nmatrix 0.0.2 → 0.0.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. data/Gemfile +1 -1
  2. data/History.txt +31 -3
  3. data/Manifest.txt +5 -0
  4. data/README.rdoc +29 -27
  5. data/ext/nmatrix/binary_format.txt +53 -0
  6. data/ext/nmatrix/data/data.cpp +18 -18
  7. data/ext/nmatrix/data/data.h +38 -7
  8. data/ext/nmatrix/data/rational.h +13 -0
  9. data/ext/nmatrix/data/ruby_object.h +10 -0
  10. data/ext/nmatrix/extconf.rb +2 -0
  11. data/ext/nmatrix/nmatrix.cpp +655 -103
  12. data/ext/nmatrix/nmatrix.h +26 -14
  13. data/ext/nmatrix/ruby_constants.cpp +4 -0
  14. data/ext/nmatrix/ruby_constants.h +2 -0
  15. data/ext/nmatrix/storage/dense.cpp +99 -41
  16. data/ext/nmatrix/storage/dense.h +3 -3
  17. data/ext/nmatrix/storage/list.cpp +36 -14
  18. data/ext/nmatrix/storage/list.h +4 -4
  19. data/ext/nmatrix/storage/storage.cpp +19 -19
  20. data/ext/nmatrix/storage/storage.h +11 -11
  21. data/ext/nmatrix/storage/yale.cpp +17 -20
  22. data/ext/nmatrix/storage/yale.h +13 -11
  23. data/ext/nmatrix/util/io.cpp +25 -23
  24. data/ext/nmatrix/util/io.h +5 -5
  25. data/ext/nmatrix/util/math.cpp +634 -17
  26. data/ext/nmatrix/util/math.h +958 -9
  27. data/ext/nmatrix/util/sl_list.cpp +7 -7
  28. data/ext/nmatrix/util/sl_list.h +2 -2
  29. data/lib/nmatrix.rb +9 -0
  30. data/lib/nmatrix/blas.rb +4 -4
  31. data/lib/nmatrix/io/market.rb +227 -0
  32. data/lib/nmatrix/io/mat_reader.rb +7 -7
  33. data/lib/nmatrix/lapack.rb +80 -0
  34. data/lib/nmatrix/nmatrix.rb +78 -52
  35. data/lib/nmatrix/shortcuts.rb +486 -0
  36. data/lib/nmatrix/version.rb +1 -1
  37. data/spec/2x2_dense_double.mat +0 -0
  38. data/spec/blas_spec.rb +59 -9
  39. data/spec/elementwise_spec.rb +25 -12
  40. data/spec/io_spec.rb +69 -1
  41. data/spec/lapack_spec.rb +53 -4
  42. data/spec/math_spec.rb +9 -0
  43. data/spec/nmatrix_list_spec.rb +95 -0
  44. data/spec/nmatrix_spec.rb +10 -53
  45. data/spec/nmatrix_yale_spec.rb +17 -15
  46. data/spec/shortcuts_spec.rb +154 -0
  47. metadata +22 -15
@@ -122,10 +122,12 @@ dir_config("atlas")
122
122
  # (substituting in the path of your cblas.h and clapack.h for the path I used). -- JW 8/27/12
123
123
 
124
124
  find_library("lapack", "clapack_dgetrf", "/usr/local/lib", "/usr/local/atlas/lib")
125
+ find_header("clapack.h", "/usr/local/atlas/include")
125
126
  have_header("clapack.h")
126
127
 
127
128
  find_library("cblas", "cblas_dgemm", "/usr/local/lib", "/usr/local/atlas/lib")
128
129
  find_library("atlas", "ATL_dgemmNN", "/usr/local/lib", "/usr/local/atlas/lib", "/usr/lib")
130
+ find_header("cblas.h", "/usr/local/atlas/include")
129
131
  have_header("cblas.h")
130
132
 
131
133
  # Order matters here: ATLAS has to go after LAPACK: http://mail.scipy.org/pipermail/scipy-user/2007-January/010717.html
@@ -39,6 +39,7 @@ extern "C" {
39
39
 
40
40
  #include <ruby.h>
41
41
  #include <algorithm> // std::min
42
+ #include <fstream>
42
43
 
43
44
  /*
44
45
  * Project Includes
@@ -77,6 +78,269 @@ extern "C" {
77
78
  */
78
79
 
