nmatrix 0.0.2 → 0.0.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. data/Gemfile +1 -1
  2. data/History.txt +31 -3
  3. data/Manifest.txt +5 -0
  4. data/README.rdoc +29 -27
  5. data/ext/nmatrix/binary_format.txt +53 -0
  6. data/ext/nmatrix/data/data.cpp +18 -18
  7. data/ext/nmatrix/data/data.h +38 -7
  8. data/ext/nmatrix/data/rational.h +13 -0
  9. data/ext/nmatrix/data/ruby_object.h +10 -0
  10. data/ext/nmatrix/extconf.rb +2 -0
  11. data/ext/nmatrix/nmatrix.cpp +655 -103
  12. data/ext/nmatrix/nmatrix.h +26 -14
  13. data/ext/nmatrix/ruby_constants.cpp +4 -0
  14. data/ext/nmatrix/ruby_constants.h +2 -0
  15. data/ext/nmatrix/storage/dense.cpp +99 -41
  16. data/ext/nmatrix/storage/dense.h +3 -3
  17. data/ext/nmatrix/storage/list.cpp +36 -14
  18. data/ext/nmatrix/storage/list.h +4 -4
  19. data/ext/nmatrix/storage/storage.cpp +19 -19
  20. data/ext/nmatrix/storage/storage.h +11 -11
  21. data/ext/nmatrix/storage/yale.cpp +17 -20
  22. data/ext/nmatrix/storage/yale.h +13 -11
  23. data/ext/nmatrix/util/io.cpp +25 -23
  24. data/ext/nmatrix/util/io.h +5 -5
  25. data/ext/nmatrix/util/math.cpp +634 -17
  26. data/ext/nmatrix/util/math.h +958 -9
  27. data/ext/nmatrix/util/sl_list.cpp +7 -7
  28. data/ext/nmatrix/util/sl_list.h +2 -2
  29. data/lib/nmatrix.rb +9 -0
  30. data/lib/nmatrix/blas.rb +4 -4
  31. data/lib/nmatrix/io/market.rb +227 -0
  32. data/lib/nmatrix/io/mat_reader.rb +7 -7
  33. data/lib/nmatrix/lapack.rb +80 -0
  34. data/lib/nmatrix/nmatrix.rb +78 -52
  35. data/lib/nmatrix/shortcuts.rb +486 -0
  36. data/lib/nmatrix/version.rb +1 -1
  37. data/spec/2x2_dense_double.mat +0 -0
  38. data/spec/blas_spec.rb +59 -9
  39. data/spec/elementwise_spec.rb +25 -12
  40. data/spec/io_spec.rb +69 -1
  41. data/spec/lapack_spec.rb +53 -4
  42. data/spec/math_spec.rb +9 -0
  43. data/spec/nmatrix_list_spec.rb +95 -0
  44. data/spec/nmatrix_spec.rb +10 -53
  45. data/spec/nmatrix_yale_spec.rb +17 -15
  46. data/spec/shortcuts_spec.rb +154 -0
  47. metadata +22 -15
data/Gemfile CHANGED
@@ -2,4 +2,4 @@
2
2
  source "http://rubygems.org"
3
3
  gemspec
4
4
 
5
- gem 'packable' # for Matlab IO
5
+ gem 'packable', ">= 1.3.5" # for Matlab IO
@@ -6,7 +6,7 @@
6
6
 
7
7
  === 0.0.2 / 2012-09-21
8
8
 
9
- * Numerous major enhancements
9
+ * 15 major enhancements
10
10
 
11
11
  * Second alpha release
12
12
 
@@ -14,7 +14,7 @@
14
14
 
15
15
  * Added preliminary C API
16
16
 
17
- * Slicing and referencing support for dense and list matrices
17
+ * Slicing and referencing support for dense and list matrices (by @flipback)
18
18
 
