nmatrix 0.0.2 → 0.0.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. data/Gemfile +1 -1
  2. data/History.txt +31 -3
  3. data/Manifest.txt +5 -0
  4. data/README.rdoc +29 -27
  5. data/ext/nmatrix/binary_format.txt +53 -0
  6. data/ext/nmatrix/data/data.cpp +18 -18
  7. data/ext/nmatrix/data/data.h +38 -7
  8. data/ext/nmatrix/data/rational.h +13 -0
  9. data/ext/nmatrix/data/ruby_object.h +10 -0
  10. data/ext/nmatrix/extconf.rb +2 -0
  11. data/ext/nmatrix/nmatrix.cpp +655 -103
  12. data/ext/nmatrix/nmatrix.h +26 -14
  13. data/ext/nmatrix/ruby_constants.cpp +4 -0
  14. data/ext/nmatrix/ruby_constants.h +2 -0
  15. data/ext/nmatrix/storage/dense.cpp +99 -41
  16. data/ext/nmatrix/storage/dense.h +3 -3
  17. data/ext/nmatrix/storage/list.cpp +36 -14
  18. data/ext/nmatrix/storage/list.h +4 -4
  19. data/ext/nmatrix/storage/storage.cpp +19 -19
  20. data/ext/nmatrix/storage/storage.h +11 -11
  21. data/ext/nmatrix/storage/yale.cpp +17 -20
  22. data/ext/nmatrix/storage/yale.h +13 -11
  23. data/ext/nmatrix/util/io.cpp +25 -23
  24. data/ext/nmatrix/util/io.h +5 -5
  25. data/ext/nmatrix/util/math.cpp +634 -17
  26. data/ext/nmatrix/util/math.h +958 -9
  27. data/ext/nmatrix/util/sl_list.cpp +7 -7
  28. data/ext/nmatrix/util/sl_list.h +2 -2
  29. data/lib/nmatrix.rb +9 -0
  30. data/lib/nmatrix/blas.rb +4 -4
  31. data/lib/nmatrix/io/market.rb +227 -0
  32. data/lib/nmatrix/io/mat_reader.rb +7 -7
  33. data/lib/nmatrix/lapack.rb +80 -0
  34. data/lib/nmatrix/nmatrix.rb +78 -52
  35. data/lib/nmatrix/shortcuts.rb +486 -0
  36. data/lib/nmatrix/version.rb +1 -1
  37. data/spec/2x2_dense_double.mat +0 -0
  38. data/spec/blas_spec.rb +59 -9
  39. data/spec/elementwise_spec.rb +25 -12
  40. data/spec/io_spec.rb +69 -1
  41. data/spec/lapack_spec.rb +53 -4
  42. data/spec/math_spec.rb +9 -0
  43. data/spec/nmatrix_list_spec.rb +95 -0
  44. data/spec/nmatrix_spec.rb +10 -53
  45. data/spec/nmatrix_yale_spec.rb +17 -15
  46. data/spec/shortcuts_spec.rb +154 -0
  47. metadata +22 -15
@@ -0,0 +1,486 @@
1
+ # = NMatrix
2
+ #
3
+ # A linear algebra library for scientific computation in Ruby.
4
+ # NMatrix is part of SciRuby.
5
+ #
6
+ # NMatrix was originally inspired by and derived from NArray, by
7
+ # Masahiro Tanaka: http://narray.rubyforge.org
8
+ #
9
+ # == Copyright Information
10
+ #
11
+ # SciRuby is Copyright (c) 2010 - 2012, Ruby Science Foundation
12
+ # NMatrix is Copyright (c) 2012, Ruby Science Foundation
13
+ #
14
+ # Please see LICENSE.txt for additional copyright notices.
15
+ #
16
+ # == Contributing
17
+ #
18
+ # By contributing source code to SciRuby, you agree to be bound by
19
+ # our Contributor Agreement:
20
+ #
21
+ # * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
22
+ #
23
+ # == shortcuts.rb
24
+ #
25
+ # These are shortcuts for NMatrix and NVector creation, contributed by Daniel
26
+ # Carrera (dcarrera@hush.com) and Carlos Agarie (carlos@onox.com.br).
