nmatrix 0.0.2 → 0.0.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/Gemfile +1 -1
- data/History.txt +31 -3
- data/Manifest.txt +5 -0
- data/README.rdoc +29 -27
- data/ext/nmatrix/binary_format.txt +53 -0
- data/ext/nmatrix/data/data.cpp +18 -18
- data/ext/nmatrix/data/data.h +38 -7
- data/ext/nmatrix/data/rational.h +13 -0
- data/ext/nmatrix/data/ruby_object.h +10 -0
- data/ext/nmatrix/extconf.rb +2 -0
- data/ext/nmatrix/nmatrix.cpp +655 -103
- data/ext/nmatrix/nmatrix.h +26 -14
- data/ext/nmatrix/ruby_constants.cpp +4 -0
- data/ext/nmatrix/ruby_constants.h +2 -0
- data/ext/nmatrix/storage/dense.cpp +99 -41
- data/ext/nmatrix/storage/dense.h +3 -3
- data/ext/nmatrix/storage/list.cpp +36 -14
- data/ext/nmatrix/storage/list.h +4 -4
- data/ext/nmatrix/storage/storage.cpp +19 -19
- data/ext/nmatrix/storage/storage.h +11 -11
- data/ext/nmatrix/storage/yale.cpp +17 -20
- data/ext/nmatrix/storage/yale.h +13 -11
- data/ext/nmatrix/util/io.cpp +25 -23
- data/ext/nmatrix/util/io.h +5 -5
- data/ext/nmatrix/util/math.cpp +634 -17
- data/ext/nmatrix/util/math.h +958 -9
- data/ext/nmatrix/util/sl_list.cpp +7 -7
- data/ext/nmatrix/util/sl_list.h +2 -2
- data/lib/nmatrix.rb +9 -0
- data/lib/nmatrix/blas.rb +4 -4
- data/lib/nmatrix/io/market.rb +227 -0
- data/lib/nmatrix/io/mat_reader.rb +7 -7
- data/lib/nmatrix/lapack.rb +80 -0
- data/lib/nmatrix/nmatrix.rb +78 -52
- data/lib/nmatrix/shortcuts.rb +486 -0
- data/lib/nmatrix/version.rb +1 -1
- data/spec/2x2_dense_double.mat +0 -0
- data/spec/blas_spec.rb +59 -9
- data/spec/elementwise_spec.rb +25 -12
- data/spec/io_spec.rb +69 -1
- data/spec/lapack_spec.rb +53 -4
- data/spec/math_spec.rb +9 -0
- data/spec/nmatrix_list_spec.rb +95 -0
- data/spec/nmatrix_spec.rb +10 -53
- data/spec/nmatrix_yale_spec.rb +17 -15
- data/spec/shortcuts_spec.rb +154 -0
- metadata +22 -15
data/ext/nmatrix/extconf.rb
CHANGED
@@ -122,10 +122,12 @@ dir_config("atlas")
|
|
122
122
|
# (substituting in the path of your cblas.h and clapack.h for the path I used). -- JW 8/27/12
|
123
123
|
|
124
124
|
find_library("lapack", "clapack_dgetrf", "/usr/local/lib", "/usr/local/atlas/lib")
|
125
|
+
find_header("clapack.h", "/usr/local/atlas/include")
|
125
126
|
have_header("clapack.h")
|
126
127
|
|
127
128
|
find_library("cblas", "cblas_dgemm", "/usr/local/lib", "/usr/local/atlas/lib")
|
128
129
|
find_library("atlas", "ATL_dgemmNN", "/usr/local/lib", "/usr/local/atlas/lib", "/usr/lib")
|
130
|
+
find_header("cblas.h", "/usr/local/atlas/include")
|
129
131
|
have_header("cblas.h")
|
130
132
|
|
131
133
|
# Order matters here: ATLAS has to go after LAPACK: http://mail.scipy.org/pipermail/scipy-user/2007-January/010717.html
|
data/ext/nmatrix/nmatrix.cpp
CHANGED
@@ -39,6 +39,7 @@ extern "C" {
|
|
39
39
|
|
40
40
|
#include <ruby.h>
|
41
41
|
#include <algorithm> // std::min
|
42
|
+
#include <fstream>
|
42
43
|
|
43
44
|
/*
|
44
45
|
* Project Includes
|
@@ -77,6 +78,269 @@ extern "C" {
|
|
77
78
|
*/
|
78
79
|
|
79
80
|
|
81
|
+
namespace nm {
|
82
|
+
|
83
|
+
/*
|
84
|
+
* Read the shape from a matrix storage file, and ignore any padding.
|
85
|
+
*
|
86
|
+
* shape should already be allocated before calling this.
|
87
|
+
*/
|
88
|
+
template <typename IType>
|
89
|
+
void read_padded_shape(std::ifstream& f, size_t dim, size_t* shape) {
|
90
|
+
size_t bytes_read = 0;
|
91
|
+
|
92
|
+
// Read shape
|
93
|
+
for (size_t i = 0; i < dim; ++i) {
|
94
|
+
IType s;
|
95
|
+
f.read(reinterpret_cast<char*>(&s), sizeof(IType));
|
96
|
+
shape[i] = s;
|
97
|
+
|
98
|
+
bytes_read += sizeof(IType);
|
99
|
+
}
|
100
|
+
|
101
|
+
// Ignore padding
|
102
|
+
f.ignore(bytes_read % 8);
|
103
|
+
}
|
104
|
+
|
105
|
+
template <typename IType>
|
106
|
+
void write_padded_shape(std::ofstream& f, size_t dim, size_t* shape) {
|
107
|
+
size_t bytes_written = 0;
|
108
|
+
|
109
|
+
// Write shape
|
110
|
+
for (size_t i = 0; i < dim; ++i) {
|
111
|
+
IType s = shape[i];
|
112
|
+
f.write(reinterpret_cast<const char*>(&s), sizeof(IType));
|
113
|
+
|
114
|
+
bytes_written += sizeof(IType);
|
115
|
+
}
|
116
|
+
|
117
|
+
// Pad with zeros
|
118
|
+
while (bytes_written % 8) {
|
119
|
+
IType zero = 0;
|
120
|
+
f.write(reinterpret_cast<const char*>(&zero), sizeof(IType));
|
121
|
+
|
122
|
+
bytes_written += sizeof(IType);
|
123
|
+
}
|
124
|
+
}
|
125
|
+
|
126
|
+
/*
|
127
|
+
* This function is pulled out separately so it can be called for hermitian matrix writing, which also uses it.
|
128
|
+
*/
|
129
|
+
template <typename DType>
|
130
|
+
size_t write_padded_dense_elements_upper(std::ofstream& f, DENSE_STORAGE* storage, symm_t symm) {
|
131
|
+
// Write upper triangular portion. Assume 2D square matrix.
|
132
|
+
DType* elements = reinterpret_cast<DType*>(storage->elements);
|
133
|
+
size_t length = storage->shape[0];
|
134
|
+
|
135
|
+
size_t bytes_written = 0;
|
136
|
+
|
137
|
+
for (size_t i = 0; i < length; ++i) { // which row are we on?
|
138
|
+
|
139
|
+
f.write( reinterpret_cast<const char*>( &(elements[ i*(length + 1) ]) ),
|
140
|
+
(length - i) * sizeof(DType) );
|
141
|
+
|
142
|
+
bytes_written += (length - i) * sizeof(DType);
|
143
|
+
}
|
144
|
+
return bytes_written;
|
145
|
+
}
|
146
|
+
|
147
|
+
|
148
|
+
/*
|
149
|
+
* We need to specialize for Hermitian matrices. The next six functions accomplish that specialization, basically
|
150
|
+
* by ensuring that non-complex matrices cannot read or write hermitians (which would cause big problems).
|
151
|
+
*/
|
152
|
+
template <typename DType>
|
153
|
+
size_t write_padded_dense_elements_herm(std::ofstream& f, DENSE_STORAGE* storage, symm_t symm) {
|
154
|
+
rb_raise(rb_eArgError, "cannot write a non-complex matrix as hermitian");
|
155
|
+
}
|
156
|
+
|
157
|
+
template <>
|
158
|
+
size_t write_padded_dense_elements_herm<Complex64>(std::ofstream& f, DENSE_STORAGE* storage, symm_t symm) {
|
159
|
+
return write_padded_dense_elements_upper<Complex64>(f, storage, symm);
|
160
|
+
}
|
161
|
+
|
162
|
+
template <>
|
163
|
+
size_t write_padded_dense_elements_herm<Complex128>(std::ofstream& f, DENSE_STORAGE* storage, symm_t symm) {
|
164
|
+
return write_padded_dense_elements_upper<Complex128>(f, storage, symm);
|
165
|
+
}
|
166
|
+
|
167
|
+
template <typename DType>
|
168
|
+
void read_padded_dense_elements_herm(DType* elements, size_t length) {
|
169
|
+
rb_raise(rb_eArgError, "cannot read a non-complex matrix as hermitian");
|
170
|
+
}
|
171
|
+
|
172
|
+
template <>
|
173
|
+
void read_padded_dense_elements_herm(Complex64* elements, size_t length) {
|
174
|
+
for (size_t i = 0; i < length; ++i) {
|
175
|
+
for (size_t j = i+1; j < length; ++j) {
|
176
|
+
elements[j * length + i] = elements[i * length + j].conjugate();
|
177
|
+
}
|
178
|
+
}
|
179
|
+
}
|
180
|
+
|
181
|
+
template <>
|
182
|
+
void read_padded_dense_elements_herm(Complex128* elements, size_t length) {
|
183
|
+
for (size_t i = 0; i < length; ++i) {
|
184
|
+
for (size_t j = i+1; j < length; ++j) {
|
185
|
+
elements[j * length + i] = elements[i * length + j].conjugate();
|
186
|
+
}
|
187
|
+
}
|
188
|
+
}
|
189
|
+
|
190
|
+
|
191
|
+
/*
|
192
|
+
* Read the elements of a dense storage matrix from a binary file, padded to 64-bits.