79
80
 
81
+ namespace nm {
82
+
83
+ /*
84
+ * Read the shape from a matrix storage file, and ignore any padding.
85
+ *
86
+ * shape should already be allocated before calling this.
87
+ */
88
+ template <typename IType>
89
+ void read_padded_shape(std::ifstream& f, size_t dim, size_t* shape) {
90
+ size_t bytes_read = 0;
91
+
92
+ // Read shape
93
+ for (size_t i = 0; i < dim; ++i) {
94
+ IType s;
95
+ f.read(reinterpret_cast<char*>(&s), sizeof(IType));
96
+ shape[i] = s;
97
+
98
+ bytes_read += sizeof(IType);
99
+ }
100
+
101
+ // Ignore padding
102
+ f.ignore(bytes_read % 8);
103
+ }
104
+
105
+ template <typename IType>
106
+ void write_padded_shape(std::ofstream& f, size_t dim, size_t* shape) {
107
+ size_t bytes_written = 0;
108
+
109
+ // Write shape
110
+ for (size_t i = 0; i < dim; ++i) {
111
+ IType s = shape[i];
112
+ f.write(reinterpret_cast<const char*>(&s), sizeof(IType));
113
+
114
+ bytes_written += sizeof(IType);
115
+ }
116
+
117
+ // Pad with zeros
118
+ while (bytes_written % 8) {
119
+ IType zero = 0;
120
+ f.write(reinterpret_cast<const char*>(&zero), sizeof(IType));
121
+
122
+ bytes_written += sizeof(IType);
123
+ }
124
+ }
125
+
126
+ /*
127
+ * This function is pulled out separately so it can be called for hermitian matrix writing, which also uses it.
128
+ */
129
+ template <typename DType>
130
+ size_t write_padded_dense_elements_upper(std::ofstream& f, DENSE_STORAGE* storage, symm_t symm) {
131
+ // Write upper triangular portion. Assume 2D square matrix.
132
+ DType* elements = reinterpret_cast<DType*>(storage->elements);
133
+ size_t length = storage->shape[0];
134
+
135
+ size_t bytes_written = 0;
136
+
137
+ for (size_t i = 0; i < length; ++i) { // which row are we on?
138
+
139
+ f.write( reinterpret_cast<const char*>( &(elements[ i*(length + 1) ]) ),
140
+ (length - i) * sizeof(DType) );
141
+
142
+ bytes_written += (length - i) * sizeof(DType);
143
+ }
144
+ return bytes_written;
145
+ }
146
+
147
+
148
+ /*
149
+ * We need to specialize for Hermitian matrices. The next six functions accomplish that specialization, basically
150
+ * by ensuring that non-complex matrices cannot read or write hermitians (which would cause big problems).
151
+ */
152
+ template <typename DType>
153
+ size_t write_padded_dense_elements_herm(std::ofstream& f, DENSE_STORAGE* storage, symm_t symm) {
154
+ rb_raise(rb_eArgError, "cannot write a non-complex matrix as hermitian");
155
+ }
156
+
157
+ template <>
158
+ size_t write_padded_dense_elements_herm<Complex64>(std::ofstream& f, DENSE_STORAGE* storage, symm_t symm) {
159
+ return write_padded_dense_elements_upper<Complex64>(f, storage, symm);
160
+ }
161
+
162
+ template <>
163
+ size_t write_padded_dense_elements_herm<Complex128>(std::ofstream& f, DENSE_STORAGE* storage, symm_t symm) {
164
+ return write_padded_dense_elements_upper<Complex128>(f, storage, symm);
165
+ }
166
+
167
+ template <typename DType>
168
+ void read_padded_dense_elements_herm(DType* elements, size_t length) {
169
+ rb_raise(rb_eArgError, "cannot read a non-complex matrix as hermitian");
170
+ }
171
+
172
+ template <>
173
+ void read_padded_dense_elements_herm(Complex64* elements, size_t length) {
174
+ for (size_t i = 0; i < length; ++i) {
175
+ for (size_t j = i+1; j < length; ++j) {
176
+ elements[j * length + i] = elements[i * length + j].conjugate();
177
+ }
178
+ }
179
+ }
180
+
181
+ template <>
182
+ void read_padded_dense_elements_herm(Complex128* elements, size_t length) {
183
+ for (size_t i = 0; i < length; ++i) {
184
+ for (size_t j = i+1; j < length; ++j) {
185
+ elements[j * length + i] = elements[i * length + j].conjugate();
186
+ }
187
+ }
188
+ }
189
+
190
+
191
+ /*
192
+ * Read the elements of a dense storage matrix from a binary file, padded to 64-bits.
193
+ *
194
+ * storage should already be allocated. No initialization necessary.
195
+ */
196
+ template <typename DType>
197
+ void read_padded_dense_elements(std::ifstream& f, DENSE_STORAGE* storage, nm::symm_t symm) {
198
+ size_t bytes_read = 0;
199
+
200
+ if (symm == nm::NONSYMM) {
201
+ // Easy. Simply read the whole elements array.
202
+ size_t length = nm_storage_count_max_elements(reinterpret_cast<STORAGE*>(storage));
203
+ f.read(reinterpret_cast<char*>(storage->elements), length * sizeof(DType) );
204
+
205
+ bytes_read += length * sizeof(DType);
206
+ } else if (symm == LOWER) {
207
+
208
+ // Read lower triangular portion and initialize remainder to 0
209
+ DType* elements = reinterpret_cast<DType*>(storage->elements);
210
+ size_t length = storage->shape[0];
211
+
212
+ for (size_t i = 0; i < length; ++i) { // which row?
213
+
214
+ f.read( reinterpret_cast<char*>(&(elements[i * length])), (i + 1) * sizeof(DType) );
215
+
216
+ // need to zero-fill the rest of the row.
217
+ for (size_t j = i+1; j < length; ++j)
218
+ elements[i * length + j] = 0;
219
+
220
+ bytes_read += (i + 1) * sizeof(DType);
221
+ }
222
+ } else {
223
+
224
+ DType* elements = reinterpret_cast<DType*>(storage->elements);
225
+ size_t length = storage->shape[0];
226
+
227
+ for (size_t i = 0; i < length; ++i) { // which row?
228
+ f.read( reinterpret_cast<char*>(&(elements[i * (length + 1)])), (length - i) * sizeof(DType) );
229
+
230
+ bytes_read += (length - i) * sizeof(DType);
231
+ }
232
+
233
+ if (symm == SYMM) {
234
+ for (size_t i = 0; i < length; ++i) {
235
+ for (size_t j = i+1; j < length; ++j) {
236
+ elements[j * length + i] = elements[i * length + j];
237
+ }
238
+ }
239
+ } else if (symm == SKEW) {
240
+ for (size_t i = 0; i < length; ++i) {
241
+ for (size_t j = i+1; j < length; ++j) {
242
+ elements[j * length + i] = -elements[i * length + j];
243
+ }
244
+ }
245
+ } else if (symm == HERM) {
246
+ read_padded_dense_elements_herm<DType>(elements, length);
247
+
248
+ } else if (symm == UPPER) { // zero-fill the rest of the rows
249
+ for (size_t i = 0; i < length; ++i) {
250
+ for(size_t j = i+1; j < length; ++j) {
251
+ elements[j * length + i] = 0;
252
+ }
253
+ }
254
+ }
255
+
256
+ }
257
+
258
+ // Ignore any padding.
259
+ if (bytes_read % 8) f.ignore(bytes_read % 8);
260
+ }
261
+
262
+
263
+
264
+ template <typename DType, typename IType>
265
+ void write_padded_yale_elements(std::ofstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm) {
266
+ if (symm != nm::NONSYMM) rb_raise(rb_eNotImpError, "Yale matrices can only be read/written in full form");
267
+
268
+ // Keep track of bytes written for each of A and IJA so we know how much padding to use.
269
+ size_t bytes_written = length * sizeof(DType);
270
+
271
+ // Write A array
272
+ f.write(reinterpret_cast<const char*>(storage->a), bytes_written);
273
+
274
+ // Padding
275
+ int64_t zero = 0;
276
+ f.write(reinterpret_cast<const char*>(&zero), bytes_written % 8);
277
+
278
+ bytes_written = length * sizeof(IType);
279
+ f.write(reinterpret_cast<const char*>(storage->ija), bytes_written);
280
+
281
+ // More padding
282
+ f.write(reinterpret_cast<const char*>(&zero), bytes_written % 8);
283
+ }
284
+
285
+
286
+ template <typename DType, typename IType>
287
+ void read_padded_yale_elements(std::ifstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm) {
288
+ if (symm != NONSYMM) rb_raise(rb_eNotImpError, "Yale matrices can only be read/written in full form");
289
+
290
+ size_t bytes_read = length * sizeof(DType);
291
+ f.read(reinterpret_cast<char*>(storage->a), bytes_read);
292
+
293
+ int64_t padding = 0;
294
+ f.read(reinterpret_cast<char*>(&padding), bytes_read % 8);
295
+
296
+ bytes_read = length * sizeof(IType);
297
+ f.read(reinterpret_cast<char*>(storage->ija), bytes_read);
298
+
299
+ f.read(reinterpret_cast<char*>(&padding), bytes_read % 8);
300
+ }
301
+
302
+
303
+
304
+ /*
305
+ * Write the elements of a dense storage matrix to a binary file, padded to 64-bits.
306
+ */
307
+ template <typename DType>
308
+ void write_padded_dense_elements(std::ofstream& f, DENSE_STORAGE* storage, nm::symm_t symm) {
309
+ size_t bytes_written = 0;
310
+
311
+ if (symm == nm::NONSYMM) {
312
+ // Simply write the whole elements array.
313
+ size_t length = nm_storage_count_max_elements(storage);
314
+ f.write(reinterpret_cast<const char*>(storage->elements), length * sizeof(DType));
315
+
316
+ bytes_written += length * sizeof(DType);
317
+
318
+ } else if (symm == nm::LOWER) {
319
+
320
+ // Write lower triangular portion. Assume 2D square matrix.
321
+ DType* elements = reinterpret_cast<DType*>(storage->elements);
322
+ size_t length = storage->shape[0];
323
+ for (size_t i = 0; i < length; ++i) { // which row?
324
+
325
+ f.write( reinterpret_cast<const char*>( &(elements[i * length]) ),
326
+ (i + 1) * sizeof(DType) );
327
+
328
+ bytes_written += (i + 1) * sizeof(DType);
329
+ }
330
+ } else if (symm == nm::HERM) {
331
+ bytes_written += write_padded_dense_elements_herm<DType>(f, storage, symm);
332
+ } else { // HERM, UPPER, SYMM, SKEW
333
+ bytes_written += write_padded_dense_elements_upper<DType>(f, storage, symm);
334
+ }
335
+
336
+ // Padding
337
+ int64_t zero = 0;
338
+ f.write(reinterpret_cast<const char*>(&zero), bytes_written % 8);
339
+ }
340
+
341
+ } // end of namespace nm
342
+
343
+
80
344
  extern "C" {
81
345
 
82
346
  /*
@@ -87,6 +351,8 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm);
87
351
  static VALUE nm_init_copy(VALUE copy, VALUE original);
88
352
  static VALUE nm_init_transposed(VALUE self);
89
353
  static VALUE nm_init_cast_copy(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol);
354
+ static VALUE nm_read(int argc, VALUE* argv, VALUE self);
355
+ static VALUE nm_write(int argc, VALUE* argv, VALUE self);
90
356
  static VALUE nm_to_hash(VALUE self);
91
357
  static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm);
92
358
  static VALUE nm_alloc(VALUE klass);
@@ -149,11 +415,10 @@ static VALUE nm_factorize_lu(VALUE self);
149
415
  static VALUE nm_det_exact(VALUE self);
150
416
  static VALUE nm_complex_conjugate_bang(VALUE self);
151
417
 
152
- static dtype_t dtype_guess(VALUE v);
153
- static dtype_t interpret_dtype(int argc, VALUE* argv, stype_t stype);
154
- static void* interpret_initial_value(VALUE arg, dtype_t dtype);
418
+ static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype);
419
+ static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype);
155
420
  static size_t* interpret_shape(VALUE arg, size_t* dim);
156
- static stype_t interpret_stype(VALUE arg);
421
+ static nm::stype_t interpret_stype(VALUE arg);
157
422
 
