nmatrix 0.0.8 → 0.0.9

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +3 -8
  3. data/.rspec +1 -1
  4. data/.travis.yml +12 -0
  5. data/CONTRIBUTING.md +27 -12
  6. data/Gemfile +1 -0
  7. data/History.txt +38 -0
  8. data/Manifest.txt +15 -15
  9. data/README.rdoc +7 -6
  10. data/Rakefile +40 -5
  11. data/ext/nmatrix/data/data.cpp +2 -37
  12. data/ext/nmatrix/data/data.h +19 -121
  13. data/ext/nmatrix/data/meta.h +70 -0
  14. data/ext/nmatrix/extconf.rb +40 -12
  15. data/ext/nmatrix/math/math.h +13 -103
  16. data/ext/nmatrix/nmatrix.cpp +10 -2018
  17. data/ext/nmatrix/nmatrix.h +16 -13
  18. data/ext/nmatrix/ruby_constants.cpp +12 -1
  19. data/ext/nmatrix/ruby_constants.h +7 -1
  20. data/ext/nmatrix/ruby_nmatrix.c +2169 -0
  21. data/ext/nmatrix/storage/dense.cpp +123 -14
  22. data/ext/nmatrix/storage/dense.h +10 -4
  23. data/ext/nmatrix/storage/list.cpp +265 -48
  24. data/ext/nmatrix/storage/list.h +6 -9
  25. data/ext/nmatrix/storage/storage.cpp +44 -54
  26. data/ext/nmatrix/storage/storage.h +2 -2
  27. data/ext/nmatrix/storage/yale/class.h +1070 -0
  28. data/ext/nmatrix/storage/yale/iterators/base.h +142 -0
  29. data/ext/nmatrix/storage/yale/iterators/iterator.h +130 -0
  30. data/ext/nmatrix/storage/yale/iterators/row.h +449 -0
  31. data/ext/nmatrix/storage/yale/iterators/row_stored.h +139 -0
  32. data/ext/nmatrix/storage/yale/iterators/row_stored_nd.h +167 -0
  33. data/ext/nmatrix/storage/yale/iterators/stored_diagonal.h +123 -0
  34. data/ext/nmatrix/storage/yale/math/transpose.h +110 -0
  35. data/ext/nmatrix/storage/yale/yale.cpp +1785 -0
  36. data/ext/nmatrix/storage/{yale.h → yale/yale.h} +23 -55
  37. data/ext/nmatrix/types.h +2 -0
  38. data/ext/nmatrix/util/io.cpp +27 -45
  39. data/ext/nmatrix/util/io.h +0 -2
  40. data/ext/nmatrix/util/sl_list.cpp +169 -28
  41. data/ext/nmatrix/util/sl_list.h +9 -3
  42. data/lib/nmatrix/blas.rb +20 -20
  43. data/lib/nmatrix/enumerate.rb +1 -1
  44. data/lib/nmatrix/io/mat5_reader.rb +8 -14
  45. data/lib/nmatrix/lapack.rb +3 -3
  46. data/lib/nmatrix/math.rb +3 -3
  47. data/lib/nmatrix/nmatrix.rb +19 -5
  48. data/lib/nmatrix/nvector.rb +2 -0
  49. data/lib/nmatrix/shortcuts.rb +90 -125
  50. data/lib/nmatrix/version.rb +1 -1
  51. data/nmatrix.gemspec +7 -8
  52. data/spec/{nmatrix_spec.rb → 00_nmatrix_spec.rb} +45 -208
  53. data/spec/01_enum_spec.rb +184 -0
  54. data/spec/{slice_spec.rb → 02_slice_spec.rb} +55 -39
  55. data/spec/blas_spec.rb +22 -54
  56. data/spec/elementwise_spec.rb +9 -8
  57. data/spec/io_spec.rb +6 -4
  58. data/spec/lapack_spec.rb +26 -26
  59. data/spec/math_spec.rb +9 -5
  60. data/spec/nmatrix_yale_spec.rb +29 -61
  61. data/spec/shortcuts_spec.rb +34 -22
  62. data/spec/slice_set_spec.rb +157 -0
  63. data/spec/spec_helper.rb +42 -2
  64. data/spec/stat_spec.rb +192 -0
  65. metadata +52 -55
  66. data/ext/nmatrix/storage/yale.cpp +0 -2284
  67. data/spec/nmatrix_list_spec.rb +0 -113
  68. data/spec/nvector_spec.rb +0 -112
@@ -20,23 +20,34 @@
20
20
  #
21
21
  # * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
22
22
  #
23
- # == slice_spec.rb
23
+ # == 02_slice_spec.rb
24
24
  #
25
- # Test of slice operations.
25
+ # Test of slice operations. High priority tests since reference
26
+ # slicing is needed for pretty_print.
26
27
  #
28
+ require 'pry'
27
29
  require File.dirname(__FILE__) + "/spec_helper.rb"
28
30
 
29
31
  describe "Slice operation" do
32
+ include RSpec::Longrun::DSL
30
33
 
31
34
  [:dense, :list, :yale].each do |stype|
32
35
  context "for #{stype}" do
33
36
  before :each do
37
+ GC.start # don't have to do this, but it helps to make sure we've cleaned up our pointers properly.
34
38
  @m = create_matrix(stype)
35
39
  end
36
40
 
