miga-base 1.2.17.0 → 1.2.17.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (265) hide show
  1. checksums.yaml +4 -4
  2. data/lib/miga/version.rb +2 -2
  3. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Archaea_SCG.hmm +41964 -0
  4. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Bacteria_SCG.hmm +32439 -0
  5. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm +62056 -0
  6. data/utils/FastAAI/FastAAI +3659 -0
  7. data/utils/FastAAI/FastAAI-legacy/FastAAI +1336 -0
  8. data/utils/FastAAI/FastAAI-legacy/kAAI_v1.0_virus.py +1296 -0
  9. data/utils/FastAAI/README.md +84 -0
  10. data/utils/enveomics/Docs/recplot2.md +244 -0
  11. data/utils/enveomics/Examples/aai-matrix.bash +66 -0
  12. data/utils/enveomics/Examples/ani-matrix.bash +66 -0
  13. data/utils/enveomics/Examples/essential-phylogeny.bash +105 -0
  14. data/utils/enveomics/Examples/unus-genome-phylogeny.bash +100 -0
  15. data/utils/enveomics/LICENSE.txt +73 -0
  16. data/utils/enveomics/Makefile +52 -0
  17. data/utils/enveomics/Manifest/Tasks/aasubs.json +103 -0
  18. data/utils/enveomics/Manifest/Tasks/blasttab.json +790 -0
  19. data/utils/enveomics/Manifest/Tasks/distances.json +161 -0
  20. data/utils/enveomics/Manifest/Tasks/fasta.json +802 -0
  21. data/utils/enveomics/Manifest/Tasks/fastq.json +291 -0
  22. data/utils/enveomics/Manifest/Tasks/graphics.json +126 -0
  23. data/utils/enveomics/Manifest/Tasks/mapping.json +165 -0
  24. data/utils/enveomics/Manifest/Tasks/ogs.json +382 -0
  25. data/utils/enveomics/Manifest/Tasks/other.json +906 -0
  26. data/utils/enveomics/Manifest/Tasks/remote.json +356 -0
  27. data/utils/enveomics/Manifest/Tasks/sequence-identity.json +650 -0
  28. data/utils/enveomics/Manifest/Tasks/tables.json +308 -0
  29. data/utils/enveomics/Manifest/Tasks/trees.json +68 -0
  30. data/utils/enveomics/Manifest/Tasks/variants.json +111 -0
  31. data/utils/enveomics/Manifest/categories.json +165 -0
  32. data/utils/enveomics/Manifest/examples.json +162 -0
  33. data/utils/enveomics/Manifest/tasks.json +4 -0
  34. data/utils/enveomics/README.md +42 -0
  35. data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +171 -0
  36. data/utils/enveomics/Scripts/Aln.cat.rb +221 -0
  37. data/utils/enveomics/Scripts/Aln.convert.pl +35 -0
  38. data/utils/enveomics/Scripts/AlphaDiversity.pl +152 -0
  39. data/utils/enveomics/Scripts/BedGraph.tad.rb +138 -0
  40. data/utils/enveomics/Scripts/BedGraph.window.rb +71 -0
  41. data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +102 -0
  42. data/utils/enveomics/Scripts/BlastTab.addlen.rb +63 -0
  43. data/utils/enveomics/Scripts/BlastTab.advance.bash +48 -0
  44. data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +55 -0
  45. data/utils/enveomics/Scripts/BlastTab.catsbj.pl +104 -0
  46. data/utils/enveomics/Scripts/BlastTab.cogCat.rb +76 -0
  47. data/utils/enveomics/Scripts/BlastTab.filter.pl +47 -0
  48. data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +194 -0
  49. data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +104 -0
  50. data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +157 -0
  51. data/utils/enveomics/Scripts/BlastTab.recplot2.R +48 -0
  52. data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +86 -0
  53. data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +119 -0
  54. data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +86 -0
  55. data/utils/enveomics/Scripts/BlastTab.subsample.pl +47 -0
  56. data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +114 -0
  57. data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +90 -0
  58. data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +123 -0
  59. data/utils/enveomics/Scripts/Chao1.pl +97 -0
  60. data/utils/enveomics/Scripts/CharTable.classify.rb +234 -0
  61. data/utils/enveomics/Scripts/EBIseq2tax.rb +83 -0
  62. data/utils/enveomics/Scripts/FastA.N50.pl +60 -0
  63. data/utils/enveomics/Scripts/FastA.extract.rb +152 -0
  64. data/utils/enveomics/Scripts/FastA.filter.pl +52 -0
  65. data/utils/enveomics/Scripts/FastA.filterLen.pl +28 -0
  66. data/utils/enveomics/Scripts/FastA.filterN.pl +60 -0
  67. data/utils/enveomics/Scripts/FastA.fragment.rb +100 -0
  68. data/utils/enveomics/Scripts/FastA.gc.pl +42 -0
  69. data/utils/enveomics/Scripts/FastA.interpose.pl +93 -0
  70. data/utils/enveomics/Scripts/FastA.length.pl +38 -0
  71. data/utils/enveomics/Scripts/FastA.mask.rb +89 -0
  72. data/utils/enveomics/Scripts/FastA.per_file.pl +36 -0
  73. data/utils/enveomics/Scripts/FastA.qlen.pl +57 -0
  74. data/utils/enveomics/Scripts/FastA.rename.pl +65 -0
  75. data/utils/enveomics/Scripts/FastA.revcom.pl +23 -0
  76. data/utils/enveomics/Scripts/FastA.sample.rb +98 -0
  77. data/utils/enveomics/Scripts/FastA.slider.pl +85 -0
  78. data/utils/enveomics/Scripts/FastA.split.pl +55 -0
  79. data/utils/enveomics/Scripts/FastA.split.rb +79 -0
  80. data/utils/enveomics/Scripts/FastA.subsample.pl +131 -0
  81. data/utils/enveomics/Scripts/FastA.tag.rb +65 -0
  82. data/utils/enveomics/Scripts/FastA.toFastQ.rb +69 -0
  83. data/utils/enveomics/Scripts/FastA.wrap.rb +48 -0
  84. data/utils/enveomics/Scripts/FastQ.filter.pl +54 -0
  85. data/utils/enveomics/Scripts/FastQ.interpose.pl +90 -0
  86. data/utils/enveomics/Scripts/FastQ.maskQual.rb +89 -0
  87. data/utils/enveomics/Scripts/FastQ.offset.pl +90 -0
  88. data/utils/enveomics/Scripts/FastQ.split.pl +53 -0
  89. data/utils/enveomics/Scripts/FastQ.tag.rb +70 -0
  90. data/utils/enveomics/Scripts/FastQ.test-error.rb +81 -0
  91. data/utils/enveomics/Scripts/FastQ.toFastA.awk +24 -0
  92. data/utils/enveomics/Scripts/GFF.catsbj.pl +127 -0
  93. data/utils/enveomics/Scripts/GenBank.add_fields.rb +84 -0
  94. data/utils/enveomics/Scripts/HMM.essential.rb +351 -0
  95. data/utils/enveomics/Scripts/HMM.haai.rb +168 -0
  96. data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +83 -0
  97. data/utils/enveomics/Scripts/JPlace.distances.rb +88 -0
  98. data/utils/enveomics/Scripts/JPlace.to_iToL.rb +320 -0
  99. data/utils/enveomics/Scripts/M5nr.getSequences.rb +81 -0
  100. data/utils/enveomics/Scripts/MeTaxa.distribution.pl +198 -0
  101. data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +35 -0
  102. data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +49 -0
  103. data/utils/enveomics/Scripts/NCBIacc2tax.rb +92 -0
  104. data/utils/enveomics/Scripts/Newick.autoprune.R +27 -0
  105. data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +228 -0
  106. data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +32 -0
  107. data/utils/enveomics/Scripts/RefSeq.download.bash +48 -0
  108. data/utils/enveomics/Scripts/SRA.download.bash +67 -0
  109. data/utils/enveomics/Scripts/TRIBS.plot-test.R +36 -0
