nmatrix 0.0.8 → 0.0.9
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +3 -8
- data/.rspec +1 -1
- data/.travis.yml +12 -0
- data/CONTRIBUTING.md +27 -12
- data/Gemfile +1 -0
- data/History.txt +38 -0
- data/Manifest.txt +15 -15
- data/README.rdoc +7 -6
- data/Rakefile +40 -5
- data/ext/nmatrix/data/data.cpp +2 -37
- data/ext/nmatrix/data/data.h +19 -121
- data/ext/nmatrix/data/meta.h +70 -0
- data/ext/nmatrix/extconf.rb +40 -12
- data/ext/nmatrix/math/math.h +13 -103
- data/ext/nmatrix/nmatrix.cpp +10 -2018
- data/ext/nmatrix/nmatrix.h +16 -13
- data/ext/nmatrix/ruby_constants.cpp +12 -1
- data/ext/nmatrix/ruby_constants.h +7 -1
- data/ext/nmatrix/ruby_nmatrix.c +2169 -0
- data/ext/nmatrix/storage/dense.cpp +123 -14
- data/ext/nmatrix/storage/dense.h +10 -4
- data/ext/nmatrix/storage/list.cpp +265 -48
- data/ext/nmatrix/storage/list.h +6 -9
- data/ext/nmatrix/storage/storage.cpp +44 -54
- data/ext/nmatrix/storage/storage.h +2 -2
- data/ext/nmatrix/storage/yale/class.h +1070 -0
- data/ext/nmatrix/storage/yale/iterators/base.h +142 -0
- data/ext/nmatrix/storage/yale/iterators/iterator.h +130 -0
- data/ext/nmatrix/storage/yale/iterators/row.h +449 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored.h +139 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored_nd.h +167 -0
- data/ext/nmatrix/storage/yale/iterators/stored_diagonal.h +123 -0
- data/ext/nmatrix/storage/yale/math/transpose.h +110 -0
- data/ext/nmatrix/storage/yale/yale.cpp +1785 -0
- data/ext/nmatrix/storage/{yale.h → yale/yale.h} +23 -55
- data/ext/nmatrix/types.h +2 -0
- data/ext/nmatrix/util/io.cpp +27 -45
- data/ext/nmatrix/util/io.h +0 -2
- data/ext/nmatrix/util/sl_list.cpp +169 -28
- data/ext/nmatrix/util/sl_list.h +9 -3
- data/lib/nmatrix/blas.rb +20 -20
- data/lib/nmatrix/enumerate.rb +1 -1
- data/lib/nmatrix/io/mat5_reader.rb +8 -14
- data/lib/nmatrix/lapack.rb +3 -3
- data/lib/nmatrix/math.rb +3 -3
- data/lib/nmatrix/nmatrix.rb +19 -5
- data/lib/nmatrix/nvector.rb +2 -0
- data/lib/nmatrix/shortcuts.rb +90 -125
- data/lib/nmatrix/version.rb +1 -1
- data/nmatrix.gemspec +7 -8
- data/spec/{nmatrix_spec.rb → 00_nmatrix_spec.rb} +45 -208
- data/spec/01_enum_spec.rb +184 -0
- data/spec/{slice_spec.rb → 02_slice_spec.rb} +55 -39
- data/spec/blas_spec.rb +22 -54
- data/spec/elementwise_spec.rb +9 -8
- data/spec/io_spec.rb +6 -4
- data/spec/lapack_spec.rb +26 -26
- data/spec/math_spec.rb +9 -5
- data/spec/nmatrix_yale_spec.rb +29 -61
- data/spec/shortcuts_spec.rb +34 -22
- data/spec/slice_set_spec.rb +157 -0
- data/spec/spec_helper.rb +42 -2
- data/spec/stat_spec.rb +192 -0
- metadata +52 -55
- data/ext/nmatrix/storage/yale.cpp +0 -2284
- data/spec/nmatrix_list_spec.rb +0 -113
- data/spec/nvector_spec.rb +0 -112
@@ -0,0 +1,70 @@
|
|
1
|
+
/////////////////////////////////////////////////////////////////////
|
2
|
+
// = NMatrix
|
3
|
+
//
|
4
|
+
// A linear algebra library for scientific computation in Ruby.
|
5
|
+
// NMatrix is part of SciRuby.
|
6
|
+
//
|
7
|
+
// NMatrix was originally inspired by and derived from NArray, by
|
8
|
+
// Masahiro Tanaka: http://narray.rubyforge.org
|
9
|
+
//
|
10
|
+
// == Copyright Information
|
11
|
+
//
|
12
|
+
// SciRuby is Copyright (c) 2010 - 2013, Ruby Science Foundation
|
13
|
+
// NMatrix is Copyright (c) 2013, Ruby Science Foundation
|
14
|
+
//
|
15
|
+
// Please see LICENSE.txt for additional copyright notices.
|
16
|
+
//
|
17
|
+
// == Contributing
|
18
|
+
//
|
19
|
+
// By contributing source code to SciRuby, you agree to be bound by
|
20
|
+
// our Contributor Agreement:
|
21
|
+
//
|
22
|
+
// * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
23
|
+
//
|
24
|
+
// == meta.h
|
25
|
+
//
|
26
|
+
// Header file for dealing with template metaprogramming.
|
27
|
+
|
28
|
+
#ifndef META_H
|
29
|
+
# define META_H
|
30
|
+
|
31
|
+
namespace nm {
|
32
|
+
/*
|
33
|
+
* Template Metaprogramming
|
34
|
+
*/
|
35
|
+
template <typename T> struct ctype_to_dtype_enum {
|
36
|
+
static const nm::dtype_t value_type = nm::BYTE;
|
37
|
+
};
|
38
|
+
template <> struct ctype_to_dtype_enum<uint8_t> { static const nm::dtype_t value_type = nm::BYTE; };
|
39
|
+
template <> struct ctype_to_dtype_enum<int8_t> { static const nm::dtype_t value_type = nm::INT8; };
|
40
|
+
template <> struct ctype_to_dtype_enum<int16_t> { static const nm::dtype_t value_type = nm::INT16; };
|
41
|
+
template <> struct ctype_to_dtype_enum<int32_t> { static const nm::dtype_t value_type = nm::INT32; };
|
42
|
+
template <> struct ctype_to_dtype_enum<int64_t> { static const nm::dtype_t value_type = nm::INT64; };
|
43
|
+
template <> struct ctype_to_dtype_enum<float> { static const nm::dtype_t value_type = nm::FLOAT32; };
|
44
|
+
template <> struct ctype_to_dtype_enum<double> { static const nm::dtype_t value_type = nm::FLOAT64; };
|
45
|
+
template <> struct ctype_to_dtype_enum<Complex64> { static const nm::dtype_t value_type = nm::COMPLEX64; };
|
46
|
+
template <> struct ctype_to_dtype_enum<Complex128> { static const nm::dtype_t value_type = nm::COMPLEX128; };
|
47
|
+
template <> struct ctype_to_dtype_enum<Rational32> { static const nm::dtype_t value_type = nm::RATIONAL32; };
|
48
|
+
template <> struct ctype_to_dtype_enum<Rational64> { static const nm::dtype_t value_type = nm::RATIONAL64; };
|
49
|
+
template <> struct ctype_to_dtype_enum<Rational128> { static const nm::dtype_t value_type = nm::RATIONAL128; };
|
50
|
+
template <> struct ctype_to_dtype_enum<RubyObject> { static const nm::dtype_t value_type = nm::RUBYOBJ; };
|
51
|
+
|
52
|
+
|
53
|
+
template <nm::dtype_t Enum> struct dtype_enum_T;
|
54
|
+
template <> struct dtype_enum_T<nm::BYTE> { typedef uint8_t type; };
|
55
|
+
template <> struct dtype_enum_T<nm::INT8> { typedef int8_t type; };
|
56
|
+
template <> struct dtype_enum_T<nm::INT16> { typedef int16_t type; };
|
57
|
+
template <> struct dtype_enum_T<nm::INT32> { typedef int32_t type; };
|
58
|
+
template <> struct dtype_enum_T<nm::INT64> { typedef int64_t type; };
|
59
|
+
template <> struct dtype_enum_T<nm::FLOAT32> { typedef float type; };
|
60
|
+
template <> struct dtype_enum_T<nm::FLOAT64> { typedef double type; };
|
61
|
+
template <> struct dtype_enum_T<nm::COMPLEX64> { typedef nm::Complex64 type; };
|
62
|
+
template <> struct dtype_enum_T<nm::COMPLEX128> { typedef nm::Complex128 type; };
|
63
|
+
template <> struct dtype_enum_T<nm::RATIONAL32> { typedef nm::Rational32 type; };
|
64
|
+
template <> struct dtype_enum_T<nm::RATIONAL64> { typedef nm::Rational64 type; };
|
65
|
+
template <> struct dtype_enum_T<nm::RATIONAL128> { typedef nm::Rational128 type; };
|
66
|
+
template <> struct dtype_enum_T<nm::RUBYOBJ> { typedef nm::RubyObject type; };
|
67
|
+
|
68
|
+
} // end namespace nm
|
69
|
+
|
70
|
+
#endif
|
data/ext/nmatrix/extconf.rb
CHANGED
@@ -74,6 +74,10 @@ def create_conf_h(file) #:nodoc:
|
|
74
74
|
hfile.puts "#define RUBY_2 1"
|
75
75
|
end
|
76
76
|
|
77
|
+
if RUBY_VERSION < '1.9.3'
|
78
|
+
hfile.puts "#define OLD_RB_SCAN_ARGS"
|
79
|
+
end
|
80
|
+
|
77
81
|
for line in $defs
|
78
82
|
line =~ /^-D(.*)/
|
79
83
|
hfile.printf "#define %s 1\n", $1
|
@@ -111,7 +115,7 @@ $srcs = [
|
|
111
115
|
'storage/common.cpp',
|
112
116
|
'storage/storage.cpp',
|
113
117
|
'storage/dense.cpp',
|
114
|
-
'storage/yale.cpp',
|
118
|
+
'storage/yale/yale.cpp',
|
115
119
|
'storage/list.cpp'
|
116
120
|
]
|
117
121
|
# add smmp in to get generic transp; remove smmp2 to eliminate funcptr transp
|
@@ -130,21 +134,37 @@ $srcs = [
|
|
130
134
|
# export CPLUS_INCLUDE_PATH=/usr/local/atlas/include
|
131
135
|
# (substituting in the path of your cblas.h and clapack.h for the path I used). -- JW 8/27/12
|
132
136
|
|
137
|
+
idefaults = {lapack: ["/usr/include/atlas"],
|
138
|
+
cblas: ["/usr/local/atlas/include", "/usr/include/atlas"],
|
139
|
+
atlas: ["/usr/local/atlas/include", "/usr/include/atlas"]}
|
140
|
+
|
141
|
+
ldefaults = {lapack: ["/usr/local/lib", "/usr/local/atlas/lib"],
|
142
|
+
cblas: ["/usr/local/lib", "/usr/local/atlas/lib"],
|
143
|
+
atlas: ["/usr/local/atlas/lib", "/usr/local/lib", "/usr/lib"]}
|
133
144
|
|
134
|
-
unless have_library("lapack")
|
135
|
-
dir_config("lapack", [
|
145
|
+
unless have_library("lapack")
|
146
|
+
dir_config("lapack", idefaults[:lapack], ldefaults[:lapack])
|
136
147
|
end
|
137
148
|
|
138
|
-
unless have_library("cblas")
|
139
|
-
dir_config("cblas", [
|
149
|
+
unless have_library("cblas")
|
150
|
+
dir_config("cblas", idefaults[:cblas], ldefaults[:cblas])
|
140
151
|
end
|
141
152
|
|
142
153
|
unless have_library("atlas")
|
143
|
-
dir_config("atlas", [
|
154
|
+
dir_config("atlas", idefaults[:atlas], ldefaults[:atlas])
|
144
155
|
end
|
145
156
|
|
146
|
-
#
|
157
|
+
# this needs to go before cblas.h checks -- on Ubuntu, the clapack in the
|
158
|
+
# include path found for cblas.h doesn't seem to contain all the necessary
|
159
|
+
# functions
|
147
160
|
have_header("clapack.h")
|
161
|
+
|
162
|
+
# this ensures that we find the header on Ubuntu, where by default the library
|
163
|
+
# can be found but not the header
|
164
|
+
unless have_header("cblas.h")
|
165
|
+
find_header("cblas.h", *idefaults[:cblas])
|
166
|
+
end
|
167
|
+
|
148
168
|
have_header("cblas.h")
|
149
169
|
|
150
170
|
have_func("clapack_dgetrf", ["cblas.h", "clapack.h"])
|
@@ -153,14 +173,16 @@ have_func("dgesvd_", "clapack.h")
|
|
153
173
|
|
154
174
|
have_func("cblas_dgemm", "cblas.h")
|
155
175
|
|
176
|
+
#have_func("rb_scan_args", "ruby.h")
|
156
177
|
|
178
|
+
#find_library("lapack", "clapack_dgetrf")
|
157
179
|
#find_library("cblas", "cblas_dgemm")
|
158
180
|
#find_library("atlas", "ATL_dgemmNN")
|
159
181
|
|
160
182
|
# Order matters here: ATLAS has to go after LAPACK: http://mail.scipy.org/pipermail/scipy-user/2007-January/010717.html
|
161
183
|
$libs += " -llapack -lcblas -latlas "
|
162
184
|
|
163
|
-
$objs = %w{nmatrix ruby_constants data/data util/io math util/sl_list storage/common storage/storage storage/dense storage/yale storage/list}.map { |i| i + ".o" }
|
185
|
+
$objs = %w{nmatrix ruby_constants data/data util/io math util/sl_list storage/common storage/storage storage/dense storage/yale/yale storage/list}.map { |i| i + ".o" }
|
164
186
|
|
165
187
|
#CONFIG['CXX'] = 'clang++'
|
166
188
|
CONFIG['CXX'] = 'g++'
|
@@ -206,10 +228,10 @@ else
|
|
206
228
|
end
|
207
229
|
|
208
230
|
# For release, these next two should both be changed to -O3.
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
231
|
+
$CFLAGS += " -O3 " #" -O0 -g "
|
232
|
+
#$CFLAGS += " -static -O0 -g "
|
233
|
+
$CPPFLAGS += " -O3 -std=#{$CPP_STANDARD} " #" -O0 -g -std=#{$CPP_STANDARD} " #-fmax-errors=10 -save-temps
|
234
|
+
#$CPPFLAGS += " -static -O0 -g -std=#{$CPP_STANDARD} "
|
213
235
|
|
214
236
|
CONFIG['warnflags'].gsub!('-Wshorten-64-to-32', '') # doesn't work except in Mac-patched gcc (4.2)
|
215
237
|
CONFIG['warnflags'].gsub!('-Wdeclaration-after-statement', '')
|
@@ -221,6 +243,12 @@ create_makefile("nmatrix")
|
|
221
243
|
Dir.mkdir("data") unless Dir.exists?("data")
|
222
244
|
Dir.mkdir("util") unless Dir.exists?("util")
|
223
245
|
Dir.mkdir("storage") unless Dir.exists?("storage")
|
246
|
+
Dir.chdir("storage") do
|
247
|
+
Dir.mkdir("yale") unless Dir.exists?("yale")
|
248
|
+
Dir.chdir("yale") do
|
249
|
+
Dir.mkdir("iterators") unless Dir.exists?("iterators")
|
250
|
+
end
|
251
|
+
end
|
224
252
|
|
225
253
|
# to clean up object files in subdirectories:
|
226
254
|
open('Makefile', 'a') do |f|
|
data/ext/nmatrix/math/math.h
CHANGED
@@ -205,7 +205,7 @@ inline void trmm(const enum CBLAS_ORDER order, const enum CBLAS_SIDE side, const
|
|
205
205
|
|
206
206
|
|
207
207
|
// Yale: numeric matrix multiply c=a*b
|
208
|
-
template <typename DType
|
208
|
+
template <typename DType>
|
209
209
|
inline void numbmm(const unsigned int n, const unsigned int m, const unsigned int l, const IType* ia, const IType* ja, const DType* a, const bool diaga,
|
210
210
|
const IType* ib, const IType* jb, const DType* b, const bool diagb, IType* ic, IType* jc, DType* c, const bool diagc) {
|
211
211
|
const unsigned int max_lmn = std::max(std::max(m, n), l);
|
@@ -323,7 +323,6 @@ inline void new_yale_matrix_multiply(const unsigned int m, const IType* ija, con
|
|
323
323
|
*/
|
324
324
|
|
325
325
|
// Yale: Symbolic matrix multiply c=a*b
|
326
|
-
template <typename IType>
|
327
326
|
inline size_t symbmm(const unsigned int n, const unsigned int m, const unsigned int l, const IType* ia, const IType* ja, const bool diaga,
|
328
327
|
const IType* ib, const IType* jb, const bool diagb, IType* ic, const bool diagc) {
|
329
328
|
unsigned int max_lmn = std::max(std::max(m,n), l);
|
@@ -378,7 +377,7 @@ inline size_t symbmm(const unsigned int n, const unsigned int m, const unsigned
|
|
378
377
|
namespace smmp_sort {
|
379
378
|
const size_t THRESHOLD = 4; // switch to insertion sort for 4 elements or fewer
|
380
379
|
|
381
|
-
template <typename DType
|
380
|
+
template <typename DType>
|
382
381
|
void print_array(DType* vals, IType* array, IType left, IType right) {
|
383
382
|
for (IType i = left; i <= right; ++i) {
|
384
383
|
std::cerr << array[i] << ":" << vals[i] << " ";
|
@@ -386,7 +385,7 @@ namespace smmp_sort {
|
|
386
385
|
std::cerr << std::endl;
|
387
386
|
}
|
388
387
|
|
389
|
-
template <typename DType
|
388
|
+
template <typename DType>
|
390
389
|
IType partition(DType* vals, IType* array, IType left, IType right, IType pivot) {
|
391
390
|
IType pivotJ = array[pivot];
|
392
391
|
DType pivotV = vals[pivot];
|
@@ -414,8 +413,8 @@ namespace smmp_sort {
|
|
414
413
|
}
|
415
414
|
|
416
415
|
// Recommended to use the median of left, right, and mid for the pivot.