158
423
  /* Singleton methods */
159
424
  static VALUE nm_itype_by_shape(VALUE self, VALUE shape_arg);
@@ -197,13 +462,16 @@ void Init_nmatrix() {
197
462
 
198
463
  rb_define_singleton_method(cNMatrix, "upcast", (METHOD)nm_upcast, 2);
199
464
  rb_define_singleton_method(cNMatrix, "itype_by_shape", (METHOD)nm_itype_by_shape, 1);
200
-
465
+
201
466
  //////////////////////
202
467
  // Instance Methods //
203
468
  //////////////////////
204
469
 
205
470
  rb_define_method(cNMatrix, "initialize", (METHOD)nm_init, -1);
206
471
  rb_define_method(cNMatrix, "initialize_copy", (METHOD)nm_init_copy, 1);
472
+ rb_define_singleton_method(cNMatrix, "read", (METHOD)nm_read, -1);
473
+
474
+ rb_define_method(cNMatrix, "write", (METHOD)nm_write, -1);
207
475
 
208
476
  // Technically, the following function is a copy constructor.
209
477
  rb_define_method(cNMatrix, "transpose", (METHOD)nm_init_transposed, 0);
@@ -317,15 +585,15 @@ static VALUE nm_capacity(VALUE self) {
317
585
  VALUE cap;
318
586
 
319
587
  switch(NM_STYPE(self)) {
320
- case YALE_STORE:
588
+ case nm::YALE_STORE:
321
589
  cap = UINT2NUM(((YALE_STORAGE*)(NM_STORAGE(self)))->capacity);
322
590
  break;
323
591
 
324
- case DENSE_STORE:
592
+ case nm::DENSE_STORE:
325
593
  cap = UINT2NUM(nm_storage_count_max_elements( NM_STORAGE_DENSE(self) ));
326
594
  break;
327
595
 
328
- case LIST_STORE:
596
+ case nm::LIST_STORE:
329
597
  cap = UINT2NUM(nm_list_storage_count_elements( NM_STORAGE_LIST(self) ));
330
598
  break;
331
599
 
@@ -375,7 +643,7 @@ static VALUE nm_dtype(VALUE self) {
375
643
  * Get the index data type (dtype) of a matrix. Defined only for yale; others return nil.
376
644
  */
377
645
  static VALUE nm_itype(VALUE self) {
378
- if (NM_STYPE(self) == YALE_STORE) {
646
+ if (NM_STYPE(self) == nm::YALE_STORE) {
379
647
  ID itype = rb_intern(ITYPE_NAMES[NM_ITYPE(self)]);
380
648
  return ID2SYM(itype);
381
649
  }
@@ -391,8 +659,8 @@ static VALUE nm_itype_by_shape(VALUE self, VALUE shape_arg) {
391
659
  size_t dim;
392
660
  size_t* shape = interpret_shape(shape_arg, &dim);
393
661
 
394
- itype_t itype = nm_yale_storage_itype_by_shape(shape);
395
- ID itype_id = rb_intern(ITYPE_NAMES[itype]);
662
+ nm::itype_t itype = nm_yale_storage_itype_by_shape(shape);
663
+ ID itype_id = rb_intern(ITYPE_NAMES[itype]);
396
664
 
397
665
  return ID2SYM(itype_id);
398
666
  }
@@ -405,8 +673,8 @@ static VALUE nm_itype_by_shape(VALUE self, VALUE shape_arg) {
405
673
  */
406
674
  static VALUE nm_upcast(VALUE self, VALUE t1, VALUE t2) {
407
675
 
408
- dtype_t d1 = nm_dtype_from_rbsymbol(t1),
409
- d2 = nm_dtype_from_rbsymbol(t2);
676
+ nm::dtype_t d1 = nm_dtype_from_rbsymbol(t1),
677
+ d2 = nm_dtype_from_rbsymbol(t2);
410
678
 
411
679
  return ID2SYM(rb_intern( DTYPE_NAMES[ Upcast[d1][d2] ] ));
412
680
  }
@@ -453,7 +721,7 @@ static VALUE nm_dense_each_indirect(VALUE nm) {
453
721
  static VALUE nm_dense_each(VALUE nmatrix) {
454
722
  volatile VALUE nm = nmatrix; // Not sure this actually does anything.
455
723
 
456
- if (NM_DTYPE(nm) == RUBYOBJ) {
724
+ if (NM_DTYPE(nm) == nm::RUBYOBJ) {
457
725
 
458
726
  // matrix of Ruby objects -- yield those objects directly
459
727
  return nm_dense_each_direct(nm);
@@ -476,7 +744,7 @@ static VALUE nm_each(VALUE nmatrix) {
476
744
  volatile VALUE nm = nmatrix; // not sure why we do this, but it gets done in ruby's array.c.
477
745
 
478
746
  switch(NM_STYPE(nm)) {
479
- case DENSE_STORE:
747
+ case nm::DENSE_STORE:
480
748
  return nm_dense_each(nm);
481
749
  default:
482
750
  rb_raise(rb_eNotImpError, "only dense matrix's each method works right now");
@@ -508,13 +776,13 @@ static VALUE nm_eqeq(VALUE left, VALUE right) {
508
776
  bool result = false;
509
777
 
510
778
  switch(l->stype) {
511
- case DENSE_STORE:
779
+ case nm::DENSE_STORE:
512
780
  result = nm_dense_storage_eqeq(l->storage, r->storage);
513
781
  break;
514
- case LIST_STORE:
782
+ case nm::LIST_STORE:
515
783
  result = nm_list_storage_eqeq(l->storage, r->storage);
516
784
  break;
517
- case YALE_STORE:
785
+ case nm::YALE_STORE:
518
786
  result = nm_yale_storage_eqeq(l->storage, r->storage);
519
787
  break;
520
788
  }
@@ -558,12 +826,12 @@ static VALUE nm_complex_conjugate_bang(VALUE self) {
558
826
 
559
827
  UnwrapNMatrix(self, m);
560
828
 
561
- if (m->stype == DENSE_STORE) {
829
+ if (m->stype == nm::DENSE_STORE) {
562
830
 
563
831
  size = nm_storage_count_max_elements(NM_STORAGE(self));
564
832
  elem = NM_STORAGE_DENSE(self)->elements;
565
833
 
566
- } else if (m->stype == YALE_STORE) {
834
+ } else if (m->stype == nm::YALE_STORE) {
567
835
 
568
836
  size = nm_yale_storage_get_size(NM_STORAGE_YALE(self));
569
837
  elem = NM_STORAGE_YALE(self)->a;
@@ -573,13 +841,13 @@ static VALUE nm_complex_conjugate_bang(VALUE self) {
573
841
  }
574
842
 
575
843
  // Walk through and negate the imaginary component
576
- if (NM_DTYPE(self) == COMPLEX64) {
844
+ if (NM_DTYPE(self) == nm::COMPLEX64) {
577
845
 
578
846
  for (p = 0; p < size; ++p) {
579
847
  reinterpret_cast<nm::Complex64*>(elem)[p].i = -reinterpret_cast<nm::Complex64*>(elem)[p].i;
580
848
  }
581
849
 
582
- } else if (NM_DTYPE(self) == COMPLEX128) {
850
+ } else if (NM_DTYPE(self) == nm::COMPLEX128) {
583
851
 
584
852
  for (p = 0; p < size; ++p) {
585
853
  reinterpret_cast<nm::Complex128*>(elem)[p].i = -reinterpret_cast<nm::Complex128*>(elem)[p].i;
@@ -597,7 +865,7 @@ static VALUE nm_complex_conjugate_bang(VALUE self) {
597
865
  * Helper function for creating a matrix. You have to create the storage and pass it in, but you don't
598
866
  * need to worry about deleting it.
599
867
  */
600
- NMATRIX* nm_create(stype_t stype, STORAGE* storage) {
868
+ NMATRIX* nm_create(nm::stype_t stype, STORAGE* storage) {
601
869
  NMATRIX* mat = ALLOC(NMATRIX);
602
870
 