  110. data/utils/enveomics/Scripts/TRIBS.test.R +39 -0
  111. data/utils/enveomics/Scripts/Table.barplot.R +31 -0
  112. data/utils/enveomics/Scripts/Table.df2dist.R +30 -0
  113. data/utils/enveomics/Scripts/Table.filter.pl +61 -0
  114. data/utils/enveomics/Scripts/Table.merge.pl +77 -0
  115. data/utils/enveomics/Scripts/Table.prefScore.R +60 -0
  116. data/utils/enveomics/Scripts/Table.replace.rb +69 -0
  117. data/utils/enveomics/Scripts/Table.round.rb +63 -0
  118. data/utils/enveomics/Scripts/Table.split.pl +57 -0
  119. data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +227 -0
  120. data/utils/enveomics/Scripts/VCF.KaKs.rb +147 -0
  121. data/utils/enveomics/Scripts/VCF.SNPs.rb +88 -0
  122. data/utils/enveomics/Scripts/aai.rb +421 -0
  123. data/utils/enveomics/Scripts/ani.rb +362 -0
  124. data/utils/enveomics/Scripts/anir.rb +137 -0
  125. data/utils/enveomics/Scripts/clust.rand.rb +102 -0
  126. data/utils/enveomics/Scripts/gi2tax.rb +103 -0
  127. data/utils/enveomics/Scripts/in_silico_GA_GI.pl +96 -0
  128. data/utils/enveomics/Scripts/lib/data/dupont_2012_essential.hmm.gz +0 -0
  129. data/utils/enveomics/Scripts/lib/data/lee_2019_essential.hmm.gz +0 -0
  130. data/utils/enveomics/Scripts/lib/enveomics.R +1 -0
  131. data/utils/enveomics/Scripts/lib/enveomics_rb/anir.rb +293 -0
  132. data/utils/enveomics/Scripts/lib/enveomics_rb/bm_set.rb +175 -0
  133. data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +24 -0
  134. data/utils/enveomics/Scripts/lib/enveomics_rb/errors.rb +17 -0
  135. data/utils/enveomics/Scripts/lib/enveomics_rb/gmm_em.rb +30 -0
  136. data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +253 -0
  137. data/utils/enveomics/Scripts/lib/enveomics_rb/match.rb +88 -0
  138. data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +182 -0
  139. data/utils/enveomics/Scripts/lib/enveomics_rb/rbm.rb +49 -0
  140. data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +74 -0
  141. data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +237 -0
  142. data/utils/enveomics/Scripts/lib/enveomics_rb/stats/rand.rb +31 -0
  143. data/utils/enveomics/Scripts/lib/enveomics_rb/stats/sample.rb +152 -0
  144. data/utils/enveomics/Scripts/lib/enveomics_rb/stats.rb +3 -0
  145. data/utils/enveomics/Scripts/lib/enveomics_rb/utils.rb +74 -0
  146. data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +135 -0
  147. data/utils/enveomics/Scripts/ogs.annotate.rb +88 -0
  148. data/utils/enveomics/Scripts/ogs.core-pan.rb +160 -0
  149. data/utils/enveomics/Scripts/ogs.extract.rb +125 -0
  150. data/utils/enveomics/Scripts/ogs.mcl.rb +186 -0
  151. data/utils/enveomics/Scripts/ogs.rb +104 -0
  152. data/utils/enveomics/Scripts/ogs.stats.rb +131 -0
  153. data/utils/enveomics/Scripts/rbm-legacy.rb +172 -0
  154. data/utils/enveomics/Scripts/rbm.rb +108 -0
  155. data/utils/enveomics/Scripts/sam.filter.rb +148 -0
  156. data/utils/enveomics/Tests/Makefile +10 -0
  157. data/utils/enveomics/Tests/Mgen_M2288.faa +3189 -0
  158. data/utils/enveomics/Tests/Mgen_M2288.fna +8282 -0
  159. data/utils/enveomics/Tests/Mgen_M2321.fna +8288 -0
  160. data/utils/enveomics/Tests/Nequ_Kin4M.faa +2970 -0
  161. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
  162. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +7 -0
  163. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +17 -0
  164. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +137 -0
  165. data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +123 -0
  166. data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +200 -0
  167. data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +55 -0
  168. data/utils/enveomics/Tests/alkB.nwk +1 -0
  169. data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +13 -0
  170. data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +17 -0
  171. data/utils/enveomics/Tests/hiv1.faa +59 -0
  172. data/utils/enveomics/Tests/hiv1.fna +134 -0
  173. data/utils/enveomics/Tests/hiv2.faa +70 -0
  174. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +233 -0
  175. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +1 -0
  176. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +233 -0
  177. data/utils/enveomics/Tests/low-cov.bg.gz +0 -0
  178. data/utils/enveomics/Tests/phyla_counts.tsv +10 -0
  179. data/utils/enveomics/Tests/primate_lentivirus.ogs +11 -0
  180. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +9 -0
  181. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +8 -0
  182. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +6 -0
  183. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +9 -0
  184. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +6 -0
  185. data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +6 -0
  186. data/utils/enveomics/build_enveomics_r.bash +45 -0
  187. data/utils/enveomics/enveomics.R/DESCRIPTION +31 -0
  188. data/utils/enveomics/enveomics.R/NAMESPACE +39 -0
  189. data/utils/enveomics/enveomics.R/R/autoprune.R +167 -0
  190. data/utils/enveomics/enveomics.R/R/barplot.R +203 -0
  191. data/utils/enveomics/enveomics.R/R/cliopts.R +141 -0
  192. data/utils/enveomics/enveomics.R/R/df2dist.R +192 -0
  193. data/utils/enveomics/enveomics.R/R/growthcurve.R +349 -0
  194. data/utils/enveomics/enveomics.R/R/prefscore.R +79 -0
  195. data/utils/enveomics/enveomics.R/R/recplot.R +419 -0
  196. data/utils/enveomics/enveomics.R/R/recplot2.R +1698 -0
  197. data/utils/enveomics/enveomics.R/R/tribs.R +638 -0
  198. data/utils/enveomics/enveomics.R/R/utils.R +90 -0
  199. data/utils/enveomics/enveomics.R/README.md +81 -0
  200. data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
  201. data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
  202. data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +16 -0
  203. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +16 -0
  204. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +16 -0
  205. data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +25 -0
  206. data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +47 -0
  207. data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +23 -0
  208. data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +47 -0
  209. data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +26 -0
  210. data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +26 -0
  211. data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +44 -0
  212. data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +111 -0
  213. data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +67 -0
  214. data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +34 -0
  215. data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +25 -0