41
+ it "should correctly return a row of a reference-slice" do
42
+ @n = create_rectangular_matrix(stype)
43
+ @m = @n[1..4,1..3]
44
+ @m.row(1, :copy).should == @m.row(1, :reference)
45
+ @m.row(1, :copy).to_flat_array.should == [12,13,0]
46
+ end
47
+
37
48
  if stype == :yale
38
49
  it "should binary search for the left boundary of a partial row of stored indices correctly" do
39
- n = NMatrix.new(:yale, 10, :int32)
50
+ n = NMatrix.new(10, stype: :yale, dtype: :int32)
40
51
  n[3,0] = 1
41
52
  #n[3,2] = 2
42
53
  n[3,3] = 3
@@ -47,6 +58,7 @@ describe "Slice operation" do
47
58
  vs = []
48
59
  is = []
49
60
  js = []
61
+
50
62
  n[3,1..9].each_stored_with_indices do |v,i,j|
51
63
  vs << v
52
64
  is << i
@@ -108,27 +120,16 @@ describe "Slice operation" do
108
120
  end
109
121
  end
110
122
 
111
- it "should return correct shape and 1st-order supershape" do
123
+ it "should return correct supershape" do
112
124
  x = NMatrix.random([10,12])
113
125
  y = x[0...8,5...12]
114
126
  y.shape.should == [8,7]
115
127
  y.supershape.should == [10,12]
116
128
  end
117
129
 
118
- it "should return correct 1st- and 2nd-order supershape" do
119
- pending "Not yet sure if we ever want to enable reference slices of reference slices"
120
- x = NMatrix.random([10,12])
121
- y = x[0...8,5...12]
122
- z = y[0...3,0...4]
123
- z.supershape(2).should == y.supershape(1)
124
- z.supershape(1).should == [8,7]
125
- end
126
-
127
130
  it "should have #is_ref? method" do
128
131
  a = @m[0..1, 0..1]
129
132
  b = @m.slice(0..1, 0..1)
130
-
131
-
132
133
  @m.is_ref?.should be_false
133
134
  a.is_ref?.should be_true
134
135
  b.is_ref?.should be_false
@@ -143,7 +144,7 @@ describe "Slice operation" do
143
144
  context "with copying" do
144
145
  it 'should return an NMatrix' do
145
146
  n = @m.slice(0..1,0..1)
146
- nm_eql(n, NMatrix.new([2,2], [0,1,3,4], :int32)).should be_true
147
+ nm_eql(n, NMatrix.new([2,2], [0,1,3,4], dtype: :int32)).should be_true
147
148
  end
148
149
 
149
150
  it 'should return a copy of 2x2 matrix to self elements' do
@@ -155,22 +156,28 @@ describe "Slice operation" do
155
156
  @m[2,1].should eql(7)
156
157
  end
157
158
 
158
- it 'should return a 1x2 matrix with refs to self elements' do
159
+ it 'should return a 1x2 matrix without refs to self elements' do
159
160
  n = @m.slice(0,1..2)
160
161
  n.shape.should eql([1,2])
161
162
 
162
163
  n[0].should == @m[0,1]
164
+ n[1].should == @m[0,2]
163
165
  n[0] = -9
164
166
  @m[0,1].should eql(1)
167
+ @m[0,2].should eql(2)
165
168
  end
166
169
 
167
- it 'should return a 2x1 matrix with refs to self elements' do
170
+ it 'should return a 2x1 matrix without refs to self elements' do
171
+ @m.extend NMatrix::YaleFunctions
172
+
168
173
  n = @m.slice(0..1,1)
169
174
  n.shape.should eql([2,1])
170
175
 
171
176
  n[0].should == @m[0,1]
177
+ n[1].should == @m[1,1]
172
178
  n[0] = -9
173
179
  @m[0,1].should eql(1)
180
+ @m[1,1].should eql(4)
174
181
  end
175
182
 
176
183
  it 'should be correct slice for range 0..2 and 0...3' do
@@ -178,7 +185,7 @@ describe "Slice operation" do
178
185
  end
179
186
 
180
187
  [:dense, :list, :yale].each do |cast_type|
181
- it "should cast from #{stype.upcase} to #{cast_type.upcase}" do
188
+ it "should cast copied slice from #{stype.upcase} to #{cast_type.upcase}" do
182
189
  nm_eql(@m.slice(1..2, 1..2).cast(cast_type, :int32), @m.slice(1..2,1..2)).should be_true
183
190
  nm_eql(@m.slice(0..1, 1..2).cast(cast_type, :int32), @m.slice(0..1,1..2)).should be_true
184
191
  nm_eql(@m.slice(1..2, 0..1).cast(cast_type, :int32), @m.slice(1..2,0..1)).should be_true
@@ -186,6 +193,8 @@ describe "Slice operation" do
186
193
 
187
194
  # Non square
188
195
  nm_eql(@m.slice(0..2, 1..2).cast(cast_type, :int32), @m.slice(0..2,1..2)).should be_true
196
+ #require 'pry'
197
+ #binding.pry if cast_type == :yale
189
198
  nm_eql(@m.slice(1..2, 0..2).cast(cast_type, :int32), @m.slice(1..2,0..2)).should be_true
190
199
 
191
200
  # Full
@@ -208,7 +217,7 @@ describe "Slice operation" do
208
217
  context "by reference" do
209
218
  it 'should return an NMatrix' do
210
219
  n = @m[0..1,0..1]
211
- nm_eql(n, NMatrix.new([2,2], [0,1,3,4], :int32)).should be_true
220
+ nm_eql(n, NMatrix.new([2,2], [0,1,3,4], dtype: :int32)).should be_true
212
221
  end
213
222
 
214
223
  it 'should return a 2x2 matrix with refs to self elements' do
@@ -240,7 +249,7 @@ describe "Slice operation" do
240
249
 