27
+
28
+ class NMatrix
29
+
30
+ class << self
31
+ # zeros() or zeroes()
32
+ #
33
+ # Creates a new matrix of zeros with the dimensions supplied as
34
+ # parameters. Optional parameters include:
35
+ #
36
+ # * A storage type as the first parameter (default is :dense).
37
+ # * A dtype as the last parameter (default is :float64).
38
+ #
39
+ # Examples:
40
+ #
41
+ # zeros(2) # => 0.0 0.0
42
+ # 0.0 0.0
43
+ #
44
+ # zeros([2, 3], :int32) # => 0 0 0
45
+ # 0 0 0
46
+ #
47
+ # zeros(:list, [1, 5], :int32) # => 0 0 0 0 0
48
+ #
49
+
50
+ def zeros(*params)
51
+ dtype = params.last.is_a?(Symbol) ? params.pop : :float64
52
+ stype = params.first.is_a?(Symbol) ? params.shift : :dense
53
+ dim = params.first
54
+
55
+ NMatrix.new(stype, dim, 0, dtype)
56
+ end
57
+
58
+ alias :zeroes :zeros
59
+
60
+ # ones()
61
+ #
62
+ # Creates a :dense matrix of ones with the dimensions supplied
63
+ # as parameters. Optionaly, one can specify a dtype as the last
64
+ # parameter (default is :float64).
65
+ #
66
+ # Examples:
67
+ #
68
+ # ones([1, 3]) # => 1.0 1.0 1.0
69
+ #
70
+ # ones([2, 3], :int32) # => 1 1 1
71
+ # 1 1 1
72
+ #
73
+
74
+ def ones(*params)
75
+ dtype = params.last.is_a?(Symbol) ? params.pop : :float64
76
+ dim = params.first
77
+
78
+ NMatrix.new(dim, 1, dtype)
79
+ end
80
+
81
+ # identity() or eye()
82
+ #
83
+ # Creates an identity matrix (square matrix rank 2) of the size
84
+ # supplied as a parameter. Optional parameters include:
85
+ #
86
+ # * A storage type as the first parameter (default is :dense).
87
+ # * A dtype as the last parameter (default is :float64).
88
+ #
89
+ # Examples:
90
+ #
91
+ # eye(3) # => 1.0 0.0 0.0
92
+ # 0.0 1.0 0.0
93
+ # 0.0 0.0 1.0
94
+ #
95
+ # eye(3, :int32) # => 1 0 0
96
+ # 0 1 0
97
+ # 0 0 1
98
+ #
99
+ # eye(:yale, 2, :int32) # => 1 0
100
+ # 0 1
101
+ #
102
+
103
+ def eye(*params)
104
+ dtype = params.last.is_a?(Symbol) ? params.pop : :float64
105
+ stype = params.first.is_a?(Symbol) ? params.shift : :dense
106
+
107
+ dim = params.first
108
+
109
+ # Fill the diagonal with 1's.
110
+ m = NMatrix.zeros(stype, dim, dtype)
111
+ (0 .. (dim - 1)).each do |i|
112
+ m[i, i] = 1
113
+ end
114
+
115
+ m
116
+ end
117
+
118
+ alias :identity :eye
119
+
120
+ # random()
121
+ #
122
+ # Creates a :dense NMatrix with random numbers between 0 and 1 generated
123
+ # by Random::rand. The parameter is the dimension of the matrix.
124
+ #
125
+ # Examples:
126
+ #
127
+ # rand([2, 2]) # => 0.4859439730644226 0.1783195585012436
128
+ # 0.23193766176700592 0.4503345191478729
129
+ #
130
+
131
+ def random(*params)
132
+ dim = params.first
133
+ rng = Random.new
134
+
135
+ # Must provide the dimension as an Integer for a square matrix or as an
136
+ # array, e.g. [2, 4, 7].
137
+ unless dim.is_a?(Integer) || dim.is_a?(Array)
138
+ raise ArgumentError, "random() accepts only integers or arrays as \
139
+ dimension."
140
+ end
141
+
142
+ random_values = []
143
+
144
+ # Construct the values of the final matrix based on the dimension.