  216. data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +59 -0
  217. data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +63 -0
  218. data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +46 -0
  219. data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +78 -0
  220. data/utils/enveomics/enveomics.R/man/enve.prefscore.Rd +50 -0
  221. data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +44 -0
  222. data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +147 -0
  223. data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +45 -0
  224. data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +27 -0
  225. data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +77 -0
  226. data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +28 -0
  227. data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +24 -0
  228. data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +22 -0
  229. data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +22 -0
  230. data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +52 -0
  231. data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +29 -0
  232. data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +21 -0
  233. data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +45 -0
  234. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +34 -0
  235. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +23 -0
  236. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +24 -0
  237. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +31 -0
  238. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +56 -0
  239. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +20 -0
  240. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +51 -0
  241. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +43 -0
  242. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +82 -0
  243. data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +59 -0
  244. data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +27 -0
  245. data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +36 -0
  246. data/utils/enveomics/enveomics.R/man/enve.selvector.Rd +23 -0
  247. data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +68 -0
  248. data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +28 -0
  249. data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +27 -0
  250. data/utils/enveomics/enveomics.R/man/growth.curves.Rd +14 -0
  251. data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +13 -0
  252. data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +81 -0
  253. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +49 -0
  254. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +48 -0
  255. data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +125 -0
  256. data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +22 -0
  257. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +22 -0
  258. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +22 -0
  259. data/utils/enveomics/globals.mk +8 -0
  260. data/utils/enveomics/manifest.json +9 -0
  261. data/utils/multitrim/Multitrim How-To.pdf +0 -0
  262. data/utils/multitrim/README.md +67 -0
  263. data/utils/multitrim/multitrim.py +1555 -0
  264. data/utils/multitrim/multitrim.yml +13 -0
  265. metadata +268 -6
@@ -0,0 +1,1296 @@
1
+ #!/usr/bin/env python
2
+
3
+ """
4
+ ########################################################################
5
+ # Author: Carlos Ruiz
6
+ # Intitution: Georgia Institute of Technology
7
+ # Version: 0.8
8
+ # Date: March 02, 2020
9
+
10
+ # Description: Calculates the average amino acid identity using k-mers
11
+ from single copy genes. It is a faster version of the regular AAI (Blast
12
+ or Diamond) and the hAAI implemented in MiGA.
13
+ ########################################################################
14
+ """
15
+
16
+ ################################################################################
17
+ """---0.0 Import Modules---"""
18
+ import subprocess, argparse, multiprocessing, datetime, shutil
19
+ import textwrap, pickle, gzip
20
+ from random import randint
21
+ from pathlib import Path
22
+ from sys import argv
23
+ from sys import exit
24
+ from functools import partial
25
+ from os.path import realpath
26
+ import numpy
27
+ import tempfile
28
+
29
+
30
+ ################################################################################
31
+ """---1.0 Define Functions---"""
32
+ # --- Run prodigal ---
33
+ # ------------------------------------------------------
34
+ def run_prodigal(input_file):
35
+ """
36
+ Runs prodigal, compares translation tables and stores faa files
37
+
38
+ Arguments:
39
+ input_file -- Path to genome FastA file
40
+
41
+ Returns:
42
+ output -- Path to amino acid fasta result
43
+ """
44
+ # Predict proteins with translation tables 4 and 11
45
+ file_path = Path(input_file)
46
+ filename = file_path.name
47
+ folder = file_path.parent
48
+ protein_output = folder / (filename + '.faa')
49
+ output_11 = folder / (filename + '.faa.11')
50
+ temp_output = folder / (filename + '.temp')
51
+ subprocess.call(["prodigal", "-i", str(file_path), "-a", str(output_11),
52
+ "-p", "meta", "-q", "-o", str(temp_output)])
53
+ output_4 = folder / (filename + '.faa.4')
54
+ temp_output = folder / (filename + '.temp')
55
+ subprocess.call(["prodigal", "-i", str(file_path), "-a", str(output_4),
56
+ "-p", "meta", "-g", "4", "-q", "-o", str(temp_output)])
57
+
58
+ # Compare translation tables
59
+ length_4 = 0
60
+ length_11 = 0
61
+ with open(output_4, 'r') as table_4:
62
+ for line in table_4:
63
+ if line.startswith(">"):
64
+ continue
65
+ else:
66
+ length_4 += len(line.strip())
67
+
68
+ with open(output_11, 'r') as table_11:
69
+ for line in table_11:
70
+ if line.startswith(">"):
71
+ continue
72
+ else:
73
+ length_11 += len(line.strip())
74
+
75
+ if (length_4 / length_11) >= 1.1:
76
+ shutil.copy(output_4, protein_output)
77
+ else:
78
+ shutil.copy(str(output_11), str(protein_output))
79
+
80
+ # Remove intermediate files
81
+ output_4.unlink()
82
+ output_11.unlink()
83
+ temp_output.unlink()
84
+
85
+ # Remove stop '*' codons from protein sequences
86
+ with open(protein_output, 'r') as final_protein, open(temp_output, 'w') as temporal_file:
87
+ for line in final_protein:
88
+ if line.startswith(">"):
89
+ temporal_file.write("{}".format(line))
90
+ else:
91
+ line = line.replace('*', '')
92
+ temporal_file.write("{}".format(line))
93
+ shutil.copy(str(temp_output), str(protein_output))
94
+ temp_output.unlink()
95
+
96
+ return str(protein_output)
97
+ # ------------------------------------------------------
98
+
99
+ # --- Run prodigal for viruses ---
100