241
250
  it 'should slice again' do
242
251
  n = @m[1..2, 1..2]
243
- nm_eql(n[1,0..1], NVector.new(2, [7,8], :int32).transpose).should be_true
252
+ nm_eql(n[1,0..1], NVector.new(2, [7,8], dtype: :int32).transpose).should be_true
244
253
  end
245
254
 
246
255
  it 'should be correct slice for range 0..2 and 0...3' do
@@ -276,8 +285,8 @@ describe "Slice operation" do
276
285
  MATRIX32A_ARRAY
277
286
  end
278
287
 
279
- n = NMatrix.new([4,3], nary, left_dtype)[1..3,1..2]
280
- m = NMatrix.new([3,2], mary, right_dtype)[1..2,0..1]
288
+ n = NMatrix.new([4,3], nary, dtype: left_dtype)[1..3,1..2]
289
+ m = NMatrix.new([3,2], mary, dtype: right_dtype)[1..2,0..1]
281
290
 
282
291
  r = n.dot m
283
292
  r.shape.should eql([3,2])
@@ -333,34 +342,41 @@ describe "Slice operation" do
333
342
 
334
343
  end
335
344
 
336
- it 'should be cleaned up by garbage collector without errors' do
337
- 1.times do
338
- n = @m[1..2,0..1]
345
+ example 'should be cleaned up by garbage collector without errors' do
346
+ step "reference slice" do
347
+ 1.times do
348
+ n = @m[1..2,0..1]
349
+ end
350
+ GC.start
339
351
  end
340
- GC.start
341
- @m.should == NMatrix.new(:dense, [3,3], (0..9).to_a, :int32).cast(stype, :int32)
342
- n = nil
343
- 1.times do
344
- m = NMatrix.new(:dense, [2,2], [1,2,3,4]).cast(stype, :int32)
345
- n = m[0..1,0..1]
352
+
353
+ step "reference slice of casted-copy" do
354
+ @m.should == NMatrix.new([3,3], (0..9).to_a, dtype: :int32).cast(stype, :int32)
355
+ n = nil
356
+ 1.times do
357
+ m = NMatrix.new([2,2], [1,2,3,4]).cast(stype, :int32)
358
+ n = m[0..1,0..1]
359
+ end
360
+ GC.start
361
+ n.should == NMatrix.new([2,2], [1,2,3,4]).cast(stype, :int32)
346
362
  end
347
- GC.start
348
- n.should == NMatrix.new(:dense, [2,2], [1,2,3,4]).cast(stype, :int32)
349
363
  end
350
364
 
351
365
  [:dense, :list, :yale].each do |cast_type|
352
- it "should cast from #{stype.upcase} to #{cast_type.upcase}" do
353
-
366
+ it "should cast a square reference-slice from #{stype.upcase} to #{cast_type.upcase}" do
354
367
  nm_eql(@m[1..2, 1..2].cast(cast_type), @m[1..2,1..2]).should be_true
355
368
  nm_eql(@m[0..1, 1..2].cast(cast_type), @m[0..1,1..2]).should be_true
356
369
  nm_eql(@m[1..2, 0..1].cast(cast_type), @m[1..2,0..1]).should be_true
357
370
  nm_eql(@m[0..1, 0..1].cast(cast_type), @m[0..1,0..1]).should be_true
371
+ end
358
372
 
373
+ it "should cast a rectangular reference-slice from #{stype.upcase} to #{cast_type.upcase}" do
359
374
  # Non square
360
- nm_eql(@m[0..2, 1..2].cast(cast_type), @m[0..2,1..2]).should be_true
361
- nm_eql(@m[1..2, 0..2].cast(cast_type), @m[1..2,0..2]).should be_true
375
+ nm_eql(@m[0..2, 1..2].cast(cast_type), @m[0..2,1..2]).should be_true # FIXME: memory problem.
376
+ nm_eql(@m[1..2, 0..2].cast(cast_type), @m[1..2,0..2]).should be_true # this one is fine
377
+ end
362
378
 
363
- # Full
379
+ it "should cast a square full-matrix reference-slice from #{stype.upcase} to #{cast_type.upcase}" do
364
380
  nm_eql(@m[0..2, 0..2].cast(cast_type), @m).should be_true
365
381
  end
366
382
  end
@@ -29,14 +29,15 @@
29
29
  require File.join(File.dirname(__FILE__), "spec_helper.rb")
30
30
 
31
31
  describe NMatrix::BLAS do
32
+
32
33
  [:rational32, :rational64, :rational128, :float32, :float64, :complex64, :complex128].each do |dtype|
33
34
  context dtype do
34
35
  # This is not the same as "exposes cblas trsm", which would be for a version defined in blas.rb (which
35
36
  # would greatly simplify the calling of cblas_trsm in terms of arguments, and which would be accessible
36
37
  # as NMatrix::BLAS::trsm)
37
38
  it "exposes unfriendly cblas_trsm" do
38
- a = NMatrix.new(:dense, 3, [4,-1.quo(2), -3.quo(4), -2, 2, -1.quo(4), -4, -2, -1.quo(2)], dtype)
39
- b = NVector.new(3, [-1, 17, -9], dtype)
39
+ a = NMatrix.new(3, [4,-1.quo(2), -3.quo(4), -2, 2, -1.quo(4), -4, -2, -1.quo(2)], dtype: dtype)
40
+ b = NMatrix.new([3,1], [-1, 17, -9], dtype: dtype)
40
41
  NMatrix::BLAS::cblas_trsm(:row, :right, :lower, :transpose, :nonunit, 1, 3, 1.0, a, 3, b, 3)
41
42
 
42
43
  # These test results all come from actually running a matrix through BLAS. We use them to ensure that NMatrix's
@@ -69,21 +70,17 @@ describe NMatrix::BLAS do
69
70
  context dtype do
70
71
 