|
193
|
+
*
|
194
|
+
* storage should already be allocated. No initialization necessary.
|
195
|
+
*/
|
196
|
+
template <typename DType>
|
197
|
+
void read_padded_dense_elements(std::ifstream& f, DENSE_STORAGE* storage, nm::symm_t symm) {
|
198
|
+
size_t bytes_read = 0;
|
199
|
+
|
200
|
+
if (symm == nm::NONSYMM) {
|
201
|
+
// Easy. Simply read the whole elements array.
|
202
|
+
size_t length = nm_storage_count_max_elements(reinterpret_cast<STORAGE*>(storage));
|
203
|
+
f.read(reinterpret_cast<char*>(storage->elements), length * sizeof(DType) );
|
204
|
+
|
205
|
+
bytes_read += length * sizeof(DType);
|
206
|
+
} else if (symm == LOWER) {
|
207
|
+
|
208
|
+
// Read lower triangular portion and initialize remainder to 0
|
209
|
+
DType* elements = reinterpret_cast<DType*>(storage->elements);
|
210
|
+
size_t length = storage->shape[0];
|
211
|
+
|
212
|
+
for (size_t i = 0; i < length; ++i) { // which row?
|
213
|
+
|
214
|
+
f.read( reinterpret_cast<char*>(&(elements[i * length])), (i + 1) * sizeof(DType) );
|
215
|
+
|
216
|
+
// need to zero-fill the rest of the row.
|
217
|
+
for (size_t j = i+1; j < length; ++j)
|
218
|
+
elements[i * length + j] = 0;
|
219
|
+
|
220
|
+
bytes_read += (i + 1) * sizeof(DType);
|
221
|
+
}
|
222
|
+
} else {
|
223
|
+
|
224
|
+
DType* elements = reinterpret_cast<DType*>(storage->elements);
|
225
|
+
size_t length = storage->shape[0];
|
226
|
+
|
227
|
+
for (size_t i = 0; i < length; ++i) { // which row?
|
228
|
+
f.read( reinterpret_cast<char*>(&(elements[i * (length + 1)])), (length - i) * sizeof(DType) );
|
229
|
+
|
230
|
+
bytes_read += (length - i) * sizeof(DType);
|
231
|
+
}
|
232
|
+
|
233
|
+
if (symm == SYMM) {
|
234
|
+
for (size_t i = 0; i < length; ++i) {
|
235
|
+
for (size_t j = i+1; j < length; ++j) {
|
236
|
+
elements[j * length + i] = elements[i * length + j];
|
237
|
+
}
|
238
|
+
}
|
239
|
+
} else if (symm == SKEW) {
|
240
|
+
for (size_t i = 0; i < length; ++i) {
|
241
|
+
for (size_t j = i+1; j < length; ++j) {
|
242
|
+
elements[j * length + i] = -elements[i * length + j];
|
243
|
+
}
|
244
|
+
}
|
245
|
+
} else if (symm == HERM) {
|
246
|
+
read_padded_dense_elements_herm<DType>(elements, length);
|
247
|
+
|
248
|
+
} else if (symm == UPPER) { // zero-fill the rest of the rows
|
249
|
+
for (size_t i = 0; i < length; ++i) {
|
250
|
+
for(size_t j = i+1; j < length; ++j) {
|
251
|
+
elements[j * length + i] = 0;
|
252
|
+
}
|
253
|
+
}
|
254
|
+
}
|
255
|
+
|
256
|
+
}
|
257
|
+
|
258
|
+
// Ignore any padding.
|
259
|
+
if (bytes_read % 8) f.ignore(bytes_read % 8);
|
260
|
+
}
|
261
|
+
|
262
|
+
|
263
|
+
|
264
|
+
template <typename DType, typename IType>
|
265
|
+
void write_padded_yale_elements(std::ofstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm) {
|
266
|
+
if (symm != nm::NONSYMM) rb_raise(rb_eNotImpError, "Yale matrices can only be read/written in full form");
|
267
|
+
|
268
|
+
// Keep track of bytes written for each of A and IJA so we know how much padding to use.
|
269
|
+
size_t bytes_written = length * sizeof(DType);
|
270
|
+
|
271
|
+
// Write A array
|
272
|
+
f.write(reinterpret_cast<const char*>(storage->a), bytes_written);
|
273
|
+
|
274
|
+
// Padding
|
275
|
+
int64_t zero = 0;
|
276
|
+
f.write(reinterpret_cast<const char*>(&zero), bytes_written % 8);
|
277
|
+
|
278
|
+
bytes_written = length * sizeof(IType);
|
279
|
+
f.write(reinterpret_cast<const char*>(storage->ija), bytes_written);
|
280
|
+
|
281
|
+
// More padding
|
282
|
+
f.write(reinterpret_cast<const char*>(&zero), bytes_written % 8);
|
283
|
+
}
|
284
|
+
|
285
|
+
|
286
|
+
template <typename DType, typename IType>
|
287
|
+
void read_padded_yale_elements(std::ifstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm) {
|
288
|
+
if (symm != NONSYMM) rb_raise(rb_eNotImpError, "Yale matrices can only be read/written in full form");
|
289
|
+
|
290
|
+
size_t bytes_read = length * sizeof(DType);
|
291
|
+
f.read(reinterpret_cast<char*>(storage->a), bytes_read);
|
292
|
+
|
293
|
+
int64_t padding = 0;
|
294
|
+
f.read(reinterpret_cast<char*>(&padding), bytes_read % 8);
|
295
|
+
|
296
|
+
bytes_read = length * sizeof(IType);
|
297
|
+
f.read(reinterpret_cast<char*>(storage->ija), bytes_read);
|
298
|
+
|
299
|
+
f.read(reinterpret_cast<char*>(&padding), bytes_read % 8);
|
300
|
+
}
|
301
|
+
|
302
|
+
|
303
|
+
|
304
|
+
/*
|
305
|
+
* Write the elements of a dense storage matrix to a binary file, padded to 64-bits.
|
306
|
+
*/
|
307
|
+
template <typename DType>
|
308
|
+
void write_padded_dense_elements(std::ofstream& f, DENSE_STORAGE* storage, nm::symm_t symm) {
|
309
|
+
size_t bytes_written = 0;
|
310
|
+
|
311
|
+
if (symm == nm::NONSYMM) {
|
312
|
+
// Simply write the whole elements array.
|
313
|
+
size_t length = nm_storage_count_max_elements(storage);
|
314
|
+
f.write(reinterpret_cast<const char*>(storage->elements), length * sizeof(DType));
|
315
|
+
|
316
|
+
bytes_written += length * sizeof(DType);
|
317
|
+
|
318
|
+
} else if (symm == nm::LOWER) {
|
319
|
+
|
320
|
+
// Write lower triangular portion. Assume 2D square matrix.
|
321
|
+
DType* elements = reinterpret_cast<DType*>(storage->elements);
|
322
|
+
size_t length = storage->shape[0];
|
323
|
+
for (size_t i = 0; i < length; ++i) { // which row?