+ # ------------------------------------------------------
101
+ def run_prodigal_virus(input_file):
102
+ """
103
+ Runs prodigal, compares translation tables and stores faa files
104
+
105
+ Arguments:
106
+ input_file -- Path to genome FastA file
107
+
108
+ Returns:
109
+ output -- Path to amino acid fasta result
110
+ """
111
+ # Predict proteins with translation tables 4 and 11
112
+ file_path = Path(input_file)
113
+ filename = file_path.name
114
+ folder = file_path.parent
115
+ protein_output = folder / (filename + '.faa')
116
+ temp_output = folder / (filename + '.temp')
117
+ subprocess.call(["prodigal", "-i", str(file_path), "-a", str(protein_output),
118
+ "-p", "meta", "-q", "-o", str(temp_output)])
119
+
120
+ # Remove intermediate files
121
+ temp_output.unlink()
122
+
123
+ # Remove stop '*' codons from protein sequences
124
+ with open(protein_output, 'r') as final_protein, open(temp_output, 'w') as temporal_file:
125
+ for line in final_protein:
126
+ if line.startswith(">"):
127
+ temporal_file.write("{}".format(line))
128
+ else:
129
+ line = line.replace('*', '')
130
+ temporal_file.write("{}".format(line))
131
+ shutil.copy(str(temp_output), str(protein_output))
132
+ temp_output.unlink()
133
+
134
+ return str(protein_output)
135
+ # ------------------------------------------------------
136
+
137
+ # --- Run hmmsearch ---
138
+ # ------------------------------------------------------
139
+ def run_hmmsearch(input_file):
140
+ """
141
+ Runs hmmsearch on the set of SCGs and select the
142
+ best Archaea or Bacterial model
143
+
144
+ Arguments:
145
+ input_file -- Path to protein FastA file
146
+
147
+ Returns:
148
+ output -- Path to hmmsearch hits table
149
+ """
150
+ file_path = Path(input_file)
151
+ folder = file_path.parent
152
+ name = file_path.name
153
+ hmm_output = folder / (name + '.hmm')
154
+ temp_output = folder / (name + '.temp')
155
+ script_path = Path(realpath(__file__))
156
+ script_dir = script_path.parent
157
+ hmm_complete_model = script_dir / "00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm"
158
+ subprocess.call(["hmmsearch", "--tblout", str(hmm_output), "-o", str(temp_output), "--cut_tc", "--cpu", "1",
159
+ str(hmm_complete_model), str(file_path)])
160
+ temp_output.unlink()
161
+ return str(hmm_output)
162
+ # ------------------------------------------------------
163
+
164
+ # --- Filter HMM results for best matches ---
165
+ # ------------------------------------------------------
166
+ def hmm_filter(scg_hmm_file, keep):
167
+ """
168
+ Filters HMM results for best hits per protein
169
+
170
+ Arguments:
171
+ SCG_HMM_file {file path} -- Path to HMM results file
172
+ keep {bool} -- Keep HMM files
173
+
174
+ Returns:
175
+ outfile -- Path to filtered files
176
+ """
177
+ hmm_path = Path(scg_hmm_file)
178
+ name = hmm_path.name
179
+ folder = hmm_path.parent
180
+ outfile = folder / (name + '.filt')
181
+ hmm_hit_dict = {}
182
+ with open(scg_hmm_file, 'r') as hit_file:
183
+ for line in hit_file:
184
+ if line.startswith("#"):
185
+ continue
186
+ else:
187
+ hit = line.strip().split()
188
+ protein_name = hit[0]
189
+ score = float(hit[8])
190
+ if protein_name in hmm_hit_dict:
191
+ if score > hmm_hit_dict[protein_name][0]:
192
+ hmm_hit_dict[protein_name] = [score, line]
193
+ elif score < hmm_hit_dict[protein_name][0]:
194
+ continue
195
+ else:
196
+ if randint(2) > 0:
197
+ hmm_hit_dict[protein_name] = [score, line]
198
+ else:
199
+ hmm_hit_dict[protein_name] = [score, line]
200
+ with open(outfile, 'w') as output:
201
+ for hits in hmm_hit_dict.values():
202
+ output.write("{}".format(hits[1]))
203
+ return str(outfile)
204
+ # ------------------------------------------------------
205
+
206
+ # --- Find Kmers from HMM results ---
207
+ # ------------------------------------------------------
208
+ def kmer_extract(input_files):
209
+ """
210
+ Extract kmers from protein files that have hits
211
+ in the HMM searches.
212
+
213
+ Arguments:
214
+ SCG_HMM_file {file path} -- Path to filtered HMM results.
215
+
216
+ Returns:
217
+ [genome_kmers] -- Dictionary of kmers per gene.
218
+ """
219
+ final_filename = input_files[0]
220
+ protein_file = input_files[1]
221
+ scg_hmm_file = input_files[2]
222
+ positive_matches = {}
223
+ positive_proteins = []
224
+ with open(scg_hmm_file, 'r') as hmm_input:
225
+ for line in hmm_input:
226
+ line = line.strip().split()
227
+ protein_name = line[0]
228
+ model_name = line[3]
229
+ score = line[8]
230
+ if model_name in positive_matches:
231
+ if score > positive_matches[model_name][1]:
232
+ positive_matches[model_name] = [protein_name, score]
233
+ else:
234
+ continue
235
+ else:
236
+ positive_matches[model_name] = [protein_name, score]
237
+ for proteins in positive_matches.values():
238
+ positive_proteins.append(proteins[0])
239
+ scg_kmers = read_kmers_from_file(protein_file, positive_proteins, 4)
240
+ for accession, protein in positive_matches.items():
241
+ scg_kmers[accession] = scg_kmers.pop(protein[0])
242
+ genome_kmers = {final_filename : scg_kmers}
243
+ return genome_kmers
244
+ # ------------------------------------------------------
245
+
246
+ # --- Extract kmers from protein sequences ---
247
+ # ------------------------------------------------------
248
+ def read_kmers_from_file(filename, positive_hits, ksize):
249
+ scg_kmers = {}
250
+ store_sequence = False
251
+ protein_name = ""
252
+ protein_sequence = ""
253
+ with open(filename) as fasta_in:
254
+ for line in fasta_in:
255
+ if line.startswith(">"):
256
+ if store_sequence == True:
257
+ kmers = build_kmers(protein_sequence, ksize)
258
+ scg_kmers[protein_name] = kmers
259
+ protein_sequence = ""
260
+ store_sequence = False
261
+ line = line.replace(">", "")
262
+ protein_name = line.strip().split()[0]
263
+ if protein_name in positive_hits:
264
+ store_sequence = True
265
+ else:
266
+ if store_sequence == True:
267
+ protein_sequence += line.strip()
268
+ else:
269
+ continue
270
+ if store_sequence == True:
271
+ kmers = build_kmers(protein_sequence, ksize)
272
+ scg_kmers[protein_name] = kmers
273
+ return scg_kmers
274
+ # ------------------------------------------------------
275
+
276
+ # --- Extract kmers from viral protein sequences ---
277
+ # ------------------------------------------------------
278
+ def read_viral_kmers_from_file(input_information):
279
+ final_filename = input_information[0]
280
+ protein_file = input_information[1]
281
+ kmer_size = input_information[2]
282
+ scg_kmers = set()
283
+ protein_sequence = ""
284
+ store_sequence = False
285
+ with open(protein_file) as fasta_in:
286
+ for line in fasta_in:
287
+ if line.startswith(">"):
288
+ if store_sequence == True:
289