71
72
  it "exposes cblas rot" do
72
- x = NVector.new(5, [1,2,3,4,5], dtype)
73
- y = NVector.new(5, [-5,-4,-3,-2,-1], dtype)
73
+ x = NMatrix.new([5,1], [1,2,3,4,5], dtype: dtype)
74
+ y = NMatrix.new([5,1], [-5,-4,-3,-2,-1], dtype: dtype)
74
75
  x, y = NMatrix::BLAS::rot(x, y, 1.quo(2), Math.sqrt(3).quo(2), -1)
75
76
 
76
- x[0].should be_within(1e-4).of(-0.3660254037844386)
77
- x[1].should be_within(1e-4).of(-0.7320508075688772)
78
- x[2].should be_within(1e-4).of(-1.098076211353316)
79
- x[3].should be_within(1e-4).of(-1.4641016151377544)
80
- x[4].should be_within(1e-4).of(-1.8301270189221928)
81
-
82
- y[0].should be_within(1e-4).of(-6.830127018922193)
83
- y[1].should be_within(1e-4).of(-5.464101615137754)
84
- y[2].should be_within(1e-4).of(-4.098076211353316)
85
- y[3].should be_within(1e-4).of(-2.732050807568877)
86
- y[4].should be_within(1e-4).of(-1.3660254037844386)
77
+ x.should be_within(1e-4).of(
78
+ NMatrix.new([5,1], [-0.3660254037844386, -0.7320508075688772, -1.098076211353316, -1.4641016151377544, -1.8301270189221928], dtype: dtype)
79
+ )
80
+
81
+ y.should be_within(1e-4).of(
82
+ NMatrix.new([5,1], [-6.830127018922193, -5.464101615137754, -4.098076211353316, -2.732050807568877, -1.3660254037844386], dtype: dtype)
83
+ )
87
84
  end
88
85
 
89
86
  end
@@ -94,7 +91,8 @@ describe NMatrix::BLAS do
94
91
 
95
92
  it "exposes cblas rotg" do
96
93
  pending("broken for :object") if dtype == :object
97
- ab = NVector.new(2, [6,-8], dtype)
94
+
95
+ ab = NMatrix.new([2,1], [6,-8], dtype: dtype)
98
96
  c,s = NMatrix::BLAS::rotg(ab)
99
97
 
100
98
  if [:float32, :float64].include?(dtype)
@@ -102,6 +100,7 @@ describe NMatrix::BLAS do
102
100
  ab[1].should be_within(1e-6).of(-5.quo(3))
103
101
  c.should be_within(1e-6).of(-3.quo(5))
104
102
  else
103
+ pending "need correct test cases"
105
104
  ab[0].should be_within(1e-6).of(10)
106
105
  ab[1].should be_within(1e-6).of(5.quo(3))
107
106
  c.should be_within(1e-6).of(3.quo(5))
@@ -111,63 +110,32 @@ describe NMatrix::BLAS do
111
110
 
112
111
  # Note: this exposes gemm, not cblas_gemm (which is the unfriendly CBLAS no-error-checking version)
113
112
  it "exposes gemm" do
114
- #STDERR.puts "dtype=#{dtype.to_s}"
115
- #STDERR.puts "1"
116
- n = NMatrix.new([4,3], dtype)
117
- n[0,0] = 14.0
118
- n[0,1] = 9.0
119
- n[0,2] = 3.0
120
- n[1,0] = 2.0
121
- n[1,1] = 11.0
122
- n[1,2] = 15.0
123
- n[2,0] = 0.0
124
- n[2,1] = 12.0
125
- n[2,2] = 17.0
126
- n[3,0] = 5.0
127
- n[3,1] = 2.0
128
- n[3,2] = 3.0
129
-
130
- m = NMatrix.new([3,2], dtype)
131
-
132
- m[0,0] = 12.0
133
- m[0,1] = 25.0
134
- m[1,0] = 9.0
135
- m[1,1] = 10.0
136
- m[2,0] = 8.0
137
- m[2,1] = 5.0
113
+ n = NMatrix.new([4,3], [14.0,9.0,3.0, 2.0,11.0,15.0, 0.0,12.0,17.0, 5.0,2.0,3.0], dtype: dtype)
114
+ m = NMatrix.new([3,2], [12.0,25.0, 9.0,10.0, 8.0,5.0], dtype: dtype)
138
115
 
139
116
  #c = NMatrix.new([4,2], dtype)
140
117
  r = NMatrix::BLAS.gemm(n, m) #, c)
141
118
  #c.should equal(r) # check that both are same memory address
142
119
 
143
- r[0,0].should == 273.0
144
- r[0,1].should == 455.0
145
- r[1,0].should == 243.0
146
- r[1,1].should == 235.0
147
- r[2,0].should == 244.0
148
- r[2,1].should == 205.0
149
- r[3,0].should == 102.0
150
- r[3,1].should == 160.0
120
+ r.should == NMatrix.new([4,2], [273,455,243,235,244,205,102,160], dtype: dtype)
151
121
  end
152
122
 
153
123
 
154
124
  it "exposes gemv" do
155
- #a = NMatrix.random(3)
156
- #x = NVector.random(3)
157
- a = NMatrix.new([4,3], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0], :float64)
158
- x = NVector.new(3, [2.0, 1.0, 0.0], :float64)
125
+ a = NMatrix.new([4,3], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0], dtype: :float64)
126
+ x = NMatrix.new([3,1], [2.0, 1.0, 0.0], dtype: :float64)
159
127
 