603
871
  mat->stype = stype;
@@ -646,11 +914,11 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
646
914
  }
647
915
 
648
916
  /* First, determine stype (dense by default) */
649
- stype_t stype;
917
+ nm::stype_t stype;
650
918
  size_t offset = 0;
651
919
 
652
920
  if (!SYMBOL_P(argv[0]) && TYPE(argv[0]) != T_STRING) {
653
- stype = DENSE_STORE;
921
+ stype = nm::DENSE_STORE;
654
922
 
655
923
  } else {
656
924
  // 0: String or Symbol
@@ -660,7 +928,7 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
660
928
 
661
929
  // If there are 7 arguments and Yale, refer to a different init function with fewer sanity checks.
662
930
  if (argc == 7) {
663
- if (stype == YALE_STORE) {
931
+ if (stype == nm::YALE_STORE) {
664
932
  return nm_init_yale_from_old_yale(argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], nm);
665
933
 
666
934
  } else {
@@ -673,14 +941,14 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
673
941
  size_t* shape = interpret_shape(argv[offset], &dim);
674
942
 
675
943
  // 2-3: dtype
676
- dtype_t dtype = interpret_dtype(argc-1-offset, argv+offset+1, stype);
944
+ nm::dtype_t dtype = interpret_dtype(argc-1-offset, argv+offset+1, stype);
677
945
 
678
946
  size_t init_cap = 0, init_val_len = 0;
679
947
  void* init_val = NULL;
680
948
  if (NM_RUBYVAL_IS_NUMERIC(argv[1+offset]) || TYPE(argv[1+offset]) == T_ARRAY) {
681
949
  // Initial value provided (could also be initial capacity, if yale).
682
950
 
683
- if (stype == YALE_STORE) {
951
+ if (stype == nm::YALE_STORE) {
684
952
  init_cap = FIX2UINT(argv[1+offset]);
685
953
 
686
954
  } else {
@@ -694,12 +962,12 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
694
962
  } else {
695
963
  // DType is RUBYOBJ.
696
964
 
697
- if (stype == DENSE_STORE) {
965
+ if (stype == nm::DENSE_STORE) {
698
966
  /*
699
967
  * No need to initialize dense with any kind of default value unless it's
700
968
  * an RUBYOBJ matrix.
701
969
  */
702
- if (dtype == RUBYOBJ) {
970
+ if (dtype == nm::RUBYOBJ) {
703
971
  // Pretend [nil] was passed for RUBYOBJ.
704
972
  init_val = ALLOC(VALUE);
705
973
  *(VALUE*)init_val = Qnil;
@@ -709,7 +977,7 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
709
977
  } else {
710
978
  init_val = NULL;
711
979
  }
712
- } else if (stype == LIST_STORE) {
980
+ } else if (stype == nm::LIST_STORE) {
713
981
  init_val = ALLOC_N(char, DTYPE_SIZES[dtype]);
714
982
  std::memset(init_val, 0, DTYPE_SIZES[dtype]);
715
983
  }
@@ -722,15 +990,15 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
722
990
  nmatrix->stype = stype;
723
991
 
724
992
  switch (stype) {
725
- case DENSE_STORE:
993
+ case nm::DENSE_STORE:
726
994
  nmatrix->storage = (STORAGE*)nm_dense_storage_create(dtype, shape, dim, init_val, init_val_len);
727
995
  break;
728
996
 
729
- case LIST_STORE:
997
+ case nm::LIST_STORE:
730
998
  nmatrix->storage = (STORAGE*)nm_list_storage_create(dtype, shape, dim, init_val);
731
999
  break;
732
1000
 
733
- case YALE_STORE:
1001
+ case nm::YALE_STORE:
734
1002
  nmatrix->storage = (STORAGE*)nm_yale_storage_create(dtype, shape, dim, init_cap);
735
1003
  nm_yale_storage_init((YALE_STORAGE*)(nmatrix->storage));
736
1004
  break;
@@ -746,7 +1014,7 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
746
1014
  * Currently only works for list storage.
747
1015
  */
748
1016
  static VALUE nm_to_hash(VALUE self) {
749
- if (NM_STYPE(self) != LIST_STORE) {
1017
+ if (NM_STYPE(self) != nm::LIST_STORE) {
750
1018
  rb_raise(rb_eNotImpError, "please cast to :list first");
751
1019
  }
752
1020
 
@@ -758,8 +1026,8 @@ static VALUE nm_to_hash(VALUE self) {
758
1026
  * Copy constructor for changing dtypes and stypes.
759
1027
  */
760
1028
  static VALUE nm_init_cast_copy(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol) {
761
- dtype_t new_dtype = nm_dtype_from_rbsymbol(new_dtype_symbol);
762
- stype_t new_stype = nm_stype_from_rbsymbol(new_stype_symbol);
1029
+ nm::dtype_t new_dtype = nm_dtype_from_rbsymbol(new_dtype_symbol);
1030
+ nm::stype_t new_stype = nm_stype_from_rbsymbol(new_stype_symbol);
763
1031
 
764
1032
  CheckNMatrixType(self);
765
1033
 
@@ -822,6 +1090,278 @@ static VALUE nm_init_copy(VALUE copy, VALUE original) {
822
1090
  }
823
1091
 