+ kmers = build_kmers(protein_sequence, kmer_size)
290
+ kmers = set(kmers.split(","))
291
+ scg_kmers.update(kmers)
292
+ protein_sequence = ""
293
+ else:
294
+ protein_sequence = ""
295
+ store_sequence = True
296
+ else:
297
+ protein_sequence += line.strip()
298
+ genome_kmers = {final_filename : list(scg_kmers)}
299
+ return genome_kmers
300
+ # ------------------------------------------------------
301
+
302
+ # --- Build Kmers ---
303
+ # ------------------------------------------------------
304
+ def build_kmers(sequence, ksize):
305
+ kmers = []
306
+ n_kmers = len(sequence) - ksize + 1
307
+
308
+ for i in range(n_kmers):
309
+ kmer = sequence[i:i + ksize]
310
+ kmers.append(kmer)
311
+ kmers_set = ','.join(set(kmers))
312
+ return kmers_set
313
+ # ------------------------------------------------------
314
+
315
+ # --- Parse kAAI when query == reference ---
316
+ #Carlos, This function is not used with the new changes
317
+ # ------------------------------------------------------
318
+ def single_kaai_parser(query_id):
319
+ """
320
+ Calculates Jaccard distances on kmers from proteins shared
321
+
322
+ Arguments:
323
+ query_id {str} -- Id of the query genome
324
+
325
+ Returns:
326
+ [Path to output] -- Path to output file
327
+ """
328
+ file_path = Path(query_id)
329
+
330
+ #Carlos, tempdir for safety
331
+ tmp_folder = tempfile.TemporaryDirectory()
332
+ running_folder = tmp_folder.name
333
+
334
+
335
+ temp_output = running_folder / file_path.with_suffix('.aai.temp')
336
+ # Get number and list of SCG detected in query
337
+ query_num_scg = len(query_kmer_dictionary[query_id])
338
+ query_scg_list = query_kmer_dictionary[query_id].keys()
339
+ # Start comparison with all genomes in the query dictionary
340
+ with open(temp_output, 'w') as out_file:
341
+ for target_genome, scg_ids in query_kmer_dictionary.items():
342
+ jaccard_similarities = []
343
+ # Get number and list of SCG detected in reference
344
+ target_num_scg = len(scg_ids)
345
+ target_scg_list = scg_ids.keys()
346
+ # Choose the smallest set of proteins
347
+ if query_num_scg > target_num_scg:
348
+ final_scg_list = target_scg_list
349
+ else:
350
+ final_scg_list = query_scg_list
351
+ # Compare all the proteins in the final SCG list
352
+ for accession in final_scg_list:
353
+ if accession in query_scg_list and accession in target_scg_list:
354
+ # Get set and list for each SCG accession
355
+ kmers_query = set(query_kmer_dictionary[query_id][accession].split(','))
356
+ kmers_target = query_kmer_dictionary[target_genome][accession].split(',')
357
+ # Calculate jaccard_similarity
358
+ intersection = len(kmers_query.intersection(kmers_target))
359
+ union = len(kmers_query.union(kmers_target))
360
+ jaccard_similarities.append(intersection / union)
361
+ else:
362
+ continue
363
+ try:
364
+ n = len(jaccard_similarities)
365
+ mean = sum(jaccard_similarities)/n
366
+ var = sum([ (x - mean)**2 for x in jaccard_similarities ])/(n - 1)
367
+ out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
368
+ round(mean, 4), round(var**0.5, 4),
369
+ len(jaccard_similarities), len(final_scg_list)))
370
+ except:
371
+ out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
372
+ "NA", "NA", "NA", "NA"))
373
+
374
+ return temp_output
375
+ # ------------------------------------------------------
376
+
377
+ # --- Parse viral kAAI when query == reference ---
378
+ # ------------------------------------------------------
379
+ def single_virus_kaai_parser(query_id):
380
+ """
381
+ Calculates Jaccard distances on kmers from viral proteins
382
+
383
+ Arguments:
384
+ query_id {str} -- Id of the query genome
385
+
386
+ Returns:
387
+ [Path to output] -- Path to output file
388
+ """
389
+ file_path = Path(query_id)
390
+
391
+ #Carlos, tempdir for safety
392
+ tmp_folder = tempfile.TemporaryDirectory()
393
+ running_folder = tmp_folder.name
394
+
395
+
396
+ temp_output = running_folder / file_path.with_suffix('.aai.temp')
397
+ # Start comparison with all genomes in the query dictionary
398
+ with open(temp_output, 'w') as out_file:
399
+ for target_genome, kmers_target in query_kmer_dictionary.items():
400
+ jaccard_index = None
401
+ kmers_query = set(query_kmer_dictionary[query_id])
402
+ intersection = len(kmers_query.intersection(kmers_target))
403
+ union = len(kmers_query.union(kmers_target))
404
+ try:
405
+ jaccard_index = intersection / union
406
+ out_file.write("{}\t{}\t{}\n".format(query_id, target_genome, jaccard_index))
407
+ except:
408
+ out_file.write("{}\t{}\tNA\n".format(query_id, target_genome))
409
+ return temp_output
410
+ # ------------------------------------------------------
411
+
412
+ # --- Parse kAAI when query != reference ---
413
+ # ------------------------------------------------------
414
+ def double_kaai_parser(query_id):
415
+ """
416
+ Calculates Jaccard distances on kmers from proteins shared
417
+
418
+ Arguments:
419
+ query_id {str} -- Id of the query genome
420
+
421
+ Returns:
422
+ [Path to output] -- Path to output file
423
+ """
424
+ file_path = Path(query_id)
425
+
426
+ #Carlos, tempdir for safety
427
+ tmp_folder = tempfile.TemporaryDirectory()
428
+ running_folder = tmp_folder.name
429
+
430
+
431
+ temp_output = running_folder / file_path.with_suffix('.aai.temp')
432
+ # Get number and list of SCG detected in query
433
+ query_num_scg = len(query_kmer_dictionary[query_id])
434
+ query_scg_list = query_kmer_dictionary[query_id].keys()
435
+ # Start comparison with all genomes in the query dictionary
436
+ with open(temp_output, 'w') as out_file:
437
+ for target_genome, scg_ids in ref_kmer_dictionary.items():
438
+ jaccard_similarities = []
439
+ # Get number and list of SCG detected in reference
440
+ target_num_scg = len(scg_ids)
441
+ target_scg_list = scg_ids.keys()
442
+ # Choose the smallest set of proteins
443
+ if query_num_scg > target_num_scg:
444
+ final_scg_list = target_scg_list
445
+ else:
446
+ final_scg_list = query_scg_list
447
+ # Compare all the proteins in the final SCG list
448
+ for accession in final_scg_list:
449
+ if accession in query_scg_list and accession in target_scg_list:
450
+ # Get set and list for each SCG accession
451
+ kmers_query = set(query_kmer_dictionary[query_id][accession].split(','))
452
+ kmers_target = ref_kmer_dictionary[target_genome][accession].split(',')
453
+ # Calculate jaccard_similarity
454
+ intersection = len(kmers_query.intersection(kmers_target))
455
+ union = len(kmers_query.union(kmers_target))
456
+ jaccard_similarities.append(intersection / union)
457
+ else:
458
+ continue
459
+ try:
460
+ n = len(jaccard_similarities)
461
+ mean = sum(jaccard_similarities)/n
462
+ var = sum([ (x - mean)**2 for x in jaccard_similarities ])/(n - 1)
