nmatrix 0.0.8 → 0.0.9
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +3 -8
- data/.rspec +1 -1
- data/.travis.yml +12 -0
- data/CONTRIBUTING.md +27 -12
- data/Gemfile +1 -0
- data/History.txt +38 -0
- data/Manifest.txt +15 -15
- data/README.rdoc +7 -6
- data/Rakefile +40 -5
- data/ext/nmatrix/data/data.cpp +2 -37
- data/ext/nmatrix/data/data.h +19 -121
- data/ext/nmatrix/data/meta.h +70 -0
- data/ext/nmatrix/extconf.rb +40 -12
- data/ext/nmatrix/math/math.h +13 -103
- data/ext/nmatrix/nmatrix.cpp +10 -2018
- data/ext/nmatrix/nmatrix.h +16 -13
- data/ext/nmatrix/ruby_constants.cpp +12 -1
- data/ext/nmatrix/ruby_constants.h +7 -1
- data/ext/nmatrix/ruby_nmatrix.c +2169 -0
- data/ext/nmatrix/storage/dense.cpp +123 -14
- data/ext/nmatrix/storage/dense.h +10 -4
- data/ext/nmatrix/storage/list.cpp +265 -48
- data/ext/nmatrix/storage/list.h +6 -9
- data/ext/nmatrix/storage/storage.cpp +44 -54
- data/ext/nmatrix/storage/storage.h +2 -2
- data/ext/nmatrix/storage/yale/class.h +1070 -0
- data/ext/nmatrix/storage/yale/iterators/base.h +142 -0
- data/ext/nmatrix/storage/yale/iterators/iterator.h +130 -0
- data/ext/nmatrix/storage/yale/iterators/row.h +449 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored.h +139 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored_nd.h +167 -0
- data/ext/nmatrix/storage/yale/iterators/stored_diagonal.h +123 -0
- data/ext/nmatrix/storage/yale/math/transpose.h +110 -0
- data/ext/nmatrix/storage/yale/yale.cpp +1785 -0
- data/ext/nmatrix/storage/{yale.h → yale/yale.h} +23 -55
- data/ext/nmatrix/types.h +2 -0
- data/ext/nmatrix/util/io.cpp +27 -45
- data/ext/nmatrix/util/io.h +0 -2
- data/ext/nmatrix/util/sl_list.cpp +169 -28
- data/ext/nmatrix/util/sl_list.h +9 -3
- data/lib/nmatrix/blas.rb +20 -20
- data/lib/nmatrix/enumerate.rb +1 -1
- data/lib/nmatrix/io/mat5_reader.rb +8 -14
- data/lib/nmatrix/lapack.rb +3 -3
- data/lib/nmatrix/math.rb +3 -3
- data/lib/nmatrix/nmatrix.rb +19 -5
- data/lib/nmatrix/nvector.rb +2 -0
- data/lib/nmatrix/shortcuts.rb +90 -125
- data/lib/nmatrix/version.rb +1 -1
- data/nmatrix.gemspec +7 -8
- data/spec/{nmatrix_spec.rb → 00_nmatrix_spec.rb} +45 -208
- data/spec/01_enum_spec.rb +184 -0
- data/spec/{slice_spec.rb → 02_slice_spec.rb} +55 -39
- data/spec/blas_spec.rb +22 -54
- data/spec/elementwise_spec.rb +9 -8
- data/spec/io_spec.rb +6 -4
- data/spec/lapack_spec.rb +26 -26
- data/spec/math_spec.rb +9 -5
- data/spec/nmatrix_yale_spec.rb +29 -61
- data/spec/shortcuts_spec.rb +34 -22
- data/spec/slice_set_spec.rb +157 -0
- data/spec/spec_helper.rb +42 -2
- data/spec/stat_spec.rb +192 -0
- metadata +52 -55
- data/ext/nmatrix/storage/yale.cpp +0 -2284
- data/spec/nmatrix_list_spec.rb +0 -113
- data/spec/nvector_spec.rb +0 -112
data/ext/nmatrix/nmatrix.h
CHANGED
@@ -198,7 +198,6 @@
|
|
198
198
|
*/
|
199
199
|
|
200
200
|
#define NM_NUM_DTYPES 13 // data/data.h
|
201
|
-
#define NM_NUM_ITYPES 4 // data/data.h
|
202
201
|
#define NM_NUM_STYPES 3 // storage/storage.h
|
203
202
|
|
204
203
|
//#ifdef __cplusplus
|
@@ -225,12 +224,6 @@ NM_DEF_ENUM(dtype_t, BYTE = 0, // unsigned char
|
|
225
224
|
RATIONAL128 = 11, // Rational128 class
|
226
225
|
RUBYOBJ = 12); // Ruby VALUE type
|
227
226
|
|
228
|
-
/* Index Type for Yale Matrices */
|
229
|
-
NM_DEF_ENUM(itype_t, UINT8 = 0,
|
230
|
-
UINT16 = 1,
|
231
|
-
UINT32 = 2,
|
232
|
-
UINT64 = 3);
|
233
|
-
|
234
227
|
NM_DEF_ENUM(symm_t, NONSYMM = 0,
|
235
228
|
SYMM = 1,
|
236
229
|
SKEW = 2,
|
@@ -253,11 +246,10 @@ NM_DEF_STORAGE_STRUCT_POST(DENSE_STORAGE); // };
|
|
253
246
|
|
254
247
|
/* Yale Storage */
|
255
248
|
NM_DEF_STORAGE_CHILD_STRUCT_PRE(YALE_STORAGE);
|
256
|
-
void*
|
257
|
-
size_t
|
249
|
+
void* a; // should go first
|
250
|
+
size_t ndnz; // Strictly non-diagonal non-zero count!
|
258
251
|
size_t capacity;
|
259
|
-
|
260
|
-
void* ija;
|
252
|
+
size_t* ija;
|
261
253
|
NM_DEF_STORAGE_STRUCT_POST(YALE_STORAGE);
|
262
254
|
|
263
255
|
// FIXME: NODE and LIST should be put in some kind of namespace or something, at least in C++.
|
@@ -306,14 +298,14 @@ NM_DEF_STRUCT_POST(NMATRIX); // };
|
|
306
298
|
#define NM_SRC(val) (NM_STORAGE(val)->src)
|
307
299
|
#define NM_DIM(val) (NM_STORAGE(val)->dim)
|
308
300
|
#define NM_DTYPE(val) (NM_STORAGE(val)->dtype)
|
309
|
-
#define NM_ITYPE(val) (NM_STORAGE_YALE(val)->itype)
|
310
301
|
#define NM_STYPE(val) (NM_STRUCT(val)->stype)
|
311
302
|
#define NM_SHAPE(val,i) (NM_STORAGE(val)->shape[(i)])
|
312
303
|
#define NM_SHAPE0(val) (NM_STORAGE(val)->shape[0])
|
313
304
|
#define NM_SHAPE1(val) (NM_STORAGE(val)->shape[1])
|
314
305
|
#define NM_DEFAULT_VAL(val) (NM_STORAGE_LIST(val)->default_val)
|
315
306
|
|
316
|
-
#define NM_DENSE_COUNT(val) (
|
307
|
+
#define NM_DENSE_COUNT(val) (nm_storage_count_max_elements(NM_STORAGE_DENSE(val)))
|
308
|
+
#define NM_DENSE_ELEMENTS(val) (NM_STORAGE_DENSE(val)->elements)
|
317
309
|
#define NM_SIZEOF_DTYPE(val) (DTYPE_SIZES[NM_DTYPE(val)])
|
318
310
|
#define NM_REF(val,slice) (RefFuncs[NM_STYPE(val)]( NM_STORAGE(val), slice, NM_SIZEOF_DTYPE(val) ))
|
319
311
|
|
@@ -333,6 +325,10 @@ NM_DEF_STRUCT_POST(NMATRIX); // };
|
|
333
325
|
#define NM_IsNVector(obj) \
|
334
326
|
(rb_obj_is_kind_of(obj, cNVector) == Qtrue)
|
335
327
|
|
328
|
+
#define RB_P(OBJ) \
|
329
|
+
rb_funcall(rb_stderr, rb_intern("print"), 1, rb_funcall(OBJ, rb_intern("object_id"), 0)); \
|
330
|
+
rb_funcall(rb_stderr, rb_intern("puts"), 1, rb_funcall(OBJ, rb_intern("inspect"), 0));
|
331
|
+
|
336
332
|
|
337
333
|
#ifdef __cplusplus
|
338
334
|
typedef VALUE (*METHOD)(...);
|
@@ -345,6 +341,7 @@ typedef VALUE (*METHOD)(...);
|
|
345
341
|
*/
|
346
342
|
|
347
343
|
#ifdef __cplusplus
|
344
|
+
|
348
345
|
extern "C" {
|
349
346
|
#endif
|
350
347
|
|
@@ -359,8 +356,14 @@ extern "C" {
|
|
359
356
|
|
360
357
|
// Non-API functions needed by other cpp files.
|
361
358
|
NMATRIX* nm_create(nm::stype_t stype, STORAGE* storage);
|
359
|
+
NMATRIX* nm_cast_with_ctype_args(NMATRIX* self, nm::stype_t new_stype, nm::dtype_t new_dtype, void* init_ptr);
|
360
|
+
VALUE nm_cast(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol, VALUE init);
|
361
|
+
void nm_mark(NMATRIX* mat);
|
362
362
|
void nm_delete(NMATRIX* mat);
|
363
363
|
void nm_delete_ref(NMATRIX* mat);
|
364
|
+
void nm_mark(NMATRIX* mat);
|
365
|
+
void nm_register_values(VALUE* vals, size_t n);
|
366
|
+
void nm_unregister_values(VALUE* vals, size_t n);
|
364
367
|
|
365
368
|
#ifdef __cplusplus
|
366
369
|
}
|
@@ -35,7 +35,13 @@
|
|
35
35
|
* Global Variables
|
36
36
|
*/
|
37
37
|
|
38
|
-
ID
|
38
|
+
ID nm_rb_dtype,
|
39
|
+
nm_rb_stype,
|
40
|
+
|
41
|
+
nm_rb_capacity,
|
42
|
+
nm_rb_default,
|
43
|
+
|
44
|
+
nm_rb_real,
|
39
45
|
nm_rb_imag,
|
40
46
|
|
41
47
|
nm_rb_numer,
|
@@ -93,6 +99,11 @@ VALUE cNMatrix,
|
|
93
99
|
*/
|
94
100
|
|
95
101
|
void nm_init_ruby_constants(void) {
|
102
|
+
nm_rb_dtype = rb_intern("dtype");
|
103
|
+
nm_rb_stype = rb_intern("stype");
|
104
|
+
|
105
|
+
nm_rb_capacity = rb_intern("capacity");
|
106
|
+
nm_rb_default = rb_intern("default");
|
96
107
|
|
97
108
|
nm_rb_real = rb_intern("real");
|
98
109
|
nm_rb_imag = rb_intern("imag");
|
@@ -0,0 +1,2169 @@
|
|
1
|
+
/////////////////////////////////////////////////////////////////////
|
2
|
+
// = NMatrix
|
3
|
+
//
|
4
|
+
// A linear algebra library for scientific computation in Ruby.
|
5
|
+
// NMatrix is part of SciRuby.
|
6
|
+
//
|
7
|
+
// NMatrix was originally inspired by and derived from NArray, by
|
8
|
+
// Masahiro Tanaka: http://narray.rubyforge.org
|
9
|
+
//
|
10
|
+
// == Copyright Information
|
11
|
+
//
|
12
|
+
// SciRuby is Copyright (c) 2010 - 2013, Ruby Science Foundation
|
13
|
+
// NMatrix is Copyright (c) 2013, Ruby Science Foundation
|
14
|
+
//
|
15
|
+
// Please see LICENSE.txt for additional copyright notices.
|
16
|
+
//
|
17
|
+
// == Contributing
|
18
|
+
//
|
19
|
+
// By contributing source code to SciRuby, you agree to be bound by
|
20
|
+
// our Contributor Agreement:
|
21
|
+
//
|
22
|
+
// * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
23
|
+
//
|
24
|
+
// == ruby_nmatrix.c
|
25
|
+
//
|
26
|
+
// Ruby-facing NMatrix C functions. Not compiled directly -- included
|
27
|
+
// into nmatrix.cpp.
|
28
|
+
//
|
29
|
+
|
30
|
+
/*
|
31
|
+
* Forward Declarations
|
32
|
+
*/
|
33
|
+
|
34
|
+
static VALUE nm_init(int argc, VALUE* argv, VALUE nm);
|
35
|
+
static VALUE nm_init_copy(VALUE copy, VALUE original);
|
36
|
+
static VALUE nm_init_transposed(VALUE self);
|
37
|
+
static VALUE nm_read(int argc, VALUE* argv, VALUE self);
|
38
|
+
static VALUE nm_write(int argc, VALUE* argv, VALUE self);
|
39
|
+
static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm);
|
40
|
+
static VALUE nm_alloc(VALUE klass);
|
41
|
+
static VALUE nm_dtype(VALUE self);
|
42
|
+
static VALUE nm_stype(VALUE self);
|
43
|
+
static VALUE nm_default_value(VALUE self);
|
44
|
+
static size_t effective_dim(STORAGE* s);
|
45
|
+
static VALUE nm_effective_dim(VALUE self);
|
46
|
+
static VALUE nm_dim(VALUE self);
|
47
|
+
static VALUE nm_offset(VALUE self);
|
48
|
+
static VALUE nm_shape(VALUE self);
|
49
|
+
static VALUE nm_supershape(VALUE self);
|
50
|
+
static VALUE nm_capacity(VALUE self);
|
51
|
+
static VALUE nm_each_with_indices(VALUE nmatrix);
|
52
|
+
static VALUE nm_each_stored_with_indices(VALUE nmatrix);
|
53
|
+
static VALUE nm_each_ordered_stored_with_indices(VALUE nmatrix);
|
54
|
+
|
55
|
+
static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape);
|
56
|
+
static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(const STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self);
|
57
|
+
static VALUE nm_mset(int argc, VALUE* argv, VALUE self);
|
58
|
+
static VALUE nm_mget(int argc, VALUE* argv, VALUE self);
|
59
|
+
static VALUE nm_mref(int argc, VALUE* argv, VALUE self);
|
60
|
+
static VALUE nm_is_ref(VALUE self);
|
61
|
+
|
62
|
+
static VALUE is_symmetric(VALUE self, bool hermitian);
|
63
|
+
|
64
|
+
static VALUE nm_guess_dtype(VALUE self, VALUE v);
|
65
|
+
static VALUE nm_min_dtype(VALUE self, VALUE v);
|
66
|
+
|
67
|
+
/*
|
68
|
+
* Macro defines an element-wise accessor function for some operation.
|
69
|
+
*
|
70
|
+
* This is only responsible for the Ruby accessor! You still have to write the actual functions, obviously.
|
71
|
+
*/
|
72
|
+
#define DEF_ELEMENTWISE_RUBY_ACCESSOR(oper, name) \
|
73
|
+
static VALUE nm_ew_##name(VALUE left_val, VALUE right_val) { \
|
74
|
+
return elementwise_op(nm::EW_##oper, left_val, right_val); \
|
75
|
+
}
|
76
|
+
|
77
|
+
/*
|
78
|
+
* Macro declares a corresponding accessor function prototype for some element-wise operation.