19
19
  * BLAS level-3 xTRSM algorithm added for rationals and BLAS types
20
20
 
@@ -36,4 +36,32 @@
36
36
 
37
37
  * Sped up list storage item deletion, fixed bugs
38
38
 
39
- * Note: Element-wise list operations current disabled
39
+ * List matrix-to-hash conversion with `to_h`
40
+
41
+ * Note: Element-wise list operations current disabled
42
+
43
+ === 0.0.3 / 2013-01-18
44
+
45
+ * 8 major enhancements
46
+
47
+ * Matrix-scalar operations (dense, list)
48
+
49
+ * Shortcuts for matrix creation (by @agarie)
50
+
51
+ * Access to most ATLAS-implemented LAPACK functions for those with ATLAS' CLAPACK interface: xGETRF, xGETRI, xGETRS, xGESV, xPOTRF, xPOTRI, xPOTRS, xPOSV, xLASWP, xSCAL, xLAUUM
52
+
53
+ * Access to additional ATLAS-implemented BLAS functions: xTRMM, xSYRK, xHERK, xROT, xROTG
54
+
55
+ * Non-ATLAS versions of CLAPACK functions: xLASWP, xSCAL, xLAUUM, xROT
56
+
57
+ * Matrix inversion (LU and Cholesky; requires CLAPACK)
58
+
59
+ * LU factoring with and without CLAPACK
60
+
61
+ * Native matrix I/O for dense (supporting upper, lower, hermitian, skew, symmetric, and general) and yale (general only); excludes Ruby objects currently
62
+
63
+ * 2 bug fixes:
64
+
65
+ * Yale-to-list casting
66
+
67
+ * Now requires packable-1.3.5 or higher, fixing a problem with MATLAB .mat v5 file I/O (specific to doubles)
@@ -8,20 +8,25 @@ Guardfile
8
8
  spec/io_spec.rb
9
9
  spec/math_spec.rb
10
10
  spec/nmatrix_spec.rb
11
+ spec/nmatrix_list_spec.rb
11
12
  spec/nmatrix_yale_spec.rb
12
13
  spec/nvector_spec.rb
13
14
  spec/slice_spec.rb
15
+ spec/shortcuts_spec.rb
14
16
  spec/elementwise_spec.rb
15
17
  spec/blas_spec.rb
16
18
  spec/lapack_spec.rb
17
19
  spec/spec_helper.rb
18
20
  lib/nmatrix.rb
21
+ lib/nmatrix/io/market.rb
19
22
  lib/nmatrix/io/mat5_reader.rb
20
23
  lib/nmatrix/io/mat_reader.rb
21
24
  lib/nmatrix/blas.rb
25
+ lib/nmatrix/lapack.rb
22
26
  lib/nmatrix/monkeys.rb
23
27
  lib/nmatrix/nmatrix.rb
24
28
  lib/nmatrix/nvector.rb
29
+ lib/nmatrix/shortcuts.rb
25
30
  lib/nmatrix/version.rb
26
31
  ext/nmatrix/data/complex.h
27
32
  ext/nmatrix/data/data.cpp
@@ -27,49 +27,49 @@ are working on a {patch for Ruby/GSL}[https://github.com/SciRuby/rb-gsl].
27
27
 
28
28
  == Features
29
29
 
30
- The following features exist in the version of NMatrix (0.0.2) currently under development, and may or may not exist in
31
- 0.0.1 (the current gem):
30
+ The following features exist in the current version of NMatrix (0.0.2):
32
31
 
33
32
  * Matrix storage containers: dense, yale, list (more to come)
34
33
  * Data types: uint8, int8, int16, int32, int64, float32, float64, complex64, complex128, rational64, rational128
35
34
  (incomplete)
36
35
  * Conversion between storage and data types (except from-complex, and from-float-to-rational)
37
- * Element-wise operations and comparisons
36
+ * Element-wise operations and comparisons for dense and yale
38
37
  * Matrix-matrix multiplication for dense (using ATLAS) and yale
39
38
  * Matrix-vector multiplication for dense (using ATLAS)
40
39
  * Dense and list matrix slicing and referencing
40
+ * Native reading and writing of dense and yale matrices
41
+ * Optional compression for dense matrices with symmetry or triangularity: symmetric, skew, hermitian, upper, lower
41
42
  * Matlab .MAT v5 file input
42
43
  * C and C++ API
43
- * Level 3 BLAS internal implementations (no library) and ATLAS (with library) access:
44
- * xGEMM
45
- * xTRSM
44
+ * BLAS internal implementations (no library) and ATLAS (with library) access:
45
+ * Level 1: xROT, xROTG (BLAS dtypes only)
46
+ * Level 2: xGEMV
47
+ * Level 3: xGEMM, xTRSM
46
48
  * LAPACK ATLAS access:
47
- * xGETRF (experimental)
48
-
49
- === Planned Features (Very Short Term)
50
-
51
- These features will exist in our second alpha release, 0.0.2 (incomplete, thus not yet available as a gem):
52
-
53
- * Yale matrix slicing and referencing
54
- * LU decomposition
55
- * LAPACK internal implementations (no library needed):
49
+ * xGETRF, xGETRI, xGETRS, xGESV (Gaussian elimination)
50
+ * xPOTRF, xPOTRI, xPOTRS, xPOSV (Cholesky factorization)
51
+ * xLASWP, xSCAL, xLAUUM
52
+ * LAPACK-less internal implementations (no LAPACK needed and working on non-BLAS dtypes):
56
53
  * xGETRF
57
-
58
- The estimated release date for 0.0.2 is the end of August 2012.
54
+ * xLASWP, xSCAL
55
+ * xLAUUM (no LAPACK needed, but BLAS dtypes only)
56
+ * LU decomposition
57
+ * Matrix inversions (requires LAPACK; BLAS dtypes only)
58
+ * Determinant calculation for BLAS dtypes
59
59
 