|
417
|
-
template <typename
|
418
|
-
|
416
|
+
template <typename I>
|
417
|
+
inline I median(I a, I b, I c) {
|
419
418
|
if (a < b) {
|
420
419
|
if (b < c) return b; // a b c
|
421
420
|
if (a < c) return c; // a c b
|
@@ -430,7 +429,7 @@ namespace smmp_sort {
|
|
430
429
|
|
431
430
|
|
432
431
|
// Insertion sort is more efficient than quicksort for small N
|
433
|
-
template <typename DType
|
432
|
+
template <typename DType>
|
434
433
|
void insertion_sort(DType* vals, IType* array, IType left, IType right) {
|
435
434
|
for (IType idx = left; idx <= right; ++idx) {
|
436
435
|
IType col_to_insert = array[idx];
|
@@ -448,7 +447,7 @@ namespace smmp_sort {
|
|
448
447
|
}
|
449
448
|
|
450
449
|
|
451
|
-
template <typename DType
|
450
|
+
template <typename DType>
|
452
451
|
void quicksort(DType* vals, IType* array, IType left, IType right) {
|
453
452
|
|
454
453
|
if (left < right) {
|
@@ -456,14 +455,14 @@ namespace smmp_sort {
|
|
456
455
|
insertion_sort(vals, array, left, right);
|
457
456
|
} else {
|
458
457
|
// choose any pivot such that left < pivot < right
|
459
|
-
IType pivot = median(left, right, (IType)(((unsigned long)left + (unsigned long)right) / 2));
|
458
|
+
IType pivot = median<IType>(left, right, (IType)(((unsigned long)left + (unsigned long)right) / 2));
|
460
459
|
pivot = partition(vals, array, left, right, pivot);
|
461
460
|
|
462
461
|
// recursively sort elements smaller than the pivot
|
463
|
-
quicksort<DType
|
462
|
+
quicksort<DType>(vals, array, left, pivot-1);
|
464
463
|
|
465
464
|
// recursively sort elements at least as big as the pivot
|
466
|
-
quicksort<DType
|
465
|
+
quicksort<DType>(vals, array, pivot+1, right);
|
467
466
|
}
|
468
467
|
}
|
469
468
|
}
|
@@ -483,108 +482,19 @@ namespace smmp_sort {
|
|
483
482
|
* ordering. If someone is doing a lot of Yale matrix multiplication, it might benefit them to consider even insertion
|
484
483
|
* sort.
|
485
484
|
*/
|
486
|
-
template <typename DType
|
485
|
+
template <typename DType>
|
487
486
|
inline void smmp_sort_columns(const size_t n, const IType* ia, IType* ja, DType* a) {
|
488
487
|
for (size_t i = 0; i < n; ++i) {
|
489
488
|
if (ia[i+1] - ia[i] < 2) continue; // no need to sort rows containing only one or two elements.
|
490
489
|
else if (ia[i+1] - ia[i] <= smmp_sort::THRESHOLD) {
|
491
|
-
smmp_sort::insertion_sort<DType
|
490
|
+
smmp_sort::insertion_sort<DType>(a, ja, ia[i], ia[i+1]-1); // faster for small rows
|
492
491
|
} else {
|
493
|
-
smmp_sort::quicksort<DType
|
492
|
+
smmp_sort::quicksort<DType>(a, ja, ia[i], ia[i+1]-1); // faster for large rows (and may call insertion_sort as well)
|
494
493
|
}
|
495
494
|
}
|
496
495
|
}
|
497
496
|
|
498
497
|
|
499
|
-
|
500
|
-
/*
|
501
|
-
* Transposes a generic Yale matrix (old or new). Specify new by setting diaga = true.
|
502
|
-
*
|
503
|
-
* Based on transp from SMMP (same as symbmm and numbmm).
|
504
|
-
*
|
505
|
-
* This is not named in the same way as most yale_storage functions because it does not act on a YALE_STORAGE
|
506
|
-
* object.
|
507
|
-
*/
|
508
|
-
template <typename DType, typename IType>
|
509
|
-
void transpose_yale(const size_t n, const size_t m, const void* ia_, const void* ja_, const void* a_,
|
510
|
-
const bool diaga, void* ib_, void* jb_, void* b_, const bool move)
|
511
|
-
{
|
512
|
-
const IType *ia = reinterpret_cast<const IType*>(ia_),
|
513
|
-
*ja = reinterpret_cast<const IType*>(ja_);
|
514
|
-
const DType *a = reinterpret_cast<const DType*>(a_);
|
515
|
-
|
516
|
-
IType *ib = reinterpret_cast<IType*>(ib_),
|
517
|
-
*jb = reinterpret_cast<IType*>(jb_);
|
518
|
-
DType *b = reinterpret_cast<DType*>(b_);
|
519
|
-
|
520
|
-
|
521
|
-
|
522
|
-
size_t index;
|
523
|
-
|
524
|
-
// Clear B
|
525
|
-
for (size_t i = 0; i < m+1; ++i) ib[i] = 0;
|
526
|
-
|
527
|
-
if (move)
|
528
|
-
for (size_t i = 0; i < m+1; ++i) b[i] = 0;
|
529
|
-
|
530
|
-
if (diaga) ib[0] = m + 1;
|
531
|
-
else ib[0] = 0;
|
532
|
-
|
533
|
-
/* count indices for each column */
|
534
|
-
|
535
|
-
for (size_t i = 0; i < n; ++i) {
|
536
|
-
for (size_t j = ia[i]; j < ia[i+1]; ++j) {
|
537
|
-
++(ib[ja[j]+1]);
|
538
|
-
}
|
539
|
-
}
|
540
|
-
|
541
|
-
for (size_t i = 0; i < m; ++i) {
|
542
|
-
ib[i+1] = ib[i] + ib[i+1];
|
543
|
-
}
|
544
|
-
|
545
|
-
/* now make jb */
|
546
|
-
|
547
|
-
for (size_t i = 0; i < n; ++i) {
|
548
|
-
|
549
|
-
for (size_t j = ia[i]; j < ia[i+1]; ++j) {
|
550
|
-
index = ja[j];
|
551
|
-
jb[ib[index]] = i;
|
552
|
-
|
553
|
-
if (move)
|
554
|
-
b[ib[index]] = a[j];
|
555
|
-
|
556
|
-
++(ib[index]);
|
557
|
-
}
|
558
|
-
}
|
559
|
-
|
560
|
-
/* now fixup ib */
|
561
|
-
|
562
|
-
for (size_t i = m; i >= 1; --i) {
|
563
|
-
ib[i] = ib[i-1];
|
564
|
-
}
|
565
|
-
|
566
|
-
|
567
|
-
if (diaga) {
|
568
|
-
if (move) {
|
569
|
-
size_t j = std::min(n,m);
|
570
|
-
|
571
|
-
for (size_t i = 0; i < j; ++i) {
|
572
|
-
b[i] = a[i];
|
573
|
-
}
|
574
|
-
}
|
575
|
-
ib[0] = m + 1;
|
576
|
-
|
577
|
-
} else {
|
578
|
-
ib[0] = 0;
|
579
|
-
}
|
580
|
-
}
|
581
|
-
|
582
|
-
|
583
|
-
|
584
|
-
|
585
|
-
|
586
|
-
|
587
|
-
|
588
498
|
/*
|
589
499
|
* From ATLAS 3.8.0:
|
590
500
|
*
|
data/ext/nmatrix/nmatrix.cpp
CHANGED
@@ -45,6 +45,7 @@ extern "C" {
|
|
45
45
|
/*
|
46
46
|
* Project Includes
|
47
47
|
*/
|
48
|
+
#include "nmatrix_config.h"
|
48
49
|
|
49
50
|
#include "types.h"
|
50
51
|
#include "data/data.h"
|
@@ -52,12 +53,17 @@ extern "C" {
|
|
52
53
|
#include "util/io.h"
|
53
54
|
#include "storage/storage.h"
|
54
55
|
#include "storage/list.h"
|
55
|
-
#include "storage/yale.h"
|
56
|
+
#include "storage/yale/yale.h"
|
56
57
|
|
57
58
|
#include "nmatrix.h"
|
58
59
|
|
59
60
|
#include "ruby_constants.h"
|
60
61
|
|
62
|
+
/*
|
63
|
+
* Ruby internals
|
64
|
+
*/
|
65
|
+
|
66
|
+
|
61
67
|
/*
|
62
68
|
* Macros
|
63
69
|
*/
|
@@ -74,7 +80,6 @@ namespace nm {
|
|
74
80
|
*
|
75
81
|
* shape should already be allocated before calling this.
|
76
82
|
*/
|
77
|
-
template <typename IType>
|
78
83
|
void read_padded_shape(std::ifstream& f, size_t dim, size_t* shape) {
|
79
84
|
size_t bytes_read = 0;
|
80
85
|
|
@@ -91,7 +96,6 @@ namespace nm {
|
|
91
96
|
f.ignore(bytes_read % 8);
|
92
97
|
}
|
93
98
|
|
94
|
-
template <typename IType>
|
95
99
|
void write_padded_shape(std::ofstream& f, size_t dim, size_t* shape) {
|
96
100
|
size_t bytes_written = 0;
|
97
101
|
|
@@ -246,7 +250,7 @@ namespace nm {
|
|
246
250
|
if (bytes_read % 8) f.ignore(bytes_read % 8);
|
247
251
|
}
|
248
252
|
|
249
|
-
template <typename DType
|
253
|
+
template <typename DType>
|
250
254
|
void write_padded_yale_elements(std::ofstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm) {
|
251
255
|
if (symm != nm::NONSYMM) rb_raise(rb_eNotImpError, "Yale matrices can only be read/written in full form");
|
252
256
|
|
@@ -268,7 +272,7 @@ namespace nm {
|
|
268
272
|
}
|
269
273
|
|
270
274
|
|
271
|
-
template <typename DType
|
275
|
+
template <typename DType>
|
272
276
|
void read_padded_yale_elements(std::ifstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm) {
|
273
277
|
if (symm != NONSYMM) rb_raise(rb_eNotImpError, "Yale matrices can only be read/written in full form");
|
274
278
|
|
@@ -324,2017 +328,5 @@ namespace nm {
|
|
324
328
|
} // end of namespace nm
|
325
329
|
|
326
330
|
extern "C" {
|
327
|
-
|
328
|
-
/*
|
329
|
-
* Forward Declarations
|
330
|
-
*/
|
331
|
-
|
332
|
-
static VALUE nm_init(int argc, VALUE* argv, VALUE nm);
|
333
|
-
static VALUE nm_init_copy(VALUE copy, VALUE original);
|
334
|
-
static VALUE nm_init_transposed(VALUE self);
|
335
|
-
static VALUE nm_cast(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol, VALUE init);
|
336
|
-
static VALUE nm_read(int argc, VALUE* argv, VALUE self);
|
337
|
-
static VALUE nm_write(int argc, VALUE* argv, VALUE self);
|
338
|
-
static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm);
|
339
|
-
static VALUE nm_alloc(VALUE klass);
|
340
|
-
static VALUE nm_dtype(VALUE self);
|
341
|
-
static VALUE nm_itype(VALUE self);
|
342
|
-
static VALUE nm_stype(VALUE self);
|
343
|
-
static VALUE nm_default_value(VALUE self);
|
344
|
-
static size_t effective_dim(STORAGE* s);
|
345
|
-
static VALUE nm_effective_dim(VALUE self);
|
346
|
-
static VALUE nm_dim(VALUE self);
|
347
|
-
static VALUE nm_offset(VALUE self);
|
348
|
-
static VALUE nm_shape(VALUE self);
|
349
|
-
static VALUE nm_supershape(int argc, VALUE* argv, VALUE self);
|
350
|
-
static VALUE nm_capacity(VALUE self);
|
351
|
-
static VALUE nm_each_with_indices(VALUE nmatrix);
|
352
|
-
static VALUE nm_each_stored_with_indices(VALUE nmatrix);
|
353
|
-
|
354
|
-
static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape);
|
355
|
-
static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self);
|
356
|
-
static VALUE nm_mset(int argc, VALUE* argv, VALUE self);
|
357
|
-
static VALUE nm_mget(int argc, VALUE* argv, VALUE self);
|
358
|
-
static VALUE nm_mref(int argc, VALUE* argv, VALUE self);
|
359
|
-
static VALUE nm_is_ref(VALUE self);
|
360
|
-
|
361
|
-
static VALUE is_symmetric(VALUE self, bool hermitian);
|
362
|
-
|
363
|
-
static VALUE nm_guess_dtype(VALUE self, VALUE v);
|
364
|
-
static VALUE nm_min_dtype(VALUE self, VALUE v);
|
365
|
-
|
366
|
-
/*
|
367
|
-
* Macro defines an element-wise accessor function for some operation.
|
368
|
-
*
|
369
|
-
* This is only responsible for the Ruby accessor! You still have to write the actual functions, obviously.
|
370
|
-
*/
|
371
|
-
#define DEF_ELEMENTWISE_RUBY_ACCESSOR(oper, name) \
|
372
|
-
static VALUE nm_ew_##name(VALUE left_val, VALUE right_val) { \
|
373
|
-
return elementwise_op(nm::EW_##oper, left_val, right_val); \
|
374
|
-
}
|
375
|
-
|
376
|
-
/*
|
377
|
-
* Macro declares a corresponding accessor function prototype for some element-wise operation.
|
378
|
-
*/
|
379
|
-
#define DECL_ELEMENTWISE_RUBY_ACCESSOR(name) static VALUE nm_ew_##name(VALUE left_val, VALUE right_val);
|
380
|
-
|
381
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(add)
|
382
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(subtract)
|
383
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(multiply)
|
384
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(divide)
|
385
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(power)
|
386
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(mod)
|
387
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(eqeq)
|
388
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(neq)
|
389
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(lt)
|
390
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(gt)
|
391
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(leq)
|
392
|
-
DECL_ELEMENTWISE_RUBY_ACCESSOR(geq)
|
393
|
-
|
394
|
-
static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val);
|
395
|
-
|
396
|
-
static VALUE nm_symmetric(VALUE self);
|
397
|
-
static VALUE nm_hermitian(VALUE self);
|
398
|
-
|
399
|
-
static VALUE nm_eqeq(VALUE left, VALUE right);
|
400
|
-
|
401
|
-
static VALUE matrix_multiply_scalar(NMATRIX* left, VALUE scalar);
|
402
|
-
static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right);
|
403
|
-
static VALUE nm_multiply(VALUE left_v, VALUE right_v);
|
404
|
-
static VALUE nm_det_exact(VALUE self);
|
405
|
-
static VALUE nm_complex_conjugate_bang(VALUE self);
|
406
|
-
|
407
|
-
static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype);
|
408
|
-
static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype);
|
409
|
-
static size_t* interpret_shape(VALUE arg, size_t* dim);
|
410
|
-
static nm::stype_t interpret_stype(VALUE arg);
|
411
|
-
|
412
|
-
/* Singleton methods */
|
413
|
-
static VALUE nm_itype_by_shape(VALUE self, VALUE shape_arg);
|
414
|
-
static VALUE nm_upcast(VALUE self, VALUE t1, VALUE t2);
|
415
|
-
|
416
|
-
|
417
|
-
#ifdef BENCHMARK
|
418
|
-
static double get_time(void);
|
419
|
-
#endif
|
420
|
-
|
421
|
-
///////////////////
|
422
|
-
// Ruby Bindings //
|
423
|
-
///////////////////
|
424
|
-
|
425
|
-
void Init_nmatrix() {
|
426
|
-
|
427
|
-
|
428
|
-
///////////////////////
|
429
|
-
// Class Definitions //
|
430
|
-
///////////////////////
|
431
|
-
|
432
|
-
cNMatrix = rb_define_class("NMatrix", rb_cObject);
|
433
|
-
//cNVector = rb_define_class("NVector", cNMatrix);
|
434
|
-
|
435
|
-
// Special exceptions
|
436
|
-
|
437
|
-
/*
|
438
|
-
* Exception raised when there's a problem with data.
|
439
|
-
*/
|
440
|
-
nm_eDataTypeError = rb_define_class("DataTypeError", rb_eStandardError);
|
441
|
-
|
442
|
-
/*
|
443
|
-
* Exception raised when something goes wrong with the storage of a matrix.