|
324
|
+
|
325
|
+
f.write( reinterpret_cast<const char*>( &(elements[i * length]) ),
|
326
|
+
(i + 1) * sizeof(DType) );
|
327
|
+
|
328
|
+
bytes_written += (i + 1) * sizeof(DType);
|
329
|
+
}
|
330
|
+
} else if (symm == nm::HERM) {
|
331
|
+
bytes_written += write_padded_dense_elements_herm<DType>(f, storage, symm);
|
332
|
+
} else { // HERM, UPPER, SYMM, SKEW
|
333
|
+
bytes_written += write_padded_dense_elements_upper<DType>(f, storage, symm);
|
334
|
+
}
|
335
|
+
|
336
|
+
// Padding
|
337
|
+
int64_t zero = 0;
|
338
|
+
f.write(reinterpret_cast<const char*>(&zero), bytes_written % 8);
|
339
|
+
}
|
340
|
+
|
341
|
+
} // end of namespace nm
|
342
|
+
|
343
|
+
|
80
344
|
extern "C" {
|
81
345
|
|
82
346
|
/*
|
@@ -87,6 +351,8 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm);
|
|
87
351
|
static VALUE nm_init_copy(VALUE copy, VALUE original);
|
88
352
|
static VALUE nm_init_transposed(VALUE self);
|
89
353
|
static VALUE nm_init_cast_copy(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol);
|
354
|
+
static VALUE nm_read(int argc, VALUE* argv, VALUE self);
|
355
|
+
static VALUE nm_write(int argc, VALUE* argv, VALUE self);
|
90
356
|
static VALUE nm_to_hash(VALUE self);
|
91
357
|
static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm);
|
92
358
|
static VALUE nm_alloc(VALUE klass);
|
@@ -149,11 +415,10 @@ static VALUE nm_factorize_lu(VALUE self);
|
|
149
415
|
static VALUE nm_det_exact(VALUE self);
|
150
416
|
static VALUE nm_complex_conjugate_bang(VALUE self);
|
151
417
|
|
152
|
-
static dtype_t
|
153
|
-
static
|
154
|
-
static void* interpret_initial_value(VALUE arg, dtype_t dtype);
|
418
|
+
static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype);
|
419
|
+
static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype);
|
155
420
|
static size_t* interpret_shape(VALUE arg, size_t* dim);
|
156
|
-
static stype_t interpret_stype(VALUE arg);
|
421
|
+
static nm::stype_t interpret_stype(VALUE arg);
|
157
422
|
|
158
423
|
/* Singleton methods */
|
159
424
|
static VALUE nm_itype_by_shape(VALUE self, VALUE shape_arg);
|
@@ -197,13 +462,16 @@ void Init_nmatrix() {
|
|
197
462
|
|
198
463
|
rb_define_singleton_method(cNMatrix, "upcast", (METHOD)nm_upcast, 2);
|
199
464
|
rb_define_singleton_method(cNMatrix, "itype_by_shape", (METHOD)nm_itype_by_shape, 1);
|
200
|
-
|
465
|
+
|
201
466
|
//////////////////////
|
202
467
|
// Instance Methods //
|
203
468
|
//////////////////////
|
204
469
|
|
205
470
|
rb_define_method(cNMatrix, "initialize", (METHOD)nm_init, -1);
|
206
471
|
rb_define_method(cNMatrix, "initialize_copy", (METHOD)nm_init_copy, 1);
|
472
|
+
rb_define_singleton_method(cNMatrix, "read", (METHOD)nm_read, -1);
|
473
|
+
|
474
|
+
rb_define_method(cNMatrix, "write", (METHOD)nm_write, -1);
|
207
475
|
|
208
476
|
// Technically, the following function is a copy constructor.
|
209
477
|
rb_define_method(cNMatrix, "transpose", (METHOD)nm_init_transposed, 0);
|
@@ -317,15 +585,15 @@ static VALUE nm_capacity(VALUE self) {
|
|
317
585
|
VALUE cap;
|
318
586
|
|
319
587
|
switch(NM_STYPE(self)) {
|
320
|
-
case YALE_STORE:
|
588
|
+
case nm::YALE_STORE:
|
321
589
|
cap = UINT2NUM(((YALE_STORAGE*)(NM_STORAGE(self)))->capacity);
|
322
590
|
break;
|
323
591
|
|
324
|
-
case DENSE_STORE:
|
592
|
+
case nm::DENSE_STORE:
|
325
593
|
cap = UINT2NUM(nm_storage_count_max_elements( NM_STORAGE_DENSE(self) ));
|
326
594
|
break;
|
327
595
|
|
328
|
-
case LIST_STORE:
|
596
|
+
case nm::LIST_STORE:
|
329
597
|
cap = UINT2NUM(nm_list_storage_count_elements( NM_STORAGE_LIST(self) ));
|
330
598
|
break;
|
331
599
|
|
@@ -375,7 +643,7 @@ static VALUE nm_dtype(VALUE self) {
|
|
375
643
|
* Get the index data type (dtype) of a matrix. Defined only for yale; others return nil.
|
376
644
|
*/
|
377
645
|
static VALUE nm_itype(VALUE self) {
|
378
|
-
if (NM_STYPE(self) == YALE_STORE) {
|
646
|
+
if (NM_STYPE(self) == nm::YALE_STORE) {
|
379
647
|
ID itype = rb_intern(ITYPE_NAMES[NM_ITYPE(self)]);
|
380
648
|
return ID2SYM(itype);
|
381
649
|
}
|
@@ -391,8 +659,8 @@ static VALUE nm_itype_by_shape(VALUE self, VALUE shape_arg) {
|
|
391
659
|
size_t dim;
|
392
660
|
size_t* shape = interpret_shape(shape_arg, &dim);
|
393
661
|
|
394
|
-
itype_t itype = nm_yale_storage_itype_by_shape(shape);
|
395
|
-
ID itype_id
|
662
|
+
nm::itype_t itype = nm_yale_storage_itype_by_shape(shape);
|
663
|
+
ID itype_id = rb_intern(ITYPE_NAMES[itype]);
|
396
664
|
|
397
665
|
return ID2SYM(itype_id);
|
398
666
|
}
|
@@ -405,8 +673,8 @@ static VALUE nm_itype_by_shape(VALUE self, VALUE shape_arg) {
|
|
405
673
|
*/
|
406
674
|
static VALUE nm_upcast(VALUE self, VALUE t1, VALUE t2) {
|
407
675
|
|
408
|
-
dtype_t d1 = nm_dtype_from_rbsymbol(t1),
|
409
|
-
|
676
|
+
nm::dtype_t d1 = nm_dtype_from_rbsymbol(t1),
|
677
|
+
d2 = nm_dtype_from_rbsymbol(t2);
|
410
678
|
|
411
679
|
return ID2SYM(rb_intern( DTYPE_NAMES[ Upcast[d1][d2] ] ));
|
412
680
|
}
|
@@ -453,7 +721,7 @@ static VALUE nm_dense_each_indirect(VALUE nm) {
|
|
453
721
|
static VALUE nm_dense_each(VALUE nmatrix) {
|
454
722
|
volatile VALUE nm = nmatrix; // Not sure this actually does anything.
|
455
723
|
|
456
|
-
if (NM_DTYPE(nm) == RUBYOBJ) {
|
724
|
+
if (NM_DTYPE(nm) == nm::RUBYOBJ) {
|
457
725
|
|
458
726
|
// matrix of Ruby objects -- yield those objects directly
|
459
727
|
return nm_dense_each_direct(nm);
|
@@ -476,7 +744,7 @@ static VALUE nm_each(VALUE nmatrix) {
|
|
476
744
|
volatile VALUE nm = nmatrix; // not sure why we do this, but it gets done in ruby's array.c.
|
477
745
|
|
478
746
|
switch(NM_STYPE(nm)) {
|
479
|
-
case DENSE_STORE:
|
747
|
+
case nm::DENSE_STORE:
|
480
748
|
return nm_dense_each(nm);
|
481
749
|
default:
|
482
750
|
rb_raise(rb_eNotImpError, "only dense matrix's each method works right now");
|
@@ -508,13 +776,13 @@ static VALUE nm_eqeq(VALUE left, VALUE right) {
|
|
508
776
|
bool result = false;
|
509
777
|
|
510
778
|
switch(l->stype) {
|
511
|
-
case DENSE_STORE:
|
779
|
+
case nm::DENSE_STORE:
|
512
780
|
result = nm_dense_storage_eqeq(l->storage, r->storage);
|
513
781
|
break;
|
514
|
-
case LIST_STORE:
|
782
|
+
case nm::LIST_STORE:
|
515
783
|
result = nm_list_storage_eqeq(l->storage, r->storage);
|
516
784
|
break;
|
517
|
-
case YALE_STORE:
|
785
|
+
case nm::YALE_STORE:
|
518
786
|
result = nm_yale_storage_eqeq(l->storage, r->storage);
|
519
787
|
break;
|
520
788
|
}
|
@@ -558,12 +826,12 @@ static VALUE nm_complex_conjugate_bang(VALUE self) {
|
|
558
826
|
|
559
827
|
UnwrapNMatrix(self, m);
|
560
828
|
|
561
|
-
if (m->stype == DENSE_STORE) {
|
829
|
+
if (m->stype == nm::DENSE_STORE) {
|
562
830
|
|
563
831
|
size = nm_storage_count_max_elements(NM_STORAGE(self));
|
564
832
|
elem = NM_STORAGE_DENSE(self)->elements;
|
565
833
|
|
566
|
-
} else if (m->stype == YALE_STORE) {
|
834
|
+
} else if (m->stype == nm::YALE_STORE) {
|
567
835
|
|
568
836
|
size = nm_yale_storage_get_size(NM_STORAGE_YALE(self));
|
569
837
|
elem = NM_STORAGE_YALE(self)->a;
|
@@ -573,13 +841,13 @@ static VALUE nm_complex_conjugate_bang(VALUE self) {
|
|
573
841
|
}
|
574
842
|
|
575
843
|
// Walk through and negate the imaginary component
|
576
|
-
if (NM_DTYPE(self) == COMPLEX64) {
|
844
|
+
if (NM_DTYPE(self) == nm::COMPLEX64) {
|
577
845
|
|
578
846
|
for (p = 0; p < size; ++p) {
|
579
847
|
reinterpret_cast<nm::Complex64*>(elem)[p].i = -reinterpret_cast<nm::Complex64*>(elem)[p].i;
|
580
848
|
}
|
581
849
|
|
582
|
-
} else if (NM_DTYPE(self) == COMPLEX128) {
|
850
|
+
} else if (NM_DTYPE(self) == nm::COMPLEX128) {
|
583
851
|
|
584
852
|
for (p = 0; p < size; ++p) {
|
585
853
|
reinterpret_cast<nm::Complex128*>(elem)[p].i = -reinterpret_cast<nm::Complex128*>(elem)[p].i;
|
@@ -597,7 +865,7 @@ static VALUE nm_complex_conjugate_bang(VALUE self) {
|
|
597
865
|
* Helper function for creating a matrix. You have to create the storage and pass it in, but you don't
|
598
866
|
* need to worry about deleting it.