60
60
  === Planned Features (Short-to-Medium Term)
61
61
 
62
62
  These are features planned for NMatrix 0.1.0, our first beta.
63
63
 
64
- * calculation of determinant, trace, and eigenvalues (characteristic polynomial) (0.1.0)
65
- * Gaussian elimination
64
+ * calculation of determinant (LAPACK-free), trace, and eigenvalues (characteristic polynomial) (0.1.0)
66
65
  * exponentials and square roots
67
- * matrix inversions
66
+ * matrix inversions (LAPACK-free)
68
67
  * matrix decomposition/factorization
69
68
  * calculation of norms
70
69
  * tensor products
71
70
  * principal component analysis (PCA)
72
71
  * improved file I/O
72
+ * compression of yale symmetries in I/O
73
73
  * operation scheduling
74
74
  * parallelization of some types of operations
75
75
  * optimization of non-BLAS data types on BLAS-like operations (e.g., matrix multiplication for rational numbers)
@@ -83,30 +83,32 @@ For full instructions, please see sciruby.com/nmatrix. Generally, you should be
83
83
 
84
84
  However, you will need to install ATLAS with CBLAS first. Those directions can be found at our website.
85
85
 
86
- NOTE: The above command will not give you 0.0.2, which is not yet complete. To obtain 0.0.2, you should use the
87
- following sequence of commands:
86
+ You can typically get the developer's build using the following sequence of commands:
88
87
 
89
88
  git clone https://github.com/SciRuby/nmatrix.git
90
89
  cd nmatrix/
91
90
  rake compile
92
91
  rake repackage
93
- gem install pkg/nmatrix-0.0.2.gem
92
+ gem install pkg/nmatrix-0.0.4.gem
94
93
 
95
94
  If you get errors about clapack.h or cblas.h, figure out where your ATLAS headers are using:
96
95
 
97
- locate clapack.h
96
+ locate clapack.h # If you're a Mac user, we recommend you search for cblas.h instead.
98
97
 
99
98
  Then, tell your system:
100
99
 
101
100
  export C_INCLUDE_PATH=/usr/local/atlas/include
101
+ export CPLUS_INCLUDE_PATH=/usr/local/atlas/include
102
102
 
103
103
  Finally, try compiling again.
104
104
 
105
105
  == REQUIREMENTS:
106
106
 
107
- * ATLAS and LAPACK, probably
108
- * GCC 4.2
107
+ * ATLAS
108
+ * LAPACK, probably
109
+ * GCC 4.3
109
110
  * Ruby 1.9
111
+ * {packable}[http://github.com/marcandre/packable] 1.3.5 (used for I/O)
110
112
 
111
113
  == INSTALLATION:
112
114
 
@@ -126,7 +128,7 @@ Before commiting any code, you *MUST* read our
126
128
 
127
129
  == LICENSE:
128
130
 
129
- Copyright (c) 2012, The Ruby Science Foundation.
131
+ Copyright (c) 2012--13, The Ruby Science Foundation.
130
132
 
