nmatrix 0.0.2 → 0.0.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/Gemfile +1 -1
- data/History.txt +31 -3
- data/Manifest.txt +5 -0
- data/README.rdoc +29 -27
- data/ext/nmatrix/binary_format.txt +53 -0
- data/ext/nmatrix/data/data.cpp +18 -18
- data/ext/nmatrix/data/data.h +38 -7
- data/ext/nmatrix/data/rational.h +13 -0
- data/ext/nmatrix/data/ruby_object.h +10 -0
- data/ext/nmatrix/extconf.rb +2 -0
- data/ext/nmatrix/nmatrix.cpp +655 -103
- data/ext/nmatrix/nmatrix.h +26 -14
- data/ext/nmatrix/ruby_constants.cpp +4 -0
- data/ext/nmatrix/ruby_constants.h +2 -0
- data/ext/nmatrix/storage/dense.cpp +99 -41
- data/ext/nmatrix/storage/dense.h +3 -3
- data/ext/nmatrix/storage/list.cpp +36 -14
- data/ext/nmatrix/storage/list.h +4 -4
- data/ext/nmatrix/storage/storage.cpp +19 -19
- data/ext/nmatrix/storage/storage.h +11 -11
- data/ext/nmatrix/storage/yale.cpp +17 -20
- data/ext/nmatrix/storage/yale.h +13 -11
- data/ext/nmatrix/util/io.cpp +25 -23
- data/ext/nmatrix/util/io.h +5 -5
- data/ext/nmatrix/util/math.cpp +634 -17
- data/ext/nmatrix/util/math.h +958 -9
- data/ext/nmatrix/util/sl_list.cpp +7 -7
- data/ext/nmatrix/util/sl_list.h +2 -2
- data/lib/nmatrix.rb +9 -0
- data/lib/nmatrix/blas.rb +4 -4
- data/lib/nmatrix/io/market.rb +227 -0
- data/lib/nmatrix/io/mat_reader.rb +7 -7
- data/lib/nmatrix/lapack.rb +80 -0
- data/lib/nmatrix/nmatrix.rb +78 -52
- data/lib/nmatrix/shortcuts.rb +486 -0
- data/lib/nmatrix/version.rb +1 -1
- data/spec/2x2_dense_double.mat +0 -0
- data/spec/blas_spec.rb +59 -9
- data/spec/elementwise_spec.rb +25 -12
- data/spec/io_spec.rb +69 -1
- data/spec/lapack_spec.rb +53 -4
- data/spec/math_spec.rb +9 -0
- data/spec/nmatrix_list_spec.rb +95 -0
- data/spec/nmatrix_spec.rb +10 -53
- data/spec/nmatrix_yale_spec.rb +17 -15
- data/spec/shortcuts_spec.rb +154 -0
- metadata +22 -15
@@ -0,0 +1,486 @@
|
|
1
|
+
# = NMatrix
|
2
|
+
#
|
3
|
+
# A linear algebra library for scientific computation in Ruby.
|
4
|
+
# NMatrix is part of SciRuby.
|
5
|
+
#
|
6
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
7
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
8
|
+
#
|
9
|
+
# == Copyright Information
|
10
|
+
#
|
11
|
+
# SciRuby is Copyright (c) 2010 - 2012, Ruby Science Foundation
|
12
|
+
# NMatrix is Copyright (c) 2012, Ruby Science Foundation
|
13
|
+
#
|
14
|
+
# Please see LICENSE.txt for additional copyright notices.
|
15
|
+
#
|
16
|
+
# == Contributing
|
17
|
+
#
|
18
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
19
|
+
# our Contributor Agreement:
|
20
|
+
#
|
21
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
22
|
+
#
|
23
|
+