|
79
|
+
*/
|
80
|
+
#define DECL_ELEMENTWISE_RUBY_ACCESSOR(name) static VALUE nm_ew_##name(VALUE left_val, VALUE right_val);
|
81
|
+
|
82
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(add)
|
83
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(subtract)
|
84
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(multiply)
|
85
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(divide)
|
86
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(power)
|
87
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(mod)
|
88
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(eqeq)
|
89
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(neq)
|
90
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(lt)
|
91
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(gt)
|
92
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(leq)
|
93
|
+
DECL_ELEMENTWISE_RUBY_ACCESSOR(geq)
|
94
|
+
|
95
|
+
static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val);
|
96
|
+
|
97
|
+
static VALUE nm_symmetric(VALUE self);
|
98
|
+
static VALUE nm_hermitian(VALUE self);
|
99
|
+
|
100
|
+
static VALUE nm_eqeq(VALUE left, VALUE right);
|
101
|
+
|
102
|
+
static VALUE matrix_multiply_scalar(NMATRIX* left, VALUE scalar);
|
103
|
+
static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right);
|
104
|
+
static VALUE nm_multiply(VALUE left_v, VALUE right_v);
|
105
|
+
static VALUE nm_det_exact(VALUE self);
|
106
|
+
static VALUE nm_complex_conjugate_bang(VALUE self);
|
107
|
+
|
108
|
+
static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype);
|
109
|
+
static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype);
|
110
|
+
static size_t* interpret_shape(VALUE arg, size_t* dim);
|
111
|
+
static nm::stype_t interpret_stype(VALUE arg);
|
112
|
+
|
113
|
+
/* Singleton methods */
|
114
|
+
static VALUE nm_upcast(VALUE self, VALUE t1, VALUE t2);
|
115
|
+
|
116
|
+
|
117
|
+
#ifdef BENCHMARK
|
118
|
+
static double get_time(void);
|
119
|
+
#endif
|
120
|
+
|
121
|
+
///////////////////
|
122
|
+
// Ruby Bindings //
|
123
|
+
///////////////////
|
124
|
+
|
125
|
+
void Init_nmatrix() {
|
126
|
+
|
127
|
+
|
128
|
+
///////////////////////
|
129
|
+
// Class Definitions //
|
130
|
+
///////////////////////
|
131
|
+
|
132
|
+
cNMatrix = rb_define_class("NMatrix", rb_cObject);
|
133
|
+
//cNVector = rb_define_class("NVector", cNMatrix);
|
134
|
+
|
135
|
+
// Special exceptions
|
136
|
+
|
137
|
+
/*
|
138
|
+
* Exception raised when there's a problem with data.
|
139
|
+
*/
|
140
|
+
nm_eDataTypeError = rb_define_class("DataTypeError", rb_eStandardError);
|
141
|
+
|
142
|
+
/*
|
143
|
+
* Exception raised when something goes wrong with the storage of a matrix.
|
144
|
+
*/
|
145
|
+
nm_eStorageTypeError = rb_define_class("StorageTypeError", rb_eStandardError);
|
146
|
+
|
147
|
+
///////////////////
|
148
|
+
// Class Methods //
|
149
|
+
///////////////////
|
150
|
+
|
151
|
+
rb_define_alloc_func(cNMatrix, nm_alloc);
|
152
|
+
|
153
|
+
///////////////////////
|
154
|
+
// Singleton Methods //
|
155
|
+
///////////////////////
|
156
|
+
|
157
|
+
rb_define_singleton_method(cNMatrix, "upcast", (METHOD)nm_upcast, 2); /* in ext/nmatrix/nmatrix.cpp */
|
158
|
+
rb_define_singleton_method(cNMatrix, "guess_dtype", (METHOD)nm_guess_dtype, 1);
|
159
|
+
rb_define_singleton_method(cNMatrix, "min_dtype", (METHOD)nm_min_dtype, 1);
|
160
|
+
|
161
|
+
//////////////////////
|
162
|
+
// Instance Methods //
|
163
|
+
//////////////////////
|
164
|
+
|
165
|
+
rb_define_method(cNMatrix, "initialize", (METHOD)nm_init, -1);
|
166
|
+
rb_define_method(cNMatrix, "initialize_copy", (METHOD)nm_init_copy, 1);
|
167
|
+
rb_define_singleton_method(cNMatrix, "read", (METHOD)nm_read, -1);
|
168
|
+
|
169
|
+
rb_define_method(cNMatrix, "write", (METHOD)nm_write, -1);
|
170
|
+
|
171
|
+
// Technically, the following function is a copy constructor.
|
172
|
+
rb_define_method(cNMatrix, "transpose", (METHOD)nm_init_transposed, 0);
|
173
|
+
|
174
|
+
rb_define_method(cNMatrix, "dtype", (METHOD)nm_dtype, 0);
|
175
|
+
rb_define_method(cNMatrix, "stype", (METHOD)nm_stype, 0);
|
176
|
+
rb_define_method(cNMatrix, "cast_full", (METHOD)nm_cast, 3);
|
177
|
+
rb_define_method(cNMatrix, "default_value", (METHOD)nm_default_value, 0);
|
178
|
+
rb_define_protected_method(cNMatrix, "__list_default_value__", (METHOD)nm_list_default_value, 0);
|
179
|
+
rb_define_protected_method(cNMatrix, "__yale_default_value__", (METHOD)nm_yale_default_value, 0);
|
180
|
+
|
181
|
+
rb_define_method(cNMatrix, "[]", (METHOD)nm_mref, -1);
|
182
|
+
rb_define_method(cNMatrix, "slice", (METHOD)nm_mget, -1);
|
183
|
+
rb_define_method(cNMatrix, "[]=", (METHOD)nm_mset, -1);
|
184
|
+
rb_define_method(cNMatrix, "is_ref?", (METHOD)nm_is_ref, 0);
|
185
|
+
rb_define_method(cNMatrix, "dimensions", (METHOD)nm_dim, 0);
|
186
|
+
rb_define_method(cNMatrix, "effective_dimensions", (METHOD)nm_effective_dim, 0);
|
187
|
+
|
188
|
+
rb_define_protected_method(cNMatrix, "__list_to_hash__", (METHOD)nm_to_hash, 0); // handles list and dense, which are n-dimensional
|
189
|
+
|
190
|
+
rb_define_method(cNMatrix, "shape", (METHOD)nm_shape, 0);
|
191
|
+
rb_define_method(cNMatrix, "supershape", (METHOD)nm_supershape, 0);
|
192
|
+
rb_define_method(cNMatrix, "offset", (METHOD)nm_offset, 0);
|
193
|
+
rb_define_method(cNMatrix, "det_exact", (METHOD)nm_det_exact, 0);
|
194
|
+
rb_define_method(cNMatrix, "complex_conjugate!", (METHOD)nm_complex_conjugate_bang, 0);
|
195
|
+
|
196
|
+
rb_define_protected_method(cNMatrix, "__dense_each__", (METHOD)nm_dense_each, 0);
|
197
|
+
rb_define_protected_method(cNMatrix, "__dense_map__", (METHOD)nm_dense_map, 0);
|
198
|
+
rb_define_protected_method(cNMatrix, "__dense_map_pair__", (METHOD)nm_dense_map_pair, 1);
|
199
|
+
rb_define_method(cNMatrix, "each_with_indices", (METHOD)nm_each_with_indices, 0);
|
200
|
+
rb_define_method(cNMatrix, "each_stored_with_indices", (METHOD)nm_each_stored_with_indices, 0);
|
201
|
+
rb_define_method(cNMatrix, "each_ordered_stored_with_indices", (METHOD)nm_each_ordered_stored_with_indices, 0);
|
202
|
+
rb_define_protected_method(cNMatrix, "__list_map_merged_stored__", (METHOD)nm_list_map_merged_stored, 2);
|
203
|
+
rb_define_protected_method(cNMatrix, "__yale_map_merged_stored__", (METHOD)nm_yale_map_merged_stored, 2);
|
204
|
+
rb_define_protected_method(cNMatrix, "__yale_map_stored__", (METHOD)nm_yale_map_stored, 0);
|
205
|
+
rb_define_protected_method(cNMatrix, "__yale_stored_diagonal_each_with_indices__", (METHOD)nm_yale_stored_diagonal_each_with_indices, 0);
|
206
|
+
rb_define_protected_method(cNMatrix, "__yale_stored_nondiagonal_each_with_indices__", (METHOD)nm_yale_stored_nondiagonal_each_with_indices, 0);
|
207
|
+
|
208
|
+
rb_define_method(cNMatrix, "==", (METHOD)nm_eqeq, 1);
|
209
|
+
|
210
|
+
rb_define_method(cNMatrix, "+", (METHOD)nm_ew_add, 1);
|
211
|
+
rb_define_method(cNMatrix, "-", (METHOD)nm_ew_subtract, 1);
|
212
|
+
rb_define_method(cNMatrix, "*", (METHOD)nm_ew_multiply, 1);
|
213
|
+
rb_define_method(cNMatrix, "/", (METHOD)nm_ew_divide, 1);
|
214
|
+
rb_define_method(cNMatrix, "**", (METHOD)nm_ew_power, 1);
|
215
|
+
rb_define_method(cNMatrix, "%", (METHOD)nm_ew_mod, 1);
|
216
|
+
|
217
|
+
rb_define_method(cNMatrix, "=~", (METHOD)nm_ew_eqeq, 1);
|
218
|
+
rb_define_method(cNMatrix, "!~", (METHOD)nm_ew_neq, 1);
|
219
|
+
rb_define_method(cNMatrix, "<=", (METHOD)nm_ew_leq, 1);
|
220
|
+
rb_define_method(cNMatrix, ">=", (METHOD)nm_ew_geq, 1);
|
221
|
+
rb_define_method(cNMatrix, "<", (METHOD)nm_ew_lt, 1);
|
222
|
+
rb_define_method(cNMatrix, ">", (METHOD)nm_ew_gt, 1);
|
223
|
+
|
224
|
+
/////////////////////////////
|
225
|
+
// Helper Instance Methods //
|
226
|
+
/////////////////////////////
|
227
|
+
rb_define_protected_method(cNMatrix, "__yale_vector_set__", (METHOD)nm_vector_set, -1);
|
228
|
+
|
229
|
+
/////////////////////////
|
230
|
+
// Matrix Math Methods //
|
231
|
+
/////////////////////////
|
232
|
+
rb_define_method(cNMatrix, "dot", (METHOD)nm_multiply, 1);
|
233
|
+
|
234
|
+
rb_define_method(cNMatrix, "symmetric?", (METHOD)nm_symmetric, 0);
|
235
|
+
rb_define_method(cNMatrix, "hermitian?", (METHOD)nm_hermitian, 0);
|
236
|
+
|
237
|
+
rb_define_method(cNMatrix, "capacity", (METHOD)nm_capacity, 0);
|
238
|
+
|
239
|
+
/////////////
|
240
|
+
// Aliases //
|
241
|
+
/////////////
|
242
|
+
|
243
|
+
rb_define_alias(cNMatrix, "dim", "dimensions");
|
244
|
+
rb_define_alias(cNMatrix, "effective_dim", "effective_dimensions");
|
245
|
+
rb_define_alias(cNMatrix, "equal?", "eql?");
|
246
|
+
|
247
|
+
///////////////////////
|
248
|
+
// Symbol Generation //
|
249
|
+
///////////////////////
|
250
|
+
|
251
|
+
nm_init_ruby_constants();
|
252
|
+
|
253
|
+
//////////////////////////
|
254
|
+
// YaleFunctions module //
|
255
|
+
//////////////////////////
|
256
|
+
|
257
|
+
nm_init_yale_functions();
|
258
|
+
|
259
|
+
/////////////////
|
260
|
+
// BLAS module //
|
261
|
+
/////////////////
|
262
|
+
|
263
|
+
nm_math_init_blas();
|
264
|
+
|
265
|
+
///////////////
|
266
|
+
// IO module //
|
267
|
+
///////////////
|
268
|
+
nm_init_io();
|
269
|
+
|
270
|
+
/////////////////////////////////////////////////
|
271
|
+
// Force compilation of necessary constructors //
|
272
|
+
/////////////////////////////////////////////////
|
273
|
+
nm_init_data();
|
274
|
+
}
|
275
|
+
|
276
|
+
|
277
|
+
//////////////////
|
278
|
+
// Ruby Methods //
|
279
|
+
//////////////////
|
280
|
+
|
281
|
+
|
282
|
+
/*
|
283
|
+
* Slice constructor.
|
284
|
+
*/
|
285
|
+
static SLICE* alloc_slice(size_t dim) {
|
286
|
+
SLICE* slice = ALLOC(SLICE);
|
287
|
+
slice->coords = ALLOC_N(size_t, dim);
|
288
|
+
slice->lengths = ALLOC_N(size_t, dim);
|
289
|
+
return slice;
|
290
|
+
}
|
291
|
+
|
292
|
+
|
293
|
+
/*
|
294
|
+
* Slice destructor.
|
295
|
+
*/
|
296
|
+
static void free_slice(SLICE* slice) {
|
297
|
+
xfree(slice->coords);
|
298
|
+
xfree(slice->lengths);
|
299
|
+
xfree(slice);
|
300
|
+
}
|
301
|
+
|
302
|
+
|
303
|
+
/*
|
304
|
+
* Allocator.
|
305
|
+
*/
|
306
|
+
static VALUE nm_alloc(VALUE klass) {
|
307
|
+
NMATRIX* mat = ALLOC(NMATRIX);
|
308
|
+
mat->storage = NULL;
|
309
|
+
|
310
|
+
// DO NOT MARK This STRUCT. It has no storage allocated, and no stype, so mark will do an invalid something.
|
311
|
+
return Data_Wrap_Struct(klass, NULL, nm_delete, mat);
|
312
|
+
}
|
313
|
+
|
314
|
+
/*
|
315
|
+
* Find the capacity of an NMatrix. The capacity only differs from the size for
|
316
|
+
* Yale matrices, which occasionally allocate more space than they need. For
|
317
|
+
* list and dense, capacity gives the number of elements in the matrix.
|
318
|
+
*
|
319
|
+
* If you call this on a slice, it may behave unpredictably. Most likely it'll
|
320
|
+
* just return the original matrix's capacity.
|
321
|
+
*/
|
322
|
+
static VALUE nm_capacity(VALUE self) {
|
323
|
+
VALUE cap;
|
324
|
+
|
325
|
+
switch(NM_STYPE(self)) {
|
326
|
+
case nm::YALE_STORE:
|
327
|
+
cap = UINT2NUM(reinterpret_cast<YALE_STORAGE*>(NM_STORAGE_YALE(self)->src)->capacity);
|
328
|
+
break;
|
329
|
+
|
330
|
+
case nm::DENSE_STORE:
|
331
|
+
cap = UINT2NUM(nm_storage_count_max_elements( NM_STORAGE_DENSE(self) ));
|
332
|
+
break;
|
333
|
+
|
334
|
+
case nm::LIST_STORE:
|
335
|
+
cap = UINT2NUM(nm_list_storage_count_elements( NM_STORAGE_LIST(self) ));
|
336
|
+
break;
|
337
|
+
|
338
|
+
default:
|
339
|
+
rb_raise(nm_eStorageTypeError, "unrecognized stype in nm_capacity()");
|
340
|
+
}
|
341
|
+
|
342
|
+
return cap;
|
343
|
+
}
|
344
|
+
|
345
|
+
|
346
|
+
/*
|
347
|
+
* Mark function.
|
348
|
+
*/
|
349
|
+
void nm_mark(NMATRIX* mat) {
|
350
|
+
STYPE_MARK_TABLE(mark)
|
351
|
+
mark[mat->stype](mat->storage);
|
352
|
+
}
|
353
|
+
|
354
|
+
|
355
|
+
/*
|
356
|
+
* Destructor.
|
357
|
+
*/
|
358
|
+
void nm_delete(NMATRIX* mat) {
|
359
|
+
static void (*ttable[nm::NUM_STYPES])(STORAGE*) = {
|
360
|
+
nm_dense_storage_delete,
|
361
|
+
nm_list_storage_delete,
|
362
|
+
nm_yale_storage_delete
|
363
|
+
};
|
364
|
+
ttable[mat->stype](mat->storage);
|
365
|
+
|
366
|
+
xfree(mat);
|
367
|
+
}
|
368
|
+
|
369
|
+
/*
|
370
|
+
* Slicing destructor.
|
371
|
+
*/
|
372
|
+
void nm_delete_ref(NMATRIX* mat) {
|
373
|
+
static void (*ttable[nm::NUM_STYPES])(STORAGE*) = {
|
374
|
+
nm_dense_storage_delete_ref,
|
375
|
+
nm_list_storage_delete_ref,
|
376
|
+
nm_yale_storage_delete_ref
|
377
|
+
};
|
378
|
+
ttable[mat->stype](mat->storage);
|
379
|
+
|
380
|
+
xfree(mat);
|
381
|
+
}
|
382
|
+
|
383
|
+
/*
|
384
|
+
* Register the addresses of an array of VALUEs with the gc to avoid collection
|
385
|
+
* while using them internally.