131
133
  All rights reserved.
132
134
 
@@ -0,0 +1,53 @@
1
+ This is the proposed binary format for saving and loading NMatrix objects.
2
+
3
+ Order is little-endian.
4
+
5
+ List matrices should be converted to dense or yale matrices. There should be no serious need to load or save
6
+ linked-list matrices, since these exist primarily in order to construct efficient yale matrices.
7
+
8
+
9
+ First 64-bit block:
10
+ * ui16 major (version)
11
+ * ui16 minor
12
+ * ui16 release
13
+ * i16 NULL
14
+
15
+
16
+ Second 64-bit block:
17
+ * ui8 dtype
18
+ * ui8 stype
19
+ * ui8 itype # ui32 for dense
20
+ * ui8 symm
21
+ * i16 NULL
22
+ * ui16 dim # if 1, NVector; otherwise, NMatrix
23
+
24
+
25
+ 3rd - nth 64-bit block: shape
26
+
27
+ itype sets the number of bytes allocated for each shape entry. Since only yale uses itype, dense will pretty
28
+ much always be the UINT32 itype (see nmatrix.h). If the total number of bytes occupied by the shape array is
29
+ less than 8, the rest of the 64-bit block will be padded with zeros.
30
+
31
+
32
+ (n+1)th 64-bit block: depends on stype, symm
33
+
34
+ symm is designed to reduce file size by allowing us to not save certain elements in symmetric, hermitian, skew-
35
+ symmetric, and triangular matrices. These values will be defined in nmatrix.h; 0 indicates standard (no symmetry).
36
+ In later versions, additional patterns may be defined which might even have less to do with symmetry than
37
+ upper/lower do.
38
+
39
+ When storing a symmetric matrix, we will only store the upper portion. If the matrix is lower triangular, only the
40
+ lower portion will be stored.
41
+
42
+ For dense, we simply store the contents of the matrix exactly as in memory (or just the upper-triangular part if
43
+ symm is set).
44
+
45
+ For yale, we store:
46
+ * ui32 ndnz
47
+ * ui32 length (AKA size, the number of elements in A/IJA that aren't nil/undefined)
48
+
49
+ The latter will serve as the capacity when we read a Yale matrix.
50
+
51
+ Then we store the a array, again padding with zeros so it's a multiple of 8 bytes.
52
+
53
+ Then we store the ija array, padding with zeros so it's a multiple of 8 bytes.
@@ -95,20 +95,20 @@ const size_t ITYPE_SIZES[nm::NUM_ITYPES] = {
95
95
  sizeof(uint64_t),
96
96
  };
97
97
 