# == shortcuts.rb
|
24
|
+
#
|
25
|
+
# These are shortcuts for NMatrix and NVector creation, contributed by Daniel
|
26
|
+
# Carrera (dcarrera@hush.com) and Carlos Agarie (carlos@onox.com.br).
|
27
|
+
|
28
|
+
class NMatrix
|
29
|
+
|
30
|
+
class << self
|
31
|
+
# zeros() or zeroes()
|
32
|
+
#
|
33
|
+
# Creates a new matrix of zeros with the dimensions supplied as
|
34
|
+
# parameters. Optional parameters include:
|
35
|
+
#
|
36
|
+
# * A storage type as the first parameter (default is :dense).
|
37
|
+
# * A dtype as the last parameter (default is :float64).
|
38
|
+
#
|
39
|
+
# Examples:
|
40
|
+
#
|
41
|
+
# zeros(2) # => 0.0 0.0
|
42
|
+
# 0.0 0.0
|
43
|
+
#
|
44
|
+
# zeros([2, 3], :int32) # => 0 0 0
|
45
|
+
# 0 0 0
|
46
|
+
#
|
47
|
+
# zeros(:list, [1, 5], :int32) # => 0 0 0 0 0
|
48
|
+
#
|
49
|
+
|
50
|
+
def zeros(*params)
|
51
|
+
dtype = params.last.is_a?(Symbol) ? params.pop : :float64
|
52
|
+
stype = params.first.is_a?(Symbol) ? params.shift : :dense
|
53
|
+
dim = params.first
|
54
|
+
|
55
|
+
NMatrix.new(stype, dim, 0, dtype)
|
56
|
+
end
|
57
|
+
|
58
|
+
alias :zeroes :zeros
|
59
|
+
|
60
|
+
# ones()
|
61
|
+
#
|
62
|
+
# Creates a :dense matrix of ones with the dimensions supplied
|
63
|
+
# as parameters. Optionaly, one can specify a dtype as the last
|
64
|
+
# parameter (default is :float64).
|
65
|
+
#
|
66
|
+
# Examples:
|
67
|
+
#
|
68
|
+
# ones([1, 3]) # => 1.0 1.0 1.0
|
69
|
+
#
|
70
|
+
# ones([2, 3], :int32) # => 1 1 1
|
71
|
+
# 1 1 1
|
72
|
+
#
|
73
|
+
|
74
|
+
def ones(*params)
|
75
|
+
dtype = params.last.is_a?(Symbol) ? params.pop : :float64
|
76
|
+
dim = params.first
|
77
|
+
|
78
|
+
NMatrix.new(dim, 1, dtype)
|
79
|
+
end
|
80
|
+
|
81
|
+
# identity() or eye()
|
82
|
+
#
|
83
|
+
# Creates an identity matrix (square matrix rank 2) of the size
|
84
|
+
# supplied as a parameter. Optional parameters include:
|
85
|
+
#
|
86
|
+
# * A storage type as the first parameter (default is :dense).
|
87
|
+
# * A dtype as the last parameter (default is :float64).
|
88
|
+
#
|
89
|
+
# Examples:
|
90
|
+
#
|
91
|
+
# eye(3) # => 1.0 0.0 0.0
|
92
|
+
# 0.0 1.0 0.0
|
93
|
+
# 0.0 0.0 1.0
|
94
|
+
#
|
95
|
+
# eye(3, :int32) # => 1 0 0
|
96
|
+
# 0 1 0
|
97
|
+
# 0 0 1
|
98
|
+
#
|
99
|
+
# eye(:yale, 2, :int32) # => 1 0
|
100
|
+
# 0 1
|
101
|
+
#
|
102
|
+
|
103
|
+
def eye(*params)
|
104
|
+
dtype = params.last.is_a?(Symbol) ? params.pop : :float64
|
105
|
+
stype = params.first.is_a?(Symbol) ? params.shift : :dense
|
106
|
+
|
107
|
+
dim = params.first
|
108
|
+
|
109
|
+
# Fill the diagonal with 1's.
|
110
|
+
m = NMatrix.zeros(stype, dim, dtype)