|
444
|
-
*/
|
445
|
-
nm_eStorageTypeError = rb_define_class("StorageTypeError", rb_eStandardError);
|
446
|
-
|
447
|
-
///////////////////
|
448
|
-
// Class Methods //
|
449
|
-
///////////////////
|
450
|
-
|
451
|
-
rb_define_alloc_func(cNMatrix, nm_alloc);
|
452
|
-
|
453
|
-
///////////////////////
|
454
|
-
// Singleton Methods //
|
455
|
-
///////////////////////
|
456
|
-
|
457
|
-
rb_define_singleton_method(cNMatrix, "upcast", (METHOD)nm_upcast, 2);
|
458
|
-
rb_define_singleton_method(cNMatrix, "itype_by_shape", (METHOD)nm_itype_by_shape, 1);
|
459
|
-
rb_define_singleton_method(cNMatrix, "guess_dtype", (METHOD)nm_guess_dtype, 1);
|
460
|
-
rb_define_singleton_method(cNMatrix, "min_dtype", (METHOD)nm_min_dtype, 1);
|
461
|
-
|
462
|
-
//////////////////////
|
463
|
-
// Instance Methods //
|
464
|
-
//////////////////////
|
465
|
-
|
466
|
-
rb_define_method(cNMatrix, "initialize", (METHOD)nm_init, -1);
|
467
|
-
rb_define_method(cNMatrix, "initialize_copy", (METHOD)nm_init_copy, 1);
|
468
|
-
rb_define_singleton_method(cNMatrix, "read", (METHOD)nm_read, -1);
|
469
|
-
|
470
|
-
rb_define_method(cNMatrix, "write", (METHOD)nm_write, -1);
|
471
|
-
|
472
|
-
// Technically, the following function is a copy constructor.
|
473
|
-
rb_define_method(cNMatrix, "transpose", (METHOD)nm_init_transposed, 0);
|
474
|
-
|
475
|
-
rb_define_method(cNMatrix, "dtype", (METHOD)nm_dtype, 0);
|
476
|
-
rb_define_method(cNMatrix, "itype", (METHOD)nm_itype, 0);
|
477
|
-
rb_define_method(cNMatrix, "stype", (METHOD)nm_stype, 0);
|
478
|
-
rb_define_method(cNMatrix, "cast_full", (METHOD)nm_cast, 3);
|
479
|
-
rb_define_method(cNMatrix, "default_value", (METHOD)nm_default_value, 0);
|
480
|
-
rb_define_protected_method(cNMatrix, "__list_default_value__", (METHOD)nm_list_default_value, 0);
|
481
|
-
rb_define_protected_method(cNMatrix, "__yale_default_value__", (METHOD)nm_yale_default_value, 0);
|
482
|
-
|
483
|
-
rb_define_method(cNMatrix, "[]", (METHOD)nm_mref, -1);
|
484
|
-
rb_define_method(cNMatrix, "slice", (METHOD)nm_mget, -1);
|
485
|
-
rb_define_method(cNMatrix, "[]=", (METHOD)nm_mset, -1);
|
486
|
-
rb_define_method(cNMatrix, "is_ref?", (METHOD)nm_is_ref, 0);
|
487
|
-
rb_define_method(cNMatrix, "dimensions", (METHOD)nm_dim, 0);
|
488
|
-
rb_define_method(cNMatrix, "effective_dimensions", (METHOD)nm_effective_dim, 0);
|
489
|
-
|
490
|
-
rb_define_protected_method(cNMatrix, "__list_to_hash__", (METHOD)nm_to_hash, 0); // handles list and dense, which are n-dimensional
|
491
|
-
|
492
|
-
rb_define_method(cNMatrix, "shape", (METHOD)nm_shape, 0);
|
493
|
-
rb_define_method(cNMatrix, "supershape", (METHOD)nm_supershape, -1);
|
494
|
-
rb_define_method(cNMatrix, "offset", (METHOD)nm_offset, 0);
|
495
|
-
rb_define_method(cNMatrix, "det_exact", (METHOD)nm_det_exact, 0);
|
496
|
-
rb_define_method(cNMatrix, "complex_conjugate!", (METHOD)nm_complex_conjugate_bang, 0);
|
497
|
-
|
498
|
-
rb_define_protected_method(cNMatrix, "__dense_each__", (METHOD)nm_dense_each, 0);
|
499
|
-
rb_define_protected_method(cNMatrix, "__dense_map__", (METHOD)nm_dense_map, 0);
|
500
|
-
rb_define_protected_method(cNMatrix, "__dense_map_pair__", (METHOD)nm_dense_map_pair, 1);
|
501
|
-
rb_define_method(cNMatrix, "each_with_indices", (METHOD)nm_each_with_indices, 0);
|
502
|
-
rb_define_method(cNMatrix, "each_stored_with_indices", (METHOD)nm_each_stored_with_indices, 0);
|
503
|
-
rb_define_protected_method(cNMatrix, "__list_map_merged_stored__", (METHOD)nm_list_map_merged_stored, 2);
|
504
|
-
rb_define_protected_method(cNMatrix, "__yale_map_merged_stored__", (METHOD)nm_yale_map_merged_stored, 2);
|
505
|
-
rb_define_protected_method(cNMatrix, "__yale_map_stored__", (METHOD)nm_yale_map_stored, 0);
|
506
|
-
|
507
|
-
rb_define_method(cNMatrix, "==", (METHOD)nm_eqeq, 1);
|
508
|
-
|
509
|
-
rb_define_method(cNMatrix, "+", (METHOD)nm_ew_add, 1);
|
510
|
-
rb_define_method(cNMatrix, "-", (METHOD)nm_ew_subtract, 1);
|
511
|
-
rb_define_method(cNMatrix, "*", (METHOD)nm_ew_multiply, 1);
|
512
|
-
rb_define_method(cNMatrix, "/", (METHOD)nm_ew_divide, 1);
|
513
|
-
rb_define_method(cNMatrix, "**", (METHOD)nm_ew_power, 1);
|
514
|
-
rb_define_method(cNMatrix, "%", (METHOD)nm_ew_mod, 1);
|
515
|
-
|
516
|
-
rb_define_method(cNMatrix, "=~", (METHOD)nm_ew_eqeq, 1);
|
517
|
-
rb_define_method(cNMatrix, "!~", (METHOD)nm_ew_neq, 1);
|
518
|
-
rb_define_method(cNMatrix, "<=", (METHOD)nm_ew_leq, 1);
|
519
|
-
rb_define_method(cNMatrix, ">=", (METHOD)nm_ew_geq, 1);
|
520
|
-
rb_define_method(cNMatrix, "<", (METHOD)nm_ew_lt, 1);
|
521
|
-
rb_define_method(cNMatrix, ">", (METHOD)nm_ew_gt, 1);
|
522
|
-
|
523
|
-
/////////////////////////////
|
524
|
-
// Helper Instance Methods //
|
525
|
-
/////////////////////////////
|
526
|
-
rb_define_protected_method(cNMatrix, "__yale_vector_set__", (METHOD)nm_vector_set, -1);
|
527
|
-
|
528
|
-
/////////////////////////
|
529
|
-
// Matrix Math Methods //
|
530
|
-
/////////////////////////
|
531
|
-
rb_define_method(cNMatrix, "dot", (METHOD)nm_multiply, 1);
|
532
|
-
|
533
|
-
rb_define_method(cNMatrix, "symmetric?", (METHOD)nm_symmetric, 0);
|
534
|
-
rb_define_method(cNMatrix, "hermitian?", (METHOD)nm_hermitian, 0);
|
535
|
-
|
536
|
-
rb_define_method(cNMatrix, "capacity", (METHOD)nm_capacity, 0);
|
537
|
-
|
538
|
-
/////////////
|
539
|
-
// Aliases //
|
540
|
-
/////////////
|
541
|
-
|
542
|
-
rb_define_alias(cNMatrix, "dim", "dimensions");
|
543
|
-
rb_define_alias(cNMatrix, "effective_dim", "effective_dimensions");
|
544
|
-
rb_define_alias(cNMatrix, "equal?", "eql?");
|
545
|
-
|
546
|
-
///////////////////////
|
547
|
-
// Symbol Generation //
|
548
|
-
///////////////////////
|
549
|
-
|
550
|
-
nm_init_ruby_constants();
|
551
|
-
|
552
|
-
//////////////////////////
|
553
|
-
// YaleFunctions module //
|
554
|
-
//////////////////////////
|
555
|
-
|
556
|
-
nm_init_yale_functions();
|
557
|
-
|
558
|
-
/////////////////
|
559
|
-
// BLAS module //
|
560
|
-
/////////////////
|
561
|
-
|
562
|
-
nm_math_init_blas();
|
563
|
-
|
564
|
-
///////////////
|
565
|
-
// IO module //
|
566
|
-
///////////////
|
567
|
-
nm_init_io();
|
568
|
-
|
569
|
-
/////////////////////////////////////////////////
|
570
|
-
// Force compilation of necessary constructors //
|
571
|
-
/////////////////////////////////////////////////
|
572
|
-
nm_init_data();
|
573
|
-
}
|
574
|
-
|
575
|
-
|
576
|
-
//////////////////
|
577
|
-
// Ruby Methods //
|
578
|
-
//////////////////
|
579
|
-
|
580
|
-
|
581
|
-
/*
|
582
|
-
* Slice constructor.
|
583
|
-
*/
|
584
|
-
static SLICE* alloc_slice(size_t dim) {
|
585
|
-
SLICE* slice = ALLOC(SLICE);
|
586
|
-
slice->coords = ALLOC_N(size_t, dim);
|
587
|
-
slice->lengths = ALLOC_N(size_t, dim);
|
588
|
-
return slice;
|
589
|
-
}
|
590
|
-
|
591
|
-
|
592
|
-
/*
|
593
|
-
* Slice destructor.
|
594
|
-
*/
|
595
|
-
static void free_slice(SLICE* slice) {
|
596
|
-
xfree(slice->coords);
|
597
|
-
xfree(slice->lengths);
|
598
|
-
xfree(slice);
|
599
|
-
}
|
600
|
-
|
601
|
-
|
602
|
-
/*
|
603
|
-
* Allocator.
|
604
|
-
*/
|
605
|
-
static VALUE nm_alloc(VALUE klass) {
|
606
|
-
NMATRIX* mat = ALLOC(NMATRIX);
|
607
|
-
mat->storage = NULL;
|
608
|
-
// FIXME: mark_table[mat->stype] should be passed to Data_Wrap_Struct, but can't be done without stype. Also, nm_delete depends on this.
|
609
|
-
// mat->stype = nm::NUM_STYPES;
|
610
|
-
|
611
|
-
//STYPE_MARK_TABLE(mark_table);
|
612
|
-
|
613
|
-
return Data_Wrap_Struct(klass, NULL, nm_delete, mat);
|
614
|
-
}
|
615
|
-
|
616
|
-
/*
|
617
|
-
* Find the capacity of an NMatrix. The capacity only differs from the size for
|
618
|
-
* Yale matrices, which occasionally allocate more space than they need. For
|
619
|
-
* list and dense, capacity gives the number of elements in the matrix.
|
620
|
-
*
|
621
|
-
* If you call this on a slice, it may behave unpredictably. Most likely it'll
|
622
|
-
* just return the original matrix's capacity.
|
623
|
-
*/
|
624
|
-
static VALUE nm_capacity(VALUE self) {
|
625
|
-
VALUE cap;
|
626
|
-
|
627
|
-
switch(NM_STYPE(self)) {
|
628
|
-
case nm::YALE_STORE:
|
629
|
-
cap = UINT2NUM(reinterpret_cast<YALE_STORAGE*>(NM_STORAGE_YALE(self)->src)->capacity);
|
630
|
-
break;
|
631
|
-
|
632
|
-
case nm::DENSE_STORE:
|
633
|
-
cap = UINT2NUM(nm_storage_count_max_elements( NM_STORAGE_DENSE(self) ));
|
634
|
-
break;
|
635
|
-
|
636
|
-
case nm::LIST_STORE:
|
637
|
-
cap = UINT2NUM(nm_list_storage_count_elements( NM_STORAGE_LIST(self) ));
|
638
|
-
break;
|
639
|
-
|
640
|
-
default:
|
641
|
-
rb_raise(nm_eStorageTypeError, "unrecognized stype in nm_capacity()");
|
642
|
-
}
|
643
|
-
|
644
|
-
return cap;
|
645
|
-
}
|
646
|
-
|
647
|
-
/*
|
648
|
-
* Destructor.
|
649
|
-
*/
|
650
|
-
void nm_delete(NMATRIX* mat) {
|
651
|
-
static void (*ttable[nm::NUM_STYPES])(STORAGE*) = {
|
652
|
-
nm_dense_storage_delete,
|
653
|
-
nm_list_storage_delete,
|
654
|
-
nm_yale_storage_delete
|
655
|
-
};
|
656
|
-
ttable[mat->stype](mat->storage);
|
657
|
-
|
658
|
-
xfree(mat);
|
659
|
-
}
|
660
|
-
|
661
|
-
/*
|
662
|
-
* Slicing destructor.
|
663
|
-
*/
|
664
|
-
void nm_delete_ref(NMATRIX* mat) {
|
665
|
-
static void (*ttable[nm::NUM_STYPES])(STORAGE*) = {
|
666
|
-
nm_dense_storage_delete_ref,
|
667
|
-
nm_list_storage_delete_ref,
|
668
|
-
nm_yale_storage_delete_ref
|
669
|
-
};
|
670
|
-
ttable[mat->stype](mat->storage);
|
671
|
-
|
672
|
-
xfree(mat);
|
673
|
-
}
|
674
|
-
|
675
|
-
/*
|
676
|
-
* call-seq:
|
677
|
-
* dtype -> Symbol
|
678
|
-
*
|
679
|
-
* Get the data type (dtype) of a matrix, e.g., :byte, :int8, :int16, :int32,
|
680
|
-
* :int64, :float32, :float64, :complex64, :complex128, :rational32,
|
681
|
-
* :rational64, :rational128, or :object (the last is a Ruby object).
|
682
|
-
*/
|
683
|
-
static VALUE nm_dtype(VALUE self) {
|
684
|
-
ID dtype = rb_intern(DTYPE_NAMES[NM_DTYPE(self)]);
|
685
|
-
return ID2SYM(dtype);
|
686
|
-
}
|
687
|
-
|
688
|
-
/*
|
689
|
-
* call-seq:
|
690
|
-
* itype -> Symbol or nil
|
691
|
-
*
|
692
|
-
* Get the index data type (dtype) of a matrix. Defined only for yale; others return nil.
|
693
|
-
*/
|
694
|
-
static VALUE nm_itype(VALUE self) {
|
695
|
-
if (NM_STYPE(self) == nm::YALE_STORE) {
|
696
|
-
ID itype = rb_intern(ITYPE_NAMES[NM_ITYPE(self)]);
|
697
|
-
return ID2SYM(itype);
|
698
|
-
}
|
699
|
-
return Qnil;
|
700
|
-
}
|
701
|
-
|
702
|
-
/*
|
703
|
-
* Get the index data type (dtype) of a matrix. Defined only for yale; others return nil.
|
704
|
-
*/
|
705
|
-
static VALUE nm_itype_by_shape(VALUE self, VALUE shape_arg) {
|
706
|
-
|
707
|
-
size_t dim;
|
708
|
-
size_t* shape = interpret_shape(shape_arg, &dim);
|
709
|
-
|
710
|
-
nm::itype_t itype = nm_yale_storage_itype_by_shape(shape);
|
711
|
-
ID itype_id = rb_intern(ITYPE_NAMES[itype]);
|
712
|
-
|
713
|
-
return ID2SYM(itype_id);
|
714
|
-
}
|
715
|
-
|
716
|
-
/*
|
717
|
-
* call-seq:
|
718
|
-
* upcast(first_dtype, second_dtype) -> Symbol
|
719
|
-
*
|
720
|
-
* Given a binary operation between types t1 and t2, what type will be returned?
|
721
|
-
*
|
722
|
-
* This is a singleton method on NMatrix, e.g., NMatrix.upcast(:int32, :int64)
|
723
|
-
*/
|
724
|
-
static VALUE nm_upcast(VALUE self, VALUE t1, VALUE t2) {
|
725
|
-
|
726
|
-
nm::dtype_t d1 = nm_dtype_from_rbsymbol(t1),
|
727
|
-
d2 = nm_dtype_from_rbsymbol(t2);
|
728
|
-
|
729
|
-
return ID2SYM(rb_intern( DTYPE_NAMES[ Upcast[d1][d2] ] ));
|
730
|
-
}
|
731
|
-
|
732
|
-
|
733
|
-
/*
|
734
|
-
* call-seq:
|
735
|
-
default_value -> ...
|
736
|
-
*
|
737
|
-
* Get the default value for the matrix. For dense, this is undefined and will return Qnil. For list, it is user-defined.
|
738
|
-
* For yale, it's going to be some variation on zero, but may be Qfalse or Qnil.
|
739
|
-
*/
|
740
|
-
static VALUE nm_default_value(VALUE self) {
|
741
|
-
switch(NM_STYPE(self)) {
|
742
|
-
case nm::YALE_STORE:
|
743
|
-
return nm_yale_default_value(self);
|
744
|
-
case nm::LIST_STORE:
|
745
|
-
return nm_list_default_value(self);
|
746
|
-
case nm::DENSE_STORE:
|
747
|
-
default:
|
748
|
-
return Qnil;
|
749
|
-
}
|
750
|
-
}
|
751
|
-
|
752
|
-
|
753
|
-
/*
|
754
|
-
* call-seq:
|
755
|
-
* each_with_indices -> Enumerator
|
756
|
-
*
|
757
|
-
* Iterate over all entries of any matrix in standard storage order (as with #each), and include the indices.