|
599
867
|
*/
|
600
|
-
NMATRIX* nm_create(stype_t stype, STORAGE* storage) {
|
868
|
+
NMATRIX* nm_create(nm::stype_t stype, STORAGE* storage) {
|
601
869
|
NMATRIX* mat = ALLOC(NMATRIX);
|
602
870
|
|
603
871
|
mat->stype = stype;
|
@@ -646,11 +914,11 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
|
|
646
914
|
}
|
647
915
|
|
648
916
|
/* First, determine stype (dense by default) */
|
649
|
-
stype_t stype;
|
917
|
+
nm::stype_t stype;
|
650
918
|
size_t offset = 0;
|
651
919
|
|
652
920
|
if (!SYMBOL_P(argv[0]) && TYPE(argv[0]) != T_STRING) {
|
653
|
-
stype = DENSE_STORE;
|
921
|
+
stype = nm::DENSE_STORE;
|
654
922
|
|
655
923
|
} else {
|
656
924
|
// 0: String or Symbol
|
@@ -660,7 +928,7 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
|
|
660
928
|
|
661
929
|
// If there are 7 arguments and Yale, refer to a different init function with fewer sanity checks.
|
662
930
|
if (argc == 7) {
|
663
|
-
if (stype == YALE_STORE) {
|
931
|
+
if (stype == nm::YALE_STORE) {
|
664
932
|
return nm_init_yale_from_old_yale(argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], nm);
|
665
933
|
|
666
934
|
} else {
|
@@ -673,14 +941,14 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
|
|
673
941
|
size_t* shape = interpret_shape(argv[offset], &dim);
|
674
942
|
|
675
943
|
// 2-3: dtype
|
676
|
-
dtype_t dtype = interpret_dtype(argc-1-offset, argv+offset+1, stype);
|
944
|
+
nm::dtype_t dtype = interpret_dtype(argc-1-offset, argv+offset+1, stype);
|
677
945
|
|
678
946
|
size_t init_cap = 0, init_val_len = 0;
|
679
947
|
void* init_val = NULL;
|
680
948
|
if (NM_RUBYVAL_IS_NUMERIC(argv[1+offset]) || TYPE(argv[1+offset]) == T_ARRAY) {
|
681
949
|
// Initial value provided (could also be initial capacity, if yale).
|
682
950
|
|
683
|
-
if (stype == YALE_STORE) {
|
951
|
+
if (stype == nm::YALE_STORE) {
|
684
952
|
init_cap = FIX2UINT(argv[1+offset]);
|
685
953
|
|
686
954
|
} else {
|
@@ -694,12 +962,12 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
|
|
694
962
|
} else {
|
695
963
|
// DType is RUBYOBJ.
|
696
964
|
|
697
|
-
if (stype == DENSE_STORE) {
|
965
|
+
if (stype == nm::DENSE_STORE) {
|
698
966
|
/*
|
699
967
|
* No need to initialize dense with any kind of default value unless it's
|
700
968
|
* an RUBYOBJ matrix.
|
701
969
|
*/
|
702
|
-
if (dtype == RUBYOBJ) {
|
970
|
+
if (dtype == nm::RUBYOBJ) {
|
703
971
|
// Pretend [nil] was passed for RUBYOBJ.
|
704
972
|
init_val = ALLOC(VALUE);
|
705
973
|
*(VALUE*)init_val = Qnil;
|
@@ -709,7 +977,7 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
|
|
709
977
|
} else {
|
710
978
|
init_val = NULL;
|
711
979
|
}
|
712
|
-
} else if (stype == LIST_STORE) {
|
980
|
+
} else if (stype == nm::LIST_STORE) {
|
713
981
|
init_val = ALLOC_N(char, DTYPE_SIZES[dtype]);
|
714
982
|
std::memset(init_val, 0, DTYPE_SIZES[dtype]);
|
715
983
|
}
|
@@ -722,15 +990,15 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
|
|
722
990
|
nmatrix->stype = stype;
|
723
991
|
|
724
992
|
switch (stype) {
|
725
|
-
case DENSE_STORE:
|
993
|
+
case nm::DENSE_STORE:
|
726
994
|
nmatrix->storage = (STORAGE*)nm_dense_storage_create(dtype, shape, dim, init_val, init_val_len);
|
727
995
|
break;
|
728
996
|
|
729
|
-
case LIST_STORE:
|
997
|
+
case nm::LIST_STORE:
|
730
998
|
nmatrix->storage = (STORAGE*)nm_list_storage_create(dtype, shape, dim, init_val);
|
731
999
|
break;
|
732
1000
|
|
733
|
-
case YALE_STORE:
|
1001
|
+
case nm::YALE_STORE:
|
734
1002
|
nmatrix->storage = (STORAGE*)nm_yale_storage_create(dtype, shape, dim, init_cap);
|
735
1003
|
nm_yale_storage_init((YALE_STORAGE*)(nmatrix->storage));
|
736
1004
|
break;
|
@@ -746,7 +1014,7 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
|
|
746
1014
|
* Currently only works for list storage.
|
747
1015
|
*/
|
748
1016
|
static VALUE nm_to_hash(VALUE self) {
|
749
|
-
if (NM_STYPE(self) != LIST_STORE) {
|
1017
|
+
if (NM_STYPE(self) != nm::LIST_STORE) {
|
750
1018
|
rb_raise(rb_eNotImpError, "please cast to :list first");
|
751
1019
|
}
|
752
1020
|
|
@@ -758,8 +1026,8 @@ static VALUE nm_to_hash(VALUE self) {
|
|
758
1026
|
* Copy constructor for changing dtypes and stypes.
|
759
1027
|
*/
|
760
1028
|
static VALUE nm_init_cast_copy(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol) {
|
761
|
-
dtype_t new_dtype = nm_dtype_from_rbsymbol(new_dtype_symbol);
|
762
|
-
stype_t new_stype = nm_stype_from_rbsymbol(new_stype_symbol);
|
1029
|
+
nm::dtype_t new_dtype = nm_dtype_from_rbsymbol(new_dtype_symbol);
|
1030
|
+
nm::stype_t new_stype = nm_stype_from_rbsymbol(new_stype_symbol);
|
763
1031
|
|
764
1032
|
CheckNMatrixType(self);
|
765
1033
|
|
@@ -822,6 +1090,278 @@ static VALUE nm_init_copy(VALUE copy, VALUE original) {
|
|
822
1090
|
}
|
823
1091
|
|
824
1092
|
|
1093
|
+
/*
|
1094
|
+
* Get major, minor, and release components of NMatrix::VERSION. Store in function parameters.
|
1095
|
+
*/
|
1096
|
+
static void get_version_info(uint16_t& major, uint16_t& minor, uint16_t& release) {
|
1097
|
+
// Get VERSION and split it on periods. Result is an Array.
|
1098
|
+
VALUE version = rb_funcall(rb_const_get(cNMatrix, rb_intern("VERSION")), rb_intern("split"), 1, rb_str_new_cstr("."));
|
1099
|
+
VALUE* ary = RARRAY_PTR(version); // major, minor, and release
|
1100
|
+
|
1101
|
+
// Convert each to an integer
|
1102
|
+
VALUE maj = rb_funcall(ary[0], rb_intern("to_i"), 0);
|
1103
|
+
VALUE min = rb_funcall(ary[1], rb_intern("to_i"), 0);
|
1104
|
+
VALUE rel = rb_funcall(ary[2], rb_intern("to_i"), 0);
|
1105
|
+
|
1106
|
+
major = static_cast<uint16_t>(nm::RubyObject(maj));
|
1107
|
+
minor = static_cast<uint16_t>(nm::RubyObject(min));
|
1108
|
+
release = static_cast<uint16_t>(nm::RubyObject(rel));
|
1109
|
+
}
|
1110
|
+
|
1111
|
+
|
1112
|
+
/*
|
1113
|
+
* Interpret the NMatrix::write symmetry argument (which should be nil or a symbol). Return a symm_t (enum).