|
111
|
+
(0 .. (dim - 1)).each do |i|
|
112
|
+
m[i, i] = 1
|
113
|
+
end
|
114
|
+
|
115
|
+
m
|
116
|
+
end
|
117
|
+
|
118
|
+
alias :identity :eye
|
119
|
+
|
120
|
+
# random()
|
121
|
+
#
|
122
|
+
# Creates a :dense NMatrix with random numbers between 0 and 1 generated
|
123
|
+
# by Random::rand. The parameter is the dimension of the matrix.
|
124
|
+
#
|
125
|
+
# Examples:
|
126
|
+
#
|
127
|
+
# rand([2, 2]) # => 0.4859439730644226 0.1783195585012436
|
128
|
+
# 0.23193766176700592 0.4503345191478729
|
129
|
+
#
|
130
|
+
|
131
|
+
def random(*params)
|
132
|
+
dim = params.first
|
133
|
+
rng = Random.new
|
134
|
+
|
135
|
+
# Must provide the dimension as an Integer for a square matrix or as an
|
136
|
+
# array, e.g. [2, 4, 7].
|
137
|
+
unless dim.is_a?(Integer) || dim.is_a?(Array)
|
138
|
+
raise ArgumentError, "random() accepts only integers or arrays as \
|
139
|
+
dimension."
|
140
|
+
end
|
141
|
+
|
142
|
+
random_values = []
|
143
|
+
|
144
|
+
# Construct the values of the final matrix based on the dimension.
|
145
|
+
if dim.is_a?(Integer)
|
146
|
+
(dim * dim - 1).times { |i| random_values << rng.rand }
|
147
|
+
else
|
148
|
+
# Dimensions given by an array. Get the product of the array elements
|
149
|
+
# and generate this number of random values.
|
150
|
+
dim.reduce(1, :*).times { |i| random_values << rng.rand }
|
151
|
+
end
|
152
|
+
|
153
|
+
NMatrix.new(:dense, dim, random_values, :float64)
|
154
|
+
end
|
155
|
+
|
156
|
+
# seq()
|
157
|
+
#
|
158
|
+
# Creates a :dense NMatrix with a sequence of integers starting at
|
159
|
+
# zero until the matrix is filled. The parameters to the method
|
160
|
+
# are the dimensions of the matrix. Optionaly, one can specify a
|
161
|
+
# dtype as the last parameter (default is :float64).
|
162
|
+
#
|
163
|
+
# Examples:
|
164
|
+
#
|
165
|
+
# seq(2) # => 0 1
|
166
|
+
# 2 3
|
167
|
+
#
|
168
|
+
# seq([3, 3], :float32) # => 0.0 1.0 2.0
|
169
|
+
# 3.0 4.0 5.0
|
170
|
+
# 6.0 7.0 8.0
|
171
|
+
#
|
172
|
+
|
173
|
+
def seq(*params)
|
174
|
+
dtype = params.last.is_a?(Symbol) ? params.pop : nil
|
175
|
+
dim = params.first
|
176
|
+
|
177
|
+
# Must provide the dimension as an Integer for a square matrix or as an
|
178
|
+
# 2 element array, e.g. [2,4].
|
179
|
+
unless dim.is_a?(Integer) || (dim.is_a?(Array) && dim.size < 3)
|
180
|
+
raise ArgumentError, "seq() accepts only integers or 2-element arrays \
|
181
|
+
as dimension."
|
182
|
+
end
|
183
|
+
|
184
|
+
# Construct the values of the final matrix based on the dimension.
|
185
|
+
if dim.is_a?(Integer)
|
186
|
+
values = (0 .. (dim * dim - 1)).to_a
|
187
|
+
else
|
188
|
+
# Dimensions given by a 2 element array.
|
189
|
+
values = (0 .. (dim.first * dim.last - 1)).to_a
|
190
|
+
end
|
191
|
+
|
192
|
+
# It'll produce :int32, except if a dtype is provided.
|
193
|
+
NMatrix.new(:dense, dim, values, dtype)