145
+ if dim.is_a?(Integer)
146
+ (dim * dim - 1).times { |i| random_values << rng.rand }
147
+ else
148
+ # Dimensions given by an array. Get the product of the array elements
149
+ # and generate this number of random values.
150
+ dim.reduce(1, :*).times { |i| random_values << rng.rand }
151
+ end
152
+
153
+ NMatrix.new(:dense, dim, random_values, :float64)
154
+ end
155
+
156
+ # seq()
157
+ #
158
+ # Creates a :dense NMatrix with a sequence of integers starting at
159
+ # zero until the matrix is filled. The parameters to the method
160
+ # are the dimensions of the matrix. Optionaly, one can specify a
161
+ # dtype as the last parameter (default is :float64).
162
+ #
163
+ # Examples:
164
+ #
165
+ # seq(2) # => 0 1
166
+ # 2 3
167
+ #
168
+ # seq([3, 3], :float32) # => 0.0 1.0 2.0
169
+ # 3.0 4.0 5.0
170
+ # 6.0 7.0 8.0
171
+ #
172
+
173
+ def seq(*params)
174
+ dtype = params.last.is_a?(Symbol) ? params.pop : nil
175
+ dim = params.first
176
+
177
+ # Must provide the dimension as an Integer for a square matrix or as an
178
+ # 2 element array, e.g. [2,4].
179
+ unless dim.is_a?(Integer) || (dim.is_a?(Array) && dim.size < 3)
180
+ raise ArgumentError, "seq() accepts only integers or 2-element arrays \
181
+ as dimension."
182
+ end
183
+
184
+ # Construct the values of the final matrix based on the dimension.
185
+ if dim.is_a?(Integer)
186
+ values = (0 .. (dim * dim - 1)).to_a
187
+ else
188
+ # Dimensions given by a 2 element array.
189
+ values = (0 .. (dim.first * dim.last - 1)).to_a
190
+ end
191
+
192
+ # It'll produce :int32, except if a dtype is provided.
193
+ NMatrix.new(:dense, dim, values, dtype)
194
+ end
195
+
196
+ #########################################
197
+ # FUNCTIONS FOR MATLAB AND IDL REFUGEES #
198
+ #########################################
199
+
200
+ #
201
+ # These are functions that replicate existing functionality, but
202
+ # would probably be appreciated by MATLAB or IDL users.
203
+ #
204
+
205
+ # indgen() , findgen() , bindgen() , cindgen()
206
+ #
207
+ # These IDL functions are similar to seq() but less flexible.
208
+ # They produce one-dimensional vectors:
209
+ #
210
+ # indgen -- Integer vector -- seq(n, :int32)
211
+ # findgen -- Float vector -- seq(n, :float32)
212
+ # bindgen -- Byte vector -- seq(n, :byte)
213
+ # cindgen -- Complex vector -- seq(n, :complex64)
214
+ #
215
+
216
+ def indgen(n)
217
+ NMatrix.seq(n, :int32)
218
+ end
219
+
220
+ def findgen(n)
221
+ NMatrix.seq(n, :float32)
222
+ end
223
+
224
+ def bindgen(n)
225
+ NMatrix.seq(n, :byte)
226
+ end
227
+
228
+ def cindgen(n)
229
+ NMatrix.seq(n, :complex64)
230
+ end
231
+
232
+ end
233
+
234
+ #
235
+ # These shortcuts are to be called directly from a NMatrix object, i.e.:
236
+ #
237
+ # >> m = NMatrix.random(3)
238
+ # >> m.column(2)
239
+ #
240
+
241
+ # column()
242
+ #
243
+ # Returns the column specified. The second parameter defaults to
244
+ # :copy, which returns a copy of the selected column, but it can be
245
+ # specified as :reference, which will return a reference to it.