|
386
|
+
*/
|
387
|
+
void nm_register_values(VALUE* values, size_t n) {
|
388
|
+
if (values) {
|
389
|
+
for (size_t i = n; i-- > 0;) {
|
390
|
+
rb_gc_register_address(values + i);
|
391
|
+
}
|
392
|
+
}
|
393
|
+
}
|
394
|
+
|
395
|
+
/*
|
396
|
+
* Unregister the addresses of an array of VALUEs with the gc to allow normal
|
397
|
+
* garbage collection to occur again.
|
398
|
+
*/
|
399
|
+
void nm_unregister_values(VALUE* values, size_t n) {
|
400
|
+
if (values) {
|
401
|
+
for (size_t i = n; i-- > 0;) {
|
402
|
+
rb_gc_unregister_address(values + i);
|
403
|
+
}
|
404
|
+
}
|
405
|
+
}
|
406
|
+
|
407
|
+
/*
|
408
|
+
* call-seq:
|
409
|
+
* dtype -> Symbol
|
410
|
+
*
|
411
|
+
* Get the data type (dtype) of a matrix, e.g., :byte, :int8, :int16, :int32,
|
412
|
+
* :int64, :float32, :float64, :complex64, :complex128, :rational32,
|
413
|
+
* :rational64, :rational128, or :object (the last is a Ruby object).
|
414
|
+
*/
|
415
|
+
static VALUE nm_dtype(VALUE self) {
|
416
|
+
ID dtype = rb_intern(DTYPE_NAMES[NM_DTYPE(self)]);
|
417
|
+
return ID2SYM(dtype);
|
418
|
+
}
|
419
|
+
|
420
|
+
|
421
|
+
/*
|
422
|
+
* call-seq:
|
423
|
+
* upcast(first_dtype, second_dtype) -> Symbol
|
424
|
+
*
|
425
|
+
* Given a binary operation between types t1 and t2, what type will be returned?
|
426
|
+
*
|
427
|
+
* This is a singleton method on NMatrix, e.g., NMatrix.upcast(:int32, :int64)
|
428
|
+
*/
|
429
|
+
static VALUE nm_upcast(VALUE self, VALUE t1, VALUE t2) {
|
430
|
+
|
431
|
+
nm::dtype_t d1 = nm_dtype_from_rbsymbol(t1),
|
432
|
+
d2 = nm_dtype_from_rbsymbol(t2);
|
433
|
+
|
434
|
+
return ID2SYM(rb_intern( DTYPE_NAMES[ Upcast[d1][d2] ] ));
|
435
|
+
}
|
436
|
+
|
437
|
+
|
438
|
+
/*
|
439
|
+
* call-seq:
|
440
|
+
default_value -> ...
|
441
|
+
*
|
442
|
+
* Get the default value for the matrix. For dense, this is undefined and will return Qnil. For list, it is user-defined.
|
443
|
+
* For yale, it's going to be some variation on zero, but may be Qfalse or Qnil.
|
444
|
+
*/
|
445
|
+
static VALUE nm_default_value(VALUE self) {
|
446
|
+
switch(NM_STYPE(self)) {
|
447
|
+
case nm::YALE_STORE:
|
448
|
+
return nm_yale_default_value(self);
|
449
|
+
case nm::LIST_STORE:
|
450
|
+
return nm_list_default_value(self);
|
451
|
+
case nm::DENSE_STORE:
|
452
|
+
default:
|
453
|
+
return Qnil;
|
454
|
+
}
|
455
|
+
}
|
456
|
+
|
457
|
+
|
458
|
+
/*
|
459
|
+
* call-seq:
|
460
|
+
* each_with_indices -> Enumerator
|
461
|
+
*
|
462
|
+
* Iterate over all entries of any matrix in standard storage order (as with #each), and include the indices.
|
463
|
+
*/
|
464
|
+
static VALUE nm_each_with_indices(VALUE nmatrix) {
|
465
|
+
volatile VALUE nm = nmatrix;
|
466
|
+
|
467
|
+
switch(NM_STYPE(nm)) {
|
468
|
+
case nm::YALE_STORE:
|
469
|
+
return nm_yale_each_with_indices(nm);
|
470
|
+
case nm::DENSE_STORE:
|
471
|
+
return nm_dense_each_with_indices(nm);
|
472
|
+
case nm::LIST_STORE:
|
473
|
+
return nm_list_each_with_indices(nm, false);
|
474
|
+
default:
|
475
|
+
rb_raise(nm_eDataTypeError, "Not a proper storage type");
|
476
|
+
}
|
477
|
+
}
|
478
|
+
|
479
|
+
/*
|
480
|
+
* call-seq:
|
481
|
+
* each_stored_with_indices -> Enumerator
|
482
|
+
*
|
483
|
+
* Iterate over the stored entries of any matrix. For dense and yale, this iterates over non-zero
|
484
|
+
* entries; for list, this iterates over non-default entries. Yields dim+1 values for each entry:
|
485
|
+
* i, j, ..., and the entry itself.
|
486
|
+
*/
|
487
|
+
static VALUE nm_each_stored_with_indices(VALUE nmatrix) {
|
488
|
+
volatile VALUE nm = nmatrix;
|
489
|
+
|
490
|
+
switch(NM_STYPE(nm)) {
|
491
|
+
case nm::YALE_STORE:
|
492
|
+
return nm_yale_each_stored_with_indices(nm);
|
493
|
+
case nm::DENSE_STORE:
|
494
|
+
return nm_dense_each_with_indices(nm);
|
495
|
+
case nm::LIST_STORE:
|
496
|
+
return nm_list_each_with_indices(nm, true);
|
497
|
+
default:
|
498
|
+
rb_raise(nm_eDataTypeError, "Not a proper storage type");
|
499
|
+
}
|
500
|
+
}
|
501
|
+
|
502
|
+
|
503
|
+
/*
|
504
|
+
* call-seq:
|
505
|
+
* each_ordered_stored_with_indices -> Enumerator
|
506
|
+
*
|
507
|
+
* Very similar to #each_stored_with_indices. The key difference is that it enforces matrix ordering rather
|
508
|
+
* than storage ordering, which only matters if your matrix is Yale.
|
509
|
+
*/
|
510
|
+
static VALUE nm_each_ordered_stored_with_indices(VALUE nmatrix) {
|
511
|
+
volatile VALUE nm = nmatrix;
|
512
|
+
|
513
|
+
switch(NM_STYPE(nm)) {
|
514
|
+
case nm::YALE_STORE:
|
515
|
+
return nm_yale_each_ordered_stored_with_indices(nm);
|
516
|
+
case nm::DENSE_STORE:
|
517
|
+
return nm_dense_each_with_indices(nm);
|
518
|
+
case nm::LIST_STORE:
|
519
|
+
return nm_list_each_with_indices(nm, true);
|
520
|
+
default:
|
521
|
+
rb_raise(nm_eDataTypeError, "Not a proper storage type");
|
522
|
+
}
|
523
|
+
}
|
524
|
+
|
525
|
+
|
526
|
+
/*
|
527
|
+
* Equality operator. Returns a single true or false value indicating whether
|
528
|
+
* the matrices are equivalent.
|
529
|
+
*
|
530
|
+
* For elementwise, use =~ instead.
|
531
|
+
*
|
532
|
+
* This method will raise an exception if dimensions do not match.
|
533
|
+
*/
|
534
|
+
static VALUE nm_eqeq(VALUE left, VALUE right) {
|
535
|
+
NMATRIX *l, *r;
|
536
|
+
|
537
|
+
CheckNMatrixType(left);
|
538
|
+
CheckNMatrixType(right);
|
539
|
+
|
540
|
+
UnwrapNMatrix(left, l);
|
541
|
+
UnwrapNMatrix(right, r);
|
542
|
+
|
543
|
+
if (l->stype != r->stype)
|
544
|
+
rb_raise(rb_eNotImpError, "comparison between different matrix stypes not yet implemented");
|
545
|
+
|
546
|
+
bool result = false;
|
547
|
+
|
548
|
+
switch(l->stype) {
|
549
|
+
case nm::DENSE_STORE:
|
550
|
+
result = nm_dense_storage_eqeq(l->storage, r->storage);
|
551
|
+
break;
|
552
|
+
case nm::LIST_STORE:
|
553
|
+
result = nm_list_storage_eqeq(l->storage, r->storage);
|
554
|
+
break;
|
555
|
+
case nm::YALE_STORE:
|
556
|
+
result = nm_yale_storage_eqeq(l->storage, r->storage);
|
557
|
+
break;
|
558
|
+
}
|
559
|
+
|
560
|
+
return result ? Qtrue : Qfalse;
|
561
|
+
}
|
562
|
+
|
563
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(ADD, add)
|
564
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(SUB, subtract)
|
565
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(MUL, multiply)
|
566
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(DIV, divide)
|
567
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(POW, power)
|
568
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(MOD, mod)
|
569
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(EQEQ, eqeq)
|
570
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(NEQ, neq)
|
571
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(LEQ, leq)
|
572
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(GEQ, geq)
|
573
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(LT, lt)
|
574
|
+
DEF_ELEMENTWISE_RUBY_ACCESSOR(GT, gt)
|
575
|
+
|
576
|
+
/*
|
577
|
+
* call-seq:
|
578
|
+
* hermitian? -> Boolean
|
579
|
+
*
|
580
|
+
* Is this matrix hermitian?
|
581
|
+
*
|
582
|
+
* Definition: http://en.wikipedia.org/wiki/Hermitian_matrix
|
583
|
+
*
|
584
|
+
* For non-complex matrices, this function should return the same result as symmetric?.
|
585
|
+
*/
|
586
|
+
static VALUE nm_hermitian(VALUE self) {
|
587
|
+
return is_symmetric(self, true);
|
588
|
+
}
|
589
|
+
|
590
|
+
|
591
|
+
/*
|
592
|
+
* call-seq:
|
593
|
+
* complex_conjugate -> NMatrix
|
594
|
+
*
|
595
|
+
* Transform the matrix (in-place) to its complex conjugate. Only works on complex matrices.
|
596
|
+
*
|
597
|
+
* FIXME: For non-complex matrices, someone needs to implement a non-in-place complex conjugate (which doesn't use a bang).
|
598
|
+
* Bang should imply that no copy is being made, even temporarily.
|
599
|
+
*/
|
600
|
+
static VALUE nm_complex_conjugate_bang(VALUE self) {
|
601
|
+
NMATRIX* m;
|
602
|
+
void* elem;
|
603
|
+
size_t size, p;
|
604
|
+
|
605
|
+
UnwrapNMatrix(self, m);
|
606
|
+
|
607
|
+
if (m->stype == nm::DENSE_STORE) {
|
608
|
+
|
609
|
+
size = nm_storage_count_max_elements(NM_STORAGE(self));
|
610
|
+
elem = NM_STORAGE_DENSE(self)->elements;
|
611
|
+
|
612
|
+
} else if (m->stype == nm::YALE_STORE) {
|
613
|
+
|
614
|
+
size = nm_yale_storage_get_size(NM_STORAGE_YALE(self));
|
615
|
+
elem = NM_STORAGE_YALE(self)->a;
|
616
|
+
|
617
|
+
} else {
|
618
|
+
rb_raise(rb_eNotImpError, "please cast to yale or dense (complex) first");
|
619
|
+
}
|
620
|
+
|
621
|
+
// Walk through and negate the imaginary component
|
622
|
+
if (NM_DTYPE(self) == nm::COMPLEX64) {
|
623
|
+
|
624
|
+
for (p = 0; p < size; ++p) {
|
625
|
+
reinterpret_cast<nm::Complex64*>(elem)[p].i = -reinterpret_cast<nm::Complex64*>(elem)[p].i;
|
626
|
+
}
|
627
|
+
|
628
|
+
} else if (NM_DTYPE(self) == nm::COMPLEX128) {
|
629
|
+
|
630
|
+
for (p = 0; p < size; ++p) {
|
631
|
+
reinterpret_cast<nm::Complex128*>(elem)[p].i = -reinterpret_cast<nm::Complex128*>(elem)[p].i;
|
632
|
+
}
|
633
|
+
|
634
|
+
} else {
|
635
|
+
rb_raise(nm_eDataTypeError, "can only calculate in-place complex conjugate on matrices of type :complex64 or :complex128");
|
636
|
+
}
|
637
|
+
|
638
|
+
return self;
|
639
|
+
}
|
640
|
+
|
641
|
+
/*
|
642
|
+
* Helper function for creating a matrix. You have to create the storage and pass it in, but you don't
|
643
|
+
* need to worry about deleting it.
|
644
|
+
*/
|
645
|
+
NMATRIX* nm_create(nm::stype_t stype, STORAGE* storage) {
|
646
|
+
NMATRIX* mat = ALLOC(NMATRIX);
|
647
|
+
|
648
|
+
mat->stype = stype;
|
649
|
+
mat->storage = storage;
|
650
|
+
|
651
|
+
return mat;
|
652
|
+
}
|
653
|
+
|
654
|
+
/*
|
655
|
+
* @see nm_init
|
656
|
+
*/
|
657
|
+
static VALUE nm_init_new_version(int argc, VALUE* argv, VALUE self) {
|
658
|
+
VALUE shape_ary, initial_ary, hash;
|
659
|
+
//VALUE shape_ary, default_val, capacity, initial_ary, dtype_sym, stype_sym;
|
660
|
+
// Mandatory args: shape, dtype, stype
|
661
|
+
// FIXME: This is the one line of code standing between Ruby 1.9.2 and 1.9.3.
|
662
|
+
#ifndef OLD_RB_SCAN_ARGS // Ruby 1.9.3 and higher
|
663
|
+
rb_scan_args(argc, argv, "11:", &shape_ary, &initial_ary, &hash); // &stype_sym, &dtype_sym, &default_val, &capacity);
|
664
|
+
#else // Ruby 1.9.2 and lower
|
665
|
+
if (argc == 3)
|
666
|
+
rb_scan_args(argc, argv, "12", &shape_ary, &initial_ary, &hash);
|
667
|
+
else if (argc == 2) {
|
668
|
+
VALUE unknown_arg;
|
669
|
+
rb_scan_args(argc, argv, "11", &shape_ary, &unknown_arg);
|
670
|
+
if (!NIL_P(unknown_arg) && TYPE(unknown_arg) == T_HASH) {
|
671
|
+
hash = unknown_arg;
|
672
|
+
initial_ary = Qnil;
|
673
|
+
} else {
|
674
|
+
initial_ary = unknown_arg;
|
675
|
+
hash = Qnil;
|
676
|
+
}
|
677
|
+
}
|
678
|
+
#endif
|
679
|
+
|
680
|
+
// Get the shape.
|
681
|
+
size_t dim;
|
682
|
+
size_t* shape = interpret_shape(shape_ary, &dim);
|
683
|
+
void* init;
|
684
|
+
void* v = NULL;
|
685
|
+
size_t v_size = 0;
|
686
|
+
|
687
|
+
nm::stype_t stype = nm::DENSE_STORE;
|
688
|
+
nm::dtype_t dtype = nm::RUBYOBJ;
|
689
|
+
VALUE dtype_sym = Qnil, stype_sym = Qnil, default_val_num = Qnil, capacity_num = Qnil;
|
690
|
+
size_t capacity = 0;
|
691
|
+
if (!NIL_P(hash)) {
|
692
|
+
dtype_sym = rb_hash_aref(hash, ID2SYM(nm_rb_dtype));
|
693
|
+
stype_sym = rb_hash_aref(hash, ID2SYM(nm_rb_stype));
|
694
|
+
capacity_num = rb_hash_aref(hash, ID2SYM(nm_rb_capacity));
|
695
|
+
default_val_num = rb_hash_aref(hash, ID2SYM(nm_rb_default));
|
696
|
+
}
|
697
|
+
|
698
|
+
// stype ||= :dense
|
699
|
+
stype = !NIL_P(stype_sym) ? nm_stype_from_rbsymbol(stype_sym) : nm::DENSE_STORE;
|
700
|
+
|
701
|
+
// dtype ||= h[:dtype] || guess_dtype(initial_ary) || :object
|
702
|
+
if (NIL_P(initial_ary) && NIL_P(dtype_sym))
|
703
|
+
dtype = nm::RUBYOBJ;
|
704
|
+
else if (NIL_P(dtype_sym))
|
705
|
+
dtype = nm_dtype_guess(initial_ary);
|
706
|
+
else
|
707
|
+
dtype = nm_dtype_from_rbsymbol(dtype_sym);
|
708
|
+
|
709
|
+
// if stype != :dense
|
710
|
+
// if initial_ary.nil?