|
194
|
+
end
|
195
|
+
|
196
|
+
#########################################
|
197
|
+
# FUNCTIONS FOR MATLAB AND IDL REFUGEES #
|
198
|
+
#########################################
|
199
|
+
|
200
|
+
#
|
201
|
+
# These are functions that replicate existing functionality, but
|
202
|
+
# would probably be appreciated by MATLAB or IDL users.
|
203
|
+
#
|
204
|
+
|
205
|
+
# indgen() , findgen() , bindgen() , cindgen()
|
206
|
+
#
|
207
|
+
# These IDL functions are similar to seq() but less flexible.
|
208
|
+
# They produce one-dimensional vectors:
|
209
|
+
#
|
210
|
+
# indgen -- Integer vector -- seq(n, :int32)
|
211
|
+
# findgen -- Float vector -- seq(n, :float32)
|
212
|
+
# bindgen -- Byte vector -- seq(n, :byte)
|
213
|
+
# cindgen -- Complex vector -- seq(n, :complex64)
|
214
|
+
#
|
215
|
+
|
216
|
+
def indgen(n)
|
217
|
+
NMatrix.seq(n, :int32)
|
218
|
+
end
|
219
|
+
|
220
|
+
def findgen(n)
|
221
|
+
NMatrix.seq(n, :float32)
|
222
|
+
end
|
223
|
+
|
224
|
+
def bindgen(n)
|
225
|
+
NMatrix.seq(n, :byte)
|
226
|
+
end
|
227
|
+
|
228
|
+
def cindgen(n)
|
229
|
+
NMatrix.seq(n, :complex64)
|
230
|
+
end
|
231
|
+
|
232
|
+
end
|
233
|
+
|
234
|
+
#
|
235
|
+
# These shortcuts are to be called directly from a NMatrix object, i.e.:
|
236
|
+
#
|
237
|
+
# >> m = NMatrix.random(3)
|
238
|
+
# >> m.column(2)
|
239
|
+
#
|
240
|
+
|
241
|
+
# column()
|
242
|
+
#
|
243
|
+
# Returns the column specified. The second parameter defaults to
|
244
|
+
# :copy, which returns a copy of the selected column, but it can be
|
245
|
+
# specified as :reference, which will return a reference to it.
|
246
|
+
#
|
247
|
+
# Examples:
|
248
|
+
#
|
249
|
+
# m = NMatrix.new(2, [1, 4, 9, 14], :int32) # => 1 4
|
250
|
+
# 9 14
|
251
|
+
#
|
252
|
+
# m.column(1) # => 4
|
253
|
+
# 14
|
254
|
+
#
|
255
|
+
|
256
|
+
def column(column_number, get_by = :copy)
|
257
|
+
unless [:copy, :reference].include?(get_by)
|
258
|
+
raise ArgumentError, "column() 2nd parameter must be :copy or :reference"
|
259
|
+
end
|
260
|
+
|
261
|
+
if get_by == :copy
|
262
|
+
self.slice(0 ... self.shape[0], column_number)
|
263
|
+
else # by reference
|
264
|
+
self[0 ... self.shape[0], column_number]
|
265
|
+
end
|
266
|
+
end
|
267
|
+
end
|
268
|
+
|
269
|
+
class NVector < NMatrix
|
270
|
+
|
271
|
+
class << self
|
272
|
+
# zeros() or zeroes()
|
273
|
+
#
|
274
|
+
# Creates a new matrix of zeros with the dimensions supplied as
|
275
|
+
# parameters. Optional parameters include:
|
276
|
+
#
|
277
|
+
# * A storage type as the first parameter (default is :dense).
|
278
|
+
# * A dtype as the last parameter (default is :float64).
|
279
|
+
#
|
280
|
+
# Examples:
|
281
|
+
#
|
282
|
+
# zeros(2) # => 0.0 0.0
|
283
|
+
#
|
284
|
+
# zeros(3, :int32) # => 0 0 0
|
285
|
+
#
|
286
|
+
|
287
|
+
def zeros(*params)
|
288
|
+
dtype = params.last.is_a?(Symbol) ? params.pop : :float64
|
289
|
+
dim = params.first
|
290
|
+
|
291
|
+
NVector.new(dim, 0, dtype)