160
128
  NMatrix::BLAS.gemv(a, x)
161
129
  end
162
130
 
163
131
  it "exposes asum" do
164
- x = NVector.new(4, [1,2,3,4], :float64)
132
+ x = NMatrix.new([4,1], [1,2,3,4], dtype: :float64)
165
133
  NMatrix::BLAS.asum(x).should == 10.0
166
134
  end
167
135
 
168
136
 
169
137
  it "exposes nrm2" do
170
- x = NVector.new(4, [2,-4,3,5], :float64)
138
+ x = NMatrix.new([4,1], [2,-4,3,5], dtype: :float64)
171
139
  NMatrix::BLAS.nrm2(x, 1, 3).should be_within(1e-10).of(5.385164807134504)
172
140
  end
173
141
 
@@ -32,8 +32,9 @@ describe NMatrix do
32
32
 
33
33
  context "yale" do
34
34
  before :each do
35
- @n = NMatrix.new(:yale, 3, :int64)
36
- @m = NMatrix.new(:yale, 3, :int64)
35
+ @n = NMatrix.new(3, stype: :yale, dtype: :int64)
36
+ @n.extend NMatrix::YaleFunctions
37
+ @m = NMatrix.new(3, stype: :yale, dtype: :int64)
37
38
  @n[0,0] = 52
38
39
  @n[0,2] = 5
39
40
  @n[1,1] = 40
@@ -52,13 +53,13 @@ describe NMatrix do
52
53
  x[1,1].should == 40 * 3
53
54
  x[2,0].should == 6 * 3
54
55
 
55
- r = NMatrix.new(:yale, 3, :int64)
56
+ r = NMatrix.new(3, stype: :yale, dtype: :int64)
56
57
  y = r + 3
57
58
  y[0,0].should == 3
58
59
  end
59
60
 
60
61
  it "should refuse to perform a dot operation on a yale with non-zero default" do
61
- r = NMatrix.new(:yale, 3, :int64)
62
+ r = NMatrix.new(3, stype: :yale, dtype: :int64)
62
63
  y = r + 3
63
64
  expect { y.dot(r) }.to raise_error
64
65
  expect { r.dot(y) }.to raise_error
@@ -74,7 +75,7 @@ describe NMatrix do
74
75
 
75
76
  it "should perform element-wise multiplication" do
76
77
  r = NMatrix.new(:dense, 3, [0,0,-25,0,-1920,0,0,0,0], :int64).cast(:yale, :int64)
77
- m = NMatrix.new(:yale, 2, :int64)
78
+ m = NMatrix.new(2, stype: :yale, dtype: :int64)
78
79
  (@n*@m).should == r
79
80
  end
80
81
 
@@ -84,7 +85,7 @@ describe NMatrix do
84
85
  end
85
86
 
86
87
  it "should perform element-wise modulo" do
87
- m = NMatrix.new(:yale, 3, :int64) + 5
88
+ m = NMatrix.new(3, stype: :yale, dtype: :int64, default: 0) + 5
88
89
  (@n % m).should == NMatrix.new(:dense, 3, [2,0,0,0,0,0,1,0,0], :int64).cast(:yale, :int64)
89
90
  end
90
91
 
@@ -130,13 +131,13 @@ describe NMatrix do
130
131
  x[1,1].should == 40 * 3
131
132
  x[0,1].should == 0
132
133
 
133
- r = NMatrix.new(:list, 3, 1)
134
+ r = NMatrix.new(3, stype: :list, default: 1)
134
135
  y = r + 3
135
136
  y[0,0].should == 4
136
137
  end
137
138
 
138
139
  it "should perform element-wise addition" do
139
- r = NMatrix.new(:list, 2, 0, :int64)
140
+ r = NMatrix.new(2, stype: :list, dtype: :int64, default: 0)
140
141
  r[0,0] = 52
141
142
  r[1,1] = -8
142
143
  q = @n + @m
@@ -28,11 +28,13 @@ require "./lib/nmatrix"
28
28
 
29
29
  describe NMatrix::IO do
30
30
  it "repacks a string" do
31
- NMatrix::IO::Matlab.repack("hello", :miUINT8, :dtype => :byte).should == "hello"
31
+ NMatrix::IO::Matlab.repack("hello", :miUINT8, :byte).should == "hello"
32
32
  end
33
33
 
34
34
  it "creates yale from internal byte-string function" do
35
- n = NMatrix.new(:yale, [4,4], :byte, "\0\1\3\3\4", "\0\1\3\0\0\0\0\0\0\0\0", "\2\3\5\4", :byte)
35
+ ia = NMatrix::IO::Matlab.repack("\0\1\3\3\4", :miUINT8, :itype)
36
+ ja = NMatrix::IO::Matlab.repack("\0\1\3\0\0\0\0\0\0\0\0", :miUINT8, :itype)
37
+ n = NMatrix.new(:yale, [4,4], :byte, ia, ja, "\2\3\5\4", :byte)
36
38
  n[0,0].should == 2
37
39
  n[1,1].should == 3
38
40
  n[1,3].should == 5
@@ -54,13 +56,13 @@ describe NMatrix::IO do
54
56
 
55
57
  it "reads MATLAB .mat file containing a single dense integer matrix" do
56
58
  n = NMatrix::IO::Matlab.load_mat("spec/4x5_dense.mat")
57
- m = NMatrix.new(:dense, [4,5], [16,17,18,19,20,15,14,13,12,11,6,7,8,9,10,5,4,3,2,1])
59
+ m = NMatrix.new([4,5], [16,17,18,19,20,15,14,13,12,11,6,7,8,9,10,5,4,3,2,1])
58
60
  n.should == m
59
61
  end
60
62
 