98
- const dtype_t Upcast[nm::NUM_DTYPES][nm::NUM_DTYPES] = {
99
- { BYTE, INT8, INT16, INT32, INT64, FLOAT32, FLOAT64, COMPLEX64, COMPLEX128, RATIONAL32, RATIONAL64, RATIONAL128, RUBYOBJ},
100
- { INT8, INT8, INT16, INT32, INT64, FLOAT32, FLOAT64, COMPLEX64, COMPLEX128, RATIONAL32, RATIONAL64, RATIONAL128, RUBYOBJ},
101
- { INT16, INT16, INT16, INT32, INT64, FLOAT32, FLOAT64, COMPLEX64, COMPLEX128, RATIONAL32, RATIONAL64, RATIONAL128, RUBYOBJ},
102
- { INT32, INT32, INT32, INT32, INT64, FLOAT32, FLOAT64, COMPLEX64, COMPLEX128, RATIONAL32, RATIONAL64, RATIONAL128, RUBYOBJ},
103
- { INT64, INT64, INT64, INT64, INT64, FLOAT32, FLOAT64, COMPLEX64, COMPLEX128, RATIONAL32, RATIONAL64, RATIONAL128, RUBYOBJ},
104
- { FLOAT32, FLOAT32, FLOAT32, FLOAT32, FLOAT32, FLOAT32, FLOAT64, COMPLEX64, COMPLEX128, FLOAT64, FLOAT64, FLOAT64, RUBYOBJ},
105
- { FLOAT64, FLOAT64, FLOAT64, FLOAT64, FLOAT64, FLOAT64, FLOAT64, COMPLEX128, COMPLEX128, FLOAT64, FLOAT64, FLOAT64, RUBYOBJ},
106
- { COMPLEX64, COMPLEX64, COMPLEX64, COMPLEX64, COMPLEX64, COMPLEX64, COMPLEX128, COMPLEX64, COMPLEX128, COMPLEX64, COMPLEX64, COMPLEX64, RUBYOBJ},
107
- { COMPLEX128, COMPLEX128, COMPLEX128, COMPLEX128, COMPLEX128, COMPLEX128, COMPLEX128, COMPLEX128, COMPLEX128, COMPLEX128, COMPLEX128, COMPLEX128, RUBYOBJ},
108
- { RATIONAL32, RATIONAL32, RATIONAL32, RATIONAL32, RATIONAL32, FLOAT64, FLOAT64, COMPLEX64, COMPLEX128, RATIONAL32, RATIONAL64, RATIONAL128, RUBYOBJ},
109
- { RATIONAL64, RATIONAL64, RATIONAL64, RATIONAL64, RATIONAL64, FLOAT64, FLOAT64, COMPLEX64, COMPLEX128, RATIONAL64, RATIONAL64, RATIONAL128, RUBYOBJ},
110
- { RATIONAL128, RATIONAL128, RATIONAL128, RATIONAL128, RATIONAL128, FLOAT64, FLOAT64, COMPLEX64, COMPLEX128, RATIONAL128, RATIONAL128, RATIONAL128, RUBYOBJ},
111
- { RUBYOBJ, RUBYOBJ, RUBYOBJ, RUBYOBJ, RUBYOBJ, RUBYOBJ, RUBYOBJ, RUBYOBJ, RUBYOBJ, RUBYOBJ, RUBYOBJ, RUBYOBJ, RUBYOBJ}
98
+ const nm::dtype_t Upcast[nm::NUM_DTYPES][nm::NUM_DTYPES] = {
99
+ { nm::BYTE, nm::INT8, nm::INT16, nm::INT32, nm::INT64, nm::FLOAT32, nm::FLOAT64, nm::COMPLEX64, nm::COMPLEX128, nm::RATIONAL32, nm::RATIONAL64, nm::RATIONAL128, nm::RUBYOBJ},
100
+ { nm::INT8, nm::INT8, nm::INT16, nm::INT32, nm::INT64, nm::FLOAT32, nm::FLOAT64, nm::COMPLEX64, nm::COMPLEX128, nm::RATIONAL32, nm::RATIONAL64, nm::RATIONAL128, nm::RUBYOBJ},
101
+ { nm::INT16, nm::INT16, nm::INT16, nm::INT32, nm::INT64, nm::FLOAT32, nm::FLOAT64, nm::COMPLEX64, nm::COMPLEX128, nm::RATIONAL32, nm::RATIONAL64, nm::RATIONAL128, nm::RUBYOBJ},
102
+ { nm::INT32, nm::INT32, nm::INT32, nm::INT32, nm::INT64, nm::FLOAT32, nm::FLOAT64, nm::COMPLEX64, nm::COMPLEX128, nm::RATIONAL32, nm::RATIONAL64, nm::RATIONAL128, nm::RUBYOBJ},
103
+ { nm::INT64, nm::INT64, nm::INT64, nm::INT64, nm::INT64, nm::FLOAT32, nm::FLOAT64, nm::COMPLEX64, nm::COMPLEX128, nm::RATIONAL32, nm::RATIONAL64, nm::RATIONAL128, nm::RUBYOBJ},
104
+ { nm::FLOAT32, nm::FLOAT32, nm::FLOAT32, nm::FLOAT32, nm::FLOAT32, nm::FLOAT32, nm::FLOAT64, nm::COMPLEX64, nm::COMPLEX128, nm::FLOAT64, nm::FLOAT64, nm::FLOAT64, nm::RUBYOBJ},
105
+ { nm::FLOAT64, nm::FLOAT64, nm::FLOAT64, nm::FLOAT64, nm::FLOAT64, nm::FLOAT64, nm::FLOAT64, nm::COMPLEX128, nm::COMPLEX128, nm::FLOAT64, nm::FLOAT64, nm::FLOAT64, nm::RUBYOBJ},
106
+ { nm::COMPLEX64, nm::COMPLEX64, nm::COMPLEX64, nm::COMPLEX64, nm::COMPLEX64, nm::COMPLEX64, nm::COMPLEX128, nm::COMPLEX64, nm::COMPLEX128, nm::COMPLEX64, nm::COMPLEX64, nm::COMPLEX64, nm::RUBYOBJ},
107
+ { nm::COMPLEX128, nm::COMPLEX128, nm::COMPLEX128, nm::COMPLEX128, nm::COMPLEX128, nm::COMPLEX128, nm::COMPLEX128, nm::COMPLEX128, nm::COMPLEX128, nm::COMPLEX128, nm::COMPLEX128, nm::COMPLEX128, nm::RUBYOBJ},
108
+ { nm::RATIONAL32, nm::RATIONAL32, nm::RATIONAL32, nm::RATIONAL32, nm::RATIONAL32, nm::FLOAT64, nm::FLOAT64, nm::COMPLEX64, nm::COMPLEX128, nm::RATIONAL32, nm::RATIONAL64, nm::RATIONAL128, nm::RUBYOBJ},
109
+ { nm::RATIONAL64, nm::RATIONAL64, nm::RATIONAL64, nm::RATIONAL64, nm::RATIONAL64, nm::FLOAT64, nm::FLOAT64, nm::COMPLEX64, nm::COMPLEX128, nm::RATIONAL64, nm::RATIONAL64, nm::RATIONAL128, nm::RUBYOBJ},
110
+ { nm::RATIONAL128, nm::RATIONAL128, nm::RATIONAL128, nm::RATIONAL128, nm::RATIONAL128, nm::FLOAT64, nm::FLOAT64, nm::COMPLEX64, nm::COMPLEX128, nm::RATIONAL128, nm::RATIONAL128, nm::RATIONAL128, nm::RUBYOBJ},
111
+ { nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ, nm::RUBYOBJ}
112
112
  };
113
113
 