463
+ out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
464
+ round(mean, 4), round(var**0.5, 4),
465
+ len(jaccard_similarities), len(final_scg_list)))
466
+ except:
467
+ out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
468
+ "NA", "NA", "NA", "NA"))
469
+ return temp_output
470
+ # ------------------------------------------------------
471
+
472
+ # --- Parse viral kAAI when query != reference ---
473
+ # ------------------------------------------------------
474
+ def double_viral_kaai_parser(query_id):
475
+ """
476
+ Calculates Jaccard distances on kmers from viral proteins
477
+
478
+ Arguments:
479
+ query_id {str} -- Id of the query genome
480
+
481
+ Returns:
482
+ [Path to output] -- Path to output file
483
+ """
484
+ file_path = Path(query_id)
485
+
486
+ #Carlos, tempdir for safety
487
+ tmp_folder = tempfile.TemporaryDirectory()
488
+ running_folder = tmp_folder.name
489
+
490
+
491
+ temp_output = running_folder / file_path.with_suffix('.aai.temp')
492
+ # Start comparison with all genomes in the query dictionary
493
+ with open(temp_output, 'w') as out_file:
494
+ for target_genome, kmers_target in ref_kmer_dictionary.items():
495
+ jaccard_index = None
496
+ kmers_query = set(query_kmer_dictionary[query_id])
497
+ intersection = len(kmers_query.intersection(kmers_target))
498
+ union = len(kmers_query.union(kmers_target))
499
+ try:
500
+ jaccard_index = intersection / union
501
+ out_file.write("{}\t{}\t{}\n".format(query_id, target_genome, jaccard_index))
502
+ except:
503
+ out_file.write("{}\t{}\tNA\n".format(query_id, target_genome))
504
+ return temp_output
505
+ # ------------------------------------------------------
506
+
507
+ # --- Query == Reference initializer function ---
508
+ # ------------------------------------------------------
509
+ def single_dictionary_initializer(_dictionary):
510
+ """
511
+ Make dictionary available for multiprocessing
512
+ """
513
+ global query_kmer_dictionary
514
+ query_kmer_dictionary = _dictionary
515
+ # ------------------------------------------------------
516
+
517
+ # --- Query != Reference initializer function ---
518
+ # ------------------------------------------------------
519
+ def two_dictionary_initializer(_query_dictionary, _ref_dictionary):
520
+ """
521
+ Make dictionary available for multiprocessing
522
+ """
523
+ global query_kmer_dictionary
524
+ global ref_kmer_dictionary
525
+ query_kmer_dictionary = _query_dictionary
526
+ ref_kmer_dictionary = _ref_dictionary
527
+ # ------------------------------------------------------
528
+
529
+ # --- Merge kmer dictionaries ---
530
+ # ------------------------------------------------------
531
+ def merge_dicts(dictionaries):
532
+ """
533
+ Given any number of dicts, shallow copy and merge into a new dict,
534
+ precedence goes to key value pairs in latter dicts.
535
+ """
536
+ result = {}
537
+ for kmer_dictionary in dictionaries:
538
+ result.update(kmer_dictionary)
539
+ return result
540
+ # ------------------------------------------------------
541
+
542
+
543
+ #My version 1 - numpy-ized
544
+ def single_kaai_parser_all_v_all(args):
545
+ """
546
+ Calculates Jaccard distances on kmers from proteins shared
547
+
548
+ Arguments:
549
+ query_id {str} -- Id of the query genome
550
+
551
+ Returns:
552
+ [Path to output] -- Path to output file
553
+ """
554
+ #Use split as slice if true
555
+
556
+ query_id = args[0]
557
+ skip_first_n = args[1]
558
+
559
+ file_path = Path(query_id)
560
+
561
+ tmp_folder = tempfile.TemporaryDirectory()
562
+ running_folder = tmp_folder.name
563
+
564
+ #Just for my own testing. Temp dir is definitely the correct choice, here.
565
+ #running_folder = Path("faster_kaai")
566
+
567
+ temp_output = running_folder / file_path.with_suffix('.aai.temp')
568
+
569
+
570
+ #The goal is to numpy-ize the following loop in all possible aspects for a (hopeful) speed increase
571
+
572
+
573
+ #query_num_scg = len(query_kmer_dictionary[query_id])
574
+
575
+ query_scg_list = numpy.array(list(query_kmer_dictionary[query_id].keys()))
576
+
577
+ with open(temp_output, 'w') as out_file:
578
+
579
+ '''
580
+ Target genomes each control a set of protein family keys
581
+
582
+ The goal is to get the jaccard index for the kmers in all cases
583
+ of shared protein families for the two genomes in question, for
584
+ each pair of genomes
585
+
586
+ From above, we have the number of proteins in the query dict
587
+ and a list of the IDs
588
+
589
+ below we get the number of proteins in the target dict
590
+ and a list of the IDs
591
+
592
+ 1 choose the shorter list (each item has to be in both to be used, after all)
593
+ 2 check if each family is in both lists
594
+ (kind of an unnecessarily big search cost, yeah? O(n) time with very few n = 1 cases; maybe we can make a dict of dicts of IDs, and check with try: [ID] except: ?)
595
+ 3 get all of the jaccard similarities for kmers in shared protein families
596
+
597
+ 4 calculate the mean and variance for each similarity set
598
+
599
+ 5 repeat for the remaining genomes.
600
+
601
+ '''
602
+
603
+ #for target_genome, scg_ids in query_kmer_dictionary.items():
604
+ for target_genome in list(query_kmer_dictionary.keys())[skip_first_n:]:
605
+ scg_ids = query_kmer_dictionary[target_genome]
606
+
607
+ #If self, 1.0 similarity.
608
+ if query_id == target_genome:
609
+ out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
610
+ 1.0, 0.0,
611
+ len(query_scg_list), len(query_scg_list)))
612
+ continue
613
+
614
+ jaccard_similarities = []
615
+ # Get number and list of SCG detected in reference
616
+ #target_num_scg = len(scg_ids)
617
+ target_scg_list = numpy.array(list(scg_ids.keys()))
618
+
619
+ final_scg_list = numpy.intersect1d(query_scg_list, target_scg_list)
620
+
621
+ #I would like to figure out how to vectorize this.
622
+ for accession in final_scg_list:
623
+ #Because of the prep work, these are already numpy arrays of numbers keying to the kmers they represent from the old kmer dict..
624
+ kmers_query = query_kmer_dictionary[query_id][accession]
625
+ kmers_target = query_kmer_dictionary[target_genome][accession]
626
+
627
+ # Calculate jaccard_similarity - intersection is by far the slowest step, so this is by far the best place to optimize.
628
+ if len(kmers_query) < len(kmers_target):
629
+ intersection = len(intersect1d_searchsorted(kmers_query, kmers_target))
630
+ else:
631
+ intersection = len(intersect1d_searchsorted(kmers_target, kmers_query))
632
+
633
+ union = len(numpy.union1d(kmers_query, kmers_target))
634
+ jaccard_similarities.append(intersection / union)
635
+
636
+ #Allow for numpy in-builts; they're a little faster.