|
711
|
+
// init = h[:default] || 0
|
712
|
+
// elsif initial_ary.is_a?(Array)
|
713
|
+
// init = initial_ary.size > 1 ? (h[:default] || 0) : initial_ary[0]
|
714
|
+
// else
|
715
|
+
// init = initial_ary # not an array, just a value
|
716
|
+
// end
|
717
|
+
// end
|
718
|
+
if (stype != nm::DENSE_STORE) {
|
719
|
+
if (!NIL_P(default_val_num))
|
720
|
+
init = rubyobj_to_cval(default_val_num, dtype);
|
721
|
+
else if (NIL_P(initial_ary))
|
722
|
+
init = NULL;
|
723
|
+
else if (TYPE(initial_ary) == T_ARRAY)
|
724
|
+
init = RARRAY_LEN(initial_ary) == 1 ? rubyobj_to_cval(rb_ary_entry(initial_ary, 0), dtype) : NULL;
|
725
|
+
else
|
726
|
+
init = rubyobj_to_cval(initial_ary, dtype);
|
727
|
+
}
|
728
|
+
|
729
|
+
// capacity = h[:capacity] || 0
|
730
|
+
if (stype == nm::YALE_STORE) {
|
731
|
+
if (!NIL_P(capacity_num)) capacity = FIX2INT(capacity_num);
|
732
|
+
}
|
733
|
+
|
734
|
+
if (!NIL_P(initial_ary)) {
|
735
|
+
v = interpret_initial_value(initial_ary, dtype);
|
736
|
+
|
737
|
+
if (TYPE(initial_ary) == T_ARRAY) v_size = RARRAY_LEN(initial_ary);
|
738
|
+
else v_size = 1;
|
739
|
+
}
|
740
|
+
|
741
|
+
// :object matrices MUST be initialized.
|
742
|
+
else if (stype == nm::DENSE_STORE && dtype == nm::RUBYOBJ) {
|
743
|
+
// Pretend [nil] was passed for RUBYOBJ.
|
744
|
+
v = ALLOC(VALUE);
|
745
|
+
*(VALUE*)v = Qnil;
|
746
|
+
|
747
|
+
v_size = 1;
|
748
|
+
|
749
|
+
}
|
750
|
+
|
751
|
+
NMATRIX* nmatrix;
|
752
|
+
UnwrapNMatrix(self, nmatrix);
|
753
|
+
|
754
|
+
nmatrix->stype = stype;
|
755
|
+
|
756
|
+
switch (stype) {
|
757
|
+
case nm::DENSE_STORE:
|
758
|
+
nmatrix->storage = (STORAGE*)nm_dense_storage_create(dtype, shape, dim, v, v_size);
|
759
|
+
break;
|
760
|
+
|
761
|
+
case nm::LIST_STORE:
|
762
|
+
nmatrix->storage = (STORAGE*)nm_list_storage_create(dtype, shape, dim, init);
|
763
|
+
break;
|
764
|
+
|
765
|
+
case nm::YALE_STORE:
|
766
|
+
nmatrix->storage = (STORAGE*)nm_yale_storage_create(dtype, shape, dim, capacity);
|
767
|
+
nm_yale_storage_init((YALE_STORAGE*)(nmatrix->storage), init);
|
768
|
+
break;
|
769
|
+
}
|
770
|
+
|
771
|
+
// If we're not creating a dense, and an initial array was provided, use that and multi-slice-set
|
772
|
+
// to set the contents of the matrix right now.
|
773
|
+
if (stype != nm::DENSE_STORE && v_size > 1) {
|
774
|
+
VALUE* slice_argv = ALLOCA_N(VALUE, dim);
|
775
|
+
size_t* tmp_shape = ALLOC_N(size_t, dim);
|
776
|
+
for (size_t m = 0; m < dim; ++m) {
|
777
|
+
slice_argv[m] = ID2SYM(nm_rb_mul); // :* -- full range
|
778
|
+
tmp_shape[m] = shape[m];
|
779
|
+
}
|
780
|
+
|
781
|
+
SLICE* slice = get_slice(dim, dim, slice_argv, shape);
|
782
|
+
// Create a temporary dense matrix and use it to do a slice assignment on self.
|
783
|
+
NMATRIX* tmp = nm_create(nm::DENSE_STORE, (STORAGE*)nm_dense_storage_create(dtype, tmp_shape, dim, v, v_size));
|
784
|
+
volatile VALUE rb_tmp = Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, tmp);
|
785
|
+
if (stype == nm::YALE_STORE) nm_yale_storage_set(self, slice, rb_tmp);
|
786
|
+
else nm_list_storage_set(self, slice, rb_tmp);
|
787
|
+
|
788
|
+
free_slice(slice);
|
789
|
+
|
790
|
+
// We need to free v if it's not the same size as tmp -- because tmp will have made a copy instead.
|
791
|
+
if (nm_storage_count_max_elements(tmp->storage) != v_size)
|
792
|
+
xfree(v);
|
793
|
+
|
794
|
+
// nm_delete(tmp); // This seems to enrage the garbage collector (because rb_tmp is still available). It'd be better if we could force it to free immediately, but no sweat.
|
795
|
+
}
|
796
|
+
|
797
|
+
return self;
|
798
|
+
}
|
799
|
+
|
800
|
+
/*
|
801
|
+
* call-seq:
|
802
|
+
* new(shape) -> NMatrix
|
803
|
+
* new(shape, initial_value) -> NMatrix
|
804
|
+
* new(shape, initial_array) -> NMatrix
|
805
|
+
* new(shape, initial_value, options) -> NMatrix
|
806
|
+
* new(shape, initial_array, options) -> NMatrix
|
807
|
+
*
|
808
|
+
* Create a new NMatrix.
|
809
|
+
*
|
810
|
+
* The only mandatory argument is shape, which may be a positive integer or an array of positive integers.
|
811
|
+
*
|
812
|
+
* It is recommended that you supply an initialization value or array of values. Without one, Yale and List matrices will
|
813
|
+
* be initialized to 0; and dense matrices will be undefined.
|
814
|
+
*
|
815
|
+
* Additional options may be provided using keyword arguments. The keywords are +:dtype, +:stype+, +:capacity+, and
|
816
|
+
* +:default+. Only Yale uses a capacity argument, which is used to reserve the initial size of its storage vectors.
|
817
|
+
* List and Yale both accept a default value (which itself defaults to 0). This default is taken from the initial value
|
818
|
+
* if such a value is given; it is more likely to be required when an initial array is provided.
|
819
|
+
*
|
820
|
+
* The storage type, or stype, is used to specify whether we want a +:dense+, +:list+, or +:yale+ matrix; dense is the
|
821
|
+
* default.
|
822
|
+
*
|
823
|
+
* The data type, or dtype, can be one of: :byte, :int8, :int16, :int32, :int64, :float32, :float64, :complex64,
|
824
|
+
* :complex128, :rational128, or :object. The constructor will attempt to guess it from the initial value/array/default
|
825
|
+
* provided, if any. Otherwise, the default is :object, which stores any type of Ruby object.
|
826
|
+
*
|
827
|
+
* In addition to the above, there is a legacy constructor from the alpha version. To use that version, you must be
|
828
|
+
* providing exactly four arguments. It is now deprecated.
|
829
|
+
*
|
830
|
+
* There is one additional constructor for advanced users, which takes seven arguments and is only for creating Yale
|
831
|
+
* matrices with known IA, JA, and A arrays. This is used primarily internally for IO, e.g., reading Matlab matrices,
|
832
|
+
* which are stored in old Yale (not our Yale) format. But be careful; there are no overflow warnings. All of these
|
833
|
+
* constructors are defined for power-users. Everyone else should probably resort to the shortcut functions defined in
|
834
|
+
* shortcuts.rb.
|
835
|
+
*/
|
836
|
+
static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
|
837
|
+
|
838
|
+
if (argc <= 3) { // Call the new constructor unless all four arguments are given (or the 7-arg version is given)
|
839
|
+
return nm_init_new_version(argc, argv, nm);
|
840
|
+
}
|
841
|
+
|
842
|
+
/* First, determine stype (dense by default) */
|
843
|
+
nm::stype_t stype;
|
844
|
+
size_t offset = 0;
|
845
|
+
|
846
|
+
if (!SYMBOL_P(argv[0]) && TYPE(argv[0]) != T_STRING) {
|
847
|
+
stype = nm::DENSE_STORE;
|
848
|
+
|
849
|
+
} else {
|
850
|
+
// 0: String or Symbol
|
851
|
+
stype = interpret_stype(argv[0]);
|
852
|
+
offset = 1;
|
853
|
+
}
|
854
|
+
|
855
|
+
// If there are 7 arguments and Yale, refer to a different init function with fewer sanity checks.
|
856
|
+
if (argc == 7) {
|
857
|
+
if (stype == nm::YALE_STORE) {
|
858
|
+
return nm_init_yale_from_old_yale(argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], nm);
|
859
|
+
|
860
|
+
} else {
|
861
|
+
rb_raise(rb_eArgError, "Expected 2-4 arguments (or 7 for internal Yale creation)");
|
862
|
+
}
|
863
|
+
}
|
864
|
+
|
865
|
+
// 1: Array or Fixnum
|
866
|
+
size_t dim;
|
867
|
+
size_t* shape = interpret_shape(argv[offset], &dim);
|
868
|
+
|
869
|
+
// 2-3: dtype
|
870
|
+
nm::dtype_t dtype = interpret_dtype(argc-1-offset, argv+offset+1, stype);
|
871
|
+
|
872
|
+
size_t init_cap = 0, init_val_len = 0;
|
873
|
+
void* init_val = NULL;
|
874
|
+
if (!SYMBOL_P(argv[1+offset]) || TYPE(argv[1+offset]) == T_ARRAY) {
|
875
|
+
// Initial value provided (could also be initial capacity, if yale).
|
876
|
+
|
877
|
+
if (stype == nm::YALE_STORE && NM_RUBYVAL_IS_NUMERIC(argv[1+offset])) {
|
878
|
+
init_cap = FIX2UINT(argv[1+offset]);
|
879
|
+
|
880
|
+
} else {
|
881
|
+
// 4: initial value / dtype
|
882
|
+
init_val = interpret_initial_value(argv[1+offset], dtype);
|
883
|
+
|
884
|
+
if (TYPE(argv[1+offset]) == T_ARRAY) init_val_len = RARRAY_LEN(argv[1+offset]);
|
885
|
+
else init_val_len = 1;
|
886
|
+
}
|
887
|
+
|
888
|
+
} else {
|
889
|
+
// DType is RUBYOBJ.
|
890
|
+
|
891
|
+
if (stype == nm::DENSE_STORE) {
|
892
|
+
/*
|
893
|
+
* No need to initialize dense with any kind of default value unless it's
|
894
|
+
* an RUBYOBJ matrix.
|
895
|
+
*/
|
896
|
+
if (dtype == nm::RUBYOBJ) {
|
897
|
+
// Pretend [nil] was passed for RUBYOBJ.
|
898
|
+
init_val = ALLOC(VALUE);
|
899
|
+
*(VALUE*)init_val = Qnil;
|
900
|
+
|
901
|
+
init_val_len = 1;
|
902
|
+
|
903
|
+
} else {
|
904
|
+
init_val = NULL;
|
905
|
+
}
|
906
|
+
} else if (stype == nm::LIST_STORE) {
|
907
|
+
init_val = ALLOC_N(char, DTYPE_SIZES[dtype]);
|
908
|
+
std::memset(init_val, 0, DTYPE_SIZES[dtype]);
|
909
|
+
}
|
910
|
+
}
|
911
|
+
|
912
|
+
// TODO: Update to allow an array as the initial value.
|
913
|
+
NMATRIX* nmatrix;
|
914
|
+
UnwrapNMatrix(nm, nmatrix);
|
915
|
+
|
916
|
+
nmatrix->stype = stype;
|
917
|
+
|
918
|
+
switch (stype) {
|
919
|
+
case nm::DENSE_STORE:
|
920
|
+
nmatrix->storage = (STORAGE*)nm_dense_storage_create(dtype, shape, dim, init_val, init_val_len);
|
921
|
+
break;
|
922
|
+
|
923
|
+
case nm::LIST_STORE:
|
924
|
+
nmatrix->storage = (STORAGE*)nm_list_storage_create(dtype, shape, dim, init_val);
|
925
|
+
break;
|
926
|
+
|
927
|
+
case nm::YALE_STORE:
|
928
|
+
nmatrix->storage = (STORAGE*)nm_yale_storage_create(dtype, shape, dim, init_cap);
|
929
|
+
nm_yale_storage_init((YALE_STORAGE*)(nmatrix->storage), NULL);
|
930
|
+
break;
|
931
|
+
}
|
932
|
+
|
933
|
+
return nm;
|
934
|
+
}
|
935
|
+
|
936
|
+
|
937
|
+
/*
|
938
|
+
* Helper for nm_cast which uses the C types instead of the Ruby objects. Called by nm_cast.
|
939
|
+
*/
|
940
|
+
NMATRIX* nm_cast_with_ctype_args(NMATRIX* self, nm::stype_t new_stype, nm::dtype_t new_dtype, void* init_ptr) {
|
941
|
+
NMATRIX* lhs = ALLOC(NMATRIX);
|
942
|
+
lhs->stype = new_stype;
|
943
|
+
|
944
|
+
// Copy the storage
|
945
|
+
CAST_TABLE(cast_copy);
|
946
|
+
lhs->storage = cast_copy[lhs->stype][self->stype](self->storage, new_dtype, init_ptr);
|
947
|
+
|
948
|
+
return lhs;
|
949
|
+
}
|
950
|
+
|
951
|
+
|
952
|
+
/*
|
953
|
+
* call-seq:
|
954
|
+
* cast_full(stype) -> NMatrix
|
955
|
+
* cast_full(stype, dtype, sparse_basis) -> NMatrix
|
956
|
+
*
|
957
|
+
* Copy constructor for changing dtypes and stypes.
|
958
|
+
*/
|
959
|
+
VALUE nm_cast(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol, VALUE init) {
|
960
|
+
nm::dtype_t new_dtype = nm_dtype_from_rbsymbol(new_dtype_symbol);
|
961
|
+
nm::stype_t new_stype = nm_stype_from_rbsymbol(new_stype_symbol);
|
962
|
+
|
963
|
+
CheckNMatrixType(self);
|
964
|
+
NMATRIX *rhs;
|
965
|
+
|
966
|
+
UnwrapNMatrix( self, rhs );
|
967
|
+
|
968
|
+
void* init_ptr = ALLOCA_N(char, DTYPE_SIZES[new_dtype]);
|
969
|
+
rubyval_to_cval(init, new_dtype, init_ptr);
|
970
|
+
|
971
|
+
return Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, nm_cast_with_ctype_args(rhs, new_stype, new_dtype, init_ptr));
|
972
|
+
}
|
973
|
+
|
974
|
+
/*
|
975
|
+
* Copy constructor for transposing.
|
976
|
+
*/
|
977
|
+
static VALUE nm_init_transposed(VALUE self) {
|
978
|
+
static STORAGE* (*storage_copy_transposed[nm::NUM_STYPES])(const STORAGE* rhs_base) = {
|
979
|
+
nm_dense_storage_copy_transposed,
|
980
|
+
nm_list_storage_copy_transposed,
|
981
|
+
nm_yale_storage_copy_transposed
|
982
|
+
};
|
983
|
+
|
984
|
+
NMATRIX* lhs = nm_create( NM_STYPE(self),
|
985
|
+
storage_copy_transposed[NM_STYPE(self)]( NM_STORAGE(self) )
|
986
|
+
);
|
987
|
+
|
988
|
+
return Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, lhs);
|
989
|
+
}
|
990
|
+
|
991
|
+
/*
|
992
|
+
* Copy constructor for no change of dtype or stype (used for #initialize_copy hook).