|
758
|
-
*/
|
759
|
-
static VALUE nm_each_with_indices(VALUE nmatrix) {
|
760
|
-
volatile VALUE nm = nmatrix;
|
761
|
-
|
762
|
-
switch(NM_STYPE(nm)) {
|
763
|
-
case nm::YALE_STORE:
|
764
|
-
return nm_yale_each_with_indices(nm);
|
765
|
-
case nm::DENSE_STORE:
|
766
|
-
return nm_dense_each_with_indices(nm);
|
767
|
-
case nm::LIST_STORE:
|
768
|
-
return nm_list_each_with_indices(nm, false);
|
769
|
-
default:
|
770
|
-
rb_raise(nm_eDataTypeError, "Not a proper storage type");
|
771
|
-
}
|
772
|
-
}
|
773
|
-
|
774
|
-
/*
|
775
|
-
* call-seq:
|
776
|
-
* each_stored_with_indices -> Enumerator
|
777
|
-
*
|
778
|
-
* Iterate over the stored entries of any matrix. For dense and yale, this iterates over non-zero
|
779
|
-
* entries; for list, this iterates over non-default entries. Yields dim+1 values for each entry:
|
780
|
-
* i, j, ..., and the entry itself.
|
781
|
-
*/
|
782
|
-
static VALUE nm_each_stored_with_indices(VALUE nmatrix) {
|
783
|
-
volatile VALUE nm = nmatrix;
|
784
|
-
|
785
|
-
switch(NM_STYPE(nm)) {
|
786
|
-
case nm::YALE_STORE:
|
787
|
-
return nm_yale_each_stored_with_indices(nm);
|
788
|
-
case nm::DENSE_STORE:
|
789
|
-
return nm_dense_each_with_indices(nm);
|
790
|
-
case nm::LIST_STORE:
|
791
|
-
return nm_list_each_with_indices(nm, true);
|
792
|
-
default:
|
793
|
-
rb_raise(nm_eDataTypeError, "Not a proper storage type");
|
794
|
-
}
|
795
|
-
}
|
796
|
-
|
797
|
-
|
798
|
-
/*
|
799
|
-
* Equality operator. Returns a single true or false value indicating whether
|
800
|
-
* the matrices are equivalent.
|
801
|
-
*
|
802
|
-
* For elementwise, use =~ instead.
|
803
|
-
*
|
804
|
-
* This method will raise an exception if dimensions do not match.
|
805
|
-
*/
|
806
|
-
static VALUE nm_eqeq(VALUE left, VALUE right) {
|
807
|
-
NMATRIX *l, *r;
|
808
|
-
|
809
|
-
CheckNMatrixType(left);
|
810
|
-
CheckNMatrixType(right);
|
811
|
-
|
812
|
-
UnwrapNMatrix(left, l);
|
813
|
-
UnwrapNMatrix(right, r);
|
814
|
-
|
815
|
-
if (l->stype != r->stype)
|
816
|
-
rb_raise(rb_eNotImpError, "comparison between different matrix stypes not yet implemented");
|
817
|
-
|
818
|
-
bool result = false;
|
819
|
-
|
820
|
-
switch(l->stype) {
|
821
|
-
case nm::DENSE_STORE:
|
822
|
-
result = nm_dense_storage_eqeq(l->storage, r->storage);
|
823
|
-
break;
|
824
|
-
case nm::LIST_STORE:
|
825
|
-
result = nm_list_storage_eqeq(l->storage, r->storage);
|
826
|
-
break;
|
827
|
-
case nm::YALE_STORE:
|
828
|
-
result = nm_yale_storage_eqeq(l->storage, r->storage);
|
829
|
-
break;
|
830
|
-
}
|
831
|
-
|
832
|
-
return result ? Qtrue : Qfalse;
|
833
|
-
}
|
834
|
-
|
835
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(ADD, add)
|
836
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(SUB, subtract)
|
837
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(MUL, multiply)
|
838
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(DIV, divide)
|
839
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(POW, power)
|
840
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(MOD, mod)
|
841
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(EQEQ, eqeq)
|
842
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(NEQ, neq)
|
843
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(LEQ, leq)
|
844
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(GEQ, geq)
|
845
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(LT, lt)
|
846
|
-
DEF_ELEMENTWISE_RUBY_ACCESSOR(GT, gt)
|
847
|
-
|
848
|
-
/*
|
849
|
-
* call-seq:
|
850
|
-
* hermitian? -> Boolean
|
851
|
-
*
|
852
|
-
* Is this matrix hermitian?
|
853
|
-
*
|
854
|
-
* Definition: http://en.wikipedia.org/wiki/Hermitian_matrix
|
855
|
-
*
|
856
|
-
* For non-complex matrices, this function should return the same result as symmetric?.
|
857
|
-
*/
|
858
|
-
static VALUE nm_hermitian(VALUE self) {
|
859
|
-
return is_symmetric(self, true);
|
860
|
-
}
|
861
|
-
|
862
|
-
|
863
|
-
|
864
|
-
/*
|
865
|
-
* call-seq:
|
866
|
-
* complex_conjugate -> NMatrix
|
867
|
-
*
|
868
|
-
* Transform the matrix (in-place) to its complex conjugate. Only works on complex matrices.
|
869
|
-
*
|
870
|
-
* FIXME: For non-complex matrices, someone needs to implement a non-in-place complex conjugate (which doesn't use a bang).
|
871
|
-
* Bang should imply that no copy is being made, even temporarily.
|
872
|
-
*/
|
873
|
-
static VALUE nm_complex_conjugate_bang(VALUE self) {
|
874
|
-
NMATRIX* m;
|
875
|
-
void* elem;
|
876
|
-
size_t size, p;
|
877
|
-
|
878
|
-
UnwrapNMatrix(self, m);
|
879
|
-
|
880
|
-
if (m->stype == nm::DENSE_STORE) {
|
881
|
-
|
882
|
-
size = nm_storage_count_max_elements(NM_STORAGE(self));
|
883
|
-
elem = NM_STORAGE_DENSE(self)->elements;
|
884
|
-
|
885
|
-
} else if (m->stype == nm::YALE_STORE) {
|
886
|
-
|
887
|
-
size = nm_yale_storage_get_size(NM_STORAGE_YALE(self));
|
888
|
-
elem = NM_STORAGE_YALE(self)->a;
|
889
|
-
|
890
|
-
} else {
|
891
|
-
rb_raise(rb_eNotImpError, "please cast to yale or dense (complex) first");
|
892
|
-
}
|
893
|
-
|
894
|
-
// Walk through and negate the imaginary component
|
895
|
-
if (NM_DTYPE(self) == nm::COMPLEX64) {
|
896
|
-
|
897
|
-
for (p = 0; p < size; ++p) {
|
898
|
-
reinterpret_cast<nm::Complex64*>(elem)[p].i = -reinterpret_cast<nm::Complex64*>(elem)[p].i;
|
899
|
-
}
|
900
|
-
|
901
|
-
} else if (NM_DTYPE(self) == nm::COMPLEX128) {
|
902
|
-
|
903
|
-
for (p = 0; p < size; ++p) {
|
904
|
-
reinterpret_cast<nm::Complex128*>(elem)[p].i = -reinterpret_cast<nm::Complex128*>(elem)[p].i;
|
905
|
-
}
|
906
|
-
|
907
|
-
} else {
|
908
|
-
rb_raise(nm_eDataTypeError, "can only calculate in-place complex conjugate on matrices of type :complex64 or :complex128");
|
909
|
-
}
|
910
|
-
|
911
|
-
return self;
|
912
|
-
}
|
913
|
-
|
914
|
-
/*
|
915
|
-
* Helper function for creating a matrix. You have to create the storage and pass it in, but you don't
|
916
|
-
* need to worry about deleting it.
|
917
|
-
*/
|
918
|
-
NMATRIX* nm_create(nm::stype_t stype, STORAGE* storage) {
|
919
|
-
NMATRIX* mat = ALLOC(NMATRIX);
|
920
|
-
|
921
|
-
mat->stype = stype;
|
922
|
-
mat->storage = storage;
|
923
|
-
|
924
|
-
return mat;
|
925
|
-
}
|
926
|
-
|
927
|
-
/*
|
928
|
-
* call-seq:
|
929
|
-
* new -> NMatrix
|
930
|
-
*
|
931
|
-
* Create a new NMatrix.
|
932
|
-
*
|
933
|
-
* There are several ways to do this. In every case, the constructor needs to know the dtype, the dimensions, the stype,
|
934
|
-
* and either an initial capacity (:yale) or some number of initial values (:list needs exactly one initial value, but
|
935
|
-
* :dense can accept an array). In many cases, the parameters can be guessed from other parameters.
|
936
|
-
*
|
937
|
-
* Here is the full form for a :dense 3x4 :float64 matrix initialized to alternate the values 0.0, 1.0, and 2.0:
|
938
|
-
*
|
939
|
-
* NMatrix.new(:dense, [3,4], [0.0, 1.0, 2.0], :float64)
|
940
|
-
*
|
941
|
-
* Since :dense is the default, we can actually leave that out. Additionally, the constructor will parse 0.0 and
|
942
|
-
* interpret that to be a :float64. So we can actually short-hand this as follows:
|
943
|
-
*
|
944
|
-
* NMatrix.new([3,4], [0.0,1,2])
|
945
|
-
*
|
946
|
-
* Note that :list and :yale matrices will not accept a default value array. For list storage, a single default value
|
947
|
-
* is permissible, which will be treated as the background for the sparse matrix and defaults to 0:
|
948
|
-
*
|
949
|
-
* NMatrix.new(:list, [3,4], 0) # standard :int64 sparse matrix
|
950
|
-
* NMatrix.new(:list, [2,3], 1.0) # :float64 sparse matrix: [[1,1,1],[1,1,1]] (no storage used)
|
951
|
-
* NMatrix.new(:list, [3,4], [0,1]) # undefined behavior, will probably fill matrix with 0. Avoid this.
|
952
|
-
*
|
953
|
-
* For Yale storage, the default value must always be 0. Thus, if you provide an initial value, it will be interpreted
|
954
|
-
* as the initial matrix capacity.
|
955
|
-
*
|
956
|
-
* NMatrix.new(:yale, [4,3], :rational128) # Use default initial capacity. Most common.
|
957
|
-
* NMatrix.new(:yale, [3,4], 1000) # Error! Needs a dtype!
|
958
|
-
* NMatrix.new(:yale, [3,4], 1000, :int64) # Silly! Why would a 3x4 sparse matrix need storage space of 1,000?
|
959
|
-
* NMatrix.new(:yale, [3,4], 0.0, :float64) # Totally ignores non-sensical 3rd arg and creates 7 storage instead.
|
960
|
-
* NMatrix.new(:yale, [3,4], 8, :rational128) # Initial capacity of 8 rationals.
|
961
|
-
*
|
962
|
-
* That leaves only two other notes. First of all, if your matrix is square, you don't need to type [3,3] for 3x3.
|
963
|
-
* Instead, just do 3:
|
964
|
-
*
|
965
|
-
* NMatrix.new(3, [0,1,2], :rational128) # dense 3x3 rational matrix consisting of columns of 0s, 1s, and 2s
|
966
|
-
*
|
967
|
-
* Secondly, if you create a dense matrix without initial values, you may see unpredictable results! It'll fill the
|
968
|
-
* matrix with whatever is already in memory, not with zeros.
|
969
|
-
*
|
970
|
-
* NMatrix.new(:dense, 4, :int64)
|
971
|
-
* # => [8, 140486578196280, 0, 0] [0, 0, 0, 0] [0, 0, 0, 140486608794928] [140486577962496, -4294967280, 1, 140734734392208]
|
972
|
-
*
|
973
|
-
* There is one additional constructor for advanced users, which takes seven arguments and is only for creating Yale
|
974
|
-
* matrices with known IA, JA, and A arrays. This is used primarily internally for IO, e.g., reading Matlab matrices,
|
975
|
-
* which are stored in old Yale (not our Yale) format. But be careful; there are no overflow warnings. All of these
|
976
|
-
* constructors are defined for power-users. Everyone else should probably resort to the shortcut functions defined in
|
977
|
-
* shortcuts.rb.
|
978
|
-
*/
|
979
|
-
static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
|
980
|
-
|
981
|
-
if (argc < 2) {
|
982
|
-
rb_raise(rb_eArgError, "Expected 2-4 arguments (or 7 for internal Yale creation)");
|
983
|
-
return Qnil;
|
984
|
-
}
|
985
|
-
|
986
|
-
/* First, determine stype (dense by default) */
|
987
|
-
nm::stype_t stype;
|
988
|
-
size_t offset = 0;
|
989
|
-
|
990
|
-
if (!SYMBOL_P(argv[0]) && TYPE(argv[0]) != T_STRING) {
|
991
|
-
stype = nm::DENSE_STORE;
|
992
|
-
|
993
|
-
} else {
|
994
|
-
// 0: String or Symbol
|
995
|
-
stype = interpret_stype(argv[0]);
|
996
|
-
offset = 1;
|
997
|
-
}
|
998
|
-
|
999
|
-
// If there are 7 arguments and Yale, refer to a different init function with fewer sanity checks.
|
1000
|
-
if (argc == 7) {
|
1001
|
-
if (stype == nm::YALE_STORE) {
|
1002
|
-
return nm_init_yale_from_old_yale(argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], nm);
|
1003
|
-
|
1004
|
-
} else {
|
1005
|
-
rb_raise(rb_eArgError, "Expected 2-4 arguments (or 7 for internal Yale creation)");
|
1006
|
-
}
|
1007
|
-
}
|
1008
|
-
|
1009
|
-
// 1: Array or Fixnum
|
1010
|
-
size_t dim;
|
1011
|
-
size_t* shape = interpret_shape(argv[offset], &dim);
|
1012
|
-
|
1013
|
-
// 2-3: dtype
|
1014
|
-
nm::dtype_t dtype = interpret_dtype(argc-1-offset, argv+offset+1, stype);
|
1015
|
-
|
1016
|
-
size_t init_cap = 0, init_val_len = 0;
|
1017
|
-
void* init_val = NULL;
|
1018
|
-
if (!SYMBOL_P(argv[1+offset]) || TYPE(argv[1+offset]) == T_ARRAY) {
|
1019
|
-
// Initial value provided (could also be initial capacity, if yale).
|
1020
|
-
|
1021
|
-
if (stype == nm::YALE_STORE && NM_RUBYVAL_IS_NUMERIC(argv[1+offset])) {
|
1022
|
-
init_cap = FIX2UINT(argv[1+offset]);
|
1023
|
-
|
1024
|
-
} else {
|
1025
|
-
// 4: initial value / dtype
|
1026
|
-
init_val = interpret_initial_value(argv[1+offset], dtype);
|
1027
|
-
|
1028
|
-
if (TYPE(argv[1+offset]) == T_ARRAY) init_val_len = RARRAY_LEN(argv[1+offset]);
|
1029
|
-
else init_val_len = 1;
|
1030
|
-
}
|
1031
|
-
|
1032
|
-
} else {
|
1033
|
-
// DType is RUBYOBJ.
|
1034
|
-
|
1035
|
-
if (stype == nm::DENSE_STORE) {
|
1036
|
-
/*
|
1037
|
-
* No need to initialize dense with any kind of default value unless it's
|
1038
|
-
* an RUBYOBJ matrix.
|
1039
|
-
*/
|
1040
|
-
if (dtype == nm::RUBYOBJ) {
|
1041
|
-
// Pretend [nil] was passed for RUBYOBJ.
|
1042
|
-
init_val = ALLOC(VALUE);
|
1043
|
-
*(VALUE*)init_val = Qnil;
|
1044
|
-
|
1045
|
-
init_val_len = 1;
|
1046
|
-
|
1047
|
-
} else {
|
1048
|
-
init_val = NULL;
|
1049
|
-
}
|
1050
|
-
} else if (stype == nm::LIST_STORE) {
|
1051
|
-
init_val = ALLOC_N(char, DTYPE_SIZES[dtype]);
|
1052
|
-
std::memset(init_val, 0, DTYPE_SIZES[dtype]);
|
1053
|
-
}
|
1054
|
-
}
|
1055
|
-
|
1056
|
-
// TODO: Update to allow an array as the initial value.
|
1057
|
-
NMATRIX* nmatrix;
|
1058
|
-
UnwrapNMatrix(nm, nmatrix);
|
1059
|
-
|
1060
|
-
nmatrix->stype = stype;
|
1061
|
-
|
1062
|
-
switch (stype) {
|
1063
|
-
case nm::DENSE_STORE:
|
1064
|
-
nmatrix->storage = (STORAGE*)nm_dense_storage_create(dtype, shape, dim, init_val, init_val_len);
|
1065
|
-
break;
|
1066
|
-
|
1067
|
-
case nm::LIST_STORE:
|
1068
|
-
nmatrix->storage = (STORAGE*)nm_list_storage_create(dtype, shape, dim, init_val);
|
1069
|
-
break;
|
1070
|
-
|
1071
|
-
case nm::YALE_STORE:
|
1072
|
-
nmatrix->storage = (STORAGE*)nm_yale_storage_create(dtype, shape, dim, init_cap, nm::UINT8);
|
1073
|
-
nm_yale_storage_init((YALE_STORAGE*)(nmatrix->storage), NULL);
|
1074
|
-
break;
|
1075
|
-
}
|
1076
|
-
|
1077
|
-
return nm;
|
1078
|
-
}
|
1079
|
-
|
1080
|
-
|
1081
|
-
/*
|
1082
|
-
* call-seq:
|
1083
|
-
* cast(stype) -> NMatrix
|
1084
|
-
* cast(stype, dtype, sparse_basis) -> NMatrix
|
1085
|
-
*
|
1086
|
-
* Copy constructor for changing dtypes and stypes.