824
1092
 
1093
+ /*
1094
+ * Get major, minor, and release components of NMatrix::VERSION. Store in function parameters.
1095
+ */
1096
+ static void get_version_info(uint16_t& major, uint16_t& minor, uint16_t& release) {
1097
+ // Get VERSION and split it on periods. Result is an Array.
1098
+ VALUE version = rb_funcall(rb_const_get(cNMatrix, rb_intern("VERSION")), rb_intern("split"), 1, rb_str_new_cstr("."));
1099
+ VALUE* ary = RARRAY_PTR(version); // major, minor, and release
1100
+
1101
+ // Convert each to an integer
1102
+ VALUE maj = rb_funcall(ary[0], rb_intern("to_i"), 0);
1103
+ VALUE min = rb_funcall(ary[1], rb_intern("to_i"), 0);
1104
+ VALUE rel = rb_funcall(ary[2], rb_intern("to_i"), 0);
1105
+
1106
+ major = static_cast<uint16_t>(nm::RubyObject(maj));
1107
+ minor = static_cast<uint16_t>(nm::RubyObject(min));
1108
+ release = static_cast<uint16_t>(nm::RubyObject(rel));
1109
+ }
1110
+
1111
+
1112
+ /*
1113
+ * Interpret the NMatrix::write symmetry argument (which should be nil or a symbol). Return a symm_t (enum).
1114
+ */
1115
+ static nm::symm_t interpret_symm(VALUE symm) {
1116
+ if (symm == Qnil) return nm::NONSYMM;
1117
+
1118
+ ID rb_symm = rb_intern("symmetric"),
1119
+ rb_skew = rb_intern("skew"),
1120
+ rb_herm = rb_intern("hermitian");
1121
+ // nm_rb_upper, nm_rb_lower already set
1122
+
1123
+ ID symm_id = rb_to_id(symm);
1124
+
1125
+ if (symm_id == rb_symm) return nm::SYMM;
1126
+ else if (symm_id == rb_skew) return nm::SKEW;
1127
+ else if (symm_id == rb_herm) return nm::HERM;
1128
+ else if (symm_id == nm_rb_upper) return nm::UPPER;
1129
+ else if (symm_id == nm_rb_lower) return nm::LOWER;
1130
+ else rb_raise(rb_eArgError, "unrecognized symmetry argument");
1131
+
1132
+ return nm::NONSYMM;
1133
+ }
1134
+
1135
+
1136
+
1137
+ void read_padded_shape(std::ifstream& f, size_t dim, size_t* shape, nm::itype_t itype) {
1138
+ NAMED_ITYPE_TEMPLATE_TABLE(ttable, nm::read_padded_shape, void, std::ifstream&, size_t, size_t*)
1139
+
1140
+ ttable[itype](f, dim, shape);
1141
+ }
1142
+
1143
+
1144
+ void write_padded_shape(std::ofstream& f, size_t dim, size_t* shape, nm::itype_t itype) {
1145
+ NAMED_ITYPE_TEMPLATE_TABLE(ttable, nm::write_padded_shape, void, std::ofstream&, size_t, size_t*)
1146
+
1147
+ ttable[itype](f, dim, shape);
1148
+ }
1149
+
1150
+
1151
+ void read_padded_yale_elements(std::ifstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype, nm::itype_t itype) {
1152
+ NAMED_LI_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_yale_elements, void, std::ifstream&, YALE_STORAGE*, size_t, nm::symm_t)
1153
+
1154
+ ttable[dtype][itype](f, storage, length, symm);
1155
+ }
1156
+
1157
+
1158
+ void write_padded_yale_elements(std::ofstream& f, YALE_STORAGE* storage, size_t length, nm::symm_t symm, nm::dtype_t dtype, nm::itype_t itype) {
1159
+ NAMED_LI_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_yale_elements, void, std::ofstream& f, YALE_STORAGE*, size_t, nm::symm_t)
1160
+
1161
+ ttable[dtype][itype](f, storage, length, symm);
1162
+ }
1163
+
1164
+
1165
+ void read_padded_dense_elements(std::ifstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
1166
+ NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::read_padded_dense_elements, void, std::ifstream&, DENSE_STORAGE*, nm::symm_t)
1167
+
1168
+ ttable[dtype](f, storage, symm);
1169
+ }
1170
+
1171
+
1172
+ void write_padded_dense_elements(std::ofstream& f, DENSE_STORAGE* storage, nm::symm_t symm, nm::dtype_t dtype) {
1173
+ NAMED_DTYPE_TEMPLATE_TABLE_NO_ROBJ(ttable, nm::write_padded_dense_elements, void, std::ofstream& f, DENSE_STORAGE*, nm::symm_t)
1174
+
1175
+ ttable[dtype](f, storage, symm);
1176
+ }
1177
+
1178
+
1179
+
1180
+ /*
1181
+ * Binary file writer for NMatrix standard format. file should be a path, which we aren't going to
1182
+ * check very carefully (in other words, this function should generally be called from a Ruby
1183
+ * helper method). Function also takes a symmetry argument, which allows us to specify that we only want to
1184
+ * save the upper triangular portion of the matrix (or if the matrix is a lower triangular matrix, only
1185
+ * the lower triangular portion). nil means regular storage.
1186
+ */
1187
+ static VALUE nm_write(int argc, VALUE* argv, VALUE self) {
1188
+ using std::ofstream;
1189
+
1190
+ if (argc < 1 || argc > 2) {
1191
+ rb_raise(rb_eArgError, "Expected one or two arguments");
1192
+ }
1193
+ VALUE file = argv[0],
1194
+ symm = argc == 1 ? Qnil : argv[1];
1195
+
1196
+ NMATRIX* nmatrix;
1197
+ UnwrapNMatrix( self, nmatrix );
1198
+
1199
+ nm::symm_t symm_ = interpret_symm(symm);
1200
+ nm::itype_t itype = (nmatrix->stype == nm::YALE_STORE) ? reinterpret_cast<YALE_STORAGE*>(nmatrix->storage)->itype : nm::UINT32;
1201
+
1202
+ if (nmatrix->storage->dtype == nm::RUBYOBJ) {
1203
+ rb_raise(rb_eNotImpError, "Ruby Object writing is not implemented yet");
1204
+ }
1205
+
1206
+ // Get the dtype, stype, itype, and symm and ensure they're the correct number of bytes.
1207
+ uint8_t st = static_cast<uint8_t>(nmatrix->stype),
1208
+ dt = static_cast<uint8_t>(nmatrix->storage->dtype),
1209
+ sm = static_cast<uint8_t>(symm_),
1210
+ it = static_cast<uint8_t>(itype);
1211
+ uint16_t dim = nmatrix->storage->dim;
1212
+
1213
+ // Check arguments before starting to write.
1214
+ if (nmatrix->stype == nm::LIST_STORE) rb_raise(nm_eStorageTypeError, "cannot save list matrix; cast to yale or dense first");
1215
+ if (symm_ != nm::NONSYMM) {
1216
+ if (dim != 2) rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-2D matrix");
1217
+ if (nmatrix->storage->shape[0] != nmatrix->storage->shape[1])
1218
+ rb_raise(rb_eArgError, "symmetry/triangularity not defined for a non-square matrix");
1219
+ if (symm_ == nm::HERM &&
1220
+ dt != static_cast<uint8_t>(nm::COMPLEX64) && dt != static_cast<uint8_t>(nm::COMPLEX128) && dt != static_cast<uint8_t>(nm::RUBYOBJ))
1221
+ rb_raise(rb_eArgError, "cannot save a non-complex matrix as hermitian");
1222
+ }
1223
+
1224
+ ofstream f(RSTRING_PTR(file), std::ios::out | std::ios::binary);
1225
+
1226
+ // Get the NMatrix version information.
1227
+ uint16_t major, minor, release, null16 = 0;
1228
+ get_version_info(major, minor, release);
1229
+
1230
+ // WRITE FIRST 64-BIT BLOCK
1231
+ f.write(reinterpret_cast<const char*>(&major), sizeof(uint16_t));
1232
+ f.write(reinterpret_cast<const char*>(&minor), sizeof(uint16_t));
1233
+ f.write(reinterpret_cast<const char*>(&release), sizeof(uint16_t));
1234
+ f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
1235
+
1236
+ // WRITE SECOND 64-BIT BLOCK
1237
+ f.write(reinterpret_cast<const char*>(&dt), sizeof(uint8_t));
1238
+ f.write(reinterpret_cast<const char*>(&st), sizeof(uint8_t));
1239
+ f.write(reinterpret_cast<const char*>(&it), sizeof(uint8_t));
1240
+ f.write(reinterpret_cast<const char*>(&sm), sizeof(uint8_t));
1241
+ f.write(reinterpret_cast<const char*>(&null16), sizeof(uint16_t));
1242
+ f.write(reinterpret_cast<const char*>(&dim), sizeof(uint16_t));
1243
+
1244
+ // Write shape (in 64-bit blocks)
1245
+ write_padded_shape(f, nmatrix->storage->dim, nmatrix->storage->shape, itype);
1246
+
1247
+ if (nmatrix->stype == nm::DENSE_STORE) {
1248
+ write_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(nmatrix->storage), symm_, nmatrix->storage->dtype);
1249
+ } else if (nmatrix->stype == nm::YALE_STORE) {
1250
+ YALE_STORAGE* s = reinterpret_cast<YALE_STORAGE*>(nmatrix->storage);
1251
+ uint32_t ndnz = s->ndnz,
1252
+ length = nm_yale_storage_get_size(s);
1253
+ f.write(reinterpret_cast<const char*>(&ndnz), sizeof(uint32_t));
1254
+ f.write(reinterpret_cast<const char*>(&length), sizeof(uint32_t));
1255
+
1256
+ write_padded_yale_elements(f, s, length, symm_, s->dtype, itype);
1257
+ }
1258
+
1259
+ f.close();
1260
+
1261
+ return Qtrue;
1262
+ }
1263
+
1264
+
1265
+ /*
1266
+ * Binary file reader for NMatrix standard format. file should be a path, which we aren't going to
1267
+ * check very carefully (in other words, this function should generally be called from a Ruby
1268
+ * helper method).
1269
+ *
1270
+ * Note that currently, this function will by default refuse to read files that are newer than
1271
+ * your version of NMatrix. To force an override, set the second argument to anything other than nil.
1272
+ *
1273
+ * Returns an NMatrix Ruby object.
1274
+ */
1275
+ static VALUE nm_read(int argc, VALUE* argv, VALUE self) {
1276
+ using std::ifstream;
1277
+
1278
+ // Read the arguments
1279
+ if (argc < 1 || argc > 2) {
1280
+ rb_raise(rb_eArgError, "expected one or two arguments");
1281
+ }
1282
+ VALUE file = argv[0];
1283
+ bool force = argc == 1 ? false : argv[1];
1284
+
1285
+ // Open a file stream
1286
+ ifstream f(RSTRING_PTR(file), std::ios::in | std::ios::binary);
1287
+
1288
+ uint16_t major, minor, release;
1289
+ get_version_info(major, minor, release); // compare to NMatrix version
1290
+
1291
+ uint16_t fmajor, fminor, frelease, null16;
1292
+
1293
+ // READ FIRST 64-BIT BLOCK
1294
+ f.read(reinterpret_cast<char*>(&fmajor), sizeof(uint16_t));
1295
+ f.read(reinterpret_cast<char*>(&fminor), sizeof(uint16_t));
1296
+ f.read(reinterpret_cast<char*>(&frelease), sizeof(uint16_t));
1297
+ f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
1298
+
1299
+ int ver = major * 10000 + minor * 100 + release,
1300
+ fver = fmajor * 10000 + fminor * 100 + release;
1301
+ if (fver > ver && force == false) {
1302
+ rb_raise(rb_eIOError, "File was created in newer version of NMatrix than current");
1303
+ }
1304
+ if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
1305
+
1306
+ uint8_t dt, st, it, sm;
1307
+ uint16_t dim;
1308
+
1309
+ // READ SECOND 64-BIT BLOCK
1310
+ f.read(reinterpret_cast<char*>(&dt), sizeof(uint8_t));
1311
+ f.read(reinterpret_cast<char*>(&st), sizeof(uint8_t));
1312
+ f.read(reinterpret_cast<char*>(&it), sizeof(uint8_t));
1313
+ f.read(reinterpret_cast<char*>(&sm), sizeof(uint8_t));
1314
+ f.read(reinterpret_cast<char*>(&null16), sizeof(uint16_t));
1315
+ f.read(reinterpret_cast<char*>(&dim), sizeof(uint16_t));
1316
+
1317
+ if (null16 != 0) fprintf(stderr, "Warning: Expected zero padding was not zero\n");
1318
+ nm::stype_t stype = static_cast<nm::stype_t>(st);
1319
+ nm::dtype_t dtype = static_cast<nm::dtype_t>(dt);
1320
+ nm::symm_t symm = static_cast<nm::symm_t>(sm);
1321
+ nm::itype_t itype = static_cast<nm::itype_t>(it);
1322
+
1323
+ // READ NEXT FEW 64-BIT BLOCKS
1324
+ size_t* shape = ALLOC_N(size_t, dim);
1325
+ read_padded_shape(f, dim, shape, itype);
1326
+
1327
+ VALUE klass = dim == 1 ? cNVector : cNMatrix;
1328
+
1329
+ STORAGE* s;
1330
+ if (stype == nm::DENSE_STORE) {
1331
+ s = nm_dense_storage_create(dtype, shape, dim, NULL, 0);
1332
+
1333
+ read_padded_dense_elements(f, reinterpret_cast<DENSE_STORAGE*>(s), symm, dtype);
1334
+
1335
+ } else if (stype == nm::YALE_STORE) {
1336
+ uint32_t ndnz, length;
1337
+
1338
+ // READ YALE-SPECIFIC 64-BIT BLOCK
1339
+ f.read(reinterpret_cast<char*>(&ndnz), sizeof(uint32_t));
1340
+ f.read(reinterpret_cast<char*>(&length), sizeof(uint32_t));
1341
+
1342
+ s = nm_yale_storage_create(dtype, shape, dim, length); // set length as init capacity
1343
+
1344
+ read_padded_yale_elements(f, reinterpret_cast<YALE_STORAGE*>(s), length, symm, dtype, itype);
1345
+ } else {
1346
+ rb_raise(nm_eStorageTypeError, "please convert to yale or dense before saving");
1347
+ }
1348
+
1349
+ NMATRIX* nm = nm_create(stype, s);
1350
+
1351
+ // Return the appropriate matrix object (Ruby VALUE)
1352
+ switch(stype) {
1353
+ case nm::DENSE_STORE:
1354
+ return Data_Wrap_Struct(klass, nm_dense_storage_mark, nm_delete, nm);
1355
+ case nm::YALE_STORE:
1356
+ return Data_Wrap_Struct(cNMatrix, nm_yale_storage_mark, nm_delete, nm);
1357
+ default:
1358
+ return Qnil;
1359
+ }
1360
+
1361
+ }
1362
+
1363
+
1364
+
825
1365
  /*
826
1366
  * Create a new NMatrix helper for handling internal ia, ja, and a arguments.
827
1367
  *
@@ -831,16 +1371,16 @@ static VALUE nm_init_copy(VALUE copy, VALUE original) {
831
1371
  static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALUE ja, VALUE a, VALUE from_dtype, VALUE nm) {
832
1372
  size_t dim = 2;
833
1373
  size_t* shape_ = interpret_shape(shape, &dim);
834
- dtype_t dtype_ = nm_dtype_from_rbsymbol(dtype);
1374
+ nm::dtype_t dtype_ = nm_dtype_from_rbsymbol(dtype);
835
1375
  char *ia_ = RSTRING_PTR(ia),
836
1376
  *ja_ = RSTRING_PTR(ja),
837
1377
  *a_ = RSTRING_PTR(a);
838
- dtype_t from_dtype_ = nm_dtype_from_rbsymbol(from_dtype);
1378
+ nm::dtype_t from_dtype_ = nm_dtype_from_rbsymbol(from_dtype);
839
1379
  NMATRIX* nmatrix;
840
1380
 