114
114
 
@@ -123,7 +123,7 @@ const dtype_t Upcast[nm::NUM_DTYPES][nm::NUM_DTYPES] = {
123
123
  /*
124
124
  * Converts a RubyObject
125
125
  */
126
- void rubyval_to_cval(VALUE val, dtype_t dtype, void* loc) {
126
+ void rubyval_to_cval(VALUE val, nm::dtype_t dtype, void* loc) {
127
127
  using namespace nm;
128
128
  switch (dtype) {
129
129
  case BYTE:
@@ -189,7 +189,7 @@ void rubyval_to_cval(VALUE val, dtype_t dtype, void* loc) {
189
189
  * Create a RubyObject from a regular C value (given a dtype). Does not return a VALUE! To get a VALUE, you need to
190
190
  * look at the rval property of what this function returns.
191
191
  */
192
- nm::RubyObject rubyobj_from_cval(void* val, dtype_t dtype) {
192
+ nm::RubyObject rubyobj_from_cval(void* val, nm::dtype_t dtype) {
193
193
  using namespace nm;
194
194
  switch (dtype) {
195
195
  case BYTE:
@@ -238,7 +238,7 @@ nm::RubyObject rubyobj_from_cval(void* val, dtype_t dtype) {
238
238
  /*
239
239
  * Convert from itype instead of dtype
240
240
  */
241
- nm::RubyObject rubyobj_from_cval_by_itype(void* val, itype_t itype) {
241
+ nm::RubyObject rubyobj_from_cval_by_itype(void* val, nm::itype_t itype) {
242
242
  using namespace nm;
243
243
  switch (itype) {
244
244
  case UINT8:
@@ -263,7 +263,7 @@ nm::RubyObject rubyobj_from_cval_by_itype(void* val, itype_t itype) {
263
263
  * Allocate and return a piece of data of the correct dtype, converted from a
264
264
  * given RubyObject.
265
265
  */
266
- void* rubyobj_to_cval(VALUE val, dtype_t dtype) {
266
+ void* rubyobj_to_cval(VALUE val, nm::dtype_t dtype) {
267
267
  size_t size = DTYPE_SIZES[dtype];
268
268
  void* ret_val = ALLOC_N(char, size);
269
269
 