61
63
  it "reads MATLAB .mat file containing a single dense double matrix" do
62
64
  n = NMatrix::IO::Matlab.load_mat("spec/2x2_dense_double.mat")
63
- m = NMatrix.new(:dense, 2, [1.1, 2.0, 3.0, 4.0], :float64)
65
+ m = NMatrix.new(2, [1.1, 2.0, 3.0, 4.0], dtype: :float64)
64
66
  n.should == m
65
67
  end
66
68
 
@@ -56,7 +56,7 @@ describe NMatrix::LAPACK do
56
56
  [:rational32, :rational64, :rational128, :float32, :float64, :complex64, :complex128].each do |dtype|
57
57
  context dtype do
58
58
  it "exposes clapack getrf" do
59
- a = NMatrix.new(:dense, 3, [4,9,2,3,5,7,8,1,6], dtype)
59
+ a = NMatrix.new(3, [4,9,2,3,5,7,8,1,6], dtype: dtype)
60
60
  NMatrix::LAPACK::clapack_getrf(:row, 3, 3, a, 3)
61
61
 
62
62
  # delta varies for different dtypes
@@ -100,9 +100,9 @@ describe NMatrix::LAPACK do
100
100
 
101
101
  # Together, these calls are basically xGESV from LAPACK: http://www.netlib.org/lapack/double/dgesv.f
102
102
  it "exposes clapack getrs" do
103
- a = NMatrix.new(:dense, 3, [-2,4,-3,3,-2,1,0,-4,3], dtype)
103
+ a = NMatrix.new(3, [-2,4,-3,3,-2,1,0,-4,3], dtype: dtype)
104
104
  ipiv = NMatrix::LAPACK::clapack_getrf(:row, 3, 3, a, 3)
105
- b = NVector.new(3, [-1, 17, -9], dtype)
105
+ b = NMatrix.new([3,1], [-1, 17, -9], dtype: dtype)
106
106
 
107
107
  NMatrix::LAPACK::clapack_getrs(:row, false, 3, 1, a, 3, ipiv, b, 3)
108
108
 