246
+ #
247
+ # Examples:
248
+ #
249
+ # m = NMatrix.new(2, [1, 4, 9, 14], :int32) # => 1 4
250
+ # 9 14
251
+ #
252
+ # m.column(1) # => 4
253
+ # 14
254
+ #
255
+
256
+ def column(column_number, get_by = :copy)
257
+ unless [:copy, :reference].include?(get_by)
258
+ raise ArgumentError, "column() 2nd parameter must be :copy or :reference"
259
+ end
260
+
261
+ if get_by == :copy
262
+ self.slice(0 ... self.shape[0], column_number)
263
+ else # by reference
264
+ self[0 ... self.shape[0], column_number]
265
+ end
266
+ end
267
+ end
268
+
269
+ class NVector < NMatrix
270
+
271
+ class << self
272
+ # zeros() or zeroes()
273
+ #
274
+ # Creates a new matrix of zeros with the dimensions supplied as
275
+ # parameters. Optional parameters include:
276
+ #
277
+ # * A storage type as the first parameter (default is :dense).
278
+ # * A dtype as the last parameter (default is :float64).
279
+ #
280
+ # Examples:
281
+ #
282
+ # zeros(2) # => 0.0 0.0
283
+ #
284
+ # zeros(3, :int32) # => 0 0 0
285
+ #
286
+
287
+ def zeros(*params)
288
+ dtype = params.last.is_a?(Symbol) ? params.pop : :float64
289
+ dim = params.first
290
+
291
+ NVector.new(dim, 0, dtype)
292
+ end
293
+
294
+ alias :zeroes :zeros
295
+
296
+ # ones()
297
+ #
298
+ # Creates a :dense matrix of ones with the dimensions supplied
299
+ # as parameters. Optionaly, one can specify a dtype as the last
300
+ # parameter (default is :float64).
301
+ #
302
+ # Examples:
303
+ #
304
+ # ones(3) # => 1.0 1.0 1.0
305
+ #
306
+ # ones(2, :int32) # => 1 1
307
+ #
308
+
309
+ def ones(*params)
310
+ dtype = params.last.is_a?(Symbol) ? params.pop : :float64
311
+ dim = params.first
312
+
313
+ NVector.new(dim, 1, dtype)
314
+ end
315
+
316
+ # random()
317
+ #
318
+ # Creates a :dense NMatrix with random numbers between 0 and 1 generated
319
+ # by Random::rand. The parameter is the dimension of the matrix.
320
+ #
321
+ # Examples:
322
+ #
323
+ # rand(2) # => 0.4859439730644226 0.1783195585012436
324
+ #
325
+
326
+ def random(*params)
327
+ rng = Random.new
328
+ dim = params.first
329
+
330
+ random_values = []
331
+ dim.times { |i| random_values << rng.rand }
332
+
333
+ NVector.new(dim, random_values, :float64)
334
+ end
335
+
336
+ # seq()
337
+ #
338
+ # Creates a :dense NMatrix with a sequence of integers starting at
339
+ # zero until the matrix is filled. The parameters to the method
340
+ # are the dimensions of the matrix. Optionaly, one can specify a
341
+ # dtype as the last parameter (default is :float64).
342
+ #
343
+ # Examples:
344
+ #
345
+ # seq(2) # => 0 1
346
+ #
347
+ # seq(3, :float32) # => 0.0 1.0 2.0
348
+ #
349
+
350
+ def seq(*params)
351
+ dtype = params.last.is_a?(Symbol) ? params.pop : nil
352
+ dim = params.first
353
+
354
+ unless dim.is_a?(Integer)
355
+ raise ArgumentError, "NVector::seq() only accepts integers as \
356
+ dimension."
357
+ end
358
+
359
+ values = (0 .. (dim - 1)).to_a
360
+
361
+ NVector.new(dim, values, dtype)
362
+ end
363
+
364
+ #########################################
365
+ # FUNCTIONS FOR MATLAB AND IDL REFUGEES #
366
+ #########################################
367
+
368
+ #
369
+ # These are functions that replicate existing functionality, but
370
+ # would probably be appreciated by MATLAB or IDL users.
371
+ #
372
+
373
+ # indgen() , findgen() , bindgen() , cindgen()
374
+ #
375
+ # These IDL functions are similar to seq() but less flexible.