@@ -82,7 +82,7 @@ namespace nm {
82
82
  };
83
83
 
84
84
  #define STYPE_CAST_COPY_TABLE(name) \
85
- static STORAGE* (*(name)[nm::NUM_STYPES][nm::NUM_STYPES])(const STORAGE*, dtype_t) = { \
85
+ static STORAGE* (*(name)[nm::NUM_STYPES][nm::NUM_STYPES])(const STORAGE*, nm::dtype_t) = { \
86
86
  { nm_dense_storage_cast_copy, nm_dense_storage_from_list, nm_dense_storage_from_yale }, \
87
87
  { nm_list_storage_from_dense, nm_list_storage_cast_copy, nm_list_storage_from_yale }, \
88
88
  { nm_yale_storage_from_dense, nm_yale_storage_from_list, nm_yale_storage_cast_copy } \
@@ -95,6 +95,22 @@ namespace nm {
95
95
  #define DTYPE_TEMPLATE_TABLE(fun, ret, ...) NAMED_DTYPE_TEMPLATE_TABLE(ttable, fun, ret, __VA_ARGS__)
96
96
 
97
97
  #define NAMED_DTYPE_TEMPLATE_TABLE(name, fun, ret, ...) \
98
+ static ret (*(name)[nm::NUM_DTYPES])(__VA_ARGS__) = { \
99
+ fun<uint8_t>, \
100
+ fun<int8_t>, \
101
+ fun<int16_t>, \
102
+ fun<int32_t>, \
103
+ fun<int64_t>, \
104
+ fun<float32_t>, \
105
+ fun<float64_t>, \
106
+ fun<nm::Complex64>, \
107
+ fun<nm::Complex128>, \
108
+ fun<nm::Rational32>, \
109
+ fun<nm::Rational64>, \
110
+ fun<nm::Rational128> \
111
+ };
112
+
113
+ #define NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(name, fun, ret, ...) \
98
114
  static ret (*(name)[nm::NUM_DTYPES])(__VA_ARGS__) = { \
99
115
  fun<uint8_t>, \
100
116
  fun<int8_t>, \
@@ -108,7 +124,6 @@ namespace nm {
108
124
  fun<nm::Rational32>, \
109
125
  fun<nm::Rational64>, \
110
126
  fun<nm::Rational128>, \
111
- fun<nm::RubyObject> \
112
127
  };
113
128
 
114
129
  /*
@@ -674,6 +689,22 @@ static ret (*(name)[nm::NUM_DTYPES][nm::NUM_DTYPES][nm::NUM_ITYPES])(__VA_ARGS__
674
689
  { fun<nm::RubyObject,uint8_t>,fun<nm::RubyObject,uint16_t>,fun<nm::RubyObject,uint32_t>,fun<nm::RubyObject,uint64_t>} \
675
690
  };
676
691
 
692
+ #define NAMED_LI_DTYPE_TEMPLATE_TABLE_NO_ROBJ(name, fun, ret, ...) \
693
+ static ret (*(name)[nm::NUM_DTYPES][nm::NUM_ITYPES])(__VA_ARGS__) = { \
694
+ { fun<uint8_t,uint8_t>,fun<uint8_t,uint16_t>,fun<uint8_t,uint32_t>,fun<uint8_t,uint64_t> }, \
695
+ { fun<int8_t,uint8_t>,fun<int8_t,uint16_t>,fun<int8_t,uint32_t>,fun<int8_t,uint64_t> }, \
696
+ { fun<int16_t,uint8_t>,fun<int16_t,uint16_t>,fun<int16_t,uint32_t>,fun<int16_t,uint64_t> }, \
697
+ { fun<int32_t,uint8_t>,fun<int32_t,uint16_t>,fun<int32_t,uint32_t>,fun<int32_t,uint64_t> }, \
698
+ { fun<int64_t,uint8_t>,fun<int64_t,uint16_t>,fun<int64_t,uint32_t>,fun<int64_t,uint64_t> }, \
699
+ { fun<float32_t,uint8_t>,fun<float32_t,uint16_t>,fun<float32_t,uint32_t>,fun<float32_t,uint64_t> }, \
700
+ { fun<float64_t,uint8_t>,fun<float64_t,uint16_t>,fun<float64_t,uint32_t>,fun<float64_t,uint64_t> }, \
701
+ { fun<nm::Complex64,uint8_t>,fun<nm::Complex64,uint16_t>,fun<nm::Complex64,uint32_t>,fun<nm::Complex64,uint64_t> }, \
702
+ { fun<nm::Complex128,uint8_t>,fun<nm::Complex128,uint16_t>,fun<nm::Complex128,uint32_t>,fun<nm::Complex128,uint64_t> }, \
703
+ { fun<nm::Rational32,uint8_t>,fun<nm::Rational32,uint16_t>,fun<nm::Rational32,uint32_t>,fun<nm::Rational32,uint64_t> }, \
704
+ { fun<nm::Rational64,uint8_t>,fun<nm::Rational64,uint16_t>,fun<nm::Rational64,uint32_t>,fun<nm::Rational64,uint64_t> }, \
705
+ { fun<nm::Rational128,uint8_t>,fun<nm::Rational128,uint16_t>,fun<nm::Rational128,uint32_t>,fun<nm::Rational128,uint64_t> } \
706
+ };
707
+
677
708
 