@@ -132,9 +132,9 @@ describe NMatrix::LAPACK do
132
132
  -9.15 -7.93 4.86 4.85 3.01
133
133
  9.57 1.64 8.83 0.74 5.80
134
134
  -3.49 4.02 9.80 10.00 4.27
135
- 9.84 0.15 -8.99 -6.02 -5.31|.map(&:to_f), dtype)
136
- s_true = NMatrix.new([1,5], [27.468732418221848, 22.643185009774697, 8.558388228482576, 5.985723201512133, 2.014899658715756], dtype)
137
- right_true = NMatrix.new([5,6], [0.5911423764124365, 0.2631678147140568, 0.35543017386282716, 0.3142643627269275, 0.2299383153647484, 0.0, 0.39756679420242547, 0.24379902792633046, -0.22239000068544604, -0.7534661509534584, -0.36358968669749664, 0.0, 0.03347896906244727, -0.6002725806935828, -0.45083926892230763, 0.23344965724471425, -0.3054757327479317, 0.0, 0.4297069031370182, 0.23616680628112555, -0.6858628638738117, 0.3318600182003095, 0.1649276348845103, 0.0, 0.4697479215666587, -0.350891398883702, 0.38744460309967327, 0.15873555958215635, -0.5182574373535355, 0.0, -0.29335875846440357, 0.57626211913389, -0.020852917980871258, 0.3790776670601607, -0.6525516005923976, 0.0], dtype)
135
+ 9.84 0.15 -8.99 -6.02 -5.31|.map(&:to_f), dtype: dtype)
136
+ s_true = NMatrix.new([1,5], [27.468732418221848, 22.643185009774697, 8.558388228482576, 5.985723201512133, 2.014899658715756], dtype: dtype)
137
+ right_true = NMatrix.new([5,6], [0.5911423764124365, 0.2631678147140568, 0.35543017386282716, 0.3142643627269275, 0.2299383153647484, 0.0, 0.39756679420242547, 0.24379902792633046, -0.22239000068544604, -0.7534661509534584, -0.36358968669749664, 0.0, 0.03347896906244727, -0.6002725806935828, -0.45083926892230763, 0.23344965724471425, -0.3054757327479317, 0.0, 0.4297069031370182, 0.23616680628112555, -0.6858628638738117, 0.3318600182003095, 0.1649276348845103, 0.0, 0.4697479215666587, -0.350891398883702, 0.38744460309967327, 0.15873555958215635, -0.5182574373535355, 0.0, -0.29335875846440357, 0.57626211913389, -0.020852917980871258, 0.3790776670601607, -0.6525516005923976, 0.0], dtype: dtype)
138
138
  #right_true = NMatrix.new([5,6],
139
139
  # %w|-0.59 0.26 0.36 0.31 0.23
140
140
  # -0.40 0.24 -0.22 -0.75 -0.36
@@ -143,7 +143,7 @@ describe NMatrix::LAPACK do
143
143
  # -0.47 -0.35 0.39 0.16 -0.52
144
144
  # 0.29 0.58 -0.02 0.38 -0.65|.map(&:to_f),
145
145
  # dtype)
146
- left_true = NMatrix.new([5,5], [0.25138279272049635, 0.3968455517769292, 0.6921510074703637, 0.3661704447722309, 0.4076352386533525, 0.814836686086339, 0.3586615001880027, -0.24888801115928438, -0.3685935379446176, -0.09796256926688672, -0.2606185055842211, 0.7007682094072526, -0.22081144672043734, 0.38593848318854174, -0.49325014285102375, 0.3967237771305971, -0.4507112412166429, 0.2513211496937535, 0.4342486014366711, -0.6226840720358049, -0.21802776368654594, 0.14020994987112056, 0.5891194492399431, -0.6265282503648172, -0.4395516923423326], dtype)
146
+ left_true = NMatrix.new([5,5], [0.25138279272049635, 0.3968455517769292, 0.6921510074703637, 0.3661704447722309, 0.4076352386533525, 0.814836686086339, 0.3586615001880027, -0.24888801115928438, -0.3685935379446176, -0.09796256926688672, -0.2606185055842211, 0.7007682094072526, -0.22081144672043734, 0.38593848318854174, -0.49325014285102375, 0.3967237771305971, -0.4507112412166429, 0.2513211496937535, 0.4342486014366711, -0.6226840720358049, -0.21802776368654594, 0.14020994987112056, 0.5891194492399431, -0.6265282503648172, -0.4395516923423326], dtype: dtype)
147
147
  #left_true = NMatrix.new([5,5],
148
148
  # %w|-0.25 -0.40 -0.69 -0.37 -0.41
149
149
  # 0.81 0.36 -0.25 -0.37 -0.10
@@ -151,16 +151,16 @@ describe NMatrix::LAPACK do
151
151
  # 0.40 -0.45 0.25 0.43 -0.62
152
152
  # -0.22 0.14 0.59 -0.63 -0.44|.map(&:to_f),
153
153
  # dtype)
154
- s = NMatrix.new([5,1], 0, dtype)
155
- u = NMatrix.new([5,5], 0, dtype)
154
+ s = NMatrix.new([5,1], 0, dtype: dtype)
155
+ u = NMatrix.new([5,5], 0, dtype: dtype)
156
156
  ldu = 5
157
- vt = NMatrix.new([6,6], 0, dtype)
157
+ vt = NMatrix.new([6,6], 0, dtype: dtype)
158
158
  ldvt= 6
159
159
  elsif [:complex64, :complex128].include? dtype
160
160
  #http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/cgesvd_ex.c.htm
161
161
  pending "Example may be wrong"
162
162
  else
163
- a = NMatrix.new([4,3], dtype)
163
+ a = NMatrix.new([4,3], dtype: dtype)
164
164
  end
165
165
  err = case dtype
166
166
  when :float32, :complex64
@@ -194,9 +194,9 @@ describe NMatrix::LAPACK do
194
194
  -9.15 -7.93 4.86 4.85 3.01
195
195
  9.57 1.64 8.83 0.74 5.80
196
196
  -3.49 4.02 9.80 10.00 4.27
197
- 9.84 0.15 -8.99 -6.02 -5.31|.map(&:to_f), dtype)
198
- s_true = NMatrix.new([1,5], [27.468732418221848, 22.643185009774697, 8.558388228482576, 5.985723201512133, 2.014899658715756], dtype)
199
- right_true = NMatrix.new([5,6], [0.5911423764124365, 0.2631678147140568, 0.35543017386282716, 0.3142643627269275, 0.2299383153647484, 0.0, 0.39756679420242547, 0.24379902792633046, -0.22239000068544604, -0.7534661509534584, -0.36358968669749664, 0.0, 0.03347896906244727, -0.6002725806935828, -0.45083926892230763, 0.23344965724471425, -0.3054757327479317, 0.0, 0.4297069031370182, 0.23616680628112555, -0.6858628638738117, 0.3318600182003095, 0.1649276348845103, 0.0, 0.4697479215666587, -0.350891398883702, 0.38744460309967327, 0.15873555958215635, -0.5182574373535355, 0.0, -0.29335875846440357, 0.57626211913389, -0.020852917980871258, 0.3790776670601607, -0.6525516005923976, 0.0], dtype)