|
1087
|
-
*/
|
1088
|
-
static VALUE nm_cast(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol, VALUE init) {
|
1089
|
-
nm::dtype_t new_dtype = nm_dtype_from_rbsymbol(new_dtype_symbol);
|
1090
|
-
nm::stype_t new_stype = nm_stype_from_rbsymbol(new_stype_symbol);
|
1091
|
-
|
1092
|
-
CheckNMatrixType(self);
|
1093
|
-
|
1094
|
-
NMATRIX *lhs = ALLOC(NMATRIX),
|
1095
|
-
*rhs;
|
1096
|
-
lhs->stype = new_stype;
|
1097
|
-
|
1098
|
-
UnwrapNMatrix( self, rhs );
|
1099
|
-
|
1100
|
-
void* init_ptr = ALLOCA_N(char, DTYPE_SIZES[new_dtype]);
|
1101
|
-
rubyval_to_cval(init, new_dtype, init_ptr);
|
1102
|
-
|
1103
|
-
// Copy the storage
|
1104
|
-
CAST_TABLE(cast_copy);
|
1105
|
-
lhs->storage = cast_copy[lhs->stype][rhs->stype](rhs->storage, new_dtype, init_ptr);
|
1106
|
-
|
1107
|
-
STYPE_MARK_TABLE(mark);
|
1108
|
-
|
1109
|
-
return Data_Wrap_Struct(CLASS_OF(self), mark[lhs->stype], nm_delete, lhs);
|
1110
|
-
}
|
1111
|
-
|
1112
|
-
/*
|
1113
|
-
* Copy constructor for transposing.
|
1114
|
-
*/
|
1115
|
-
static VALUE nm_init_transposed(VALUE self) {
|
1116
|
-
static STORAGE* (*storage_copy_transposed[nm::NUM_STYPES])(const STORAGE* rhs_base) = {
|
1117
|
-
nm_dense_storage_copy_transposed,
|
1118
|
-
nm_list_storage_copy_transposed,
|
1119
|
-
nm_yale_storage_copy_transposed
|
1120
|
-
};
|
1121
|
-
|
1122
|
-
NMATRIX* lhs = nm_create( NM_STYPE(self),
|
1123
|
-
storage_copy_transposed[NM_STYPE(self)]( NM_STORAGE(self) )
|
1124
|
-
);
|
1125
|
-
|
1126
|
-
STYPE_MARK_TABLE(mark);
|
1127
|
-
|
1128
|
-
return Data_Wrap_Struct(CLASS_OF(self), mark[lhs->stype], nm_delete, lhs);
|
1129
|
-
}
|
1130
|
-
|
1131
|
-
/*
|
1132
|
-
* Copy constructor for no change of dtype or stype (used for #initialize_copy hook).
|
1133
|
-
*/
|
1134
|
-
static VALUE nm_init_copy(VALUE copy, VALUE original) {
|
1135
|
-
NMATRIX *lhs, *rhs;
|
1136
|
-
|
1137
|
-
CheckNMatrixType(original);
|
1138
|
-
|
1139
|
-
if (copy == original) return copy;
|
1140
|
-
|
1141
|
-
UnwrapNMatrix( original, rhs );
|
1142
|
-
UnwrapNMatrix( copy, lhs );
|
1143
|
-
|
1144
|
-
lhs->stype = rhs->stype;
|
1145
|
-
|
1146
|
-
// Copy the storage
|
1147
|
-
CAST_TABLE(ttable);
|
1148
|
-
lhs->storage = ttable[lhs->stype][rhs->stype](rhs->storage, rhs->storage->dtype, NULL);
|
1149
|
-
|
1150
|
-
return copy;
|
1151
|
-
}
|
1152
|
-
|
1153
|
-
/*
|
1154
|
-
* Get major, minor, and release components of NMatrix::VERSION. Store in function parameters.
|
1155
|
-
*/
|
1156
|
-
static void get_version_info(uint16_t& major, uint16_t& minor, uint16_t& release) {
|
1157
|
-
// Get VERSION and split it on periods. Result is an Array.
|
1158
|
-
VALUE version = rb_funcall(rb_const_get(cNMatrix, rb_intern("VERSION")), rb_intern("split"), 1, rb_str_new_cstr("."));
|
1159
|
-
VALUE* ary = RARRAY_PTR(version); // major, minor, and release
|
1160
|
-
|
1161
|
-
// Convert each to an integer
|
1162
|
-
VALUE maj = rb_funcall(ary[0], rb_intern("to_i"), 0);
|
1163
|
-
VALUE min = rb_funcall(ary[1], rb_intern("to_i"), 0);
|
1164
|
-
VALUE rel = rb_funcall(ary[2], rb_intern("to_i"), 0);
|
1165
|
-
|
1166
|
-
major = static_cast<uint16_t>(nm::RubyObject(maj));
|
1167
|
-
minor = static_cast<uint16_t>(nm::RubyObject(min));
|
1168
|
-
release = static_cast<uint16_t>(nm::RubyObject(rel));
|
1169
|
-
}
|
1170
|
-
|
1171
|
-
|
1172
|
-
/*
|
1173
|
-
* Interpret the NMatrix::write symmetry argument (which should be nil or a symbol). Return a symm_t (enum).
|
1174
|
-
*/
|
1175
|
-
static nm::symm_t interpret_symm(VALUE symm) {
|
1176
|
-
if (symm == Qnil) return nm::NONSYMM;
|
1177
|
-
|
1178
|
-
ID rb_symm = rb_intern("symmetric"),
|
1179
|
-
rb_skew = rb_intern("skew"),
|
1180
|
-
rb_herm = rb_intern("hermitian");
|
1181
|
-
// nm_rb_upper, nm_rb_lower already set
|
1182
|
-
|
1183
|
-
ID symm_id = rb_to_id(symm);
|
1184
|
-
|
1185
|
-
if (symm_id == rb_symm) return nm::SYMM;
|
1186
|
-
else if (symm_id == rb_skew) return nm::SKEW;
|
1187
|
-
else if (symm_id == rb_herm) return nm::HERM;
|
1188
|
-
else if (symm_id == nm_rb_upper) return nm::UPPER;
|
1189
|
-
else if (symm_id == nm_rb_lower) return nm::LOWER;
|
1190
|
-
else rb_raise(rb_eArgError, "unrecognized symmetry argument");
|
1191
|
-
|
1192
|
-
return nm::NONSYMM;
|
1193
|
-
}
|
1194
|
-
|
1195
|
-
|
1196
|
-
|
1197
|
-
void read_padded_shape(std::ifstream& f, size_t dim, size_t* shape, nm::itype_t itype) {
|
1198
|
-
NAMED_ITYPE_TEMPLATE_TABLE(ttable, nm::read_padded_shape, void, std::ifstream&, size_t, size_t*)
|
1199
|
-
|
1200
|
-
ttable[itype](f, dim, shape);
|
1201
|
-
}
|
1202
|
-
|
1203
|
-
|
1204
|
-
void write_padded_shape(std::ofstream& f, size_t dim, size_t* shape, nm::itype_t itype) {
|
1205
|
-
NAMED_ITYPE_TEMPLATE_TABLE(ttable, nm::write_padded_shape, void, std::ofstream&, size_t, size_t*)
|
1206
|
-
|
1207
|
-
ttable[itype](f, dim, shape);
|
1208
|
-
}
|
1209
|
-
|
1210
|
-
|
1211
|
-
void read_padded_yale_elements(std::ifstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype, nm::itype_t itype) {
|
1212
|
-
NAMED_LI_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_yale_elements, void, std::ifstream&, YALE_STORAGE*, size_t, nm::symm_t)
|
1213
|
-
|
1214
|
-
ttable[dtype][itype](f, storage, length, symm);
|
1215
|
-
}
|
1216
|
-
|
1217
|
-
|
1218
|
-
void write_padded_yale_elements(std::ofstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype, nm::itype_t itype) {
|
1219
|
-
NAMED_LI_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_yale_elements, void, std::ofstream& f, YALE_STORAGE*, size_t, nm::symm_t)
|
1220
|
-
|
1221
|
-
ttable[dtype][itype](f, storage, length, symm);
|
1222
|
-
}
|
1223
|
-
|
1224
|
-
|
1225
|
-
void read_padded_dense_elements(std::ifstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
|
1226
|
-
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_dense_elements, void, std::ifstream&, DENSE_STORAGE*, nm::symm_t)
|
1227
|
-
|
1228
|
-
ttable[dtype](f, storage, symm);
|
1229
|
-
}
|
1230
|
-
|
1231
|
-
|
1232
|
-
void write_padded_dense_elements(std::ofstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
|
1233
|
-
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_dense_elements, void, std::ofstream& f, DENSE_STORAGE*, nm::symm_t)
|
1234
|
-
|
1235
|
-
ttable[dtype](f, storage, symm);
|
1236
|
-
}
|
1237
|
-
|
1238
|
-
|
1239
|
-
/*
|
1240
|
-
* Helper function to get exceptions in the module Errno (e.g., ENOENT). Example:
|
1241
|
-
*
|
1242
|
-
* rb_raise(rb_get_errno_exc("ENOENT"), RSTRING_PTR(filename));
|
1243
|
-
*/
|
1244
|
-
static VALUE rb_get_errno_exc(const char* which) {
|
1245
|
-
return rb_const_get(rb_const_get(rb_cObject, rb_intern("Errno")), rb_intern(which));
|
1246
|
-
}
|
1247
|
-
|
1248
|
-
|
1249
|
-
|
1250
|
-
/*
|
1251
|
-
* Binary file writer for NMatrix standard format. file should be a path, which we aren't going to
|
1252
|
-
* check very carefully (in other words, this function should generally be called from a Ruby
|
1253
|
-
* helper method). Function also takes a symmetry argument, which allows us to specify that we only want to
|
1254
|
-
* save the upper triangular portion of the matrix (or if the matrix is a lower triangular matrix, only
|
1255
|
-
* the lower triangular portion). nil means regular storage.
|
1256
|
-
*/
|
1257
|
-
static VALUE nm_write(int argc, VALUE* argv, VALUE self) {
|
1258
|
-
using std::ofstream;
|
1259
|
-
|
1260
|
-
if (argc < 1 || argc > 2) {
|
1261
|
-
rb_raise(rb_eArgError, "Expected one or two arguments");
|
1262
|
-
}
|
1263
|
-
VALUE file = argv[0],
|
1264
|
-
symm = argc == 1 ? Qnil : argv[1];
|
1265
|
-
|
1266
|
-
NMATRIX* nmatrix;
|
1267
|
-
UnwrapNMatrix( self, nmatrix );
|
1268
|
-
|
1269
|
-
nm::symm_t symm_ = interpret_symm(symm);
|
1270
|
-
nm::itype_t itype = (nmatrix->stype == nm::YALE_STORE) ? reinterpret_cast<YALE_STORAGE*>(nmatrix->storage)->itype : nm::UINT32;
|
1271
|
-
|
1272
|
-
if (nmatrix->storage->dtype == nm::RUBYOBJ) {
|
1273
|
-
rb_raise(rb_eNotImpError, "Ruby Object writing is not implemented yet");
|
1274
|
-
}
|
1275
|
-
|
1276
|
-
// Get the dtype, stype, itype, and symm and ensure they're the correct number of bytes.
|
1277
|
-
uint8_t st = static_cast<uint8_t>(nmatrix->stype),
|
1278
|
-
dt = static_cast<uint8_t>(nmatrix->storage->dtype),
|
1279
|
-
sm = static_cast<uint8_t>(symm_),
|
1280
|
-
it = static_cast<uint8_t>(itype);
|
1281
|
-
uint16_t dim = nmatrix->storage->dim;
|
1282
|
-
|
1283
|
-
// Check arguments before starting to write.
|
1284
|
-
if (nmatrix->stype == nm::LIST_STORE) rb_raise(nm_eStorageTypeError, "cannot save list matrix; cast to yale or dense first");
|
1285
|
-
if (symm_ != nm::NONSYMM) {
|
1286
|
-
if (dim != 2) rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-2D matrix");
|
1287
|
-
if (nmatrix->storage->shape[0] != nmatrix->storage->shape[1])
|
1288
|
-
rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-square matrix");
|
1289
|
-
if (symm_ == nm::HERM &&
|
1290
|
-
dt != static_cast<uint8_t>(nm::COMPLEX64) && dt != static_cast<uint8_t>(nm::COMPLEX128) && dt != static_cast<uint8_t>(nm::RUBYOBJ))
|
1291
|
-
rb_raise(rb_eArgError, "cannot save a non-complex matrix as hermitian");
|
1292
|
-
}
|
1293
|
-
|
1294
|
-
ofstream f(RSTRING_PTR(file), std::ios::out | std::ios::binary);
|
1295
|
-
|
1296
|
-
// Get the NMatrix version information.
|
1297
|
-
uint16_t major, minor, release, null16 = 0;
|
1298
|
-
get_version_info(major, minor, release);
|
1299
|
-
|
1300
|
-
// WRITE FIRST 64-BIT BLOCK
|
1301
|
-
f.write(reinterpret_cast<const char*>(&major), sizeof(uint16_t));
|
1302
|
-
f.write(reinterpret_cast<const char*>(&minor), sizeof(uint16_t));
|
1303
|
-
f.write(reinterpret_cast<const char*>(&release), sizeof(uint16_t));
|
1304
|
-
f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
|
1305
|
-
|
1306
|
-
// WRITE SECOND 64-BIT BLOCK
|
1307
|
-
f.write(reinterpret_cast<const char*>(&dt), sizeof(uint8_t));
|
1308
|
-
f.write(reinterpret_cast<const char*>(&st), sizeof(uint8_t));
|
1309
|
-
f.write(reinterpret_cast<const char*>(&it), sizeof(uint8_t));
|
1310
|
-
f.write(reinterpret_cast<const char*>(&sm), sizeof(uint8_t));
|
1311
|
-
f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
|
1312
|
-
f.write(reinterpret_cast<const char*>(&dim), sizeof(uint16_t));
|
1313
|
-
|
1314
|
-
// Write shape (in 64-bit blocks)
|
1315
|
-
write_padded_shape(f, nmatrix->storage->dim, nmatrix->storage->shape, itype);
|
1316
|
-
|
1317
|
-
if (nmatrix->stype == nm::DENSE_STORE) {
|
1318
|
-
write_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(nmatrix->storage), symm_, nmatrix->storage->dtype);
|
1319
|
-
} else if (nmatrix->stype == nm::YALE_STORE) {
|
1320
|
-
YALE_STORAGE* s = reinterpret_cast<YALE_STORAGE*>(nmatrix->storage);
|
1321
|
-
uint32_t ndnz = s->ndnz,
|
1322
|
-
length = nm_yale_storage_get_size(s);
|
1323
|
-
f.write(reinterpret_cast<const char*>(&ndnz), sizeof(uint32_t));
|
1324
|
-
f.write(reinterpret_cast<const char*>(&length), sizeof(uint32_t));
|
1325
|
-
|
1326
|
-
write_padded_yale_elements(f, s, length, symm_, s->dtype, itype);
|
1327
|
-
}
|
1328
|
-
|
1329
|
-
f.close();
|
1330
|
-
|
1331
|
-
return Qtrue;
|
1332
|
-
}
|
1333
|
-
|
1334
|
-
|
1335
|
-
/*
|
1336
|
-
* Binary file reader for NMatrix standard format. file should be a path, which we aren't going to
|
1337
|
-
* check very carefully (in other words, this function should generally be called from a Ruby
|
1338
|
-
* helper method).
|
1339
|
-
*
|
1340
|
-
* Note that currently, this function will by default refuse to read files that are newer than
|
1341
|
-
* your version of NMatrix. To force an override, set the second argument to anything other than nil.
|
1342
|
-
*
|
1343
|
-
* Returns an NMatrix Ruby object.