|
1114
|
+
*/
|
1115
|
+
static nm::symm_t interpret_symm(VALUE symm) {
|
1116
|
+
if (symm == Qnil) return nm::NONSYMM;
|
1117
|
+
|
1118
|
+
ID rb_symm = rb_intern("symmetric"),
|
1119
|
+
rb_skew = rb_intern("skew"),
|
1120
|
+
rb_herm = rb_intern("hermitian");
|
1121
|
+
// nm_rb_upper, nm_rb_lower already set
|
1122
|
+
|
1123
|
+
ID symm_id = rb_to_id(symm);
|
1124
|
+
|
1125
|
+
if (symm_id == rb_symm) return nm::SYMM;
|
1126
|
+
else if (symm_id == rb_skew) return nm::SKEW;
|
1127
|
+
else if (symm_id == rb_herm) return nm::HERM;
|
1128
|
+
else if (symm_id == nm_rb_upper) return nm::UPPER;
|
1129
|
+
else if (symm_id == nm_rb_lower) return nm::LOWER;
|
1130
|
+
else rb_raise(rb_eArgError, "unrecognized symmetry argument");
|
1131
|
+
|
1132
|
+
return nm::NONSYMM;
|
1133
|
+
}
|
1134
|
+
|
1135
|
+
|
1136
|
+
|
1137
|
+
void read_padded_shape(std::ifstream& f, size_t dim, size_t* shape, nm::itype_t itype) {
|
1138
|
+
NAMED_ITYPE_TEMPLATE_TABLE(ttable, nm::read_padded_shape, void, std::ifstream&, size_t, size_t*)
|
1139
|
+
|
1140
|
+
ttable[itype](f, dim, shape);
|
1141
|
+
}
|
1142
|
+
|
1143
|
+
|
1144
|
+
void write_padded_shape(std::ofstream& f, size_t dim, size_t* shape, nm::itype_t itype) {
|
1145
|
+
NAMED_ITYPE_TEMPLATE_TABLE(ttable, nm::write_padded_shape, void, std::ofstream&, size_t, size_t*)
|
1146
|
+
|
1147
|
+
ttable[itype](f, dim, shape);
|
1148
|
+
}
|
1149
|
+
|
1150
|
+
|
1151
|
+
void read_padded_yale_elements(std::ifstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype, nm::itype_t itype) {
|
1152
|
+
NAMED_LI_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_yale_elements, void, std::ifstream&, YALE_STORAGE*, size_t, nm::symm_t)
|
1153
|
+
|
1154
|
+
ttable[dtype][itype](f, storage, length, symm);
|
1155
|
+
}
|
1156
|
+
|
1157
|
+
|
1158
|
+
void write_padded_yale_elements(std::ofstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype, nm::itype_t itype) {
|
1159
|
+
NAMED_LI_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_yale_elements, void, std::ofstream& f, YALE_STORAGE*, size_t, nm::symm_t)
|
1160
|
+
|
1161
|
+
ttable[dtype][itype](f, storage, length, symm);
|
1162
|
+
}
|
1163
|
+
|
1164
|
+
|
1165
|
+
void read_padded_dense_elements(std::ifstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
|
1166
|
+
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_dense_elements, void, std::ifstream&, DENSE_STORAGE*, nm::symm_t)
|
1167
|
+
|
1168
|
+
ttable[dtype](f, storage, symm);
|
1169
|
+
}
|
1170
|
+
|
1171
|
+
|
1172
|
+
void write_padded_dense_elements(std::ofstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
|
1173
|
+
NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_dense_elements, void, std::ofstream& f, DENSE_STORAGE*, nm::symm_t)
|
1174
|
+
|
1175
|
+
ttable[dtype](f, storage, symm);
|
1176
|
+
}
|
1177
|
+
|
1178
|
+
|
1179
|
+
|
1180
|
+
/*
|
1181
|
+
* Binary file writer for NMatrix standard format. file should be a path, which we aren't going to
|
1182
|
+
* check very carefully (in other words, this function should generally be called from a Ruby
|
1183
|
+
* helper method). Function also takes a symmetry argument, which allows us to specify that we only want to
|
1184
|
+
* save the upper triangular portion of the matrix (or if the matrix is a lower triangular matrix, only
|
1185
|
+
* the lower triangular portion). nil means regular storage.
|
1186
|
+
*/
|
1187
|
+
static VALUE nm_write(int argc, VALUE* argv, VALUE self) {
|
1188
|
+
using std::ofstream;
|
1189
|
+
|
1190
|
+
if (argc < 1 || argc > 2) {
|
1191
|
+
rb_raise(rb_eArgError, "Expected one or two arguments");
|
1192
|
+
}
|
1193
|
+
VALUE file = argv[0],
|
1194
|
+
symm = argc == 1 ? Qnil : argv[1];
|
1195
|
+
|
1196
|
+
NMATRIX* nmatrix;
|
1197
|
+
UnwrapNMatrix( self, nmatrix );
|
1198
|
+
|
1199
|
+
nm::symm_t symm_ = interpret_symm(symm);
|
1200
|
+
nm::itype_t itype = (nmatrix->stype == nm::YALE_STORE) ? reinterpret_cast<YALE_STORAGE*>(nmatrix->storage)->itype : nm::UINT32;
|
1201
|
+
|
1202
|
+
if (nmatrix->storage->dtype == nm::RUBYOBJ) {
|
1203
|
+
rb_raise(rb_eNotImpError, "Ruby Object writing is not implemented yet");
|
1204
|
+
}
|
1205
|
+
|
1206
|
+
// Get the dtype, stype, itype, and symm and ensure they're the correct number of bytes.
|
1207
|
+
uint8_t st = static_cast<uint8_t>(nmatrix->stype),
|
1208
|
+
dt = static_cast<uint8_t>(nmatrix->storage->dtype),
|
1209
|
+
sm = static_cast<uint8_t>(symm_),
|
1210
|
+
it = static_cast<uint8_t>(itype);
|
1211
|
+
uint16_t dim = nmatrix->storage->dim;
|
1212
|
+
|
1213
|
+
// Check arguments before starting to write.
|
1214
|
+
if (nmatrix->stype == nm::LIST_STORE) rb_raise(nm_eStorageTypeError, "cannot save list matrix; cast to yale or dense first");
|
1215
|
+
if (symm_ != nm::NONSYMM) {
|
1216
|
+
if (dim != 2) rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-2D matrix");
|
1217
|
+
if (nmatrix->storage->shape[0] != nmatrix->storage->shape[1])
|
1218
|
+
rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-square matrix");
|
1219
|
+
if (symm_ == nm::HERM &&
|
1220
|
+
dt != static_cast<uint8_t>(nm::COMPLEX64) && dt != static_cast<uint8_t>(nm::COMPLEX128) && dt != static_cast<uint8_t>(nm::RUBYOBJ))
|
1221
|
+
rb_raise(rb_eArgError, "cannot save a non-complex matrix as hermitian");
|
1222
|
+
}
|
1223
|
+
|
1224
|
+
ofstream f(RSTRING_PTR(file), std::ios::out | std::ios::binary);
|
1225
|
+
|
1226
|
+
// Get the NMatrix version information.
|
1227
|
+
uint16_t major, minor, release, null16 = 0;
|
1228
|
+
get_version_info(major, minor, release);
|
1229
|
+
|
1230
|
+
// WRITE FIRST 64-BIT BLOCK
|
1231
|
+
f.write(reinterpret_cast<const char*>(&major), sizeof(uint16_t));
|
1232
|
+
f.write(reinterpret_cast<const char*>(&minor), sizeof(uint16_t));
|
1233
|
+
f.write(reinterpret_cast<const char*>(&release), sizeof(uint16_t));
|
1234
|
+
f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
|
1235
|
+
|
1236
|
+
// WRITE SECOND 64-BIT BLOCK
|
1237
|
+
f.write(reinterpret_cast<const char*>(&dt), sizeof(uint8_t));
|
1238
|
+
f.write(reinterpret_cast<const char*>(&st), sizeof(uint8_t));
|
1239
|
+
f.write(reinterpret_cast<const char*>(&it), sizeof(uint8_t));
|
1240
|
+
f.write(reinterpret_cast<const char*>(&sm), sizeof(uint8_t));
|
1241
|
+
f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
|
1242
|
+
f.write(reinterpret_cast<const char*>(&dim), sizeof(uint16_t));
|
1243
|
+
|
1244
|
+
// Write shape (in 64-bit blocks)
|
1245
|
+
write_padded_shape(f, nmatrix->storage->dim, nmatrix->storage->shape, itype);
|
1246
|
+
|
1247
|
+
if (nmatrix->stype == nm::DENSE_STORE) {
|
1248
|
+
write_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(nmatrix->storage), symm_, nmatrix->storage->dtype);
|
1249
|
+
} else if (nmatrix->stype == nm::YALE_STORE) {
|
1250
|
+
YALE_STORAGE* s = reinterpret_cast<YALE_STORAGE*>(nmatrix->storage);
|
1251
|
+
uint32_t ndnz = s->ndnz,
|
1252
|
+
length = nm_yale_storage_get_size(s);
|
1253
|
+
f.write(reinterpret_cast<const char*>(&ndnz), sizeof(uint32_t));
|
1254
|
+
f.write(reinterpret_cast<const char*>(&length), sizeof(uint32_t));
|
1255
|
+
|
1256
|
+
write_padded_yale_elements(f, s, length, symm_, s->dtype, itype);
|
1257
|
+
}
|
1258
|
+
|
1259
|
+
f.close();
|
1260
|
+
|
1261
|
+
return Qtrue;
|
1262
|
+
}
|
1263
|
+
|
1264
|
+
|
1265
|
+
/*
|
1266
|
+
* Binary file reader for NMatrix standard format. file should be a path, which we aren't going to
|
1267
|
+
* check very carefully (in other words, this function should generally be called from a Ruby
|
1268
|
+
* helper method).
|
1269
|
+
*
|
1270
|
+
* Note that currently, this function will by default refuse to read files that are newer than
|
1271
|
+
* your version of NMatrix. To force an override, set the second argument to anything other than nil.
|
1272
|
+
*
|
1273
|
+
* Returns an NMatrix Ruby object.