197
+ 9.84 0.15 -8.99 -6.02 -5.31|.map(&:to_f), dtype: dtype)
198
+ s_true = NMatrix.new([1,5], [27.468732418221848, 22.643185009774697, 8.558388228482576, 5.985723201512133, 2.014899658715756], dtype: dtype)
199
+ right_true = NMatrix.new([5,6], [0.5911423764124365, 0.2631678147140568, 0.35543017386282716, 0.3142643627269275, 0.2299383153647484, 0.0, 0.39756679420242547, 0.24379902792633046, -0.22239000068544604, -0.7534661509534584, -0.36358968669749664, 0.0, 0.03347896906244727, -0.6002725806935828, -0.45083926892230763, 0.23344965724471425, -0.3054757327479317, 0.0, 0.4297069031370182, 0.23616680628112555, -0.6858628638738117, 0.3318600182003095, 0.1649276348845103, 0.0, 0.4697479215666587, -0.350891398883702, 0.38744460309967327, 0.15873555958215635, -0.5182574373535355, 0.0, -0.29335875846440357, 0.57626211913389, -0.020852917980871258, 0.3790776670601607, -0.6525516005923976, 0.0], dtype: dtype)
200
200
  #right_true = NMatrix.new([5,6],
201
201
  # %w|-0.59 0.26 0.36 0.31 0.23
202
202
  # -0.40 0.24 -0.22 -0.75 -0.36
@@ -205,7 +205,7 @@ describe NMatrix::LAPACK do
205
205
  # -0.47 -0.35 0.39 0.16 -0.52
206
206
  # 0.29 0.58 -0.02 0.38 -0.65|.map(&:to_f),
207
207
  # dtype)
208
- left_true = NMatrix.new([5,5], [0.25138279272049635, 0.3968455517769292, 0.6921510074703637, 0.3661704447722309, 0.4076352386533525, 0.814836686086339, 0.3586615001880027, -0.24888801115928438, -0.3685935379446176, -0.09796256926688672, -0.2606185055842211, 0.7007682094072526, -0.22081144672043734, 0.38593848318854174, -0.49325014285102375, 0.3967237771305971, -0.4507112412166429, 0.2513211496937535, 0.4342486014366711, -0.6226840720358049, -0.21802776368654594, 0.14020994987112056, 0.5891194492399431, -0.6265282503648172, -0.4395516923423326], dtype)
208
+ left_true = NMatrix.new([5,5], [0.25138279272049635, 0.3968455517769292, 0.6921510074703637, 0.3661704447722309, 0.4076352386533525, 0.814836686086339, 0.3586615001880027, -0.24888801115928438, -0.3685935379446176, -0.09796256926688672, -0.2606185055842211, 0.7007682094072526, -0.22081144672043734, 0.38593848318854174, -0.49325014285102375, 0.3967237771305971, -0.4507112412166429, 0.2513211496937535, 0.4342486014366711, -0.6226840720358049, -0.21802776368654594, 0.14020994987112056, 0.5891194492399431, -0.6265282503648172, -0.4395516923423326], dtype: dtype)
209
209
  #left_true = NMatrix.new([5,5],
210
210
  # %w|-0.25 -0.40 -0.69 -0.37 -0.41
211
211
  # 0.81 0.36 -0.25 -0.37 -0.10
@@ -213,26 +213,26 @@ describe NMatrix::LAPACK do
213
213
  # 0.40 -0.45 0.25 0.43 -0.62
214
214
  # -0.22 0.14 0.59 -0.63 -0.44|.map(&:to_f),
215
215
  # dtype)
216
- s = NMatrix.new([5,1], 0, dtype)
217
- u = NMatrix.new([5,5], 0, dtype)
216
+ s = NMatrix.new([5,1], 0, dtype: dtype)
217
+ u = NMatrix.new([5,5], 0, dtype: dtype)
218
218
  ldu = 5
219
- vt = NMatrix.new([6,6], 0, dtype)
219
+ vt = NMatrix.new([6,6], 0, dtype: dtype)
220
220
  ldvt= 6
221
221
  elsif [:complex64, :complex128].include? dtype
222
222
  #http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/cgesvd_ex.c.htm
223
223
  pending "Example may be wrong"
224
- a = NMatrix.new([4,3], [[ 5.91, -5.69], [ 7.09, 2.72], [ 7.78, -4.06], [ -0.79, -7.21], [ -3.15, -4.08], [ -1.89, 3.27], [ 4.57, -2.07], [ -3.88, -3.30], [ -4.89, 4.20], [ 4.10, -6.70], [ 3.28, -3.84], [ 3.84, 1.19]].map {|e| Complex(*e) } , dtype)
225
- s_true = NMatrix.new([3,1], [17.63, 11.61, 6.78], dtype)
226
- left_true = NMatrix.new([4,4], [[-0.86, 0.0], [0.4, 0.0], [0.32, 0.0], [-0.35, 0.13], [-0.24, -0.21], [-0.63, 0.6], [0.15, 0.32], [0.61, 0.61], [-0.36, 0.1]].map {|e| Complex(*e)}, dtype)
227
- right_true = NMatrix.new([4,3], [[ -0.22, 0.51], [ -0.37, -0.32], [ -0.53, 0.11], [ 0.15, 0.38], [ 0.31, 0.31], [ 0.09, -0.57], [ 0.18, -0.39], [ 0.38, -0.39], [ 0.53, 0.24], [ 0.49, 0.28], [ -0.47, -0.25], [ -0.15, 0.19]].map {|e| Complex *e} , dtype)
224
+ a = NMatrix.new([4,3], [[ 5.91, -5.69], [ 7.09, 2.72], [ 7.78, -4.06], [ -0.79, -7.21], [ -3.15, -4.08], [ -1.89, 3.27], [ 4.57, -2.07], [ -3.88, -3.30], [ -4.89, 4.20], [ 4.10, -6.70], [ 3.28, -3.84], [ 3.84, 1.19]].map {|e| Complex(*e) } , dtype: dtype)
225
+ s_true = NMatrix.new([3,1], [17.63, 11.61, 6.78], dtype: dtype)
226
+ left_true = NMatrix.new([4,4], [[-0.86, 0.0], [0.4, 0.0], [0.32, 0.0], [-0.35, 0.13], [-0.24, -0.21], [-0.63, 0.6], [0.15, 0.32], [0.61, 0.61], [-0.36, 0.1]].map {|e| Complex(*e)}, dtype: dtype)
227
+ right_true = NMatrix.new([4,3], [[ -0.22, 0.51], [ -0.37, -0.32], [ -0.53, 0.11], [ 0.15, 0.38], [ 0.31, 0.31], [ 0.09, -0.57], [ 0.18, -0.39], [ 0.38, -0.39], [ 0.53, 0.24], [ 0.49, 0.28], [ -0.47, -0.25], [ -0.15, 0.19]].map {|e| Complex *e} , dtype: dtype)
228
228
 
229
- s = NMatrix.new([3,1], 0, dtype)
230
- u = NMatrix.new([4,4], 0, dtype)
229
+ s = NMatrix.new([3,1], 0, dtype: dtype)
230
+ u = NMatrix.new([4,4], 0, dtype: dtype)
231
231
  ldu = 4
232
- vt = NMatrix.new([3,3], 0, dtype)
232
+ vt = NMatrix.new([3,3], 0, dtype: dtype)
233
233
  ldvt= 3
234
234
  else
235
- a = NMatrix.new([4,3], dtype)
235
+ a = NMatrix.new([4,3], dtype: dtype)
236
236
  end
237
237
  err = case dtype
238
238
  when :float32, :complex64