|
993
|
+
*/
|
994
|
+
static VALUE nm_init_copy(VALUE copy, VALUE original) {
|
995
|
+
NMATRIX *lhs, *rhs;
|
996
|
+
|
997
|
+
CheckNMatrixType(original);
|
998
|
+
|
999
|
+
if (copy == original) return copy;
|
1000
|
+
|
1001
|
+
UnwrapNMatrix( original, rhs );
|
1002
|
+
UnwrapNMatrix( copy, lhs );
|
1003
|
+
|
1004
|
+
lhs->stype = rhs->stype;
|
1005
|
+
|
1006
|
+
// Copy the storage
|
1007
|
+
CAST_TABLE(ttable);
|
1008
|
+
lhs->storage = ttable[lhs->stype][rhs->stype](rhs->storage, rhs->storage->dtype, NULL);
|
1009
|
+
|
1010
|
+
return copy;
|
1011
|
+
}
|
1012
|
+
|
1013
|
+
/*
|
1014
|
+
* Get major, minor, and release components of NMatrix::VERSION. Store in function parameters.
|
1015
|
+
*/
|
1016
|
+
static void get_version_info(uint16_t& major, uint16_t& minor, uint16_t& release) {
|
1017
|
+
// Get VERSION and split it on periods. Result is an Array.
|
1018
|
+
VALUE version = rb_funcall(rb_const_get(cNMatrix, rb_intern("VERSION")), rb_intern("split"), 1, rb_str_new_cstr("."));
|
1019
|
+
VALUE* ary = RARRAY_PTR(version); // major, minor, and release
|
1020
|
+
|
1021
|
+
// Convert each to an integer
|
1022
|
+
VALUE maj = rb_funcall(ary[0], rb_intern("to_i"), 0);
|
1023
|
+
VALUE min = rb_funcall(ary[1], rb_intern("to_i"), 0);
|
1024
|
+
VALUE rel = rb_funcall(ary[2], rb_intern("to_i"), 0);
|
1025
|
+
|
1026
|
+
major = static_cast<uint16_t>(nm::RubyObject(maj));
|
1027
|
+
minor = static_cast<uint16_t>(nm::RubyObject(min));
|
1028
|
+
release = static_cast<uint16_t>(nm::RubyObject(rel));
|
1029
|
+
}
|
1030
|
+
|
1031
|
+
|
1032
|
+
/*
|
1033
|
+
* Interpret the NMatrix::write symmetry argument (which should be nil or a symbol). Return a symm_t (enum).
|
1034
|
+
*/
|
1035
|
+
static nm::symm_t interpret_symm(VALUE symm) {
|
1036
|
+
if (symm == Qnil) return nm::NONSYMM;
|
1037
|
+
|
1038
|
+
ID rb_symm = rb_intern("symmetric"),
|
1039
|
+
rb_skew = rb_intern("skew"),
|
1040
|
+
rb_herm = rb_intern("hermitian");
|
1041
|
+
// nm_rb_upper, nm_rb_lower already set
|
1042
|
+
|
1043
|
+
ID symm_id = rb_to_id(symm);
|
1044
|
+
|
1045
|
+
if (symm_id == rb_symm) return nm::SYMM;
|
1046
|
+
else if (symm_id == rb_skew) return nm::SKEW;
|
1047
|
+
else if (symm_id == rb_herm) return nm::HERM;
|
1048
|
+
else if (symm_id == nm_rb_upper) return nm::UPPER;
|
1049
|
+
else if (symm_id == nm_rb_lower) return nm::LOWER;
|
1050
|
+
else rb_raise(rb_eArgError, "unrecognized symmetry argument");
|
1051
|
+
|
1052
|
+
return nm::NONSYMM;
|
1053
|
+
}
|
1054
|
+
|
1055
|
+
|
1056
|
+
|
1057
|
+
void read_padded_shape(std::ifstream& f, size_t dim, size_t* shape) {
|
1058
|
+
nm::read_padded_shape(f, dim, shape);
|
1059
|
+
}
|
1060
|
+
|
1061
|
+
|
1062
|
+
void write_padded_shape(std::ofstream& f, size_t dim, size_t* shape) {
|
1063
|
+
nm::write_padded_shape(f, dim, shape);
|
1064
|
+
}
|
1065
|
+
|
1066
|
+
|
1067
|
+
void read_padded_yale_elements(std::ifstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype) {
|
1068
|
+
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_yale_elements, void, std::ifstream&, YALE_STORAGE*, size_t, nm::symm_t)
|
1069
|
+
|
1070
|
+
ttable[dtype](f, storage, length, symm);
|
1071
|
+
}
|
1072
|
+
|
1073
|
+
|
1074
|
+
void write_padded_yale_elements(std::ofstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype) {
|
1075
|
+
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_yale_elements, void, std::ofstream& f, YALE_STORAGE*, size_t, nm::symm_t)
|
1076
|
+
|
1077
|
+
ttable[dtype](f, storage, length, symm);
|
1078
|
+
}
|
1079
|
+
|
1080
|
+
|
1081
|
+
void read_padded_dense_elements(std::ifstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
|
1082
|
+
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_dense_elements, void, std::ifstream&, DENSE_STORAGE*, nm::symm_t)
|
1083
|
+
|
1084
|
+
ttable[dtype](f, storage, symm);
|
1085
|
+
}
|
1086
|
+
|
1087
|
+
|
1088
|
+
void write_padded_dense_elements(std::ofstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
|
1089
|
+
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_dense_elements, void, std::ofstream& f, DENSE_STORAGE*, nm::symm_t)
|
1090
|
+
|
1091
|
+
ttable[dtype](f, storage, symm);
|
1092
|
+
}
|
1093
|
+
|
1094
|
+
|
1095
|
+
/*
|
1096
|
+
* Helper function to get exceptions in the module Errno (e.g., ENOENT). Example:
|
1097
|
+
*
|
1098
|
+
* rb_raise(rb_get_errno_exc("ENOENT"), RSTRING_PTR(filename));
|
1099
|
+
*/
|
1100
|
+
static VALUE rb_get_errno_exc(const char* which) {
|
1101
|
+
return rb_const_get(rb_const_get(rb_cObject, rb_intern("Errno")), rb_intern(which));
|
1102
|
+
}
|
1103
|
+
|
1104
|
+
|
1105
|
+
|
1106
|
+
/*
|
1107
|
+
* Binary file writer for NMatrix standard format. file should be a path, which we aren't going to
|
1108
|
+
* check very carefully (in other words, this function should generally be called from a Ruby
|
1109
|
+
* helper method). Function also takes a symmetry argument, which allows us to specify that we only want to
|
1110
|
+
* save the upper triangular portion of the matrix (or if the matrix is a lower triangular matrix, only
|
1111
|
+
* the lower triangular portion). nil means regular storage.
|
1112
|
+
*/
|
1113
|
+
static VALUE nm_write(int argc, VALUE* argv, VALUE self) {
|
1114
|
+
using std::ofstream;
|
1115
|
+
|
1116
|
+
if (argc < 1 || argc > 2) {
|
1117
|
+
rb_raise(rb_eArgError, "Expected one or two arguments");
|
1118
|
+
}
|
1119
|
+
VALUE file = argv[0],
|
1120
|
+
symm = argc == 1 ? Qnil : argv[1];
|
1121
|
+
|
1122
|
+
NMATRIX* nmatrix;
|
1123
|
+
UnwrapNMatrix( self, nmatrix );
|
1124
|
+
|
1125
|
+
nm::symm_t symm_ = interpret_symm(symm);
|
1126
|
+
|
1127
|
+
if (nmatrix->storage->dtype == nm::RUBYOBJ) {
|
1128
|
+
rb_raise(rb_eNotImpError, "Ruby Object writing is not implemented yet");
|
1129
|
+
}
|
1130
|
+
|
1131
|
+
// Get the dtype, stype, itype, and symm and ensure they're the correct number of bytes.
|
1132
|
+
uint8_t st = static_cast<uint8_t>(nmatrix->stype),
|
1133
|
+
dt = static_cast<uint8_t>(nmatrix->storage->dtype),
|
1134
|
+
sm = static_cast<uint8_t>(symm_);
|
1135
|
+
uint16_t dim = nmatrix->storage->dim;
|
1136
|
+
|
1137
|
+
//FIXME: Cast the matrix to the smallest possible index type. Write that in the place of IType.
|
1138
|
+
|
1139
|
+
// Check arguments before starting to write.
|
1140
|
+
if (nmatrix->stype == nm::LIST_STORE) rb_raise(nm_eStorageTypeError, "cannot save list matrix; cast to yale or dense first");
|
1141
|
+
if (symm_ != nm::NONSYMM) {
|
1142
|
+
if (dim != 2) rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-2D matrix");
|
1143
|
+
if (nmatrix->storage->shape[0] != nmatrix->storage->shape[1])
|
1144
|
+
rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-square matrix");
|
1145
|
+
if (symm_ == nm::HERM &&
|
1146
|
+
dt != static_cast<uint8_t>(nm::COMPLEX64) && dt != static_cast<uint8_t>(nm::COMPLEX128) && dt != static_cast<uint8_t>(nm::RUBYOBJ))
|
1147
|
+
rb_raise(rb_eArgError, "cannot save a non-complex matrix as hermitian");
|
1148
|
+
}
|
1149
|
+
|
1150
|
+
ofstream f(RSTRING_PTR(file), std::ios::out | std::ios::binary);
|
1151
|
+
|
1152
|
+
// Get the NMatrix version information.
|
1153
|
+
uint16_t major, minor, release, null16 = 0;
|
1154
|
+
get_version_info(major, minor, release);
|
1155
|
+
|
1156
|
+
// WRITE FIRST 64-BIT BLOCK
|
1157
|
+
f.write(reinterpret_cast<const char*>(&major), sizeof(uint16_t));
|
1158
|
+
f.write(reinterpret_cast<const char*>(&minor), sizeof(uint16_t));
|
1159
|
+
f.write(reinterpret_cast<const char*>(&release), sizeof(uint16_t));
|
1160
|
+
f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
|
1161
|
+
|
1162
|
+
uint8_t ZERO = 0;
|
1163
|
+
// WRITE SECOND 64-BIT BLOCK
|
1164
|
+
f.write(reinterpret_cast<const char*>(&dt), sizeof(uint8_t));
|
1165
|
+
f.write(reinterpret_cast<const char*>(&st), sizeof(uint8_t));
|
1166
|
+
f.write(reinterpret_cast<const char*>(&ZERO),sizeof(uint8_t));
|
1167
|
+
f.write(reinterpret_cast<const char*>(&sm), sizeof(uint8_t));
|
1168
|
+
f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
|
1169
|
+
f.write(reinterpret_cast<const char*>(&dim), sizeof(uint16_t));
|
1170
|
+
|
1171
|
+
// Write shape (in 64-bit blocks)
|
1172
|
+
write_padded_shape(f, nmatrix->storage->dim, nmatrix->storage->shape);
|
1173
|
+
|
1174
|
+
if (nmatrix->stype == nm::DENSE_STORE) {
|
1175
|
+
write_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(nmatrix->storage), symm_, nmatrix->storage->dtype);
|
1176
|
+
} else if (nmatrix->stype == nm::YALE_STORE) {
|
1177
|
+
YALE_STORAGE* s = reinterpret_cast<YALE_STORAGE*>(nmatrix->storage);
|
1178
|
+
uint32_t ndnz = s->ndnz,
|
1179
|
+
length = nm_yale_storage_get_size(s);
|
1180
|
+
f.write(reinterpret_cast<const char*>(&ndnz), sizeof(uint32_t));
|
1181
|
+
f.write(reinterpret_cast<const char*>(&length), sizeof(uint32_t));
|
1182
|
+
|
1183
|
+
write_padded_yale_elements(f, s, length, symm_, s->dtype);
|
1184
|
+
}
|
1185
|
+
|
1186
|
+
f.close();
|
1187
|
+
|
1188
|
+
return Qtrue;
|
1189
|
+
}
|
1190
|
+
|
1191
|
+
|
1192
|
+
/*
|
1193
|
+
* Binary file reader for NMatrix standard format. file should be a path, which we aren't going to
|
1194
|
+
* check very carefully (in other words, this function should generally be called from a Ruby
|
1195
|
+
* helper method).
|
1196
|
+
*
|
1197
|
+
* Note that currently, this function will by default refuse to read files that are newer than
|
1198
|
+
* your version of NMatrix. To force an override, set the second argument to anything other than nil.
|
1199
|
+
*
|
1200
|
+
* Returns an NMatrix Ruby object.
|
1201
|
+
*/
|
1202
|
+
static VALUE nm_read(int argc, VALUE* argv, VALUE self) {
|
1203
|
+
using std::ifstream;
|
1204
|
+
|
1205
|
+
VALUE file, force_;
|
1206
|
+
|
1207
|
+
// Read the arguments
|
1208
|
+
rb_scan_args(argc, argv, "11", &file, &force_);
|
1209
|
+
bool force = (force_ != Qnil && force_ != Qfalse);
|
1210
|
+
|
1211
|
+
|
1212
|
+
if (!RB_FILE_EXISTS(file)) { // FIXME: Errno::ENOENT
|
1213
|
+
rb_raise(rb_get_errno_exc("ENOENT"), "%s", RSTRING_PTR(file));
|
1214
|
+
}
|
1215
|
+
|
1216
|
+
// Open a file stream
|
1217
|
+
ifstream f(RSTRING_PTR(file), std::ios::in | std::ios::binary);
|
1218
|
+
|
1219
|
+
uint16_t major, minor, release;
|
1220
|
+
get_version_info(major, minor, release); // compare to NMatrix version
|
1221
|
+
|
1222
|
+
uint16_t fmajor, fminor, frelease, null16;
|
1223
|
+
|
1224
|
+
// READ FIRST 64-BIT BLOCK
|
1225
|
+
f.read(reinterpret_cast<char*>(&fmajor), sizeof(uint16_t));
|
1226
|
+
f.read(reinterpret_cast<char*>(&fminor), sizeof(uint16_t));
|
1227
|
+
f.read(reinterpret_cast<char*>(&frelease), sizeof(uint16_t));
|
1228
|
+
f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
|
1229
|
+
|
1230
|
+
int ver = major * 10000 + minor * 100 + release,
|
1231
|
+
fver = fmajor * 10000 + fminor * 100 + release;
|
1232
|
+
if (fver > ver && force == false) {
|
1233
|
+
rb_raise(rb_eIOError, "File was created in newer version of NMatrix than current");
|
1234
|
+
}
|
1235
|
+
if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
|
1236
|
+
|
1237
|
+
uint8_t dt, st, it, sm;
|
1238
|
+
uint16_t dim;
|
1239
|
+
|
1240
|
+
// READ SECOND 64-BIT BLOCK
|
1241
|
+
f.read(reinterpret_cast<char*>(&dt), sizeof(uint8_t));
|
1242
|
+
f.read(reinterpret_cast<char*>(&st), sizeof(uint8_t));
|
1243
|
+
f.read(reinterpret_cast<char*>(&it), sizeof(uint8_t)); // FIXME: should tell how few bytes indices are stored as
|
1244
|
+
f.read(reinterpret_cast<char*>(&sm), sizeof(uint8_t));
|
1245
|
+
f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
|
1246
|
+
f.read(reinterpret_cast<char*>(&dim), sizeof(uint16_t));
|
1247
|
+
|
1248
|
+
if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
|
1249
|
+
nm::stype_t stype = static_cast<nm::stype_t>(st);
|
1250
|
+
nm::dtype_t dtype = static_cast<nm::dtype_t>(dt);
|
1251
|
+
nm::symm_t symm = static_cast<nm::symm_t>(sm);
|
1252
|
+
//nm::itype_t itype = static_cast<nm::itype_t>(it);
|
1253
|
+
|
1254
|
+
// READ NEXT FEW 64-BIT BLOCKS
|
1255
|
+
size_t* shape = ALLOC_N(size_t, dim);
|
1256
|
+
read_padded_shape(f, dim, shape);
|
1257
|
+
|
1258
|
+
STORAGE* s;
|
1259
|
+
if (stype == nm::DENSE_STORE) {
|
1260
|
+
s = nm_dense_storage_create(dtype, shape, dim, NULL, 0);
|
1261
|
+
|
1262
|
+
read_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(s), symm, dtype);
|
1263
|
+
|
1264
|
+
} else if (stype == nm::YALE_STORE) {
|
1265
|
+
uint32_t ndnz, length;
|
1266
|
+
|
1267
|
+
// READ YALE-SPECIFIC 64-BIT BLOCK
|
1268
|
+
f.read(reinterpret_cast<char*>(&ndnz), sizeof(uint32_t));
|
1269
|
+
f.read(reinterpret_cast<char*>(&length), sizeof(uint32_t));
|
1270
|
+
|
1271
|
+
s = nm_yale_storage_create(dtype, shape, dim, length); // set length as init capacity
|
1272
|
+
|
1273
|
+
read_padded_yale_elements(f, reinterpret_cast<YALE_STORAGE*>(s), length, symm, dtype);
|
1274
|
+
} else {
|
1275
|
+
rb_raise(nm_eStorageTypeError, "please convert to yale or dense before saving");
|
1276
|
+
}
|
1277
|
+
|
1278
|
+
NMATRIX* nm = nm_create(stype, s);
|
1279
|
+
|
1280
|
+
// Return the appropriate matrix object (Ruby VALUE)
|
1281
|
+
// FIXME: This should probably return CLASS_OF(self) instead of cNMatrix, but I don't know how that works for
|
1282
|
+
// FIXME: class methods.