|
1274
|
+
*/
|
1275
|
+
static VALUE nm_read(int argc, VALUE* argv, VALUE self) {
|
1276
|
+
using std::ifstream;
|
1277
|
+
|
1278
|
+
// Read the arguments
|
1279
|
+
if (argc < 1 || argc > 2) {
|
1280
|
+
rb_raise(rb_eArgError, "expected one or two arguments");
|
1281
|
+
}
|
1282
|
+
VALUE file = argv[0];
|
1283
|
+
bool force = argc == 1 ? false : argv[1];
|
1284
|
+
|
1285
|
+
// Open a file stream
|
1286
|
+
ifstream f(RSTRING_PTR(file), std::ios::in | std::ios::binary);
|
1287
|
+
|
1288
|
+
uint16_t major, minor, release;
|
1289
|
+
get_version_info(major, minor, release); // compare to NMatrix version
|
1290
|
+
|
1291
|
+
uint16_t fmajor, fminor, frelease, null16;
|
1292
|
+
|
1293
|
+
// READ FIRST 64-BIT BLOCK
|
1294
|
+
f.read(reinterpret_cast<char*>(&fmajor), sizeof(uint16_t));
|
1295
|
+
f.read(reinterpret_cast<char*>(&fminor), sizeof(uint16_t));
|
1296
|
+
f.read(reinterpret_cast<char*>(&frelease), sizeof(uint16_t));
|
1297
|
+
f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
|
1298
|
+
|
1299
|
+
int ver = major * 10000 + minor * 100 + release,
|
1300
|
+
fver = fmajor * 10000 + fminor * 100 + release;
|
1301
|
+
if (fver > ver && force == false) {
|
1302
|
+
rb_raise(rb_eIOError, "File was created in newer version of NMatrix than current");
|
1303
|
+
}
|
1304
|
+
if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
|
1305
|
+
|
1306
|
+
uint8_t dt, st, it, sm;
|
1307
|
+
uint16_t dim;
|
1308
|
+
|
1309
|
+
// READ SECOND 64-BIT BLOCK
|
1310
|
+
f.read(reinterpret_cast<char*>(&dt), sizeof(uint8_t));
|
1311
|
+
f.read(reinterpret_cast<char*>(&st), sizeof(uint8_t));
|
1312
|
+
f.read(reinterpret_cast<char*>(&it), sizeof(uint8_t));
|
1313
|
+
f.read(reinterpret_cast<char*>(&sm), sizeof(uint8_t));
|
1314
|
+
f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
|
1315
|
+
f.read(reinterpret_cast<char*>(&dim), sizeof(uint16_t));
|
1316
|
+
|
1317
|
+
if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
|
1318
|
+
nm::stype_t stype = static_cast<nm::stype_t>(st);
|
1319
|
+
nm::dtype_t dtype = static_cast<nm::dtype_t>(dt);
|
1320
|
+
nm::symm_t symm = static_cast<nm::symm_t>(sm);
|
1321
|
+
nm::itype_t itype = static_cast<nm::itype_t>(it);
|
1322
|
+
|
1323
|
+
// READ NEXT FEW 64-BIT BLOCKS
|
1324
|
+
size_t* shape = ALLOC_N(size_t, dim);
|
1325
|
+
read_padded_shape(f, dim, shape, itype);
|
1326
|
+
|
1327
|
+
VALUE klass = dim == 1 ? cNVector : cNMatrix;
|
1328
|
+
|
1329
|
+
STORAGE* s;
|
1330
|
+
if (stype == nm::DENSE_STORE) {
|
1331
|
+
s = nm_dense_storage_create(dtype, shape, dim, NULL, 0);
|
1332
|
+
|
1333
|
+
read_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(s), symm, dtype);
|
1334
|
+
|
1335
|
+
} else if (stype == nm::YALE_STORE) {
|
1336
|
+
uint32_t ndnz, length;
|
1337
|
+
|
1338
|
+
// READ YALE-SPECIFIC 64-BIT BLOCK
|
1339
|
+
f.read(reinterpret_cast<char*>(&ndnz), sizeof(uint32_t));
|
1340
|
+
f.read(reinterpret_cast<char*>(&length), sizeof(uint32_t));
|
1341
|
+
|
1342
|
+
s = nm_yale_storage_create(dtype, shape, dim, length); // set length as init capacity
|
1343
|
+
|
1344
|
+
read_padded_yale_elements(f, reinterpret_cast<YALE_STORAGE*>(s), length, symm, dtype, itype);
|
1345
|
+
} else {
|
1346
|
+
rb_raise(nm_eStorageTypeError, "please convert to yale or dense before saving");
|
1347
|
+
}
|
1348
|
+
|
1349
|
+
NMATRIX* nm = nm_create(stype, s);
|
1350
|
+
|
1351
|
+
// Return the appropriate matrix object (Ruby VALUE)
|
1352
|
+
switch(stype) {
|
1353
|
+
case nm::DENSE_STORE:
|
1354
|
+
return Data_Wrap_Struct(klass, nm_dense_storage_mark, nm_delete, nm);
|
1355
|
+
case nm::YALE_STORE:
|
1356
|
+
return Data_Wrap_Struct(cNMatrix, nm_yale_storage_mark, nm_delete, nm);
|
1357
|
+
default:
|
1358
|
+
return Qnil;
|
1359
|
+
}
|
1360
|
+
|
1361
|
+
}
|
1362
|
+
|
1363
|
+
|
1364
|
+
|
825
1365
|
/*
|
826
1366
|
* Create a new NMatrix helper for handling internal ia, ja, and a arguments.
|
827
1367
|
*
|
@@ -831,16 +1371,16 @@ static VALUE nm_init_copy(VALUE copy, VALUE original) {
|
|
831
1371
|
static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm) {
|
832
1372
|
size_t dim = 2;
|
833
1373
|
size_t* shape_ = interpret_shape(shape, &dim);
|
834
|
-
dtype_t dtype_ = nm_dtype_from_rbsymbol(dtype);
|
1374
|
+
nm::dtype_t dtype_ = nm_dtype_from_rbsymbol(dtype);
|
835
1375
|
char *ia_ = RSTRING_PTR(ia),
|
836
1376
|
*ja_ = RSTRING_PTR(ja),
|
837
1377
|
*a_ = RSTRING_PTR(a);
|
838
|
-
dtype_t from_dtype_ = nm_dtype_from_rbsymbol(from_dtype);
|
1378
|
+
nm::dtype_t from_dtype_ = nm_dtype_from_rbsymbol(from_dtype);
|
839
1379
|
NMATRIX* nmatrix;
|
840
1380
|
|
841
1381
|
UnwrapNMatrix( nm, nmatrix );
|
842
1382
|
|
843
|
-
nmatrix->stype = YALE_STORE;
|
1383
|
+
nmatrix->stype = nm::YALE_STORE;
|
844
1384
|
nmatrix->storage = (STORAGE*)nm_yale_storage_create_from_old_yale(dtype_, shape_, ia_, ja_, a_, from_dtype_);
|
845
1385
|
|
846
1386
|
return nm;
|
@@ -851,11 +1391,11 @@ static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALU
|
|
851
1391
|
*/
|
852
1392
|
static VALUE nm_is_ref(VALUE self) {
|
853
1393
|
// Refs only allowed for dense and list matrices.
|
854
|
-
if (NM_STYPE(self) == DENSE_STORE) {
|
1394
|
+
if (NM_STYPE(self) == nm::DENSE_STORE) {
|
855
1395
|
return (NM_DENSE_SRC(self) == NM_STORAGE(self)) ? Qfalse : Qtrue;
|
856
1396
|
}
|
857
1397
|
|
858
|
-
if (NM_STYPE(self) == LIST_STORE) {
|
1398
|
+
if (NM_STYPE(self) == nm::LIST_STORE) {
|
859
1399
|
return (NM_LIST_SRC(self) == NM_STORAGE(self)) ? Qfalse : Qtrue;
|
860
1400
|
}
|
861
1401
|
|
@@ -921,10 +1461,10 @@ static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
|
|
921
1461
|
// FIXME: Can't use a function pointer table here currently because these functions have different
|
922
1462
|
// signatures (namely the return type).
|
923
1463
|
switch(NM_STYPE(self)) {
|
924
|
-
case DENSE_STORE:
|
1464
|
+
case nm::DENSE_STORE:
|
925
1465
|
nm_dense_storage_set(NM_STORAGE(self), slice, value);
|
926
1466
|
break;
|
927
|
-
case LIST_STORE:
|
1467
|
+
case nm::LIST_STORE:
|
928
1468
|
// Remove if it's a zero, insert otherwise
|
929
1469
|
if (!std::memcmp(value, NM_STORAGE_LIST(self)->default_val, DTYPE_SIZES[NM_DTYPE(self)])) {
|
930
1470
|
free(value);
|
@@ -934,7 +1474,7 @@ static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
|
|
934
1474
|
nm_list_storage_insert(NM_STORAGE(self), slice, value);
|
935
1475
|
}
|
936
1476
|
break;
|
937
|
-
case YALE_STORE:
|
1477
|
+
case nm::YALE_STORE:
|
938
1478
|
nm_yale_storage_set(NM_STORAGE(self), slice, value);
|
939
1479
|
break;
|
940
1480
|
}
|
@@ -988,6 +1528,8 @@ static VALUE nm_multiply(VALUE left_v, VALUE right_v) {
|
|
988
1528
|
return Qnil;
|
989
1529
|
}
|
990
1530
|
|
1531
|
+
|
1532
|
+
|
991
1533
|
/*
|
992
1534
|
* LU factorization of a matrix.