678
709
  extern "C" {
679
710
 
@@ -690,17 +721,17 @@ extern const size_t DTYPE_SIZES[nm::NUM_DTYPES];
690
721
  extern const char* const ITYPE_NAMES[nm::NUM_ITYPES];
691
722
  extern const size_t ITYPE_SIZES[nm::NUM_ITYPES];
692
723
 
693
- extern const dtype_t Upcast[nm::NUM_DTYPES][nm::NUM_DTYPES];
724
+ extern const nm::dtype_t Upcast[nm::NUM_DTYPES][nm::NUM_DTYPES];
694
725
 
695
726
  /*
696
727
  * Functions
697
728
  */
698
729
 
699
730
 
700
- void* rubyobj_to_cval(VALUE val, dtype_t dtype);
701
- void rubyval_to_cval(VALUE val, dtype_t dtype, void* loc);
702
- nm::RubyObject rubyobj_from_cval(void* val, dtype_t dtype);
703
- nm::RubyObject rubyobj_from_cval_by_itype(void* val, itype_t itype);
731
+ void* rubyobj_to_cval(VALUE val, nm::dtype_t dtype);
732
+ void rubyval_to_cval(VALUE val, nm::dtype_t dtype, void* loc);
733
+ nm::RubyObject rubyobj_from_cval(void* val, nm::dtype_t dtype);
734
+ nm::RubyObject rubyobj_from_cval_by_itype(void* val, nm::itype_t itype);
704
735
 
705
736
  } // end of extern "C" block
706
737
 
@@ -304,6 +304,12 @@ class Rational {
304
304
  }
305
305
  };
306
306
 
307
+ // Negative operator
308
+ template <typename Type, typename = typename std::enable_if<std::is_integral<Type>::value>::type>
309
+ inline Rational<Type> operator-(const Rational<Type>& rhs) {
310
+ return Rational<Type>(-rhs.n, rhs.d);
311
+ }
312
+
307
313
  ////////////////////////////////
308
314
  // Native-Rational Operations //
309
315
  ////////////////////////////////
@@ -416,6 +422,13 @@ namespace std {
416
422
  if (value.n >= 0) return value;
417
423
  return nm::Rational<IntType>(-value.n, value.d);
418
424
  }
425
+
426
+ template <typename IntType, typename = typename std::enable_if<std::is_integral<IntType>::value>::type>
427
+ nm::Rational<IntType> sqrt(const nm::Rational<IntType>& value) {
428
+ nm::Rational<IntType> result(std::sqrt(value.n), std::sqrt(value.d));
429
+ if (value * value == result) return result;
430
+ else rb_raise(rb_eArgError, "square root of the given rational is not rational");
431
+ }
419
432
  }
420
433
 
421
434
  #endif // RATIONAL_H
@@ -319,6 +319,11 @@ class RubyObject {
319
319
  }
320
320
  };
321
321
 
322
+ // Negative operator
323
+ inline RubyObject operator-(const RubyObject& rhs) {
324
+ return RubyObject(rb_funcall(rhs.rval, nm_rb_negate, 0));
325
+ }
326
+
322
327
 
323
328
  ////////////////////////////
324
329
  // NATIVE-RUBY OPERATIONS //
@@ -441,6 +446,11 @@ namespace std {
441
446
  inline nm::RubyObject abs(const nm::RubyObject& obj) {
442
447
  return obj.abs();
443
448
  }
449
+
450
+ inline nm::RubyObject sqrt(const nm::RubyObject& obj) {
451
+ VALUE cMath = rb_const_get(rb_cObject, rb_intern("Math"));
452
+ return nm::RubyObject(rb_funcall(cMath, rb_intern("sqrt"), 1, obj.rval));
453
+ }
444
454
  }
445
455
 
446
456
  #endif // RUBY_OBJECT_H