|
1283
|
+
switch(stype) {
|
1284
|
+
case nm::DENSE_STORE:
|
1285
|
+
case nm::YALE_STORE:
|
1286
|
+
return Data_Wrap_Struct(cNMatrix, nm_mark, nm_delete, nm);
|
1287
|
+
default: // this case never occurs (due to earlier rb_raise)
|
1288
|
+
return Qnil;
|
1289
|
+
}
|
1290
|
+
|
1291
|
+
}
|
1292
|
+
|
1293
|
+
|
1294
|
+
|
1295
|
+
/*
|
1296
|
+
* Create a new NMatrix helper for handling internal ia, ja, and a arguments.
|
1297
|
+
*
|
1298
|
+
* This constructor is only called by Ruby code, so we can skip most of the
|
1299
|
+
* checks.
|
1300
|
+
*/
|
1301
|
+
static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm) {
|
1302
|
+
size_t dim = 2;
|
1303
|
+
size_t* shape_ = interpret_shape(shape, &dim);
|
1304
|
+
nm::dtype_t dtype_ = nm_dtype_from_rbsymbol(dtype);
|
1305
|
+
char *ia_ = RSTRING_PTR(ia),
|
1306
|
+
*ja_ = RSTRING_PTR(ja),
|
1307
|
+
*a_ = RSTRING_PTR(a);
|
1308
|
+
nm::dtype_t from_dtype_ = nm_dtype_from_rbsymbol(from_dtype);
|
1309
|
+
NMATRIX* nmatrix;
|
1310
|
+
|
1311
|
+
UnwrapNMatrix( nm, nmatrix );
|
1312
|
+
|
1313
|
+
nmatrix->stype = nm::YALE_STORE;
|
1314
|
+
nmatrix->storage = (STORAGE*)nm_yale_storage_create_from_old_yale(dtype_, shape_, ia_, ja_, a_, from_dtype_);
|
1315
|
+
|
1316
|
+
return nm;
|
1317
|
+
}
|
1318
|
+
|
1319
|
+
/*
|
1320
|
+
* Check to determine whether matrix is a reference to another matrix.
|
1321
|
+
*/
|
1322
|
+
static VALUE nm_is_ref(VALUE self) {
|
1323
|
+
if (NM_SRC(self) == NM_STORAGE(self)) return Qfalse;
|
1324
|
+
else return Qtrue;
|
1325
|
+
}
|
1326
|
+
|
1327
|
+
/*
|
1328
|
+
* call-seq:
|
1329
|
+
* slice -> ...
|
1330
|
+
*
|
1331
|
+
* Access the contents of an NMatrix at given coordinates, using copying.
|
1332
|
+
*
|
1333
|
+
* n.slice(3,3) # => 5.0
|
1334
|
+
* n.slice(0..1,0..1) #=> matrix [2,2]
|
1335
|
+
*
|
1336
|
+
*/
|
1337
|
+
static VALUE nm_mget(int argc, VALUE* argv, VALUE self) {
|
1338
|
+
static void* (*ttable[nm::NUM_STYPES])(const STORAGE*, SLICE*) = {
|
1339
|
+
nm_dense_storage_get,
|
1340
|
+
nm_list_storage_get,
|
1341
|
+
nm_yale_storage_get
|
1342
|
+
};
|
1343
|
+
return nm_xslice(argc, argv, ttable[NM_STYPE(self)], nm_delete, self);
|
1344
|
+
}
|
1345
|
+
|
1346
|
+
/*
|
1347
|
+
* call-seq:
|
1348
|
+
* matrix[indices] -> ...
|
1349
|
+
*
|
1350
|
+
* Access the contents of an NMatrix at given coordinates by reference.
|
1351
|
+
*
|
1352
|
+
* n[3,3] # => 5.0
|
1353
|
+
* n[0..1,0..1] #=> matrix [2,2]
|
1354
|
+
*
|
1355
|
+
*/
|
1356
|
+
static VALUE nm_mref(int argc, VALUE* argv, VALUE self) {
|
1357
|
+
static void* (*ttable[nm::NUM_STYPES])(const STORAGE*, SLICE*) = {
|
1358
|
+
nm_dense_storage_ref,
|
1359
|
+
nm_list_storage_ref,
|
1360
|
+
nm_yale_storage_ref
|
1361
|
+
};
|
1362
|
+
return nm_xslice(argc, argv, ttable[NM_STYPE(self)], nm_delete_ref, self);
|
1363
|
+
}
|
1364
|
+
|
1365
|
+
/*
|
1366
|
+
* Modify the contents of an NMatrix in the given cell
|
1367
|
+
*
|
1368
|
+
* n[3,3] = 5.0
|
1369
|
+
*
|
1370
|
+
* Also returns the new contents, so you can chain:
|
1371
|
+
*
|
1372
|
+
* n[3,3] = n[2,3] = 5.0
|
1373
|
+
*/
|
1374
|
+
static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
|
1375
|
+
size_t dim = NM_DIM(self); // last arg is the value
|
1376
|
+
|
1377
|
+
if ((size_t)(argc) > NM_DIM(self)+1) {
|
1378
|
+
rb_raise(rb_eArgError, "wrong number of arguments (%d for %u)", argc, effective_dim(NM_STORAGE(self))+1);
|
1379
|
+
} else {
|
1380
|
+
SLICE* slice = get_slice(dim, argc-1, argv, NM_STORAGE(self)->shape);
|
1381
|
+
|
1382
|
+
static void (*ttable[nm::NUM_STYPES])(VALUE, SLICE*, VALUE) = {
|
1383
|
+
nm_dense_storage_set,
|
1384
|
+
nm_list_storage_set,
|
1385
|
+
nm_yale_storage_set
|
1386
|
+
};
|
1387
|
+
|
1388
|
+
ttable[NM_STYPE(self)](self, slice, argv[argc-1]);
|
1389
|
+
|
1390
|
+
free_slice(slice);
|
1391
|
+
|
1392
|
+
return argv[argc-1];
|
1393
|
+
}
|
1394
|
+
return Qnil;
|
1395
|
+
}
|
1396
|
+
|
1397
|
+
/*
|
1398
|
+
* Matrix multiply (dot product): against another matrix or a vector.
|
1399
|
+
*
|
1400
|
+
* For elementwise, use * instead.
|
1401
|
+
*
|
1402
|
+
* The two matrices must be of the same stype (for now). If dtype differs, an upcast will occur.
|
1403
|
+
*/
|
1404
|
+
static VALUE nm_multiply(VALUE left_v, VALUE right_v) {
|
1405
|
+
NMATRIX *left, *right;
|
1406
|
+
|
1407
|
+
UnwrapNMatrix( left_v, left );
|
1408
|
+
|
1409
|
+
if (NM_RUBYVAL_IS_NUMERIC(right_v))
|
1410
|
+
return matrix_multiply_scalar(left, right_v);
|
1411
|
+
|
1412
|
+
else if (TYPE(right_v) == T_ARRAY)
|
1413
|
+
rb_raise(rb_eNotImpError, "please convert array to nx1 or 1xn NMatrix first");
|
1414
|
+
|
1415
|
+
else { // both are matrices (probably)
|
1416
|
+
CheckNMatrixType(right_v);
|
1417
|
+
UnwrapNMatrix( right_v, right );
|
1418
|
+
|
1419
|
+
if (left->storage->shape[1] != right->storage->shape[0])
|
1420
|
+
rb_raise(rb_eArgError, "incompatible dimensions");
|
1421
|
+
|
1422
|
+
if (left->stype != right->stype)
|
1423
|
+
rb_raise(rb_eNotImpError, "matrices must have same stype");
|
1424
|
+
|
1425
|
+
return matrix_multiply(left, right);
|
1426
|
+
|
1427
|
+
}
|
1428
|
+
|
1429
|
+
return Qnil;
|
1430
|
+
}
|
1431
|
+
|
1432
|
+
|
1433
|
+
/*
|
1434
|
+
* call-seq:
|
1435
|
+
* dim -> Integer
|
1436
|
+
*
|
1437
|
+
* Get the number of dimensions of a matrix.
|
1438
|
+
*
|
1439
|
+
* In other words, if you set your matrix to be 3x4, the dim is 2. If the
|
1440
|
+
* matrix was initialized as 3x4x3, the dim is 3.
|
1441
|
+
*
|
1442
|
+
* Use #effective_dim to get the dimension of an NMatrix which acts as a vector (e.g., a column or row).
|
1443
|
+
*/
|
1444
|
+
static VALUE nm_dim(VALUE self) {
|
1445
|
+
return INT2FIX(NM_STORAGE(self)->dim);
|
1446
|
+
}
|
1447
|
+
|
1448
|
+
/*
|
1449
|
+
* call-seq:
|
1450
|
+
* shape -> Array
|
1451
|
+
*
|
1452
|
+
* Get the shape (dimensions) of a matrix.
|
1453
|
+
*/
|
1454
|
+
static VALUE nm_shape(VALUE self) {
|
1455
|
+
STORAGE* s = NM_STORAGE(self);
|
1456
|
+
|
1457
|
+
// Copy elements into a VALUE array and then use those to create a Ruby array with rb_ary_new4.
|
1458
|
+
VALUE* shape = ALLOCA_N(VALUE, s->dim);
|
1459
|
+
for (size_t index = 0; index < s->dim; ++index)
|
1460
|
+
shape[index] = INT2FIX(s->shape[index]);
|
1461
|
+
|
1462
|
+
return rb_ary_new4(s->dim, shape);
|
1463
|
+
}
|
1464
|
+
|
1465
|
+
|
1466
|
+
/*
|
1467
|
+
* call-seq:
|
1468
|
+
* offset -> Array
|
1469
|
+
*
|
1470
|
+
* Get the offset (slice position) of a matrix. Typically all zeros, unless you have a reference slice.
|
1471
|
+
*/
|
1472
|
+
static VALUE nm_offset(VALUE self) {
|
1473
|
+
STORAGE* s = NM_STORAGE(self);
|
1474
|
+
|
1475
|
+
// Copy elements into a VALUE array and then use those to create a Ruby array with rb_ary_new4.
|
1476
|
+
VALUE* offset = ALLOCA_N(VALUE, s->dim);
|
1477
|
+
for (size_t index = 0; index < s->dim; ++index)
|
1478
|
+
offset[index] = INT2FIX(s->offset[index]);
|
1479
|
+
|
1480
|
+
return rb_ary_new4(s->dim, offset);
|
1481
|
+
}
|
1482
|
+
|
1483
|
+
|
1484
|
+
/*
|
1485
|
+
* call-seq:
|
1486
|
+
* supershape -> Array
|
1487
|
+
*
|
1488
|
+
* Get the shape of a slice's parent.
|
1489
|
+
*/
|
1490
|
+
static VALUE nm_supershape(VALUE self) {
|
1491
|
+
|
1492
|
+
STORAGE* s = NM_STORAGE(self);
|
1493
|
+
if (s->src == s) return nm_shape(self); // easy case (not a slice)
|
1494
|
+
else s = s->src;
|
1495
|
+
|
1496
|
+
VALUE* shape = ALLOCA_N(VALUE, s->dim);
|
1497
|
+
for (size_t index = 0; index < s->dim; ++index)
|
1498
|
+
shape[index] = INT2FIX(s->shape[index]);
|
1499
|
+
|
1500
|
+
return rb_ary_new4(s->dim, shape);
|
1501
|
+
}
|
1502
|
+
|
1503
|
+
/*
|
1504
|
+
* call-seq:
|
1505
|
+
* stype -> Symbol
|
1506
|
+
*
|
1507
|
+
* Get the storage type (stype) of a matrix, e.g., :yale, :dense, or :list.
|
1508
|
+
*/
|
1509
|
+
static VALUE nm_stype(VALUE self) {
|
1510
|
+
ID stype = rb_intern(STYPE_NAMES[NM_STYPE(self)]);
|
1511
|
+
return ID2SYM(stype);
|
1512
|
+
}
|
1513
|
+
|
1514
|
+
/*
|
1515
|
+
* call-seq:
|
1516
|
+
* symmetric? -> Boolean
|
1517
|
+
*
|
1518
|
+
* Is this matrix symmetric?
|
1519
|
+
*/
|
1520
|
+
static VALUE nm_symmetric(VALUE self) {
|
1521
|
+
return is_symmetric(self, false);
|
1522
|
+
}
|
1523
|
+
|
1524
|
+
|
1525
|
+
/*
|
1526
|
+
* Gets the dimension of a matrix which might be a vector (have one or more shape components of size 1).
|
1527
|
+
*/
|
1528
|
+
static size_t effective_dim(STORAGE* s) {
|
1529
|
+
size_t d = 0;
|
1530
|
+
for (size_t i = 0; i < s->dim; ++i) {
|
1531
|
+
if (s->shape[i] != 1) d++;
|
1532
|
+
}
|
1533
|
+
return d;
|
1534
|
+
}
|
1535
|
+
|
1536
|
+
|
1537
|
+
/*
|
1538
|
+
* call-seq:
|
1539
|
+
* effective_dim -> Fixnum
|
1540
|
+
*
|
1541
|
+
* Returns the number of dimensions that don't have length 1. Guaranteed to be less than or equal to #dim.
|
1542
|
+
*/
|
1543
|
+
static VALUE nm_effective_dim(VALUE self) {
|
1544
|
+
return INT2FIX(effective_dim(NM_STORAGE(self)));
|
1545
|
+
}
|
1546
|
+
|
1547
|
+
|
1548
|
+
/*
|
1549
|
+
* Get a slice of an NMatrix.