|
1344
|
-
*/
|
1345
|
-
static VALUE nm_read(int argc, VALUE* argv, VALUE self) {
|
1346
|
-
using std::ifstream;
|
1347
|
-
|
1348
|
-
VALUE file, force_;
|
1349
|
-
|
1350
|
-
// Read the arguments
|
1351
|
-
rb_scan_args(argc, argv, "11", &file, &force_);
|
1352
|
-
bool force = (force_ != Qnil && force_ != Qfalse);
|
1353
|
-
|
1354
|
-
|
1355
|
-
if (!RB_FILE_EXISTS(file)) { // FIXME: Errno::ENOENT
|
1356
|
-
rb_raise(rb_get_errno_exc("ENOENT"), "%s", RSTRING_PTR(file));
|
1357
|
-
}
|
1358
|
-
|
1359
|
-
// Open a file stream
|
1360
|
-
ifstream f(RSTRING_PTR(file), std::ios::in | std::ios::binary);
|
1361
|
-
|
1362
|
-
uint16_t major, minor, release;
|
1363
|
-
get_version_info(major, minor, release); // compare to NMatrix version
|
1364
|
-
|
1365
|
-
uint16_t fmajor, fminor, frelease, null16;
|
1366
|
-
|
1367
|
-
// READ FIRST 64-BIT BLOCK
|
1368
|
-
f.read(reinterpret_cast<char*>(&fmajor), sizeof(uint16_t));
|
1369
|
-
f.read(reinterpret_cast<char*>(&fminor), sizeof(uint16_t));
|
1370
|
-
f.read(reinterpret_cast<char*>(&frelease), sizeof(uint16_t));
|
1371
|
-
f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
|
1372
|
-
|
1373
|
-
int ver = major * 10000 + minor * 100 + release,
|
1374
|
-
fver = fmajor * 10000 + fminor * 100 + release;
|
1375
|
-
if (fver > ver && force == false) {
|
1376
|
-
rb_raise(rb_eIOError, "File was created in newer version of NMatrix than current");
|
1377
|
-
}
|
1378
|
-
if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
|
1379
|
-
|
1380
|
-
uint8_t dt, st, it, sm;
|
1381
|
-
uint16_t dim;
|
1382
|
-
|
1383
|
-
// READ SECOND 64-BIT BLOCK
|
1384
|
-
f.read(reinterpret_cast<char*>(&dt), sizeof(uint8_t));
|
1385
|
-
f.read(reinterpret_cast<char*>(&st), sizeof(uint8_t));
|
1386
|
-
f.read(reinterpret_cast<char*>(&it), sizeof(uint8_t));
|
1387
|
-
f.read(reinterpret_cast<char*>(&sm), sizeof(uint8_t));
|
1388
|
-
f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
|
1389
|
-
f.read(reinterpret_cast<char*>(&dim), sizeof(uint16_t));
|
1390
|
-
|
1391
|
-
if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
|
1392
|
-
nm::stype_t stype = static_cast<nm::stype_t>(st);
|
1393
|
-
nm::dtype_t dtype = static_cast<nm::dtype_t>(dt);
|
1394
|
-
nm::symm_t symm = static_cast<nm::symm_t>(sm);
|
1395
|
-
nm::itype_t itype = static_cast<nm::itype_t>(it);
|
1396
|
-
|
1397
|
-
// READ NEXT FEW 64-BIT BLOCKS
|
1398
|
-
size_t* shape = ALLOC_N(size_t, dim);
|
1399
|
-
read_padded_shape(f, dim, shape, itype);
|
1400
|
-
|
1401
|
-
STORAGE* s;
|
1402
|
-
if (stype == nm::DENSE_STORE) {
|
1403
|
-
s = nm_dense_storage_create(dtype, shape, dim, NULL, 0);
|
1404
|
-
|
1405
|
-
read_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(s), symm, dtype);
|
1406
|
-
|
1407
|
-
} else if (stype == nm::YALE_STORE) {
|
1408
|
-
uint32_t ndnz, length;
|
1409
|
-
|
1410
|
-
// READ YALE-SPECIFIC 64-BIT BLOCK
|
1411
|
-
f.read(reinterpret_cast<char*>(&ndnz), sizeof(uint32_t));
|
1412
|
-
f.read(reinterpret_cast<char*>(&length), sizeof(uint32_t));
|
1413
|
-
|
1414
|
-
s = nm_yale_storage_create(dtype, shape, dim, length, itype); // set length as init capacity
|
1415
|
-
|
1416
|
-
read_padded_yale_elements(f, reinterpret_cast<YALE_STORAGE*>(s), length, symm, dtype, itype);
|
1417
|
-
} else {
|
1418
|
-
rb_raise(nm_eStorageTypeError, "please convert to yale or dense before saving");
|
1419
|
-
}
|
1420
|
-
|
1421
|
-
NMATRIX* nm = nm_create(stype, s);
|
1422
|
-
|
1423
|
-
// Return the appropriate matrix object (Ruby VALUE)
|
1424
|
-
// FIXME: This should probably return CLASS_OF(self) instead of cNMatrix, but I don't know how that works for
|
1425
|
-
// FIXME: class methods.
|
1426
|
-
switch(stype) {
|
1427
|
-
case nm::DENSE_STORE:
|
1428
|
-
return Data_Wrap_Struct(cNMatrix, nm_dense_storage_mark, nm_delete, nm);
|
1429
|
-
case nm::YALE_STORE:
|
1430
|
-
return Data_Wrap_Struct(cNMatrix, nm_yale_storage_mark, nm_delete, nm);
|
1431
|
-
default:
|
1432
|
-
return Qnil;
|
1433
|
-
}
|
1434
|
-
|
1435
|
-
}
|
1436
|
-
|
1437
|
-
|
1438
|
-
|
1439
|
-
/*
|
1440
|
-
* Create a new NMatrix helper for handling internal ia, ja, and a arguments.
|
1441
|
-
*
|
1442
|
-
* This constructor is only called by Ruby code, so we can skip most of the
|
1443
|
-
* checks.
|
1444
|
-
*/
|
1445
|
-
static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm) {
|
1446
|
-
size_t dim = 2;
|
1447
|
-
size_t* shape_ = interpret_shape(shape, &dim);
|
1448
|
-
nm::dtype_t dtype_ = nm_dtype_from_rbsymbol(dtype);
|
1449
|
-
char *ia_ = RSTRING_PTR(ia),
|
1450
|
-
*ja_ = RSTRING_PTR(ja),
|
1451
|
-
*a_ = RSTRING_PTR(a);
|
1452
|
-
nm::dtype_t from_dtype_ = nm_dtype_from_rbsymbol(from_dtype);
|
1453
|
-
NMATRIX* nmatrix;
|
1454
|
-
|
1455
|
-
UnwrapNMatrix( nm, nmatrix );
|
1456
|
-
|
1457
|
-
nmatrix->stype = nm::YALE_STORE;
|
1458
|
-
nmatrix->storage = (STORAGE*)nm_yale_storage_create_from_old_yale(dtype_, shape_, ia_, ja_, a_, from_dtype_);
|
1459
|
-
|
1460
|
-
return nm;
|
1461
|
-
}
|
1462
|
-
|
1463
|
-
/*
|
1464
|
-
* Check to determine whether matrix is a reference to another matrix.
|
1465
|
-
*/
|
1466
|
-
static VALUE nm_is_ref(VALUE self) {
|
1467
|
-
if (NM_SRC(self) == NM_STORAGE(self)) return Qfalse;
|
1468
|
-
else return Qtrue;
|
1469
|
-
}
|
1470
|
-
|
1471
|
-
/*
|
1472
|
-
* call-seq:
|
1473
|
-
* slice -> ...
|
1474
|
-
*
|
1475
|
-
* Access the contents of an NMatrix at given coordinates, using copying.
|
1476
|
-
*
|
1477
|
-
* n.slice(3,3) # => 5.0
|
1478
|
-
* n.slice(0..1,0..1) #=> matrix [2,2]
|
1479
|
-
*
|
1480
|
-
*/
|
1481
|
-
static VALUE nm_mget(int argc, VALUE* argv, VALUE self) {
|
1482
|
-
static void* (*ttable[nm::NUM_STYPES])(STORAGE*, SLICE*) = {
|
1483
|
-
nm_dense_storage_get,
|
1484
|
-
nm_list_storage_get,
|
1485
|
-
nm_yale_storage_get
|
1486
|
-
};
|
1487
|
-
return nm_xslice(argc, argv, ttable[NM_STYPE(self)], nm_delete, self);
|
1488
|
-
}
|
1489
|
-
|
1490
|
-
/*
|
1491
|
-
* call-seq:
|
1492
|
-
* matrix[indices] -> ...
|
1493
|
-
*
|
1494
|
-
* Access the contents of an NMatrix at given coordinates by reference.
|
1495
|
-
*
|
1496
|
-
* n[3,3] # => 5.0
|
1497
|
-
* n[0..1,0..1] #=> matrix [2,2]
|
1498
|
-
*
|
1499
|
-
*/
|
1500
|
-
static VALUE nm_mref(int argc, VALUE* argv, VALUE self) {
|
1501
|
-
static void* (*ttable[nm::NUM_STYPES])(STORAGE*, SLICE*) = {
|
1502
|
-
nm_dense_storage_ref,
|
1503
|
-
nm_list_storage_ref,
|
1504
|
-
nm_yale_storage_ref
|
1505
|
-
};
|
1506
|
-
return nm_xslice(argc, argv, ttable[NM_STYPE(self)], nm_delete_ref, self);
|
1507
|
-
}
|
1508
|
-
|
1509
|
-
/*
|
1510
|
-
* Modify the contents of an NMatrix in the given cell
|
1511
|
-
*
|
1512
|
-
* n[3,3] = 5.0
|
1513
|
-
*
|
1514
|
-
* Also returns the new contents, so you can chain:
|
1515
|
-
*
|
1516
|
-
* n[3,3] = n[2,3] = 5.0
|
1517
|
-
*/
|
1518
|
-
static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
|
1519
|
-
size_t dim = NM_DIM(self); // last arg is the value
|
1520
|
-
|
1521
|
-
if ((size_t)(argc) > NM_DIM(self)+1) {
|
1522
|
-
rb_raise(rb_eArgError, "wrong number of arguments (%d for %u)", argc, effective_dim(NM_STORAGE(self))+1);
|
1523
|
-
} else {
|
1524
|
-
SLICE* slice = get_slice(dim, argc-1, argv, NM_STORAGE(self)->shape);
|
1525
|
-
|
1526
|
-
void* value = rubyobj_to_cval(argv[argc-1], NM_DTYPE(self));
|
1527
|
-
|
1528
|
-
// FIXME: Can't use a function pointer table here currently because these functions have different
|
1529
|
-
// signatures (namely the return type).
|
1530
|
-
switch(NM_STYPE(self)) {
|
1531
|
-
case nm::DENSE_STORE:
|
1532
|
-
nm_dense_storage_set(NM_STORAGE(self), slice, value);
|
1533
|
-
xfree(value);
|
1534
|
-
break;
|
1535
|
-
case nm::LIST_STORE:
|
1536
|
-
// Remove if it's a zero, insert otherwise
|
1537
|
-
if (!std::memcmp(value, NM_STORAGE_LIST(self)->default_val, DTYPE_SIZES[NM_DTYPE(self)])) {
|
1538
|
-
xfree(value);
|
1539
|
-
value = nm_list_storage_remove(NM_STORAGE(self), slice);
|
1540
|
-
xfree(value);
|
1541
|
-
} else {
|
1542
|
-
nm_list_storage_insert(NM_STORAGE(self), slice, value);
|
1543
|
-
// no need to free value here since it was inserted directly into the list.
|
1544
|
-
}
|
1545
|
-
break;
|
1546
|
-
case nm::YALE_STORE:
|
1547
|
-
nm_yale_storage_set(NM_STORAGE(self), slice, value);
|
1548
|
-
xfree(value);
|
1549
|
-
break;
|
1550
|
-
}
|
1551
|
-
free_slice(slice);
|
1552
|
-
|
1553
|
-
return argv[argc-1];
|
1554
|
-
}
|
1555
|
-
return Qnil;
|
1556
|
-
}
|
1557
|
-
|
1558
|
-
/*
|
1559
|
-
* Matrix multiply (dot product): against another matrix or a vector.
|
1560
|
-
*
|
1561
|
-
* For elementwise, use * instead.
|
1562
|
-
*
|
1563
|
-
* The two matrices must be of the same stype (for now). If dtype differs, an upcast will occur.
|
1564
|
-
*/
|
1565
|
-
static VALUE nm_multiply(VALUE left_v, VALUE right_v) {
|
1566
|
-
NMATRIX *left, *right;
|
1567
|
-
|
1568
|
-
UnwrapNMatrix( left_v, left );
|
1569
|
-
|
1570
|
-
if (NM_RUBYVAL_IS_NUMERIC(right_v))
|
1571
|
-
return matrix_multiply_scalar(left, right_v);
|
1572
|
-
|
1573
|
-
else if (TYPE(right_v) == T_ARRAY)
|
1574
|
-
rb_raise(rb_eNotImpError, "please convert array to nx1 or 1xn NMatrix first");
|
1575
|
-
|
1576
|
-
else { // both are matrices (probably)
|
1577
|
-
CheckNMatrixType(right_v);
|
1578
|
-
UnwrapNMatrix( right_v, right );
|
1579
|
-
|
1580
|
-
if (left->storage->shape[1] != right->storage->shape[0])
|
1581
|
-
rb_raise(rb_eArgError, "incompatible dimensions");
|
1582
|
-
|
1583
|
-
if (left->stype != right->stype)
|
1584
|
-
rb_raise(rb_eNotImpError, "matrices must have same stype");
|
1585
|
-
|
1586
|
-
return matrix_multiply(left, right);
|
1587
|
-
|
1588
|
-
}
|
1589
|
-
|
1590
|
-
return Qnil;
|
1591
|
-
}
|
1592
|
-
|
1593
|
-
|
1594
|
-
/*
|
1595
|
-
* call-seq:
|
1596
|
-
* dim -> Integer
|
1597
|
-
*
|
1598
|
-
* Get the number of dimensions of a matrix.
|
1599
|
-
*
|
1600
|
-
* In other words, if you set your matrix to be 3x4, the dim is 2. If the
|
1601
|
-
* matrix was initialized as 3x4x3, the dim is 3.
|
1602
|
-
*
|
1603
|
-
* Use #effective_dim to get the dimension of an NMatrix which acts as a vector (e.g., a column or row).
|
1604
|
-
*/
|
1605
|
-
static VALUE nm_dim(VALUE self) {
|
1606
|
-
return INT2FIX(NM_STORAGE(self)->dim);
|
1607
|
-
}
|
1608
|
-
|
1609
|
-
/*
|
1610
|
-
* call-seq:
|
1611
|
-
* shape -> Array
|
1612
|
-
*
|
1613
|
-
* Get the shape (dimensions) of a matrix.
|
1614
|
-
*/
|
1615
|
-
static VALUE nm_shape(VALUE self) {
|
1616
|
-
STORAGE* s = NM_STORAGE(self);
|
1617
|
-
|
1618
|
-
// Copy elements into a VALUE array and then use those to create a Ruby array with rb_ary_new4.
|
1619
|
-
VALUE* shape = ALLOCA_N(VALUE, s->dim);
|
1620
|
-
for (size_t index = 0; index < s->dim; ++index)
|
1621
|
-
shape[index] = INT2FIX(s->shape[index]);
|
1622
|
-
|
1623
|
-
return rb_ary_new4(s->dim, shape);
|
1624
|
-
}
|
1625
|
-
|
1626
|
-
|
1627
|
-
/*
|
1628
|
-
* call-seq:
|
1629
|
-
* offset -> Array
|
1630
|
-
*
|
1631
|
-
* Get the offset (slice position) of a matrix. Typically all zeros, unless you have a reference slice.
|
1632
|
-
*/
|
1633
|
-
static VALUE nm_offset(VALUE self) {
|
1634
|
-
STORAGE* s = NM_STORAGE(self);
|
1635
|
-
|
1636
|
-
// Copy elements into a VALUE array and then use those to create a Ruby array with rb_ary_new4.
|
1637
|
-
VALUE* offset = ALLOCA_N(VALUE, s->dim);
|
1638
|
-
for (size_t index = 0; index < s->dim; ++index)
|
1639
|
-
offset[index] = INT2FIX(s->offset[index]);
|
1640
|
-
|
1641
|
-
return rb_ary_new4(s->dim, offset);
|
1642
|
-
}
|
1643
|
-
|
1644
|
-
|
1645
|
-
/*
|
1646
|
-
* call-seq:
|
1647
|
-
* supershape(n) -> Array
|
1648
|
-
* supershape -> Array
|
1649
|
-
*
|
1650
|
-
* Get the shape of a slice's nth-order parent. If the slice doesn't have n orders, returns the shape
|
1651
|
-
* of the original ancestor.
|
1652
|
-
*/
|
1653
|
-
static VALUE nm_supershape(int argc, VALUE* argv, VALUE self) {
|
1654
|
-
VALUE n; rb_scan_args(argc, argv, "01", &n);
|
1655
|
-
|
1656
|
-
STORAGE* s = NM_STORAGE(self);
|
1657
|
-
if (s->src == s) return nm_shape(self); // easy case (not a slice)
|
1658
|
-
int order = n == Qnil ? 1 : FIX2INT(n);
|
1659
|
-
|
1660
|
-
if (order <= 0) rb_raise(rb_eRangeError, "expected argument to be positive");
|
1661
|
-
|
1662
|
-
for (; order > 0; --order) {
|
1663
|
-
s = s->src; // proceed to next parent
|
1664
|
-
}
|
1665
|
-
|
1666
|
-
VALUE* shape = ALLOCA_N(VALUE, s->dim);
|
1667
|
-
for (size_t index = 0; index < s->dim; ++index)
|
1668
|
-
shape[index] = INT2FIX(s->shape[index]);
|
1669
|
-
|
1670
|
-
return rb_ary_new4(s->dim, shape);
|
1671
|
-
}
|
1672
|
-
|
1673
|
-
/*
|
1674
|
-
* call-seq:
|
1675
|
-
* stype -> Symbol
|
1676
|
-
*
|
1677
|
-
* Get the storage type (stype) of a matrix, e.g., :yale, :dense, or :list.
|
1678
|
-
*/
|
1679
|
-
static VALUE nm_stype(VALUE self) {
|
1680
|
-
ID stype = rb_intern(STYPE_NAMES[NM_STYPE(self)]);
|
1681
|
-
return ID2SYM(stype);
|
1682
|
-
}
|
1683
|
-
|
1684
|
-
/*
|
1685
|
-
* call-seq:
|
1686
|
-
* symmetric? -> Boolean
|
1687
|
-
*
|
1688
|
-
* Is this matrix symmetric?