637
+ jaccard_similarities = numpy.array(jaccard_similarities, dtype=numpy.float_)
638
+
639
+ try:
640
+ #No longer needed.
641
+ #n = len(jaccard_similarities)
642
+ mean = numpy.mean(jaccard_similarities)
643
+ var = numpy.std(jaccard_similarities)
644
+ out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
645
+ round(mean, 4), round(var, 4),
646
+ len(jaccard_similarities), len(final_scg_list)))
647
+ except:
648
+ out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
649
+ "NA", "NA", "NA", "NA"))
650
+ return temp_output
651
+
652
+
653
+ def initializer_tracker(_dictionary1, _dictionary2):
654
+ """
655
+ Make dictionary available for multiprocessing
656
+ """
657
+ global kmer_dict
658
+ global tracker_dict
659
+ kmer_dict = _dictionary1
660
+ tracker_dict = _dictionary2
661
+
662
+
663
+ def unique_kmers(kmer_dict):
664
+
665
+ tracker_dict = {}
666
+
667
+ counter = 0
668
+
669
+ for file in kmer_dict:
670
+ for id in kmer_dict[file]:
671
+ #These are the actual kmers
672
+ for kmer in kmer_dict[file][id].split(','):
673
+ #Hash might be fast?
674
+ try:
675
+ tracker_dict[kmer]
676
+ except:
677
+ tracker_dict[kmer] = counter
678
+ counter += 1
679
+
680
+ return tracker_dict
681
+
682
+
683
+ def convert_kmers_to_indices(kmer_dict):
684
+ for genome in kmer_dict:
685
+ inner_count = 0
686
+ cur_tup = string_to_tup(genome)
687
+ for pf in kmer_dict[genome]:
688
+ kmer_dict[genome][pf] = cur_tup[inner_count]
689
+ inner_count += 1
690
+
691
+ return kmer_dict
692
+
693
+ def string_to_tup(genome):
694
+ sets = []
695
+ for pf in kmer_dict[genome]:
696
+ curset = []
697
+ for kmer in kmer_dict[genome][pf].split(","):
698
+ curset.append(tracker_dict[kmer])
699
+
700
+ #Do all the overhead here, ONCE.
701
+ sets.append(numpy.sort(numpy.unique(numpy.array(curset, dtype=numpy.int32))))
702
+
703
+ return(sets)
704
+
705
+ def numpyize_kmers(kmer_dict):
706
+ #make kmer global for tracker
707
+ single_dictionary_initializer(kmer_dict)
708
+ #get a list of kmer - index for all unique kmers
709
+ print("Indexing unique kmers")
710
+ tracker = unique_kmers(kmer_dict)
711
+ #Make these global for other functions
712
+ initializer_tracker(kmer_dict, tracker)
713
+ #convert comma sep. strings of kmers to ascending sorted lists of unique integers corresponding to the kmers in each protein, for each genome
714
+ print("Keying kmers")
715
+ kmer_dict = convert_kmers_to_indices(kmer_dict)
716
+
717
+ #Get skip indices
718
+ smartargs = []
719
+ genome_ids = list(kmer_dict.keys())
720
+ for i in range(0, len(genome_ids)):
721
+ smartargs.append([genome_ids[i], i])
722
+
723
+ print("Beginning AAI calculations now.")
724
+
725
+ return kmer_dict, smartargs
726
+
727
+ #relies on assuming that the values in both of these arrays are unique and sorted, which I do in str_to_tup
728
+ def intersect1d_searchsorted(A,B):
729
+ idx = numpy.searchsorted(B,A)
730
+ idx[idx==len(B)] = 0
731
+ return A[B[idx] == A]
732
+
733
+
734
+ ################################################################################
735
+ """---2.0 Main Function---"""
736
+
737
+ def main():
738
+ # Setup parser for arguments.
739
+ parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
740
+ description='''This script calculates the average amino acid identity using k-mers\n'''
741
+ '''from single copy genes. It is a faster version of the regular AAI '''
742
+ '''(Blast or Diamond) and the hAAI implemented in MiGA.'''
743
+ '''Usage: ''' + argv[0] + ''' -p [Protein Files] -t [Threads] -o [Output]\n'''
744
+ '''Global mandatory parameters: -g [Genome Files] OR -p [Protein Files] OR -s [SCG HMM Results] -o [AAI Table Output]\n'''
745
+ '''Optional Database Parameters: See ''' + argv[0] + ' -h')
746
+ mandatory_options = parser.add_argument_group('Mandatory i/o options. You must select an option for the queries and one for the references.')
747
+ mandatory_options.add_argument('--qg', dest='query_genomes', action='store', required=False,
748
+ help='File with list of query genomes.')
749
+ mandatory_options.add_argument('--qp', dest='query_proteins', action='store', required=False,
750
+ help='File with list of query proteins.')
751
+ mandatory_options.add_argument('--qh', dest='query_hmms', action='store', required=False,
752
+ help=textwrap.dedent('''
753
+ File with list of pre-computed query hmmsearch results.
754
+ If you select this option you must also provide a file with
755
+ a list of protein files for the queries (with --qp).
756
+ '''))
757
+ mandatory_options.add_argument('--qd', dest='query_database', action='store', required=False,
758
+ help='File with list of pre-indexed query databases.')
759
+ mandatory_options.add_argument('--rg', dest='reference_genomes', action='store', required=False,
760
+ help='File with list of reference genomes.')
761
+ mandatory_options.add_argument('--rp', dest='reference_proteins', action='store', required=False,
762
+ help='File with list of reference proteins.')
763
+ mandatory_options.add_argument('--rh', dest='reference_hmms', action='store', required=False,
764
+ help=textwrap.dedent('''
765
+ File with list of pre-computed reference hmmsearch results.
766
+ If you select this option you must also provide a file with
767
+ a list of protein files for the references (with --qp).
768
+ '''))
769
+ mandatory_options.add_argument('--rd', dest='reference_database', action='store', required=False,
770
+ help='File with list of pre-indexed reference databases.')
771
+ mandatory_options.add_argument('-o', '--output', dest='output', action='store', required=False, help='Output file. By default kaai_comparisons.txt')
772
+ additional_input_options = parser.add_argument_group('Behavior modification options.')
773
+ additional_input_options.add_argument('-e', '--ext', dest='extension', action='store', required=False,
774
+ help='Extension to remove from original filename, e.g. ".fasta"')
775
+ additional_input_options.add_argument('-i', '--index', dest='index_db', action='store_true', required=False,
776
+ help='Only index and store databases, i.e., do not perform comparisons.')
777
+ misc_options = parser.add_argument_group('Miscellaneous options')
778
+ misc_options.add_argument('--virus', dest='virus', action='store_true', required=False,
779
+ help='Toggle virus-virus comparisons. Use only with viral genomes or proteins.')