841
1381
  UnwrapNMatrix( nm, nmatrix );
842
1382
 
843
- nmatrix->stype = YALE_STORE;
1383
+ nmatrix->stype = nm::YALE_STORE;
844
1384
  nmatrix->storage = (STORAGE*)nm_yale_storage_create_from_old_yale(dtype_, shape_, ia_, ja_, a_, from_dtype_);
845
1385
 
846
1386
  return nm;
@@ -851,11 +1391,11 @@ static VALUE nm_init_yale_from_old_yale(VALUE shape, VALUE dtype, VALUE ia, VALU
851
1391
  */
852
1392
  static VALUE nm_is_ref(VALUE self) {
853
1393
  // Refs only allowed for dense and list matrices.
854
- if (NM_STYPE(self) == DENSE_STORE) {
1394
+ if (NM_STYPE(self) == nm::DENSE_STORE) {
855
1395
  return (NM_DENSE_SRC(self) == NM_STORAGE(self)) ? Qfalse : Qtrue;
856
1396
  }
857
1397
 
858
- if (NM_STYPE(self) == LIST_STORE) {
1398
+ if (NM_STYPE(self) == nm::LIST_STORE) {
859
1399
  return (NM_LIST_SRC(self) == NM_STORAGE(self)) ? Qfalse : Qtrue;
860
1400
  }
861
1401
 
@@ -921,10 +1461,10 @@ static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
921
1461
  // FIXME: Can't use a function pointer table here currently because these functions have different
922
1462
  // signatures (namely the return type).
923
1463
  switch(NM_STYPE(self)) {
924
- case DENSE_STORE:
1464
+ case nm::DENSE_STORE:
925
1465
  nm_dense_storage_set(NM_STORAGE(self), slice, value);
926
1466
  break;
927
- case LIST_STORE:
1467
+ case nm::LIST_STORE:
928
1468
  // Remove if it's a zero, insert otherwise
929
1469
  if (!std::memcmp(value, NM_STORAGE_LIST(self)->default_val, DTYPE_SIZES[NM_DTYPE(self)])) {
930
1470
  free(value);
@@ -934,7 +1474,7 @@ static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
934
1474
  nm_list_storage_insert(NM_STORAGE(self), slice, value);
935
1475
  }
936
1476
  break;
937
- case YALE_STORE:
1477
+ case nm::YALE_STORE:
938
1478
  nm_yale_storage_set(NM_STORAGE(self), slice, value);
939
1479
  break;
940
1480
  }
@@ -988,6 +1528,8 @@ static VALUE nm_multiply(VALUE left_v, VALUE right_v) {
988
1528
  return Qnil;
989
1529
  }
990
1530
 
1531
+
1532
+
991
1533
  /*
992
1534
  * LU factorization of a matrix.
993
1535
  *
@@ -995,7 +1537,7 @@ static VALUE nm_multiply(VALUE left_v, VALUE right_v) {
995
1537
  * FIXME: result again. Ideally, this would be an in-place factorize instead, and would be called nm_factorize_lu_bang.
996
1538
  */
997
1539
  static VALUE nm_factorize_lu(VALUE self) {
998
- if (NM_STYPE(self) != DENSE_STORE) {
1540
+ if (NM_STYPE(self) != nm::DENSE_STORE) {
999
1541
  rb_raise(rb_eNotImpError, "only implemented for dense storage");
1000
1542
  }
1001
1543
 