|
1689
|
-
*/
|
1690
|
-
static VALUE nm_symmetric(VALUE self) {
|
1691
|
-
return is_symmetric(self, false);
|
1692
|
-
}
|
1693
|
-
|
1694
|
-
|
1695
|
-
/*
|
1696
|
-
* Gets the dimension of a matrix which might be a vector (have one or more shape components of size 1).
|
1697
|
-
*/
|
1698
|
-
static size_t effective_dim(STORAGE* s) {
|
1699
|
-
size_t d = 0;
|
1700
|
-
for (size_t i = 0; i < s->dim; ++i) {
|
1701
|
-
if (s->shape[i] != 1) d++;
|
1702
|
-
}
|
1703
|
-
return d;
|
1704
|
-
}
|
1705
|
-
|
1706
|
-
|
1707
|
-
/*
|
1708
|
-
* call-seq:
|
1709
|
-
* effective_dim -> Fixnum
|
1710
|
-
*
|
1711
|
-
* Returns the number of dimensions that don't have length 1. Guaranteed to be less than or equal to #dim.
|
1712
|
-
*/
|
1713
|
-
static VALUE nm_effective_dim(VALUE self) {
|
1714
|
-
return INT2FIX(effective_dim(NM_STORAGE(self)));
|
1715
|
-
}
|
1716
|
-
|
1717
|
-
|
1718
|
-
/*
|
1719
|
-
* Get a slice of an NMatrix.
|
1720
|
-
*/
|
1721
|
-
static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self) {
|
1722
|
-
VALUE result = Qnil;
|
1723
|
-
STORAGE* s = NM_STORAGE(self);
|
1724
|
-
|
1725
|
-
if (NM_DIM(self) < (size_t)(argc)) {
|
1726
|
-
rb_raise(rb_eArgError, "wrong number of arguments (%d for %u)", argc, effective_dim(s));
|
1727
|
-
} else {
|
1728
|
-
SLICE* slice = get_slice(NM_DIM(self), argc, argv, s->shape);
|
1729
|
-
|
1730
|
-
if (slice->single) {
|
1731
|
-
static void* (*ttable[nm::NUM_STYPES])(STORAGE*, SLICE*) = {
|
1732
|
-
nm_dense_storage_ref,
|
1733
|
-
nm_list_storage_ref,
|
1734
|
-
nm_yale_storage_ref
|
1735
|
-
};
|
1736
|
-
|
1737
|
-
if (NM_DTYPE(self) == nm::RUBYOBJ) result = *reinterpret_cast<VALUE*>( ttable[NM_STYPE(self)](s, slice) );
|
1738
|
-
else result = rubyobj_from_cval( ttable[NM_STYPE(self)](s, slice), NM_DTYPE(self) ).rval;
|
1739
|
-
|
1740
|
-
} else {
|
1741
|
-
STYPE_MARK_TABLE(mark_table);
|
1742
|
-
|
1743
|
-
NMATRIX* mat = ALLOC(NMATRIX);
|
1744
|
-
mat->stype = NM_STYPE(self);
|
1745
|
-
mat->storage = (STORAGE*)((*slice_func)( s, slice ));
|
1746
|
-
|
1747
|
-
result = Data_Wrap_Struct(CLASS_OF(self), mark_table[mat->stype], delete_func, mat);
|
1748
|
-
}
|
1749
|
-
|
1750
|
-
free_slice(slice);
|
1751
|
-
}
|
1752
|
-
|
1753
|
-
return result;
|
1754
|
-
}
|
1755
|
-
|
1756
|
-
//////////////////////
|
1757
|
-
// Helper Functions //
|
1758
|
-
//////////////////////
|
1759
|
-
|
1760
|
-
static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val) {
|
1761
|
-
STYPE_MARK_TABLE(mark);
|
1762
|
-
|
1763
|
-
NMATRIX* left;
|
1764
|
-
NMATRIX* result;
|
1765
|
-
|
1766
|
-
CheckNMatrixType(left_val);
|
1767
|
-
UnwrapNMatrix(left_val, left);
|
1768
|
-
|
1769
|
-
if (TYPE(right_val) != T_DATA || (RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete && RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete_ref)) {
|
1770
|
-
// This is a matrix-scalar element-wise operation.
|
1771
|
-
std::string sym;
|
1772
|
-
switch(left->stype) {
|
1773
|
-
case nm::DENSE_STORE:
|
1774
|
-
sym = "__dense_scalar_" + nm::EWOP_NAMES[op] + "__";
|
1775
|
-
break;
|
1776
|
-
case nm::YALE_STORE:
|
1777
|
-
sym = "__yale_scalar_" + nm::EWOP_NAMES[op] + "__";
|
1778
|
-
break;
|
1779
|
-
case nm::LIST_STORE:
|
1780
|
-
sym = "__list_scalar_" + nm::EWOP_NAMES[op] + "__";
|
1781
|
-
break;
|
1782
|
-
default:
|
1783
|
-
rb_raise(rb_eNotImpError, "unknown storage type requested scalar element-wise operation");
|
1784
|
-
}
|
1785
|
-
return rb_funcall(left_val, rb_intern(sym.c_str()), 1, right_val);
|
1786
|
-
|
1787
|
-
} else {
|
1788
|
-
|
1789
|
-
// Check that the left- and right-hand sides have the same dimensionality.
|
1790
|
-
if (NM_DIM(left_val) != NM_DIM(right_val)) {
|
1791
|
-
rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same dimensionality.");
|
1792
|
-
}
|
1793
|
-
|
1794
|
-
// Check that the left- and right-hand sides have the same shape.
|
1795
|
-
if (memcmp(&NM_SHAPE(left_val, 0), &NM_SHAPE(right_val, 0), sizeof(size_t) * NM_DIM(left_val)) != 0) {
|
1796
|
-
rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same shape.");
|
1797
|
-
}
|
1798
|
-
|
1799
|
-
NMATRIX* right;
|
1800
|
-
UnwrapNMatrix(right_val, right);
|
1801
|
-
|
1802
|
-
if (left->stype == right->stype) {
|
1803
|
-
std::string sym;
|
1804
|
-
|
1805
|
-
switch(left->stype) {
|
1806
|
-
case nm::DENSE_STORE:
|
1807
|
-
sym = "__dense_elementwise_" + nm::EWOP_NAMES[op] + "__";
|
1808
|
-
break;
|
1809
|
-
case nm::YALE_STORE:
|
1810
|
-
sym = "__yale_elementwise_" + nm::EWOP_NAMES[op] + "__";
|
1811
|
-
break;
|
1812
|
-
case nm::LIST_STORE:
|
1813
|
-
sym = "__list_elementwise_" + nm::EWOP_NAMES[op] + "__";
|
1814
|
-
break;
|
1815
|
-
default:
|
1816
|
-
rb_raise(rb_eNotImpError, "unknown storage type requested element-wise operation");
|
1817
|
-
}
|
1818
|
-
return rb_funcall(left_val, rb_intern(sym.c_str()), 1, right_val);
|
1819
|
-
|
1820
|
-
} else {
|
1821
|
-
rb_raise(rb_eArgError, "Element-wise operations are not currently supported between matrices with differing stypes.");
|
1822
|
-
}
|
1823
|
-
}
|
1824
|
-
|
1825
|
-
return Data_Wrap_Struct(CLASS_OF(left_val), mark[result->stype], nm_delete, result);
|
1826
|
-
}
|
1827
|
-
|
1828
|
-
/*
|
1829
|
-
* Check to determine whether matrix is a reference to another matrix.
|
1830
|
-
*/
|
1831
|
-
bool is_ref(const NMATRIX* matrix) {
|
1832
|
-
return matrix->storage->src != matrix->storage;
|
1833
|
-
}
|
1834
|
-
|
1835
|
-
/*
|
1836
|
-
* Helper function for nm_symmetric and nm_hermitian.
|
1837
|
-
*/
|
1838
|
-
static VALUE is_symmetric(VALUE self, bool hermitian) {
|
1839
|
-
NMATRIX* m;
|
1840
|
-
UnwrapNMatrix(self, m);
|
1841
|
-
|
1842
|
-
if (m->storage->shape[0] == m->storage->shape[1] and m->storage->dim == 2) {
|
1843
|
-
if (NM_STYPE(self) == nm::DENSE_STORE) {
|
1844
|
-
if (hermitian) {
|
1845
|
-
nm_dense_storage_is_hermitian((DENSE_STORAGE*)(m->storage), m->storage->shape[0]);
|
1846
|
-
|
1847
|
-
} else {
|
1848
|
-
nm_dense_storage_is_symmetric((DENSE_STORAGE*)(m->storage), m->storage->shape[0]);
|
1849
|
-
}
|
1850
|
-
|
1851
|
-
} else {
|
1852
|
-
// TODO: Implement, at the very least, yale_is_symmetric. Model it after yale/transp.template.c.
|
1853
|
-
rb_raise(rb_eNotImpError, "symmetric? and hermitian? only implemented for dense currently");
|
1854
|
-
}
|
1855
|
-
|
1856
|
-
}
|
1857
|
-
|
1858
|
-
return Qfalse;
|
1859
|
-
}
|
1860
|
-
|
1861
|
-
///////////////////////
|
1862
|
-
// Utility Functions //
|
1863
|
-
///////////////////////
|
1864
|
-
|
1865
|
-
/*
|
1866
|
-
* Guess the dtype given a Ruby VALUE and return it as a symbol.
|
1867
|
-
*
|
1868
|
-
* Not to be confused with nm_dtype_guess, which returns an nm::dtype_t. (This calls that.)
|
1869
|
-
*/
|
1870
|
-
static VALUE nm_guess_dtype(VALUE self, VALUE v) {
|
1871
|
-
return ID2SYM(rb_intern(DTYPE_NAMES[nm_dtype_guess(v)]));
|
1872
|
-
}
|
1873
|
-
|
1874
|
-
/*
|
1875
|
-
* Get the minimum allowable dtype for a Ruby VALUE and return it as a symbol.
|
1876
|
-
*/
|
1877
|
-
static VALUE nm_min_dtype(VALUE self, VALUE v) {
|
1878
|
-
return ID2SYM(rb_intern(DTYPE_NAMES[nm_dtype_min(v)]));
|
1879
|
-
}
|
1880
|
-
|
1881
|
-
/*
|
1882
|
-
* Helper for nm_dtype_min(), handling integers.
|
1883
|
-
*/
|
1884
|
-
nm::dtype_t nm_dtype_min_fixnum(int64_t v) {
|
1885
|
-
if (v >= 0 && v <= UCHAR_MAX) return nm::BYTE;
|
1886
|
-
else {
|
1887
|
-
v = std::abs(v);
|
1888
|
-
if (v <= CHAR_MAX) return nm::INT8;
|
1889
|
-
else if (v <= SHRT_MAX) return nm::INT16;
|
1890
|
-
else if (v <= INT_MAX) return nm::INT32;
|
1891
|
-
else return nm::INT64;
|
1892
|
-
}
|
1893
|
-
}
|
1894
|
-
|
1895
|
-
/*
|
1896
|
-
* Helper for nm_dtype_min(), handling rationals.
|
1897
|
-
*/
|
1898
|
-
nm::dtype_t nm_dtype_min_rational(VALUE vv) {
|
1899
|
-
nm::Rational128* v = ALLOCA_N(nm::Rational128, 1);
|
1900
|
-
rubyval_to_cval(vv, nm::RATIONAL128, v);
|
1901
|
-
|
1902
|
-
int64_t i = std::max(std::abs(v->n), v->d);
|
1903
|
-
if (i <= SHRT_MAX) return nm::INT16;
|
1904
|
-
else if (i <= INT_MAX) return nm::INT32;
|
1905
|
-
else return nm::INT64;
|
1906
|
-
}
|
1907
|
-
|
1908
|
-
/*
|
1909
|
-
* Return the minimum dtype required to store a given value.
|
1910
|
-
*
|
1911
|
-
* This is kind of arbitrary. For Float, it always returns :float32 for example, since in some cases neither :float64
|
1912
|
-
* not :float32 are sufficient.
|
1913
|
-
*
|
1914
|
-
* This function is used in upcasting for scalar math. We want to ensure that :int8 + 1 does not return an :int64, basically.
|
1915
|
-
*
|
1916
|
-
* FIXME: Eventually, this function should actually look at the value stored in Fixnums (for example), so that it knows
|
1917
|
-
* whether to return :int64 or :int32.
|
1918
|
-
*/
|
1919
|
-
nm::dtype_t nm_dtype_min(VALUE v) {
|
1920
|
-
|
1921
|
-
switch(TYPE(v)) {
|
1922
|
-
case T_FIXNUM:
|
1923
|
-
return nm_dtype_min_fixnum(FIX2LONG(v));
|
1924
|
-
case T_BIGNUM:
|
1925
|
-
return nm::INT64;
|
1926
|
-
case T_FLOAT:
|
1927
|
-
return nm::FLOAT32;
|
1928
|
-
case T_COMPLEX:
|
1929
|
-
return nm::COMPLEX64;
|
1930
|
-
case T_RATIONAL:
|
1931
|
-
return nm_dtype_min_rational(v);
|
1932
|
-
case T_STRING:
|
1933
|
-
return RSTRING_LEN(v) == 1 ? nm::BYTE : nm::RUBYOBJ;
|
1934
|
-
case T_TRUE:
|
1935
|
-
case T_FALSE:
|
1936
|
-
case T_NIL:
|
1937
|
-
default:
|
1938
|
-
return nm::RUBYOBJ;
|
1939
|
-
}
|
1940
|
-
}
|
1941
|
-
|
1942
|
-
|
1943
|
-
/*
|
1944
|
-
* Guess the data type given a value.
|
1945
|
-
*
|
1946
|
-
* TODO: Probably needs some work for Bignum.
|
1947
|
-
*/
|
1948
|
-
nm::dtype_t nm_dtype_guess(VALUE v) {
|
1949
|
-
switch(TYPE(v)) {
|
1950
|
-
case T_TRUE:
|
1951
|
-
case T_FALSE:
|
1952
|
-
case T_NIL:
|
1953
|
-
return nm::RUBYOBJ;
|
1954
|
-
case T_STRING:
|
1955
|
-
return RSTRING_LEN(v) == 1 ? nm::BYTE : nm::RUBYOBJ;
|
1956
|
-
|
1957
|
-
#if SIZEOF_INT == 8
|
1958
|
-
case T_FIXNUM:
|
1959
|
-
return nm::INT64;
|
1960
|
-
|
1961
|
-
case T_RATIONAL:
|
1962
|
-
return nm::RATIONAL128;
|
1963
|
-
|
1964
|
-
#else
|
1965
|
-
# if SIZEOF_INT == 4
|
1966
|
-
case T_FIXNUM:
|
1967
|
-
return nm::INT32;
|
1968
|
-
|
1969
|
-
case T_RATIONAL:
|
1970
|
-
return nm::RATIONAL64;
|
1971
|
-
|
1972
|
-
#else
|
1973
|
-
case T_FIXNUM:
|
1974
|
-
return nm::INT16;
|
1975
|
-
|
1976
|
-
case T_RATIONAL:
|
1977
|
-
return nm::RATIONAL32;
|
1978
|
-
# endif
|
1979
|
-
#endif
|
1980
|
-
|
1981
|
-
case T_BIGNUM:
|
1982
|
-
return nm::INT64;
|
1983
|
-
|
1984
|
-
#if SIZEOF_FLOAT == 4
|
1985
|
-
case T_COMPLEX:
|
1986
|
-
return nm::COMPLEX128;
|
1987
|
-
|
1988
|
-
case T_FLOAT:
|
1989
|
-
return nm::FLOAT64;
|
1990
|
-
|
1991
|
-
#else
|
1992
|
-
# if SIZEOF_FLOAT == 2
|
1993
|
-
case T_COMPLEX:
|
1994
|
-
return nm::COMPLEX64;
|
1995
|
-
|
1996
|
-
case T_FLOAT:
|
1997
|
-
return nm::FLOAT32;
|
1998
|
-
# endif
|
1999
|
-
#endif
|
2000
|
-
|
2001
|
-
case T_ARRAY:
|
2002
|
-
/*
|
2003
|
-
* May be passed for dense -- for now, just look at the first element.
|
2004
|
-
*
|
2005
|
-
* TODO: Look at entire array for most specific type.
|
2006
|
-
*/
|
2007
|
-
|
2008
|
-
return nm_dtype_guess(RARRAY_PTR(v)[0]);
|
2009
|
-
|
2010
|
-
default:
|
2011
|
-
rb_raise(rb_eArgError, "Unable to guess a data type from provided parameters; data type must be specified manually.");
|
2012
|
-
}
|
2013
|
-
}
|
2014
|
-
|
2015
|
-
|
2016
|
-
|
2017
|
-
/*
|
2018
|
-
* Allocate and return a SLICE object, which will contain the appropriate coordinate and length information for
|
2019
|
-
* accessing some part of a matrix.
|
2020
|
-
*/
|
2021
|
-
static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape) {
|
2022
|
-
VALUE beg, end;
|
2023
|
-
int excl;
|
2024
|
-
|
2025
|
-
SLICE* slice = alloc_slice(dim);
|
2026
|
-
slice->single = true;
|
2027
|
-
|
2028
|
-
// r is the shape position; t is the slice position. They may differ when we're dealing with a
|
2029
|
-
// matrix where the effective dimension is less than the dimension (e.g., a vector).
