Currently only implemented for 2x2 and 3x3 matrices.
2101
+ */
2102
+ static VALUE nm_det_exact(VALUE self) {
2103
+ if (NM_STYPE(self) != nm::DENSE_STORE) rb_raise(nm_eStorageTypeError, "can only calculate exact determinant for dense matrices");
2104
+
2105
+ if (NM_DIM(self) != 2 || NM_SHAPE0(self) != NM_SHAPE1(self)) return Qnil;
2106
+
2107
+ // Calculate the determinant and then assign it to the return value
2108
+ void* result = ALLOCA_N(char, DTYPE_SIZES[NM_DTYPE(self)]);
2109
+ nm_math_det_exact(NM_SHAPE0(self), NM_STORAGE_DENSE(self)->elements, NM_SHAPE0(self), NM_DTYPE(self), result);
2110
+
2111
+ return rubyobj_from_cval(result, NM_DTYPE(self)).rval;
2112
+ }
2113
+
2114
+ /////////////////
2115
+ // Exposed API //
2116
+ /////////////////
2117
+
2118
+ /*
2119
+ * Create a dense matrix. Used by the NMatrix GSL fork. Unlike nm_create, this one copies all of the
2120
+ * arrays and such passed in -- so you don't have to allocate and pass a new shape object for every
2121
+ * matrix you want to create, for example. Same goes for elements.
2122
+ *
2123
+ * Returns a properly-wrapped Ruby object as a VALUE.
2124
+ *
2125
+ * *** Note that this function is for API only. Please do not use it internally.
2126
+ *
2127
+ * TODO: Add a column-major option for libraries that use column-major matrices.
2128
+ */
2129
+ VALUE rb_nmatrix_dense_create(nm::dtype_t dtype, size_t* shape, size_t dim, void* elements, size_t length) {
2130
+ NMATRIX* nm;
2131
+ size_t nm_dim;
2132
+ size_t* shape_copy;
2133
+
2134
+ // Do not allow a dim of 1. Treat it as a column or row matrix.
2135
+ if (dim == 1) {
2136
+ nm_dim = 2;
2137
+ shape_copy = ALLOC_N(size_t, nm_dim);
2138
+ shape_copy[0] = shape[0];
2139
+ shape_copy[1] = 1;
2140
+
2141
+ } else {
2142
+ nm_dim = dim;
2143
+ shape_copy = ALLOC_N(size_t, nm_dim);
2144
+ memcpy(shape_copy, shape, sizeof(size_t)*nm_dim);
2145
+ }
2146
+
2147
+ // Copy elements
2148
+ void* elements_copy = ALLOC_N(char, DTYPE_SIZES[dtype]*length);
2149
+ memcpy(elements_copy, elements, DTYPE_SIZES[dtype]*length);
2150
+
2151
+ // allocate and create the matrix and its storage
2152
+ nm = nm_create(nm::DENSE_STORE, nm_dense_storage_create(dtype, shape_copy, dim, elements_copy, length));
2153
+
2154
+ // tell Ruby about the matrix and its storage, particularly how to garbage collect it.
2155
+ return Data_Wrap_Struct(cNMatrix, nm_mark, nm_delete, nm);
2156
+ }
2157
+
2158
+ /*
2159
+ * Create a dense vector. Used by the NMatrix GSL fork.
2160
+ *
2161
+ * Basically just a convenience wrapper for rb_nmatrix_dense_create().
2162
+ *
2163
+ * Returns a properly-wrapped Ruby NMatrix object as a VALUE. Included for backwards compatibility
2164
+ * for when NMatrix had an NVector class.
2165
+ */
2166
+ VALUE rb_nvector_dense_create(nm::dtype_t dtype, void* elements, size_t length) {
2167
+ size_t dim = 1, shape = length;
2168
+ return rb_nmatrix_dense_create(dtype, &shape, dim, elements, length);
2169
+ }