|
993
1535
|
*
|
@@ -995,7 +1537,7 @@ static VALUE nm_multiply(VALUE left_v, VALUE right_v) {
|
|
995
1537
|
* FIXME: result again. Ideally, this would be an in-place factorize instead, and would be called nm_factorize_lu_bang.
|
996
1538
|
*/
|
997
1539
|
static VALUE nm_factorize_lu(VALUE self) {
|
998
|
-
if (NM_STYPE(self) != DENSE_STORE) {
|
1540
|
+
if (NM_STYPE(self) != nm::DENSE_STORE) {
|
999
1541
|
rb_raise(rb_eNotImpError, "only implemented for dense storage");
|
1000
1542
|
}
|
1001
1543
|
|
@@ -1089,8 +1631,8 @@ static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(STORAGE*, SLIC
|
|
1089
1631
|
nm_yale_storage_ref
|
1090
1632
|
};
|
1091
1633
|
|
1092
|
-
if (NM_DTYPE(self) == RUBYOBJ) result = *reinterpret_cast<VALUE*>( ttable[NM_STYPE(self)](NM_STORAGE(self), slice) );
|
1093
|
-
else
|
1634
|
+
if (NM_DTYPE(self) == nm::RUBYOBJ) result = *reinterpret_cast<VALUE*>( ttable[NM_STYPE(self)](NM_STORAGE(self), slice) );
|
1635
|
+
else result = rubyobj_from_cval( ttable[NM_STYPE(self)](NM_STORAGE(self), slice), NM_DTYPE(self) ).rval;
|
1094
1636
|
|
1095
1637
|
} else {
|
1096
1638
|
STYPE_MARK_TABLE(mark_table);
|
@@ -1119,54 +1661,64 @@ static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(STORAGE*, SLIC
|
|
1119
1661
|
static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val) {
|
1120
1662
|
STYPE_MARK_TABLE(mark);
|
1121
1663
|
|
1122
|
-
static STORAGE* (*ew_op[nm::NUM_STYPES])(nm::ewop_t, const STORAGE*, const STORAGE
|
1664
|
+
static STORAGE* (*ew_op[nm::NUM_STYPES])(nm::ewop_t, const STORAGE*, const STORAGE*, VALUE scalar) = {
|
1123
1665
|
nm_dense_storage_ew_op,
|
1124
1666
|
nm_list_storage_ew_op,
|
1125
1667
|
nm_yale_storage_ew_op
|
1126
1668
|
// NULL
|
1127
1669
|
};
|
1128
1670
|
|
1129
|
-
NMATRIX*
|
1671
|
+
NMATRIX *result = ALLOC(NMATRIX), *left;
|
1130
1672
|
|
1131
1673
|
CheckNMatrixType(left_val);
|
1132
|
-
|
1674
|
+
UnwrapNMatrix(left_val, left);
|
1133
1675
|
|
1134
|
-
|
1135
|
-
|
1136
|
-
rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same dimensionality.");
|
1137
|
-
}
|
1138
|
-
|
1139
|
-
// Check that the left- and right-hand sides have the same shape.
|
1140
|
-
if (memcmp(&NM_SHAPE(left_val, 0), &NM_SHAPE(right_val, 0), sizeof(size_t) * NM_DIM(left_val)) != 0) {
|
1141
|
-
rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same shape.");
|
1142
|
-
}
|
1676
|
+
if (TYPE(right_val) != T_DATA || (RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete && RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete_ref)) {
|
1677
|
+
// This is a matrix-scalar element-wise operation.
|
1143
1678
|
|
1144
|
-
|
1145
|
-
|
1146
|
-
|
1679
|
+
if (left->stype != nm::YALE_STORE) {
|
1680
|
+
result->storage = ew_op[left->stype](op, reinterpret_cast<STORAGE*>(left->storage), NULL, right_val);
|
1681
|
+
result->stype = left->stype;
|
1682
|
+
} else {
|
1683
|
+
rb_raise(rb_eNotImpError, "Scalar element-wise operations not implemented for Yale storage yet");
|
1684
|
+
}
|
1685
|
+
|
1686
|
+
} else {
|
1687
|
+
|
1688
|
+
// Check that the left- and right-hand sides have the same dimensionality.
|
1689
|
+
if (NM_DIM(left_val) != NM_DIM(right_val)) {
|
1690
|
+
rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same dimensionality.");
|
1691
|
+
}
|
1692
|
+
|
1693
|
+
// Check that the left- and right-hand sides have the same shape.
|
1694
|
+
if (memcmp(&NM_SHAPE(left_val, 0), &NM_SHAPE(right_val, 0), sizeof(size_t) * NM_DIM(left_val)) != 0) {
|
1695
|
+
rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same shape.");
|
1696
|
+
}
|
1697
|
+
|
1698
|
+
NMATRIX* right;
|
1699
|
+
UnwrapNMatrix(right_val, right);
|
1147
1700
|
|
1148
|
-
|
1149
|
-
|
1150
|
-
|
1151
|
-
|
1152
|
-
|
1153
|
-
|
1154
|
-
|
1155
|
-
|
1156
|
-
|
1157
|
-
} else {
|
1158
|
-
rb_raise(rb_eArgError, "Element-wise operations are not currently supported between matrices with differing stypes.");
|
1159
|
-
}
|
1701
|
+
if (left->stype == right->stype) {
|
1702
|
+
|
1703
|
+
result->storage = ew_op[left->stype](op, reinterpret_cast<STORAGE*>(left->storage), reinterpret_cast<STORAGE*>(right->storage), Qnil);
|
1704
|
+
result->stype = left->stype;
|
1705
|
+
|
1706
|
+
} else {
|
1707
|
+
rb_raise(rb_eArgError, "Element-wise operations are not currently supported between matrices with differing stypes.");
|
1708
|
+
}
|
1709
|
+
}
|
1160
1710
|
|
1161
1711
|
return Data_Wrap_Struct(cNMatrix, mark[result->stype], nm_delete, result);
|
1162
1712
|
}
|
1163
1713
|
|
1714
|
+
|
1715
|
+
|
1164
1716
|
/*
|
1165
1717
|
* Check to determine whether matrix is a reference to another matrix.
|
1166
1718
|
*/
|
1167
1719
|
bool is_ref(const NMATRIX* matrix) {
|
1168
1720
|
// FIXME: Needs to work for other types
|
1169
|
-
if (matrix->stype != DENSE_STORE) {
|
1721
|
+
if (matrix->stype != nm::DENSE_STORE) {
|
1170
1722
|
return false;
|
1171
1723
|
}
|
1172
1724
|
|
@@ -1181,7 +1733,7 @@ static VALUE is_symmetric(VALUE self, bool hermitian) {
|
|
1181
1733
|
UnwrapNMatrix(self, m);
|
1182
1734
|
|
1183
1735
|
if (m->storage->shape[0] == m->storage->shape[1] and m->storage->dim == 2) {
|
1184
|
-
if (NM_STYPE(self) == DENSE_STORE) {
|
1736
|
+
if (NM_STYPE(self) == nm::DENSE_STORE) {
|
1185
1737
|
if (hermitian) {
|
1186
1738
|
nm_dense_storage_is_hermitian((DENSE_STORAGE*)(m->storage), m->storage->shape[0]);
|
1187
1739
|
|
@@ -1209,15 +1761,15 @@ static VALUE is_symmetric(VALUE self, bool hermitian) {
|
|
1209
1761
|
*
|
1210
1762
|
* TODO: Probably needs some work for Bignum.