|
292
|
+
end
|
293
|
+
|
294
|
+
alias :zeroes :zeros
|
295
|
+
|
296
|
+
# ones()
|
297
|
+
#
|
298
|
+
# Creates a :dense matrix of ones with the dimensions supplied
|
299
|
+
# as parameters. Optionaly, one can specify a dtype as the last
|
300
|
+
# parameter (default is :float64).
|
301
|
+
#
|
302
|
+
# Examples:
|
303
|
+
#
|
304
|
+
# ones(3) # => 1.0 1.0 1.0
|
305
|
+
#
|
306
|
+
# ones(2, :int32) # => 1 1
|
307
|
+
#
|
308
|
+
|
309
|
+
def ones(*params)
|
310
|
+
dtype = params.last.is_a?(Symbol) ? params.pop : :float64
|
311
|
+
dim = params.first
|
312
|
+
|
313
|
+
NVector.new(dim, 1, dtype)
|
314
|
+
end
|
315
|
+
|
316
|
+
# random()
|
317
|
+
#
|
318
|
+
# Creates a :dense NMatrix with random numbers between 0 and 1 generated
|
319
|
+
# by Random::rand. The parameter is the dimension of the matrix.
|
320
|
+
#
|
321
|
+
# Examples:
|
322
|
+
#
|
323
|
+
# rand(2) # => 0.4859439730644226 0.1783195585012436
|
324
|
+
#
|
325
|
+
|
326
|
+
def random(*params)
|
327
|
+
rng = Random.new
|
328
|
+
dim = params.first
|
329
|
+
|
330
|
+
random_values = []
|
331
|
+
dim.times { |i| random_values << rng.rand }
|
332
|
+
|
333
|
+
NVector.new(dim, random_values, :float64)
|
334
|
+
end
|
335
|
+
|
336
|
+
# seq()
|
337
|
+
#
|
338
|
+
# Creates a :dense NMatrix with a sequence of integers starting at
|
339
|
+
# zero until the matrix is filled. The parameters to the method
|
340
|
+
# are the dimensions of the matrix. Optionaly, one can specify a
|
341
|
+
# dtype as the last parameter (default is :float64).
|
342
|
+
#
|
343
|
+
# Examples:
|
344
|
+
#
|
345
|
+
# seq(2) # => 0 1
|
346
|
+
#
|
347
|
+
# seq(3, :float32) # => 0.0 1.0 2.0
|
348
|
+
#
|
349
|
+
|
350
|
+
def seq(*params)
|
351
|
+
dtype = params.last.is_a?(Symbol) ? params.pop : nil
|
352
|
+
dim = params.first
|
353
|
+
|
354
|
+
unless dim.is_a?(Integer)
|
355
|
+
raise ArgumentError, "NVector::seq() only accepts integers as \
|
356
|
+
dimension."
|
357
|
+
end
|
358
|
+
|
359
|
+
values = (0 .. (dim - 1)).to_a
|
360
|
+
|
361
|
+
NVector.new(dim, values, dtype)
|
362
|
+
end
|
363
|
+
|
364
|
+
#########################################
|
365
|
+
# FUNCTIONS FOR MATLAB AND IDL REFUGEES #
|
366
|
+
#########################################
|
367
|
+
|
368
|
+
#
|
369
|
+
# These are functions that replicate existing functionality, but
|
370
|
+
# would probably be appreciated by MATLAB or IDL users.
|
371
|
+
#
|
372
|
+
|
373
|
+
# indgen() , findgen() , bindgen() , cindgen()
|
374
|
+
#
|
375
|
+
# These IDL functions are similar to seq() but less flexible.
|
376
|
+
# They produce one-dimensional vectors:
|
377
|
+
#
|
378
|
+
# indgen -- Integer vector -- seq(n, :int32)
|
379
|
+
# findgen -- Float vector -- seq(n, :float32)
|
380
|
+
# bindgen -- Byte vector -- seq(n, :byte)
|
381
|
+
# cindgen -- Complex vector -- seq(n, :complex64)
|
382
|
+
#
|
383
|
+
|
384
|
+
def indgen(n)
|
385
|
+
NVector.seq(n, :int32)
|
386
|
+
end
|
387
|
+
|
388
|
+
def findgen(n)
|
389
|
+
NVector.seq(n, :float32)
|
390
|
+
end
|
391
|
+
|
392
|
+
def bindgen(n)
|
393
|
+
NVector.seq(n, :byte)
|
394
|
+
end
|
395
|
+
|
396
|
+
def cindgen(n)
|
397
|
+
NVector.seq(n, :complex64)