@@ -1089,8 +1631,8 @@ static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(STORAGE*, SLIC
1089
1631
  nm_yale_storage_ref
1090
1632
  };
1091
1633
 
1092
- if (NM_DTYPE(self) == RUBYOBJ) result = *reinterpret_cast<VALUE*>( ttable[NM_STYPE(self)](NM_STORAGE(self), slice) );
1093
- else result = rubyobj_from_cval( ttable[NM_STYPE(self)](NM_STORAGE(self), slice), NM_DTYPE(self) ).rval;
1634
+ if (NM_DTYPE(self) == nm::RUBYOBJ) result = *reinterpret_cast<VALUE*>( ttable[NM_STYPE(self)](NM_STORAGE(self), slice) );
1635
+ else result = rubyobj_from_cval( ttable[NM_STYPE(self)](NM_STORAGE(self), slice), NM_DTYPE(self) ).rval;
1094
1636
 
1095
1637
  } else {
1096
1638
  STYPE_MARK_TABLE(mark_table);
@@ -1119,54 +1661,64 @@ static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(STORAGE*, SLIC
1119
1661
  static VALUE elementwise_op(nm::ewop_t op, VALUE left_val, VALUE right_val) {
1120
1662
  STYPE_MARK_TABLE(mark);
1121
1663
 
1122
- static STORAGE* (*ew_op[nm::NUM_STYPES])(nm::ewop_t, const STORAGE*, const STORAGE*) = {
1664
+ static STORAGE* (*ew_op[nm::NUM_STYPES])(nm::ewop_t, const STORAGE*, const STORAGE*, VALUE scalar) = {
1123
1665
  nm_dense_storage_ew_op,
1124
1666
  nm_list_storage_ew_op,
1125
1667
  nm_yale_storage_ew_op
1126
1668
  // NULL
1127
1669
  };
1128
1670
 
1129
- NMATRIX* result = ALLOC(NMATRIX);
1671
+ NMATRIX *result = ALLOC(NMATRIX), *left;
1130
1672
 
1131
1673
  CheckNMatrixType(left_val);
1132
- CheckNMatrixType(right_val);
1674
+ UnwrapNMatrix(left_val, left);
1133
1675
 
1134
- // Check that the left- and right-hand sides have the same dimensionality.
1135
- if (NM_DIM(left_val) != NM_DIM(right_val)) {
1136
- rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same dimensionality.");
1137
- }
1138
-
1139
- // Check that the left- and right-hand sides have the same shape.
1140
- if (memcmp(&NM_SHAPE(left_val, 0), &NM_SHAPE(right_val, 0), sizeof(size_t) * NM_DIM(left_val)) != 0) {
1141
- rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same shape.");
1142
- }
1676
+ if (TYPE(right_val) != T_DATA || (RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete && RDATA(right_val)->dfree != (RUBY_DATA_FUNC)nm_delete_ref)) {
1677
+ // This is a matrix-scalar element-wise operation.
1143
1678
 
1144
- NMATRIX* left, * right;
1145
- UnwrapNMatrix(left_val, left);
1146
- UnwrapNMatrix(right_val, right);
1679
+ if (left->stype != nm::YALE_STORE) {
1680
+ result->storage = ew_op[left->stype](op, reinterpret_cast<STORAGE*>(left->storage), NULL, right_val);
1681
+ result->stype = left->stype;
1682
+ } else {
1683
+ rb_raise(rb_eNotImpError, "Scalar element-wise operations not implemented for Yale storage yet");
1684
+ }
1685
+
1686
+ } else {
1687
+
1688
+ // Check that the left- and right-hand sides have the same dimensionality.
1689
+ if (NM_DIM(left_val) != NM_DIM(right_val)) {
1690
+ rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same dimensionality.");
1691
+ }
1692
+
1693
+ // Check that the left- and right-hand sides have the same shape.
1694
+ if (memcmp(&NM_SHAPE(left_val, 0), &NM_SHAPE(right_val, 0), sizeof(size_t) * NM_DIM(left_val)) != 0) {
1695
+ rb_raise(rb_eArgError, "The left- and right-hand sides of the operation must have the same shape.");
1696
+ }
1697
+
1698
+ NMATRIX* right;
1699
+ UnwrapNMatrix(right_val, right);
1147
1700
 
1148
- if (left->stype == right->stype) {
1149
-
1150
- if (ew_op[left->stype] == NULL) {
1151
- rb_raise(rb_eArgError, "Element-wise operations are not currently supported for this data type.");
1152
- }
1153
-
1154
- result->storage = ew_op[left->stype](op, reinterpret_cast<STORAGE*>(left->storage), reinterpret_cast<STORAGE*>(right->storage));
1155
- result->stype = left->stype;
1156
-
1157
- } else {
1158
- rb_raise(rb_eArgError, "Element-wise operations are not currently supported between matrices with differing stypes.");
1159
- }
1701
+ if (left->stype == right->stype) {
1702
+
1703
+ result->storage = ew_op[left->stype](op, reinterpret_cast<STORAGE*>(left->storage), reinterpret_cast<STORAGE*>(right->storage), Qnil);
1704
+ result->stype = left->stype;
1705
+
1706
+ } else {
1707
+ rb_raise(rb_eArgError, "Element-wise operations are not currently supported between matrices with differing stypes.");
1708
+ }
1709
+ }
1160
1710
 
1161
1711
  return Data_Wrap_Struct(cNMatrix, mark[result->stype], nm_delete, result);
1162
1712
  }
1163
1713
 
1714
+
1715
+
1164
1716
  /*
1165
1717
  * Check to determine whether matrix is a reference to another matrix.
1166
1718
  */
1167
1719
  bool is_ref(const NMATRIX* matrix) {
1168
1720
  // FIXME: Needs to work for other types
1169
- if (matrix->stype != DENSE_STORE) {
1721
+ if (matrix->stype != nm::DENSE_STORE) {
1170
1722
  return false;
1171
1723
  }
1172
1724
 
@@ -1181,7 +1733,7 @@ static VALUE is_symmetric(VALUE self, bool hermitian) {
1181
1733
  UnwrapNMatrix(self, m);
1182
1734
 
1183
1735
  if (m->storage->shape[0] == m->storage->shape[1] and m->storage->dim == 2) {
1184
- if (NM_STYPE(self) == DENSE_STORE) {
1736
+ if (NM_STYPE(self) == nm::DENSE_STORE) {
1185
1737
  if (hermitian) {
1186
1738
  nm_dense_storage_is_hermitian((DENSE_STORAGE*)(m->storage), m->storage->shape[0]);
1187
1739
 
@@ -1209,15 +1761,15 @@ static VALUE is_symmetric(VALUE self, bool hermitian) {
1209
1761
  *
1210
1762
  * TODO: Probably needs some work for Bignum.
1211
1763
  */
1212
- static dtype_t dtype_guess(VALUE v) {
1764
+ nm::dtype_t nm_dtype_guess(VALUE v) {
1213
1765
  switch(TYPE(v)) {
1214
1766
  case T_TRUE:
1215
1767
  case T_FALSE:
1216
- return BYTE;
1768
+ return nm::BYTE;
1217
1769
 
1218
1770
  case T_STRING:
1219
1771
  if (RSTRING_LEN(v) == 1) {
1220
- return BYTE;
1772
+ return nm::BYTE;
1221
1773
 
1222
1774
  } else {
1223
1775
  rb_raise(rb_eArgError, "Strings of length > 1 may not be stored in a matrix.");
@@ -1225,45 +1777,45 @@ static dtype_t dtype_guess(VALUE v) {
1225
1777
 
1226
1778
  #if SIZEOF_INT == 8
1227
1779
  case T_FIXNUM:
1228
- return INT64;
1780
+ return nm::INT64;
1229
1781
 
1230
1782
  case T_RATIONAL:
1231
- return RATIONAL128;
1783
+ return nm::RATIONAL128;
1232
1784
 
1233
1785
  #else
1234
1786
  # if SIZEOF_INT == 4
1235
1787
  case T_FIXNUM:
1236
- return INT32;
1788
+ return nm::INT32;
1237
1789
 