|
2030
|
-
for (size_t r = 0, t = 0; r < dim; ++r) {
|
2031
|
-
VALUE v = t == argc ? Qnil : arg[t];
|
2032
|
-
|
2033
|
-
// if the current shape indicates a vector and fewer args were supplied than necessary, just use 0
|
2034
|
-
if (argc - t + r < dim && shape[r] == 1) {
|
2035
|
-
slice->coords[r] = 0;
|
2036
|
-
slice->lengths[r] = 1;
|
2037
|
-
|
2038
|
-
} else if (FIXNUM_P(v)) { // this used CLASS_OF before, which is inefficient for fixnum
|
2039
|
-
|
2040
|
-
slice->coords[r] = FIX2UINT(v);
|
2041
|
-
slice->lengths[r] = 1;
|
2042
|
-
t++;
|
2043
|
-
|
2044
|
-
} else if (TYPE(arg[t]) == T_HASH) { // 3:5 notation (inclusive)
|
2045
|
-
VALUE begin_end = rb_funcall(v, rb_intern("shift"), 0); // rb_hash_shift
|
2046
|
-
slice->coords[r] = FIX2UINT(rb_ary_entry(begin_end, 0));
|
2047
|
-
slice->lengths[r] = FIX2UINT(rb_ary_entry(begin_end, 1)) - slice->coords[r];
|
2048
|
-
|
2049
|
-
if (RHASH_EMPTY_P(v)) t++; // go on to the next
|
2050
|
-
|
2051
|
-
slice->single = false;
|
2052
|
-
|
2053
|
-
} else if (CLASS_OF(v) == rb_cRange) {
|
2054
|
-
rb_range_values(arg[t], &beg, &end, &excl);
|
2055
|
-
slice->coords[r] = FIX2UINT(beg);
|
2056
|
-
// Exclude last element for a...b range
|
2057
|
-
slice->lengths[r] = FIX2UINT(end) - slice->coords[r] + (excl ? 0 : 1);
|
2058
|
-
|
2059
|
-
slice->single = false;
|
2060
|
-
|
2061
|
-
t++;
|
2062
|
-
|
2063
|
-
} else {
|
2064
|
-
rb_raise(rb_eArgError, "expected Fixnum, Range, or Hash for slice component instead of %s", rb_obj_classname(v));
|
2065
|
-
}
|
2066
|
-
|
2067
|
-
if (slice->coords[r] > shape[r] || slice->coords[r] + slice->lengths[r] > shape[r])
|
2068
|
-
rb_raise(rb_eRangeError, "slice is larger than matrix in dimension %u (slice component %u)", r, t);
|
2069
|
-
}
|
2070
|
-
|
2071
|
-
return slice;
|
2072
|
-
}
|
2073
|
-
|
2074
|
-
#ifdef BENCHMARK
|
2075
|
-
/*
|
2076
|
-
* A simple function used when benchmarking NMatrix.
|
2077
|
-
*/
|
2078
|
-
static double get_time(void) {
|
2079
|
-
struct timeval t;
|
2080
|
-
struct timezone tzp;
|
2081
|
-
|
2082
|
-
gettimeofday(&t, &tzp);
|
2083
|
-
|
2084
|
-
return t.tv_sec + t.tv_usec*1e-6;
|
2085
|
-
}
|
2086
|
-
#endif
|
2087
|
-
|
2088
|
-
/*
|
2089
|
-
* The argv parameter will be either 1 or 2 elements. If 1, could be either
|
2090
|
-
* initial or dtype. If 2, is initial and dtype. This function returns the
|
2091
|
-
* dtype.
|
2092
|
-
*/
|
2093
|
-
static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype) {
|
2094
|
-
int offset;
|
2095
|
-
|
2096
|
-
switch (argc) {
|
2097
|
-
case 1:
|
2098
|
-
offset = 0;
|
2099
|
-
break;
|
2100
|
-
|
2101
|
-
case 2:
|
2102
|
-
offset = 1;
|
2103
|
-
break;
|
2104
|
-
|
2105
|
-
default:
|
2106
|
-
rb_raise(rb_eArgError, "Need an initial value or a dtype.");
|
2107
|
-
break;
|
2108
|
-
}
|
2109
|
-
|
2110
|
-
if (SYMBOL_P(argv[offset])) {
|
2111
|
-
return nm_dtype_from_rbsymbol(argv[offset]);
|
2112
|
-
|
2113
|
-
} else if (TYPE(argv[offset]) == T_STRING) {
|
2114
|
-
return nm_dtype_from_rbstring(StringValue(argv[offset]));
|
2115
|
-
|
2116
|
-
} else if (stype == nm::YALE_STORE) {
|
2117
|
-
rb_raise(rb_eArgError, "Yale storage class requires a dtype.");
|
2118
|
-
|
2119
|
-
} else {
|
2120
|
-
return nm_dtype_guess(argv[0]);
|
2121
|
-
}
|
2122
|
-
}
|
2123
|
-
|
2124
|
-
/*
|
2125
|
-
* Convert an Ruby value or an array of Ruby values into initial C values.
|
2126
|
-
*/
|
2127
|
-
static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype) {
|
2128
|
-
unsigned int index;
|
2129
|
-
void* init_val;
|
2130
|
-
|
2131
|
-
if (TYPE(arg) == T_ARRAY) {
|
2132
|
-
// Array
|
2133
|
-
|
2134
|
-
init_val = ALLOC_N(int8_t, DTYPE_SIZES[dtype] * RARRAY_LEN(arg));
|
2135
|
-
for (index = 0; index < RARRAY_LEN(arg); ++index) {
|
2136
|
-
rubyval_to_cval(RARRAY_PTR(arg)[index], dtype, (char*)init_val + (index * DTYPE_SIZES[dtype]));
|
2137
|
-
}
|
2138
|
-
|
2139
|
-
} else {
|
2140
|
-
// Single value
|
2141
|
-
|
2142
|
-
init_val = rubyobj_to_cval(arg, dtype);
|
2143
|
-
}
|
2144
|
-
|
2145
|
-
return init_val;
|
2146
|
-
}
|
2147
|
-
|
2148
|
-
/*
|
2149
|
-
* Convert the shape argument, which may be either a Ruby value or an array of
|
2150
|
-
* Ruby values, into C values. The second argument is where the dimensionality
|
2151
|
-
* of the matrix will be stored. The function itself returns a pointer to the
|
2152
|
-
* array describing the shape, which must be freed manually.
|
2153
|
-
*/
|
2154
|
-
static size_t* interpret_shape(VALUE arg, size_t* dim) {
|
2155
|
-
size_t* shape;
|
2156
|
-
|
2157
|
-
if (TYPE(arg) == T_ARRAY) {
|
2158
|
-
*dim = RARRAY_LEN(arg);
|
2159
|
-
shape = ALLOC_N(size_t, *dim);
|
2160
|
-
|
2161
|
-
for (size_t index = 0; index < *dim; ++index) {
|
2162
|
-
shape[index] = FIX2UINT( RARRAY_PTR(arg)[index] );
|
2163
|
-
}
|
2164
|
-
|
2165
|
-
} else if (FIXNUM_P(arg)) {
|
2166
|
-
*dim = 2;
|
2167
|
-
shape = ALLOC_N(size_t, *dim);
|
2168
|
-
|
2169
|
-
shape[0] = FIX2UINT(arg);
|
2170
|
-
shape[1] = FIX2UINT(arg);
|
2171
|
-
|
2172
|
-
} else {
|
2173
|
-
rb_raise(rb_eArgError, "Expected an array of numbers or a single Fixnum for matrix shape");
|
2174
|
-
}
|
2175
|
-
|
2176
|
-
return shape;
|
2177
|
-
}
|
2178
|
-
|
2179
|
-
/*
|
2180
|
-
* Convert a Ruby symbol or string into an storage type.
|
2181
|
-
*/
|
2182
|
-
static nm::stype_t interpret_stype(VALUE arg) {
|
2183
|
-
if (SYMBOL_P(arg)) {
|
2184
|
-
return nm_stype_from_rbsymbol(arg);
|
2185
|
-
|
2186
|
-
} else if (TYPE(arg) == T_STRING) {
|
2187
|
-
return nm_stype_from_rbstring(StringValue(arg));
|
2188
|
-
|
2189
|
-
} else {
|
2190
|
-
rb_raise(rb_eArgError, "Expected storage type");
|
2191
|
-
}
|
2192
|
-
}
|
2193
|
-
|
2194
|
-
//////////////////
|
2195
|
-
// Math Helpers //
|
2196
|
-
//////////////////
|
2197
|
-
|
2198
|
-
STORAGE* matrix_storage_cast_alloc(NMATRIX* matrix, nm::dtype_t new_dtype) {
|
2199
|
-
if (matrix->storage->dtype == new_dtype && !is_ref(matrix))
|
2200
|
-
return matrix->storage;
|
2201
|
-
|
2202
|
-
CAST_TABLE(cast_copy_storage);
|
2203
|
-
return cast_copy_storage[matrix->stype][matrix->stype](matrix->storage, new_dtype, NULL);
|
2204
|
-
}
|
2205
|
-
|
2206
|
-
STORAGE_PAIR binary_storage_cast_alloc(NMATRIX* left_matrix, NMATRIX* right_matrix) {
|
2207
|
-
STORAGE_PAIR casted;
|
2208
|
-
nm::dtype_t new_dtype = Upcast[left_matrix->storage->dtype][right_matrix->storage->dtype];
|
2209
|
-
|
2210
|
-
casted.left = matrix_storage_cast_alloc(left_matrix, new_dtype);
|
2211
|
-
casted.right = matrix_storage_cast_alloc(right_matrix, new_dtype);
|
2212
|
-
|
2213
|
-
return casted;
|
2214
|
-
}
|
2215
|
-
|
2216
|
-
static VALUE matrix_multiply_scalar(NMATRIX* left, VALUE scalar) {
|
2217
|
-
rb_raise(rb_eNotImpError, "matrix-scalar multiplication not implemented yet");
|
2218
|
-
return Qnil;
|
2219
|
-
}
|
2220
|
-
|
2221
|
-
static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right) {
|
2222
|
-
///TODO: multiplication for non-dense and/or non-decimal matrices
|
2223
|
-
|
2224
|
-
// Make sure both of our matrices are of the correct type.
|
2225
|
-
STORAGE_PAIR casted = binary_storage_cast_alloc(left, right);
|
2226
|
-
|
2227
|
-
size_t* resulting_shape = ALLOC_N(size_t, 2);
|
2228
|
-
resulting_shape[0] = left->storage->shape[0];
|
2229
|
-
resulting_shape[1] = right->storage->shape[1];
|
2230
|
-
|
2231
|
-
// Sometimes we only need to use matrix-vector multiplication (e.g., GEMM versus GEMV). Find out.
|
2232
|
-
bool vector = false;
|
2233
|
-
if (resulting_shape[1] == 1) vector = true;
|
2234
|
-
|
2235
|
-
static STORAGE* (*storage_matrix_multiply[nm::NUM_STYPES])(const STORAGE_PAIR&, size_t*, bool) = {
|
2236
|
-
nm_dense_storage_matrix_multiply,
|
2237
|
-
nm_list_storage_matrix_multiply,
|
2238
|
-
nm_yale_storage_matrix_multiply
|
2239
|
-
};
|
2240
|
-
|
2241
|
-
STORAGE* resulting_storage = storage_matrix_multiply[left->stype](casted, resulting_shape, vector);
|
2242
|
-
NMATRIX* result = nm_create(left->stype, resulting_storage);
|
2243
|
-
|
2244
|
-
// Free any casted-storage we created for the multiplication.
|
2245
|
-
// TODO: Can we make the Ruby GC take care of this stuff now that we're using it?
|
2246
|
-
// If we did that, we night not have to re-create these every time, right? Or wrong? Need to do
|
2247
|
-
// more research.
|
2248
|
-
static void (*free_storage[nm::NUM_STYPES])(STORAGE*) = {
|
2249
|
-
nm_dense_storage_delete,
|
2250
|
-
nm_list_storage_delete,
|
2251
|
-
nm_yale_storage_delete
|
2252
|
-
};
|
2253
|
-
|
2254
|
-
if (left->storage != casted.left) free_storage[result->stype](casted.left);
|
2255
|
-
if (right->storage != casted.right) free_storage[result->stype](casted.right);
|
2256
|
-
|
2257
|
-
|
2258
|
-
STYPE_MARK_TABLE(mark_table);
|
2259
|
-
|
2260
|
-
if (result) return Data_Wrap_Struct(cNMatrix, mark_table[result->stype], nm_delete, result);
|
2261
|
-
return Qnil; // Only if we try to multiply list matrices should we return Qnil.
|
2262
|
-
}
|
2263
|
-
|
2264
|
-
/*
|
2265
|
-
* Calculate the exact determinant of a dense matrix.
|
2266
|
-
*
|
2267
|
-
* Returns nil for dense matrices which are not square or number of dimensions other than 2.
|
2268
|
-
*
|
2269
|
-
* Note: Currently only implemented for 2x2 and 3x3 matrices.
|
2270
|
-
*/
|
2271
|
-
static VALUE nm_det_exact(VALUE self) {
|
2272
|
-
if (NM_STYPE(self) != nm::DENSE_STORE) rb_raise(nm_eStorageTypeError, "can only calculate exact determinant for dense matrices");
|
2273
|
-
|
2274
|
-
if (NM_DIM(self) != 2 || NM_SHAPE0(self) != NM_SHAPE1(self)) return Qnil;
|
2275
|
-
|
2276
|
-
// Calculate the determinant and then assign it to the return value
|
2277
|
-
void* result = ALLOCA_N(char, DTYPE_SIZES[NM_DTYPE(self)]);
|
2278
|
-
nm_math_det_exact(NM_SHAPE0(self), NM_STORAGE_DENSE(self)->elements, NM_SHAPE0(self), NM_DTYPE(self), result);
|
2279
|
-
|
2280
|
-
return rubyobj_from_cval(result, NM_DTYPE(self)).rval;
|
2281
|
-
}
|
2282
|
-
|
2283
|
-
/////////////////
|
2284
|
-
// Exposed API //
|
2285
|
-
/////////////////
|
2286
|
-
|
2287
|
-
/*
|
2288
|
-
* Create a dense matrix. Used by the NMatrix GSL fork. Unlike nm_create, this one copies all of the
|
2289
|
-
* arrays and such passed in -- so you don't have to allocate and pass a new shape object for every
|
2290
|
-
* matrix you want to create, for example. Same goes for elements.
|
2291
|
-
*
|
2292
|
-
* Returns a properly-wrapped Ruby object as a VALUE.
|
2293
|
-
*
|
2294
|
-
* *** Note that this function is for API only. Please do not use it internally.
|
2295
|
-
*
|
2296
|
-
* TODO: Add a column-major option for libraries that use column-major matrices.
|
2297
|
-
*/
|
2298
|
-
VALUE rb_nmatrix_dense_create(nm::dtype_t dtype, size_t* shape, size_t dim, void* elements, size_t length) {
|
2299
|
-
NMATRIX* nm;
|
2300
|
-
size_t nm_dim;
|
2301
|
-
size_t* shape_copy;
|
2302
|
-
|
2303
|
-
// Do not allow a dim of 1. Treat it as a column or row matrix.
|
2304
|
-
if (dim == 1) {
|
2305
|
-
nm_dim = 2;
|
2306
|
-
shape_copy = ALLOC_N(size_t, nm_dim);
|
2307
|
-
shape_copy[0] = shape[0];
|
2308
|
-
shape_copy[1] = 1;
|
2309
|
-
|
2310
|
-
} else {
|
2311
|
-
nm_dim = dim;
|
2312
|
-
shape_copy = ALLOC_N(size_t, nm_dim);
|
2313
|
-
memcpy(shape_copy, shape, sizeof(size_t)*nm_dim);
|
2314
|
-
}
|
2315
|
-
|
2316
|
-
// Copy elements
|
2317
|
-
void* elements_copy = ALLOC_N(char, DTYPE_SIZES[dtype]*length);
|
2318
|
-
memcpy(elements_copy, elements, DTYPE_SIZES[dtype]*length);
|
2319
|
-
|
2320
|
-
// allocate and create the matrix and its storage
|
2321
|
-
nm = nm_create(nm::DENSE_STORE, nm_dense_storage_create(dtype, shape_copy, dim, elements_copy, length));
|
2322
|
-
|
2323
|
-
// tell Ruby about the matrix and its storage, particularly how to garbage collect it.
|
2324
|
-
return Data_Wrap_Struct(cNMatrix, nm_dense_storage_mark, nm_dense_storage_delete, nm);
|
2325
|
-
}
|
2326
|
-
|
2327
|
-
/*
|
2328
|
-
* Create a dense vector. Used by the NMatrix GSL fork.
|
2329
|
-
*
|
2330
|
-
* Basically just a convenience wrapper for rb_nmatrix_dense_create().
|
2331
|
-
*
|
2332
|
-
* Returns a properly-wrapped Ruby NMatrix object as a VALUE. Included for backwards compatibility
|
2333
|
-
* for when NMatrix had an NVector class.
|
2334
|
-
*/
|
2335
|
-
VALUE rb_nvector_dense_create(nm::dtype_t dtype, void* elements, size_t length) {
|
2336
|
-
size_t dim = 1, shape = length;
|
2337
|
-
return rb_nmatrix_dense_create(dtype, &shape, dim, elements, length);
|
2338
|
-
}
|
2339
|
-
|
331
|
+
#include "ruby_nmatrix.c"
|
2340
332
|
} // end of extern "C"
|