|
398
|
+
end
|
399
|
+
|
400
|
+
# linspace()
|
401
|
+
#
|
402
|
+
# This MATLAB function somewhat resembles seq(), but it differs
|
403
|
+
# enough that is likely to be legitimately useful to non-MATLAB
|
404
|
+
# refugees. This function takes three parameter, the last one
|
405
|
+
# being an integer.
|
406
|
+
#
|
407
|
+
# linspace( a, b, n )
|
408
|
+
#
|
409
|
+
# This returns a vector with n values equally spaced from a to b,
|
410
|
+
# inclusive.
|
411
|
+
#
|
412
|
+
# Following the MATLAB implementation, if n isn't provided it's
|
413
|
+
# assumed to be 100.
|
414
|
+
#
|
415
|
+
# Ex: x = linspace(0, pi, 1000)
|
416
|
+
# y = sin(x)
|
417
|
+
#
|
418
|
+
|
419
|
+
def linspace(a, b, n = 100)
|
420
|
+
# See: http://www.mathworks.com/help/matlab/ref/linspace.html
|
421
|
+
# Formula: seq(n) * step + a
|
422
|
+
|
423
|
+
# step = ((b - a) / (n - 1))
|
424
|
+
step = (b - a) * (1.0 / (n - 1))
|
425
|
+
|
426
|
+
# dtype = :float64 is used to prevent integer coercion.
|
427
|
+
result = NVector.seq(n, :float64) * NVector.new(n, step, :float64)
|
428
|
+
result += NVector.new(n, a, :float64)
|
429
|
+
result
|
430
|
+
end
|
431
|
+
end
|
432
|
+
end
|
433
|
+
|
434
|
+
# NMatrix needs to have a succinct way to create a matrix by specifying
|
435
|
+
# the components directly. This is very usefeul for using NMatrix as an
|
436
|
+
# advanced calculator, it is useful for learning NMatrix and it is also
|
437
|
+
# useful for testing language features or developing algorithms.
|
438
|
+
#
|
439
|
+
# The N[] function provides a way to create a matrix in a way that is
|
440
|
+
# very short and very natural, simply by specifying the components in
|
441
|
+
# the traditional Ruby array syntax. Optionally, one can specify a
|
442
|
+
# dtype as the last parameter (default is :float64).
|
443
|
+
#
|
444
|
+
# a = N[ 1,2,3,4 ] => 1.0 2.0 3.0 4.0
|
445
|
+
#
|
446
|
+
# a = N[ 1,2,3,4, :int32 ] => 1 2 3 4
|
447
|
+
#
|
448
|
+
# a = N[ [1,2,3], [3,4,5] ] => 1.0 2.0 3.0
|
449
|
+
# 3.0 4.0 5.0
|
450
|
+
#
|
451
|
+
#
|
452
|
+
# SYNTAX COMPARISON:
|
453
|
+
#
|
454
|
+
# MATLAB: a = [ [1 2 3] ; [4 5 6] ] or [ 1 2 3 ; 4 5 6 ]
|
455
|
+
# IDL: a = [ [1,2,3] , [4,5,6] ]
|
456
|
+
# NumPy: a = array( [1,2,3], [4,5,6] )
|
457
|
+
#
|
458
|
+
# SciRuby: a = N[ [1,2,3], [4,5,6] ]
|
459
|
+
# Ruby array: a = [ [1,2,3], [4,5,6] ]
|
460
|
+
#
|
461
|
+
|
462
|
+
class N
|
463
|
+
class << self
|
464
|
+
def [](*params)
|
465
|
+
dtype = params.last.is_a?(Symbol) ? params.pop : nil
|
466
|
+
|
467
|
+
# First find the dimensions of the array.
|
468
|
+
i = 0
|
469
|
+
dim = []
|
470
|
+
foo = params
|
471
|
+
while foo.is_a?(Array)
|
472
|
+
dim[i] = foo.length
|
473
|
+
foo = foo[0]
|
474
|
+
i += 1
|
475
|
+
end
|
476
|
+
|
477
|
+
# Then flatten the array.
|
478
|
+
NMatrix.new(dim, params.flatten, dtype)
|
479
|
+
end
|
480
|
+
end
|
481
|
+
end
|
482
|
+
|
483
|
+
# TODO Make all the shortcuts available through modules, allowing someone
|
484
|
+
# to include them to make "MATLAB-like" scripts.
|
485
|
+
#
|
486
|
+
# There are some questions to be answered before this can be done, tho.
|