|
1550
|
+
*/
|
1551
|
+
static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(const STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self) {
|
1552
|
+
VALUE result = Qnil;
|
1553
|
+
STORAGE* s = NM_STORAGE(self);
|
1554
|
+
|
1555
|
+
if (NM_DIM(self) < (size_t)(argc)) {
|
1556
|
+
rb_raise(rb_eArgError, "wrong number of arguments (%d for %u)", argc, effective_dim(s));
|
1557
|
+
} else {
|
1558
|
+
SLICE* slice = get_slice(NM_DIM(self), argc, argv, s->shape);
|
1559
|
+
|
1560
|
+
if (slice->single) {
|
1561
|
+
static void* (*ttable[nm::NUM_STYPES])(const STORAGE*, SLICE*) = {
|
1562
|
+
nm_dense_storage_ref,
|
1563
|
+
nm_list_storage_ref,
|
1564
|
+
nm_yale_storage_ref
|
1565
|
+
};
|
1566
|
+
|
1567
|
+
if (NM_DTYPE(self) == nm::RUBYOBJ) result = *reinterpret_cast<VALUE*>( ttable[NM_STYPE(self)](s, slice) );
|
1568
|
+
else result = rubyobj_from_cval( ttable[NM_STYPE(self)](s, slice), NM_DTYPE(self) ).rval;
|
1569
|
+
|
1570
|
+
} else {
|
1571
|
+
|
1572
|
+
NMATRIX* mat = ALLOC(NMATRIX);
|
1573
|
+
mat->stype = NM_STYPE(self);
|
1574
|
+
mat->storage = (STORAGE*)((*slice_func)( s, slice ));
|
1575
|
+
|
1576
|
+
result = Data_Wrap_Struct(CLASS_OF(self), nm_mark, delete_func, mat);
|
1577
|
+
}
|
1578
|
+
|
1579
|
+
free_slice(slice);
|
1580
|
+
}
|
1581
|
+
|
1582
|
+
return result;
|
1583
|
+
}
|
1584
|
+
|
1585
|
+
//////////////////////
|
1586
|
+
// Helper Functions //
|
1587
|
+
//////////////////////
|
1588
|
+
|
1589
|
+
static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val) {
|
1590
|
+
|
1591
|
+
NMATRIX* left;
|
1592
|
+
NMATRIX* result;
|
1593
|
+
|
1594
|
+
CheckNMatrixType(left_val);
|
1595
|
+
UnwrapNMatrix(left_val, left);
|
1596
|
+
|
1597
|
+
if (TYPE(right_val) != T_DATA || (RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete && RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete_ref)) {
|
1598
|
+
// This is a matrix-scalar element-wise operation.
|
1599
|
+
std::string sym;
|
1600
|
+
switch(left->stype) {
|
1601
|
+
case nm::DENSE_STORE:
|
1602
|
+
sym = "__dense_scalar_" + nm::EWOP_NAMES[op] + "__";
|
1603
|
+
break;
|
1604
|
+
case nm::YALE_STORE:
|
1605
|
+
sym = "__yale_scalar_" + nm::EWOP_NAMES[op] + "__";
|
1606
|
+
break;
|
1607
|
+
case nm::LIST_STORE:
|
1608
|
+
sym = "__list_scalar_" + nm::EWOP_NAMES[op] + "__";
|
1609
|
+
break;
|
1610
|
+
default:
|
1611
|
+
rb_raise(rb_eNotImpError, "unknown storage type requested scalar element-wise operation");
|
1612
|
+
}
|
1613
|
+
return rb_funcall(left_val, rb_intern(sym.c_str()), 1, right_val);
|
1614
|
+
|
1615
|
+
} else {
|
1616
|
+
|
1617
|
+
// Check that the left- and right-hand sides have the same dimensionality.
|
1618
|
+
if (NM_DIM(left_val) != NM_DIM(right_val)) {
|
1619
|
+
rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same dimensionality.");
|
1620
|
+
}
|
1621
|
+
|
1622
|
+
// Check that the left- and right-hand sides have the same shape.
|
1623
|
+
if (memcmp(&NM_SHAPE(left_val, 0), &NM_SHAPE(right_val, 0), sizeof(size_t) * NM_DIM(left_val)) != 0) {
|
1624
|
+
rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same shape.");
|
1625
|
+
}
|
1626
|
+
|
1627
|
+
NMATRIX* right;
|
1628
|
+
UnwrapNMatrix(right_val, right);
|
1629
|
+
|
1630
|
+
if (left->stype == right->stype) {
|
1631
|
+
std::string sym;
|
1632
|
+
|
1633
|
+
switch(left->stype) {
|
1634
|
+
case nm::DENSE_STORE:
|
1635
|
+
sym = "__dense_elementwise_" + nm::EWOP_NAMES[op] + "__";
|
1636
|
+
break;
|
1637
|
+
case nm::YALE_STORE:
|
1638
|
+
sym = "__yale_elementwise_" + nm::EWOP_NAMES[op] + "__";
|
1639
|
+
break;
|
1640
|
+
case nm::LIST_STORE:
|
1641
|
+
sym = "__list_elementwise_" + nm::EWOP_NAMES[op] + "__";
|
1642
|
+
break;
|
1643
|
+
default:
|
1644
|
+
rb_raise(rb_eNotImpError, "unknown storage type requested element-wise operation");
|
1645
|
+
}
|
1646
|
+
return rb_funcall(left_val, rb_intern(sym.c_str()), 1, right_val);
|
1647
|
+
|
1648
|
+
} else {
|
1649
|
+
rb_raise(rb_eArgError, "Element-wise operations are not currently supported between matrices with differing stypes.");
|
1650
|
+
}
|
1651
|
+
}
|
1652
|
+
|
1653
|
+
return Data_Wrap_Struct(CLASS_OF(left_val), nm_mark, nm_delete, result);
|
1654
|
+
}
|
1655
|
+
|
1656
|
+
/*
|
1657
|
+
* Check to determine whether matrix is a reference to another matrix.
|
1658
|
+
*/
|
1659
|
+
bool is_ref(const NMATRIX* matrix) {
|
1660
|
+
return matrix->storage->src != matrix->storage;
|
1661
|
+
}
|
1662
|
+
|
1663
|
+
/*
|
1664
|
+
* Helper function for nm_symmetric and nm_hermitian.
|
1665
|
+
*/
|
1666
|
+
static VALUE is_symmetric(VALUE self, bool hermitian) {
|
1667
|
+
NMATRIX* m;
|
1668
|
+
UnwrapNMatrix(self, m);
|
1669
|
+
|
1670
|
+
if (m->storage->shape[0] == m->storage->shape[1] and m->storage->dim == 2) {
|
1671
|
+
if (NM_STYPE(self) == nm::DENSE_STORE) {
|
1672
|
+
if (hermitian) {
|
1673
|
+
nm_dense_storage_is_hermitian((DENSE_STORAGE*)(m->storage), m->storage->shape[0]);
|
1674
|
+
|
1675
|
+
} else {
|
1676
|
+
nm_dense_storage_is_symmetric((DENSE_STORAGE*)(m->storage), m->storage->shape[0]);
|
1677
|
+
}
|
1678
|
+
|
1679
|
+
} else {
|
1680
|
+
// TODO: Implement, at the very least, yale_is_symmetric. Model it after yale/transp.template.c.
|
1681
|
+
rb_raise(rb_eNotImpError, "symmetric? and hermitian? only implemented for dense currently");
|
1682
|
+
}
|
1683
|
+
|
1684
|
+
}
|
1685
|
+
|
1686
|
+
return Qfalse;
|
1687
|
+
}
|
1688
|
+
|
1689
|
+
///////////////////////
|
1690
|
+
// Utility Functions //
|
1691
|
+
///////////////////////
|
1692
|
+
|
1693
|
+
/*
|
1694
|
+
* Guess the dtype given a Ruby VALUE and return it as a symbol.
|
1695
|
+
*
|
1696
|
+
* Not to be confused with nm_dtype_guess, which returns an nm::dtype_t. (This calls that.)
|
1697
|
+
*/
|
1698
|
+
static VALUE nm_guess_dtype(VALUE self, VALUE v) {
|
1699
|
+
return ID2SYM(rb_intern(DTYPE_NAMES[nm_dtype_guess(v)]));
|
1700
|
+
}
|
1701
|
+
|
1702
|
+
/*
|
1703
|
+
* Get the minimum allowable dtype for a Ruby VALUE and return it as a symbol.
|
1704
|
+
*/
|
1705
|
+
static VALUE nm_min_dtype(VALUE self, VALUE v) {
|
1706
|
+
return ID2SYM(rb_intern(DTYPE_NAMES[nm_dtype_min(v)]));
|
1707
|
+
}
|
1708
|
+
|
1709
|
+
/*
|
1710
|
+
* Helper for nm_dtype_min(), handling integers.
|
1711
|
+
*/
|
1712
|
+
nm::dtype_t nm_dtype_min_fixnum(int64_t v) {
|
1713
|
+
if (v >= 0 && v <= UCHAR_MAX) return nm::BYTE;
|
1714
|
+
else {
|
1715
|
+
v = std::abs(v);
|
1716
|
+
if (v <= CHAR_MAX) return nm::INT8;
|
1717
|
+
else if (v <= SHRT_MAX) return nm::INT16;
|
1718
|
+
else if (v <= INT_MAX) return nm::INT32;
|
1719
|
+
else return nm::INT64;
|
1720
|
+
}
|
1721
|
+
}
|
1722
|
+
|
1723
|
+
/*
|
1724
|
+
* Helper for nm_dtype_min(), handling rationals.
|
1725
|
+
*/
|
1726
|
+
nm::dtype_t nm_dtype_min_rational(VALUE vv) {
|
1727
|
+
nm::Rational128* v = ALLOCA_N(nm::Rational128, 1);
|
1728
|
+
rubyval_to_cval(vv, nm::RATIONAL128, v);
|
1729
|
+
|
1730
|
+
int64_t i = std::max(std::abs(v->n), v->d);
|
1731
|
+
if (i <= SHRT_MAX) return nm::INT16;
|
1732
|
+
else if (i <= INT_MAX) return nm::INT32;
|
1733
|
+
else return nm::INT64;
|
1734
|
+
}
|
1735
|
+
|
1736
|
+
/*
|
1737
|
+
* Return the minimum dtype required to store a given value.
|
1738
|
+
*
|
1739
|
+
* This is kind of arbitrary. For Float, it always returns :float32 for example, since in some cases neither :float64
|
1740
|
+
* not :float32 are sufficient.
|
1741
|
+
*
|
1742
|
+
* This function is used in upcasting for scalar math. We want to ensure that :int8 + 1 does not return an :int64, basically.
|
1743
|
+
*
|
1744
|
+
* FIXME: Eventually, this function should actually look at the value stored in Fixnums (for example), so that it knows
|
1745
|
+
* whether to return :int64 or :int32.
|
1746
|
+
*/
|
1747
|
+
nm::dtype_t nm_dtype_min(VALUE v) {
|
1748
|
+
|
1749
|
+
switch(TYPE(v)) {
|
1750
|
+
case T_FIXNUM:
|
1751
|
+
return nm_dtype_min_fixnum(FIX2LONG(v));
|
1752
|
+
case T_BIGNUM:
|
1753
|
+
return nm::INT64;
|
1754
|
+
case T_FLOAT:
|
1755
|
+
return nm::FLOAT32;
|
1756
|
+
case T_COMPLEX:
|
1757
|
+
return nm::COMPLEX64;
|
1758
|
+
case T_RATIONAL:
|
1759
|
+
return nm_dtype_min_rational(v);
|
1760
|
+
case T_STRING:
|
1761
|
+
return RSTRING_LEN(v) == 1 ? nm::BYTE : nm::RUBYOBJ;
|
1762
|
+
case T_TRUE:
|
1763
|
+
case T_FALSE:
|
1764
|
+
case T_NIL:
|
1765
|
+
default:
|
1766
|
+
return nm::RUBYOBJ;
|
1767
|
+
}
|
1768
|
+
}
|
1769
|
+
|
1770
|
+
|
1771
|
+
/*
|
1772
|
+
* Guess the data type given a value.
|
1773
|
+
*
|
1774
|
+
* TODO: Probably needs some work for Bignum.
|
1775
|
+
*/
|
1776
|
+
nm::dtype_t nm_dtype_guess(VALUE v) {
|
1777
|
+
switch(TYPE(v)) {
|
1778
|
+
case T_TRUE:
|
1779
|
+
case T_FALSE:
|
1780
|
+
case T_NIL:
|
1781
|
+
return nm::RUBYOBJ;
|
1782
|
+
case T_STRING:
|
1783
|
+
return RSTRING_LEN(v) == 1 ? nm::BYTE : nm::RUBYOBJ;
|
1784
|
+
|
1785
|
+
#if SIZEOF_INT == 8
|
1786
|
+
case T_FIXNUM:
|
1787
|
+
return nm::INT64;
|
1788
|
+
|
1789
|
+
case T_RATIONAL:
|
1790
|
+
return nm::RATIONAL128;
|
1791
|
+
|
1792
|
+
#else
|
1793
|
+
# if SIZEOF_INT == 4
|
1794
|
+
case T_FIXNUM:
|
1795
|
+
return nm::INT32;
|
1796
|
+
|
1797
|
+
case T_RATIONAL:
|
1798
|
+
return nm::RATIONAL64;
|
1799
|
+
|
1800
|
+
#else
|
1801
|
+
case T_FIXNUM:
|
1802
|
+
return nm::INT16;
|
1803
|
+
|
1804
|
+
case T_RATIONAL:
|
1805
|
+
return nm::RATIONAL32;
|
1806
|
+
# endif
|
1807
|
+
#endif
|
1808
|
+
|
1809
|
+
case T_BIGNUM:
|
1810
|
+
return nm::INT64;
|
1811
|
+
|
1812
|
+
#if SIZEOF_FLOAT == 4
|
1813
|
+
case T_COMPLEX:
|
1814
|
+
return nm::COMPLEX128;
|
1815
|
+
|
1816
|
+
case T_FLOAT:
|
1817
|
+
return nm::FLOAT64;
|
1818
|
+
|
1819
|
+
#else
|
1820
|
+
# if SIZEOF_FLOAT == 2
|
1821
|
+
case T_COMPLEX:
|
1822
|
+
return nm::COMPLEX64;
|
1823
|
+
|
1824
|
+
case T_FLOAT:
|
1825
|
+
return nm::FLOAT32;
|
1826
|
+
# endif
|
1827
|
+
#endif
|
1828
|
+
|
1829
|
+
case T_ARRAY:
|
1830
|
+
/*
|
1831
|
+
* May be passed for dense -- for now, just look at the first element.
|
1832
|
+
*
|
1833
|
+
* TODO: Look at entire array for most specific type.
|
1834
|
+
*/
|
1835
|
+
|
1836
|
+
return nm_dtype_guess(RARRAY_PTR(v)[0]);
|
1837
|
+
|
1838
|
+
default:
|
1839
|
+
RB_P(v);
|
1840
|
+
rb_raise(rb_eArgError, "Unable to guess a data type from provided parameters; data type must be specified manually.");
|
1841
|
+
}
|
1842
|
+
}
|
1843
|
+
|
1844
|
+
|
1845
|
+
|
1846
|
+
/*
|
1847
|
+
* Allocate and return a SLICE object, which will contain the appropriate coordinate and length information for
|
1848
|
+
* accessing some part of a matrix.
|
1849
|
+
*/
|
1850
|
+
static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape) {
|
1851
|
+
VALUE beg, end;
|
1852
|
+
int excl;
|
1853
|
+
|
1854
|
+
SLICE* slice = alloc_slice(dim);
|
1855
|
+
slice->single = true;
|
1856
|
+
|
1857
|
+
// r is the shape position; t is the slice position. They may differ when we're dealing with a
|
1858
|
+
// matrix where the effective dimension is less than the dimension (e.g., a vector).