1238
1790
  case T_RATIONAL:
1239
- return RATIONAL64;
1791
+ return nm::RATIONAL64;
1240
1792
 
1241
1793
  #else
1242
1794
  case T_FIXNUM:
1243
- return INT16;
1795
+ return nm::INT16;
1244
1796
 
1245
1797
  case T_RATIONAL:
1246
- return RATIONAL32;
1798
+ return nm::RATIONAL32;
1247
1799
  # endif
1248
1800
  #endif
1249
1801
 
1250
1802
  case T_BIGNUM:
1251
- return INT64;
1803
+ return nm::INT64;
1252
1804
 
1253
1805
  #if SIZEOF_FLOAT == 4
1254
1806
  case T_COMPLEX:
1255
- return COMPLEX128;
1807
+ return nm::COMPLEX128;
1256
1808
 
1257
1809
  case T_FLOAT:
1258
- return FLOAT64;
1810
+ return nm::FLOAT64;
1259
1811
 
1260
1812
  #else
1261
1813
  # if SIZEOF_FLOAT == 2
1262
1814
  case T_COMPLEX:
1263
- return COMPLEX64;
1815
+ return nm::COMPLEX64;
1264
1816
 
1265
1817
  case T_FLOAT:
1266
- return FLOAT32;
1818
+ return nm::FLOAT32;
1267
1819
  # endif
1268
1820
  #endif
1269
1821
 
@@ -1274,7 +1826,7 @@ static dtype_t dtype_guess(VALUE v) {
1274
1826
  * TODO: Look at entire array for most specific type.
1275
1827
  */
1276
1828
 
1277
- return dtype_guess(RARRAY_PTR(v)[0]);
1829
+ return nm_dtype_guess(RARRAY_PTR(v)[0]);
1278
1830
 
1279
1831
  case T_NIL:
1280
1832
  default:
@@ -1343,7 +1895,7 @@ static double get_time(void) {
1343
1895
  * initial or dtype. If 2, is initial and dtype. This function returns the
1344
1896
  * dtype.
1345
1897
  */
1346
- static dtype_t interpret_dtype(int argc, VALUE* argv, stype_t stype) {
1898
+ static nm::dtype_t interpret_dtype(int argc, VALUE* argv, nm::stype_t stype) {
1347
1899
  int offset;
1348
1900
 
1349
1901
  switch (argc) {
@@ -1366,18 +1918,18 @@ static dtype_t interpret_dtype(int argc, VALUE* argv, stype_t stype) {
1366
1918
  } else if (TYPE(argv[offset]) == T_STRING) {
1367
1919
  return nm_dtype_from_rbstring(StringValue(argv[offset]));
1368
1920
 
1369
- } else if (stype == YALE_STORE) {
1921
+ } else if (stype == nm::YALE_STORE) {
1370
1922
  rb_raise(rb_eArgError, "Yale storage class requires a dtype.");
1371
1923
 
1372
1924
  } else {
1373
- return dtype_guess(argv[0]);
1925
+ return nm_dtype_guess(argv[0]);
1374
1926
  }
1375
1927
  }
1376
1928
 
1377
1929
  /*
1378
1930
  * Convert an Ruby value or an array of Ruby values into initial C values.
1379
1931
  */
1380
- static void* interpret_initial_value(VALUE arg, dtype_t dtype) {
1932
+ static void* interpret_initial_value(VALUE arg, nm::dtype_t dtype) {
1381
1933
  unsigned int index;
1382
1934
  void* init_val;
1383
1935
 
@@ -1432,7 +1984,7 @@ static size_t* interpret_shape(VALUE arg, size_t* dim) {
1432
1984
  /*
1433
1985
  * Convert a Ruby symbol or string into an storage type.
1434
1986
  */
1435
- static stype_t interpret_stype(VALUE arg) {
1987
+ static nm::stype_t interpret_stype(VALUE arg) {
1436
1988
  if (SYMBOL_P(arg)) {
1437
1989
  return nm_stype_from_rbsymbol(arg);
1438
1990
 
@@ -1450,7 +2002,7 @@ static stype_t interpret_stype(VALUE arg) {
1450
2002
  //////////////////
1451
2003
 
1452
2004
 
1453
- STORAGE* matrix_storage_cast_alloc(NMATRIX* matrix, dtype_t new_dtype) {
2005
+ STORAGE* matrix_storage_cast_alloc(NMATRIX* matrix, nm::dtype_t new_dtype) {
1454
2006
  if (matrix->storage->dtype == new_dtype && !is_ref(matrix))
1455
2007
  return matrix->storage;
1456
2008
 
@@ -1461,7 +2013,7 @@ STORAGE* matrix_storage_cast_alloc(NMATRIX* matrix, dtype_t new_dtype) {
1461
2013
 
1462
2014
  STORAGE_PAIR binary_storage_cast_alloc(NMATRIX* left_matrix, NMATRIX* right_matrix) {
1463
2015
  STORAGE_PAIR casted;
1464
- dtype_t new_dtype = Upcast[left_matrix->storage->dtype][right_matrix->storage->dtype];
2016
+ nm::dtype_t new_dtype = Upcast[left_matrix->storage->dtype][right_matrix->storage->dtype];
1465
2017
 
1466
2018
  casted.left = matrix_storage_cast_alloc(left_matrix, new_dtype);
1467
2019
  casted.right = matrix_storage_cast_alloc(right_matrix, new_dtype);
@@ -1530,7 +2082,7 @@ static VALUE matrix_multiply(NMATRIX* left, NMATRIX* right) {
1530
2082
  * Note: Currently only implemented for 2x2 and 3x3 matrices.
1531
2083
  */
1532
2084
  static VALUE nm_det_exact(VALUE self) {
1533
- if (NM_STYPE(self) != DENSE_STORE) rb_raise(nm_eStorageTypeError, "can only calculate exact determinant for dense matrices");
2085
+ if (NM_STYPE(self) != nm::DENSE_STORE) rb_raise(nm_eStorageTypeError, "can only calculate exact determinant for dense matrices");
1534
2086
 
1535
2087
  if (NM_DIM(self) != 2 || NM_SHAPE0(self) != NM_SHAPE1(self)) return Qnil;
1536
2088
 
@@ -1558,7 +2110,7 @@ static VALUE nm_det_exact(VALUE self) {
1558
2110
  *
1559
2111
  * TODO: Add a column-major option for libraries that use column-major matrices.
1560
2112
  */
1561
- VALUE rb_nmatrix_dense_create(dtype_t dtype, size_t* shape, size_t dim, void* elements, size_t length) {
2113
+ VALUE rb_nmatrix_dense_create(nm::dtype_t dtype, size_t* shape, size_t dim, void* elements, size_t length) {
1562
2114
  NMATRIX* nm;
1563
2115
  VALUE klass;
1564
2116
  size_t nm_dim;
@@ -1584,7 +2136,7 @@ VALUE rb_nmatrix_dense_create(dtype_t dtype, size_t* shape, size_t dim, void* el
1584
2136
  memcpy(elements_copy, elements, DTYPE_SIZES[dtype]*length);
1585
2137
 
1586
2138
  // allocate and create the matrix and its storage
1587
- nm = nm_create(DENSE_STORE, nm_dense_storage_create(dtype, shape_copy, dim, elements_copy, length));
2139
+ nm = nm_create(nm::DENSE_STORE, nm_dense_storage_create(dtype, shape_copy, dim, elements_copy, length));
1588
2140
 
1589
2141
  // tell Ruby about the matrix and its storage, particularly how to garbage collect it.
1590
2142
  return Data_Wrap_Struct(klass, nm_dense_storage_mark, nm_dense_storage_delete, nm);
@@ -1600,7 +2152,7 @@ VALUE rb_nmatrix_dense_create(dtype_t dtype, size_t* shape, size_t dim, void* el
1600
2152
  *
1601
2153
  * TODO: Add a transpose option for setting the orientation of the vector?
1602
2154
  */
1603
- VALUE rb_nvector_dense_create(dtype_t dtype, void* elements, size_t length) {
2155
+ VALUE rb_nvector_dense_create(nm::dtype_t dtype, void* elements, size_t length) {
1604
2156
  size_t dim = 1, shape = length;
1605
2157
  return rb_nmatrix_dense_create(dtype, &shape, dim, elements, length);
1606
2158
  }