|
1211
1763
|
*/
|
1212
|
-
|
1764
|
+
nm::dtype_t nm_dtype_guess(VALUE v) {
|
1213
1765
|
switch(TYPE(v)) {
|
1214
1766
|
case T_TRUE:
|
1215
1767
|
case T_FALSE:
|
1216
|
-
return BYTE;
|
1768
|
+
return nm::BYTE;
|
1217
1769
|
|
1218
1770
|
case T_STRING:
|
1219
1771
|
if (RSTRING_LEN(v) == 1) {
|
1220
|
-
return BYTE;
|
1772
|
+
return nm::BYTE;
|
1221
1773
|
|
1222
1774
|
} else {
|
1223
1775
|
rb_raise(rb_eArgError, "Strings of length > 1 may not be stored in a matrix.");
|
@@ -1225,45 +1777,45 @@ static dtype_t dtype_guess(VALUE v) {
|
|
1225
1777
|
|
1226
1778
|
#if SIZEOF_INT == 8
|
1227
1779
|
case T_FIXNUM:
|
1228
|
-
return INT64;
|
1780
|
+
return nm::INT64;
|
1229
1781
|
|
1230
1782
|
case T_RATIONAL:
|
1231
|
-
return RATIONAL128;
|
1783
|
+
return nm::RATIONAL128;
|
1232
1784
|
|
1233
1785
|
#else
|
1234
1786
|
# if SIZEOF_INT == 4
|
1235
1787
|
case T_FIXNUM:
|
1236
|
-
return INT32;
|
1788
|
+
return nm::INT32;
|
1237
1789
|
|
1238
1790
|
case T_RATIONAL:
|
1239
|
-
return RATIONAL64;
|
1791
|
+
return nm::RATIONAL64;
|
1240
1792
|
|
1241
1793
|
#else
|
1242
1794
|
case T_FIXNUM:
|
1243
|
-
return INT16;
|
1795
|
+
return nm::INT16;
|
1244
1796
|
|
1245
1797
|
case T_RATIONAL:
|
1246
|
-
return RATIONAL32;
|
1798
|
+
return nm::RATIONAL32;
|
1247
1799
|
# endif
|
1248
1800
|
#endif
|
1249
1801
|
|
1250
1802
|
case T_BIGNUM:
|
1251
|
-
return INT64;
|
1803
|
+
return nm::INT64;
|
1252
1804
|
|
1253
1805
|
#if SIZEOF_FLOAT == 4
|
1254
1806
|
case T_COMPLEX:
|
1255
|
-
return COMPLEX128;
|
1807
|
+
return nm::COMPLEX128;
|
1256
1808
|
|
1257
1809
|
case T_FLOAT:
|
1258
|
-
return FLOAT64;
|
1810
|
+
return nm::FLOAT64;
|
1259
1811
|
|
1260
1812
|
#else
|
1261
1813
|
# if SIZEOF_FLOAT == 2
|
1262
1814
|
case T_COMPLEX:
|
1263
|
-
return COMPLEX64;
|
1815
|
+
return nm::COMPLEX64;
|
1264
1816
|
|
1265
1817
|
case T_FLOAT:
|
1266
|
-
return FLOAT32;
|
1818
|
+
return nm::FLOAT32;
|
1267
1819
|
# endif
|
1268
1820
|
#endif
|
1269
1821
|
|
@@ -1274,7 +1826,7 @@ static dtype_t dtype_guess(VALUE v) {
|
|
1274
1826
|
* TODO: Look at entire array for most specific type.
|
1275
1827
|
*/
|
1276
1828
|
|
1277
|
-
return
|
1829
|
+
return nm_dtype_guess(RARRAY_PTR(v)[0]);
|
1278
1830
|
|
1279
1831
|
case T_NIL:
|
1280
1832
|
default:
|
@@ -1343,7 +1895,7 @@ static double get_time(void) {
|
|
1343
1895
|
* initial or dtype. If 2, is initial and dtype. This function returns the
|
1344
1896
|
* dtype.
|
1345
1897
|
*/
|
1346
|
-
static dtype_t interpret_dtype(int argc, VALUE* argv, stype_t stype) {
|
1898
|
+
static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype) {
|
1347
1899
|
int offset;
|
1348
1900
|
|
1349
1901
|
switch (argc) {
|
@@ -1366,18 +1918,18 @@ static dtype_t interpret_dtype(int argc, VALUE* argv, stype_t stype) {
|
|
1366
1918
|
} else if (TYPE(argv[offset]) == T_STRING) {
|
1367
1919
|
return nm_dtype_from_rbstring(StringValue(argv[offset]));
|
1368
1920
|
|
1369
|
-
} else if (stype == YALE_STORE) {
|
1921
|
+
} else if (stype == nm::YALE_STORE) {
|
1370
1922
|
rb_raise(rb_eArgError, "Yale storage class requires a dtype.");
|
1371
1923
|
|
1372
1924
|
} else {
|
1373
|
-
return
|
1925
|
+
return nm_dtype_guess(argv[0]);
|
1374
1926
|
}
|
1375
1927
|
}
|
1376
1928
|
|
1377
1929
|
/*
|
1378
1930
|
* Convert an Ruby value or an array of Ruby values into initial C values.
|
1379
1931
|
*/
|
1380
|
-
static void* interpret_initial_value(VALUE arg, dtype_t dtype) {
|
1932
|
+
static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype) {
|
1381
1933
|
unsigned int index;
|
1382
1934
|
void* init_val;
|
1383
1935
|
|
@@ -1432,7 +1984,7 @@ static size_t* interpret_shape(VALUE arg, size_t* dim) {
|
|
1432
1984
|
/*
|
1433
1985
|
* Convert a Ruby symbol or string into an storage type.
|
1434
1986
|
*/
|
1435
|
-
static stype_t interpret_stype(VALUE arg) {
|
1987
|
+
static nm::stype_t interpret_stype(VALUE arg) {
|
1436
1988
|
if (SYMBOL_P(arg)) {
|
1437
1989
|
return nm_stype_from_rbsymbol(arg);
|
1438
1990
|
|
@@ -1450,7 +2002,7 @@ static stype_t interpret_stype(VALUE arg) {
|
|
1450
2002
|
//////////////////
|
1451
2003
|
|
1452
2004
|
|
1453
|
-
STORAGE* matrix_storage_cast_alloc(NMATRIX* matrix, dtype_t new_dtype) {
|
2005
|
+
STORAGE* matrix_storage_cast_alloc(NMATRIX* matrix, nm::dtype_t new_dtype) {
|
1454
2006
|
if (matrix->storage->dtype == new_dtype && !is_ref(matrix))
|
1455
2007
|
return matrix->storage;
|
1456
2008
|
|
@@ -1461,7 +2013,7 @@ STORAGE* matrix_storage_cast_alloc(NMATRIX* matrix, dtype_t new_dtype) {
|
|
1461
2013
|
|
1462
2014
|
STORAGE_PAIR binary_storage_cast_alloc(NMATRIX* left_matrix, NMATRIX* right_matrix) {
|
1463
2015
|
STORAGE_PAIR casted;
|
1464
|
-
dtype_t new_dtype = Upcast[left_matrix->storage->dtype][right_matrix->storage->dtype];
|
2016
|
+
nm::dtype_t new_dtype = Upcast[left_matrix->storage->dtype][right_matrix->storage->dtype];
|
1465
2017
|
|
1466
2018
|
casted.left = matrix_storage_cast_alloc(left_matrix, new_dtype);
|
1467
2019
|
casted.right = matrix_storage_cast_alloc(right_matrix, new_dtype);
|
@@ -1530,7 +2082,7 @@ static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right) {
|
|
1530
2082
|
* Note: Currently only implemented for 2x2 and 3x3 matrices.
|
1531
2083
|
*/
|
1532
2084
|
static VALUE nm_det_exact(VALUE self) {
|
1533
|
-
if (NM_STYPE(self) != DENSE_STORE) rb_raise(nm_eStorageTypeError, "can only calculate exact determinant for dense matrices");
|
2085
|
+
if (NM_STYPE(self) != nm::DENSE_STORE) rb_raise(nm_eStorageTypeError, "can only calculate exact determinant for dense matrices");
|
1534
2086
|
|
1535
2087
|
if (NM_DIM(self) != 2 || NM_SHAPE0(self) != NM_SHAPE1(self)) return Qnil;
|
1536
2088
|
|
@@ -1558,7 +2110,7 @@ static VALUE nm_det_exact(VALUE self) {
|
|
1558
2110
|
*
|
1559
2111
|
* TODO: Add a column-major option for libraries that use column-major matrices.
|
1560
2112
|
*/
|
1561
|
-
VALUE rb_nmatrix_dense_create(dtype_t dtype, size_t* shape, size_t dim, void* elements, size_t length) {
|
2113
|
+
VALUE rb_nmatrix_dense_create(nm::dtype_t dtype, size_t* shape, size_t dim, void* elements, size_t length) {
|
1562
2114
|
NMATRIX* nm;
|
1563
2115
|
VALUE klass;
|
1564
2116
|
size_t nm_dim;
|
@@ -1584,7 +2136,7 @@ VALUE rb_nmatrix_dense_create(dtype_t dtype, size_t* shape, size_t dim, void* el
|
|
1584
2136
|
memcpy(elements_copy, elements, DTYPE_SIZES[dtype]*length);
|
1585
2137
|
|
1586
2138
|
// allocate and create the matrix and its storage
|
1587
|
-
nm = nm_create(DENSE_STORE, nm_dense_storage_create(dtype, shape_copy, dim, elements_copy, length));
|
2139
|
+
nm = nm_create(nm::DENSE_STORE, nm_dense_storage_create(dtype, shape_copy, dim, elements_copy, length));
|
1588
2140
|
|
1589
2141
|
// tell Ruby about the matrix and its storage, particularly how to garbage collect it.
|
1590
2142
|
return Data_Wrap_Struct(klass, nm_dense_storage_mark, nm_dense_storage_delete, nm);
|
@@ -1600,7 +2152,7 @@ VALUE rb_nmatrix_dense_create(dtype_t dtype, size_t* shape, size_t dim, void* el
|
|
1600
2152
|
*
|
1601
2153
|
* TODO: Add a transpose option for setting the orientation of the vector?
|
1602
2154
|
*/
|
1603
|
-
VALUE rb_nvector_dense_create(dtype_t dtype, void* elements, size_t length) {
|
2155
|
+
VALUE rb_nvector_dense_create(nm::dtype_t dtype, void* elements, size_t length) {
|
1604
2156
|
size_t dim = 1, shape = length;
|
1605
2157
|
return rb_nmatrix_dense_create(dtype, &shape, dim, elements, length);
|
1606
2158
|
}
|