|
1859
|
+
for (size_t r = 0, t = 0; r < dim; ++r) {
|
1860
|
+
VALUE v = t == argc ? Qnil : arg[t];
|
1861
|
+
|
1862
|
+
// if the current shape indicates a vector and fewer args were supplied than necessary, just use 0
|
1863
|
+
if (argc - t + r < dim && shape[r] == 1) {
|
1864
|
+
slice->coords[r] = 0;
|
1865
|
+
slice->lengths[r] = 1;
|
1866
|
+
|
1867
|
+
} else if (FIXNUM_P(v)) { // this used CLASS_OF before, which is inefficient for fixnum
|
1868
|
+
|
1869
|
+
slice->coords[r] = FIX2UINT(v);
|
1870
|
+
slice->lengths[r] = 1;
|
1871
|
+
t++;
|
1872
|
+
|
1873
|
+
} else if (SYMBOL_P(v) && rb_to_id(v) == nm_rb_mul) { // :* means the whole possible range
|
1874
|
+
|
1875
|
+
slice->coords[r] = 0;
|
1876
|
+
slice->lengths[r] = shape[r];
|
1877
|
+
slice->single = false;
|
1878
|
+
|
1879
|
+
} else if (TYPE(arg[t]) == T_HASH) { // 3:5 notation (inclusive)
|
1880
|
+
VALUE begin_end = rb_funcall(v, rb_intern("shift"), 0); // rb_hash_shift
|
1881
|
+
slice->coords[r] = FIX2UINT(rb_ary_entry(begin_end, 0));
|
1882
|
+
slice->lengths[r] = FIX2UINT(rb_ary_entry(begin_end, 1)) - slice->coords[r];
|
1883
|
+
|
1884
|
+
if (RHASH_EMPTY_P(v)) t++; // go on to the next
|
1885
|
+
|
1886
|
+
slice->single = false;
|
1887
|
+
|
1888
|
+
} else if (CLASS_OF(v) == rb_cRange) {
|
1889
|
+
rb_range_values(arg[t], &beg, &end, &excl);
|
1890
|
+
slice->coords[r] = FIX2UINT(beg);
|
1891
|
+
// Exclude last element for a...b range
|
1892
|
+
slice->lengths[r] = FIX2UINT(end) - slice->coords[r] + (excl ? 0 : 1);
|
1893
|
+
|
1894
|
+
slice->single = false;
|
1895
|
+
|
1896
|
+
t++;
|
1897
|
+
|
1898
|
+
} else {
|
1899
|
+
rb_raise(rb_eArgError, "expected Fixnum, Range, or Hash for slice component instead of %s", rb_obj_classname(v));
|
1900
|
+
}
|
1901
|
+
|
1902
|
+
if (slice->coords[r] > shape[r] || slice->coords[r] + slice->lengths[r] > shape[r])
|
1903
|
+
rb_raise(rb_eRangeError, "slice is larger than matrix in dimension %u (slice component %u)", r, t);
|
1904
|
+
}
|
1905
|
+
|
1906
|
+
return slice;
|
1907
|
+
}
|
1908
|
+
|
1909
|
+
#ifdef BENCHMARK
|
1910
|
+
/*
|
1911
|
+
* A simple function used when benchmarking NMatrix.
|
1912
|
+
*/
|
1913
|
+
static double get_time(void) {
|
1914
|
+
struct timeval t;
|
1915
|
+
struct timezone tzp;
|
1916
|
+
|
1917
|
+
gettimeofday(&t, &tzp);
|
1918
|
+
|
1919
|
+
return t.tv_sec + t.tv_usec*1e-6;
|
1920
|
+
}
|
1921
|
+
#endif
|
1922
|
+
|
1923
|
+
/*
|
1924
|
+
* The argv parameter will be either 1 or 2 elements. If 1, could be either
|
1925
|
+
* initial or dtype. If 2, is initial and dtype. This function returns the
|
1926
|
+
* dtype.
|
1927
|
+
*/
|
1928
|
+
static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype) {
|
1929
|
+
int offset;
|
1930
|
+
|
1931
|
+
switch (argc) {
|
1932
|
+
case 1:
|
1933
|
+
offset = 0;
|
1934
|
+
break;
|
1935
|
+
|
1936
|
+
case 2:
|
1937
|
+
offset = 1;
|
1938
|
+
break;
|
1939
|
+
|
1940
|
+
default:
|
1941
|
+
rb_raise(rb_eArgError, "Need an initial value or a dtype.");
|
1942
|
+
break;
|
1943
|
+
}
|
1944
|
+
|
1945
|
+
if (SYMBOL_P(argv[offset])) {
|
1946
|
+
return nm_dtype_from_rbsymbol(argv[offset]);
|
1947
|
+
|
1948
|
+
} else if (TYPE(argv[offset]) == T_STRING) {
|
1949
|
+
return nm_dtype_from_rbstring(StringValue(argv[offset]));
|
1950
|
+
|
1951
|
+
} else if (stype == nm::YALE_STORE) {
|
1952
|
+
rb_raise(rb_eArgError, "Yale storage class requires a dtype.");
|
1953
|
+
|
1954
|
+
} else {
|
1955
|
+
return nm_dtype_guess(argv[0]);
|
1956
|
+
}
|
1957
|
+
}
|
1958
|
+
|
1959
|
+
/*
|
1960
|
+
* Convert an Ruby value or an array of Ruby values into initial C values.
|
1961
|
+
*/
|
1962
|
+
static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype) {
|
1963
|
+
unsigned int index;
|
1964
|
+
void* init_val;
|
1965
|
+
|
1966
|
+
if (TYPE(arg) == T_ARRAY) {
|
1967
|
+
// Array
|
1968
|
+
init_val = ALLOC_N(char, DTYPE_SIZES[dtype] * RARRAY_LEN(arg));
|
1969
|
+
NM_CHECK_ALLOC(init_val);
|
1970
|
+
for (index = 0; index < RARRAY_LEN(arg); ++index) {
|
1971
|
+
rubyval_to_cval(RARRAY_PTR(arg)[index], dtype, (char*)init_val + (index * DTYPE_SIZES[dtype]));
|
1972
|
+
}
|
1973
|
+
|
1974
|
+
} else {
|
1975
|
+
// Single value
|
1976
|
+
init_val = rubyobj_to_cval(arg, dtype);
|
1977
|
+
}
|
1978
|
+
|
1979
|
+
return init_val;
|
1980
|
+
}
|
1981
|
+
|
1982
|
+
/*
|
1983
|
+
* Convert the shape argument, which may be either a Ruby value or an array of
|
1984
|
+
* Ruby values, into C values. The second argument is where the dimensionality
|
1985
|
+
* of the matrix will be stored. The function itself returns a pointer to the
|
1986
|
+
* array describing the shape, which must be freed manually.
|
1987
|
+
*/
|
1988
|
+
static size_t* interpret_shape(VALUE arg, size_t* dim) {
|
1989
|
+
size_t* shape;
|
1990
|
+
|
1991
|
+
if (TYPE(arg) == T_ARRAY) {
|
1992
|
+
*dim = RARRAY_LEN(arg);
|
1993
|
+
shape = ALLOC_N(size_t, *dim);
|
1994
|
+
|
1995
|
+
for (size_t index = 0; index < *dim; ++index) {
|
1996
|
+
shape[index] = FIX2UINT( RARRAY_PTR(arg)[index] );
|
1997
|
+
}
|
1998
|
+
|
1999
|
+
} else if (FIXNUM_P(arg)) {
|
2000
|
+
*dim = 2;
|
2001
|
+
shape = ALLOC_N(size_t, *dim);
|
2002
|
+
|
2003
|
+
shape[0] = FIX2UINT(arg);
|
2004
|
+
shape[1] = FIX2UINT(arg);
|
2005
|
+
|
2006
|
+
} else {
|
2007
|
+
rb_raise(rb_eArgError, "Expected an array of numbers or a single Fixnum for matrix shape");
|
2008
|
+
}
|
2009
|
+
|
2010
|
+
return shape;
|
2011
|
+
}
|
2012
|
+
|
2013
|
+
/*
|
2014
|
+
* Convert a Ruby symbol or string into an storage type.
|
2015
|
+
*/
|
2016
|
+
static nm::stype_t interpret_stype(VALUE arg) {
|
2017
|
+
if (SYMBOL_P(arg)) {
|
2018
|
+
return nm_stype_from_rbsymbol(arg);
|
2019
|
+
|
2020
|
+
} else if (TYPE(arg) == T_STRING) {
|
2021
|
+
return nm_stype_from_rbstring(StringValue(arg));
|
2022
|
+
|
2023
|
+
} else {
|
2024
|
+
rb_raise(rb_eArgError, "Expected storage type");
|
2025
|
+
}
|
2026
|
+
}
|
2027
|
+
|
2028
|
+
//////////////////
|
2029
|
+
// Math Helpers //
|
2030
|
+
//////////////////
|
2031
|
+
|
2032
|
+
STORAGE* matrix_storage_cast_alloc(NMATRIX* matrix, nm::dtype_t new_dtype) {
|
2033
|
+
if (matrix->storage->dtype == new_dtype && !is_ref(matrix))
|
2034
|
+
return matrix->storage;
|
2035
|
+
|
2036
|
+
CAST_TABLE(cast_copy_storage);
|
2037
|
+
return cast_copy_storage[matrix->stype][matrix->stype](matrix->storage, new_dtype, NULL);
|
2038
|
+
}
|
2039
|
+
|
2040
|
+
STORAGE_PAIR binary_storage_cast_alloc(NMATRIX* left_matrix, NMATRIX* right_matrix) {
|
2041
|
+
STORAGE_PAIR casted;
|
2042
|
+
nm::dtype_t new_dtype = Upcast[left_matrix->storage->dtype][right_matrix->storage->dtype];
|
2043
|
+
|
2044
|
+
casted.left = matrix_storage_cast_alloc(left_matrix, new_dtype);
|
2045
|
+
casted.right = matrix_storage_cast_alloc(right_matrix, new_dtype);
|
2046
|
+
|
2047
|
+
return casted;
|
2048
|
+
}
|
2049
|
+
|
2050
|
+
static VALUE matrix_multiply_scalar(NMATRIX* left, VALUE scalar) {
|
2051
|
+
rb_raise(rb_eNotImpError, "matrix-scalar multiplication not implemented yet");
|
2052
|
+
return Qnil;
|
2053
|
+
}
|
2054
|
+
|
2055
|
+
static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right) {
|
2056
|
+
///TODO: multiplication for non-dense and/or non-decimal matrices
|
2057
|
+
|
2058
|
+
// Make sure both of our matrices are of the correct type.
|
2059
|
+
STORAGE_PAIR casted = binary_storage_cast_alloc(left, right);
|
2060
|
+
|
2061
|
+
size_t* resulting_shape = ALLOC_N(size_t, 2);
|
2062
|
+
resulting_shape[0] = left->storage->shape[0];
|
2063
|
+
resulting_shape[1] = right->storage->shape[1];
|
2064
|
+
|
2065
|
+
// Sometimes we only need to use matrix-vector multiplication (e.g., GEMM versus GEMV). Find out.
|
2066
|
+
bool vector = false;
|
2067
|
+
if (resulting_shape[1] == 1) vector = true;
|
2068
|
+
|
2069
|
+
static STORAGE* (*storage_matrix_multiply[nm::NUM_STYPES])(const STORAGE_PAIR&, size_t*, bool) = {
|
2070
|
+
nm_dense_storage_matrix_multiply,
|
2071
|
+
nm_list_storage_matrix_multiply,
|
2072
|
+
nm_yale_storage_matrix_multiply
|
2073
|
+
};
|
2074
|
+
|
2075
|
+
STORAGE* resulting_storage = storage_matrix_multiply[left->stype](casted, resulting_shape, vector);
|
2076
|
+
NMATRIX* result = nm_create(left->stype, resulting_storage);
|
2077
|
+
|
2078
|
+
// Free any casted-storage we created for the multiplication.
|
2079
|
+
// TODO: Can we make the Ruby GC take care of this stuff now that we're using it?
|
2080
|
+
// If we did that, we night not have to re-create these every time, right? Or wrong? Need to do
|
2081
|
+
// more research.
|
2082
|
+
static void (*free_storage[nm::NUM_STYPES])(STORAGE*) = {
|
2083
|
+
nm_dense_storage_delete,
|
2084
|
+
nm_list_storage_delete,
|
2085
|
+
nm_yale_storage_delete
|
2086
|
+
};
|
2087
|
+
|
2088
|
+
if (left->storage != casted.left) free_storage[result->stype](casted.left);
|
2089
|
+
if (right->storage != casted.right) free_storage[result->stype](casted.right);
|
2090
|
+
|
2091
|
+
if (result) return Data_Wrap_Struct(cNMatrix, nm_mark, nm_delete, result);
|
2092
|
+
return Qnil; // Only if we try to multiply list matrices should we return Qnil.
|
2093
|
+
}
|
2094
|
+
|
2095
|
+
/*
|
2096
|
+
* Calculate the exact determinant of a dense matrix.
|
2097
|
+
*
|
2098
|
+
* Returns nil for dense matrices which are not square or number of dimensions other than 2.
|
2099
|
+
*
|
2100
|
+
* Note: Currently only implemented for 2x2 and 3x3 matrices.
|
2101
|
+
*/
|
2102
|
+
static VALUE nm_det_exact(VALUE self) {
|
2103
|
+
if (NM_STYPE(self) != nm::DENSE_STORE) rb_raise(nm_eStorageTypeError, "can only calculate exact determinant for dense matrices");
|
2104
|
+
|
2105
|
+
if (NM_DIM(self) != 2 || NM_SHAPE0(self) != NM_SHAPE1(self)) return Qnil;
|
2106
|
+
|
2107
|
+
// Calculate the determinant and then assign it to the return value
|
2108
|
+
void* result = ALLOCA_N(char, DTYPE_SIZES[NM_DTYPE(self)]);
|
2109
|
+
nm_math_det_exact(NM_SHAPE0(self), NM_STORAGE_DENSE(self)->elements, NM_SHAPE0(self), NM_DTYPE(self), result);
|
2110
|
+
|
2111
|
+
return rubyobj_from_cval(result, NM_DTYPE(self)).rval;
|
2112
|
+
}
|
2113
|
+
|
2114
|
+
/////////////////
|
2115
|
+
// Exposed API //
|
2116
|
+
/////////////////
|
2117
|
+
|
2118
|
+
/*
|
2119
|
+
* Create a dense matrix. Used by the NMatrix GSL fork. Unlike nm_create, this one copies all of the
|
2120
|
+
* arrays and such passed in -- so you don't have to allocate and pass a new shape object for every
|
2121
|
+
* matrix you want to create, for example. Same goes for elements.
|
2122
|
+
*
|
2123
|
+
* Returns a properly-wrapped Ruby object as a VALUE.
|
2124
|
+
*
|
2125
|
+
* *** Note that this function is for API only. Please do not use it internally.
|
2126
|
+
*
|
2127
|
+
* TODO: Add a column-major option for libraries that use column-major matrices.
|
2128
|
+
*/
|
2129
|
+
VALUE rb_nmatrix_dense_create(nm::dtype_t dtype, size_t* shape, size_t dim, void* elements, size_t length) {
|
2130
|
+
NMATRIX* nm;
|
2131
|
+
size_t nm_dim;
|
2132
|
+
size_t* shape_copy;
|
2133
|
+
|
2134
|
+
// Do not allow a dim of 1. Treat it as a column or row matrix.
|
2135
|
+
if (dim == 1) {
|
2136
|
+
nm_dim = 2;
|
2137
|
+
shape_copy = ALLOC_N(size_t, nm_dim);
|
2138
|
+
shape_copy[0] = shape[0];
|
2139
|
+
shape_copy[1] = 1;
|
2140
|
+
|
2141
|
+
} else {
|
2142
|
+
nm_dim = dim;
|
2143
|
+
shape_copy = ALLOC_N(size_t, nm_dim);
|
2144
|
+
memcpy(shape_copy, shape, sizeof(size_t)*nm_dim);
|
2145
|
+
}
|
2146
|
+
|
2147
|
+
// Copy elements
|
2148
|
+
void* elements_copy = ALLOC_N(char, DTYPE_SIZES[dtype]*length);
|
2149
|
+
memcpy(elements_copy, elements, DTYPE_SIZES[dtype]*length);
|
2150
|
+
|
2151
|
+
// allocate and create the matrix and its storage
|
2152
|
+
nm = nm_create(nm::DENSE_STORE, nm_dense_storage_create(dtype, shape_copy, dim, elements_copy, length));
|
2153
|
+
|
2154
|
+
// tell Ruby about the matrix and its storage, particularly how to garbage collect it.
|
2155
|
+
return Data_Wrap_Struct(cNMatrix, nm_mark, nm_delete, nm);
|
2156
|
+
}
|
2157
|
+
|
2158
|
+
/*
|
2159
|
+
* Create a dense vector. Used by the NMatrix GSL fork.
|
2160
|
+
*
|
2161
|
+
* Basically just a convenience wrapper for rb_nmatrix_dense_create().
|
2162
|
+
*
|
2163
|
+
* Returns a properly-wrapped Ruby NMatrix object as a VALUE. Included for backwards compatibility
|
2164
|
+
* for when NMatrix had an NVector class.
|
2165
|
+
*/
|
2166
|
+
VALUE rb_nvector_dense_create(nm::dtype_t dtype, void* elements, size_t length) {
|
2167
|
+
size_t dim = 1, shape = length;
|
2168
|
+
return rb_nmatrix_dense_create(dtype, &shape, dim, elements, length);
|
2169
|
+
}
|