376
+ # They produce one-dimensional vectors:
377
+ #
378
+ # indgen -- Integer vector -- seq(n, :int32)
379
+ # findgen -- Float vector -- seq(n, :float32)
380
+ # bindgen -- Byte vector -- seq(n, :byte)
381
+ # cindgen -- Complex vector -- seq(n, :complex64)
382
+ #
383
+
384
+ def indgen(n)
385
+ NVector.seq(n, :int32)
386
+ end
387
+
388
+ def findgen(n)
389
+ NVector.seq(n, :float32)
390
+ end
391
+
392
+ def bindgen(n)
393
+ NVector.seq(n, :byte)
394
+ end
395
+
396
+ def cindgen(n)
397
+ NVector.seq(n, :complex64)
398
+ end
399
+
400
+ # linspace()
401
+ #
402
+ # This MATLAB function somewhat resembles seq(), but it differs
403
+ # enough that is likely to be legitimately useful to non-MATLAB
404
+ # refugees. This function takes three parameter, the last one
405
+ # being an integer.
406
+ #
407
+ # linspace( a, b, n )
408
+ #
409
+ # This returns a vector with n values equally spaced from a to b,
410
+ # inclusive.
411
+ #
412
+ # Following the MATLAB implementation, if n isn't provided it's
413
+ # assumed to be 100.
414
+ #
415
+ # Ex: x = linspace(0, pi, 1000)
416
+ # y = sin(x)
417
+ #
418
+
419
+ def linspace(a, b, n = 100)
420
+ # See: http://www.mathworks.com/help/matlab/ref/linspace.html
421
+ # Formula: seq(n) * step + a
422
+
423
+ # step = ((b - a) / (n - 1))
424
+ step = (b - a) * (1.0 / (n - 1))
425
+
426
+ # dtype = :float64 is used to prevent integer coercion.
427
+ result = NVector.seq(n, :float64) * NVector.new(n, step, :float64)
428
+ result += NVector.new(n, a, :float64)
429
+ result
430
+ end
431
+ end
432
+ end
433
+
434
+ # NMatrix needs to have a succinct way to create a matrix by specifying
435
+ # the components directly. This is very usefeul for using NMatrix as an
436
+ # advanced calculator, it is useful for learning NMatrix and it is also
437
+ # useful for testing language features or developing algorithms.
438
+ #
439
+ # The N[] function provides a way to create a matrix in a way that is
440
+ # very short and very natural, simply by specifying the components in
441
+ # the traditional Ruby array syntax. Optionally, one can specify a
442
+ # dtype as the last parameter (default is :float64).
443
+ #
444
+ # a = N[ 1,2,3,4 ] => 1.0 2.0 3.0 4.0
445
+ #
446
+ # a = N[ 1,2,3,4, :int32 ] => 1 2 3 4
447
+ #
448
+ # a = N[ [1,2,3], [3,4,5] ] => 1.0 2.0 3.0
449
+ # 3.0 4.0 5.0
450
+ #
451
+ #
452
+ # SYNTAX COMPARISON:
453
+ #
454
+ # MATLAB: a = [ [1 2 3] ; [4 5 6] ] or [ 1 2 3 ; 4 5 6 ]
455
+ # IDL: a = [ [1,2,3] , [4,5,6] ]
456
+ # NumPy: a = array( [1,2,3], [4,5,6] )
457
+ #
458
+ # SciRuby: a = N[ [1,2,3], [4,5,6] ]
459
+ # Ruby array: a = [ [1,2,3], [4,5,6] ]
460
+ #
461
+
462
+ class N
463
+ class << self
464
+ def [](*params)
465
+ dtype = params.last.is_a?(Symbol) ? params.pop : nil
466
+
467
+ # First find the dimensions of the array.
468
+ i = 0
469
+ dim = []
470
+ foo = params
471
+ while foo.is_a?(Array)
472
+ dim[i] = foo.length
473
+ foo = foo[0]
474
+ i += 1
475
+ end
476
+
477
+ # Then flatten the array.
478
+ NMatrix.new(dim, params.flatten, dtype)
479
+ end
480
+ end
481
+ end
482
+
483
+ # TODO Make all the shortcuts available through modules, allowing someone
484
+ # to include them to make "MATLAB-like" scripts.
485
+ #
486
+ # There are some questions to be answered before this can be done, tho.