780
+ misc_options.add_argument('-t', '--threads', dest='threads', action='store', default=1, type=int, required=False,
781
+ help='Number of threads to use, by default 1')
782
+ misc_options.add_argument('-k', '--keep', dest='keep', action='store_false', required=False,
783
+ help='Keep intermediate files, by default true')
784
+
785
+ args = parser.parse_args()
786
+
787
+ query_genomes = args.query_genomes
788
+ reference_genomes = args.reference_genomes
789
+ query_proteins = args.query_proteins
790
+ reference_proteins = args.reference_proteins
791
+ query_hmms = args.query_hmms
792
+ reference_hmms = args.reference_hmms
793
+ query_database = args.query_database
794
+ reference_database = args.reference_database
795
+ output = args.output
796
+ if output == None:
797
+ output == "kaai_comparisons.txt"
798
+ extension = args.extension
799
+ index_db = args.index_db
800
+ threads = args.threads
801
+ keep = args.keep
802
+ virus = args.virus
803
+
804
+ print("kAAI started on {}".format(datetime.datetime.now()))
805
+ # Check user input
806
+ # ------------------------------------------------------
807
+ # Check if no query was provided
808
+ if query_genomes == None and query_proteins == None and query_hmms == None and query_database == None:
809
+ exit('Please prove a file with a list of queries, e.g., --qg, --qp, --qh, or --qd)')
810
+ # Check query inputs
811
+ query_input = None
812
+ if query_hmms != None:
813
+ if virus == True:
814
+ exit("If you are comparing viruses, please start from the genome or protein files.")
815
+ query_input = query_hmms
816
+ if query_proteins != None:
817
+ print("Starting from query hmmsearch results.")
818
+ print("You also provided the list of protein files used for hmmsearch.")
819
+ elif query_proteins == None:
820
+ print("You chose to start from pre-computed hmmsearch results for your queries (--qh).")
821
+ print("However, I also need the location of the query proteins used for hmmsearch.")
822
+ exit("Please provide them with --qp.")
823
+ elif query_proteins != None:
824
+ query_input = query_proteins
825
+ print("Starting from query proteins.")
826
+ elif query_genomes != None:
827
+ query_input = query_genomes
828
+ print("Starting from query genomes.")
829
+ elif query_database != None:
830
+ query_input = query_database
831
+ print("Starting from the pre-indexed query database.")
832
+ # Check if no reference was provided
833
+ if reference_genomes == None and reference_proteins == None and reference_hmms == None and reference_database == None:
834
+ exit('Please prove a file with a list of references, e.g., --rg, --rp, --rh, or --rd)')
835
+ # Check reference inputs
836
+ reference_input = None
837
+ if reference_hmms != None:
838
+ if virus == True:
839
+ exit("If you are comparing viruses, please start from the genome or protein files.")
840
+ reference_input = reference_hmms
841
+ if reference_proteins != None:
842
+ print("Starting from reference hmmsearch results.")
843
+ print("You also provided the list of protein files used for hmmsearch.")
844
+ elif reference_proteins == None:
845
+ print("You chose to start from pre-computed hmmsearch results for your references (--rh).")
846
+ print("However, I also need the location of the query proteins used for hmmsearch.")
847
+ exit("Please provide them with --rp.")
848
+ elif reference_proteins != None:
849
+ reference_input = reference_proteins
850
+ print("Starting from reference proteins.")
851
+ elif reference_genomes != None:
852
+ reference_input = reference_genomes
853
+ print("Starting from reference genomes.")
854
+ elif reference_database != None:
855
+ reference_input = reference_database
856
+ print("Starting from the pre-indexed reference database.")
857
+ # ------------------------------------------------------
858
+
859
+ # Check if queries are the same as references (an all-vs-all comparison)
860
+ # ------------------------------------------------------
861
+ same_inputs = False
862
+ if query_input == reference_input:
863
+ same_inputs = True
864
+ if same_inputs == True:
865
+ print('You specified the same query and reference files.')
866
+ print('I will perform an all vs all comparison :)')
867
+ # ------------------------------------------------------
868
+
869
+ #* Database Parsing is the same regardless of bacterial or viral genomes
870
+ # If using pre-indexed databases, check if they are valid files.
871
+ # ------------------------------------------------------
872
+ # If any of the starting points is from database, then store the
873
+ # kmer structures in the corresponding dictionaries.
874
+ # Otherwise read the file list and get the filenames
875
+ query_kmer_dict = None
876
+ query_kmer_dict_list = []
877
+ reference_kmer_dict = None
878
+ reference_kmer_dict_list = []
879
+ # If starting from database and query == reference
880
+ if same_inputs == True:
881
+ if query_database != None:
882
+ with open(query_database) as query_database_files:
883
+ for db_location in query_database_files:
884
+ if Path(db_location.strip()).is_file():
885
+ with gzip.open(db_location.strip(), 'rb') as database_handle:
886
+ temp_dict = pickle.load(database_handle)
887
+ if isinstance(temp_dict,dict):
888
+ query_kmer_dict_list.append(temp_dict)
889
+ #Carlos, this line serves no purpose but does take a bunch of time and mem.
890
+ #print(query_kmer_dict_list)
891
+ else:
892
+ exit("One of the database files appear to have the wrong format. Please provide a correctly formated databases.")
893
+ query_kmer_dict = merge_dicts(query_kmer_dict_list)
894
+ else:
895
+ # If the inputs are not the same:
896
+ # If query and ref are provided
897
+ if query_database != None and reference_database != None:
898
+ with open(query_database, 'r') as query_database_files:
899
+ for db_location in query_database_files:
900
+ if Path(db_location.strip()).is_file():
901
+ with gzip.open(db_location.strip(), 'rb') as database_handle:
902
+ temp_dict = pickle.load(database_handle)
903
+ if isinstance(temp_dict,dict):
904
+ query_kmer_dict_list.append(temp_dict)
905
+ else:
906
+ exit("One of the query database files appear to have the wrong format. Please provide a correctly formated databases.")
907
+ query_kmer_dict = merge_dicts(query_kmer_dict_list)
908
+ with open(reference_database) as reference_database_files:
909
+ for db_location in reference_database_files:
910
+ if Path(db_location.strip()).is_file():
911
+ with gzip.open(db_location.strip(), 'rb') as database_handle:
912
+ temp_dict = pickle.load(database_handle)
913
+ if isinstance(temp_dict,dict):
914
+ reference_kmer_dict_list.append(temp_dict)
915
+ else:
916
+ exit("One of the reference database files appear to have the wrong format. Please provide a correctly formated databases.")
917
+ reference_kmer_dict = merge_dicts(reference_kmer_dict_list)
918
+ # If only the query has a db
919
+ elif query_database != None and reference_database == None:
920
+ with open(query_database) as query_database_files:
921
+ for db_location in query_database_files:
922
+ if Path(db_location.strip()).is_file():
923
+ with gzip.open(db_location.strip(), 'rb') as database_handle:
924
+ temp_dict = pickle.load(database_handle)
925
+ if isinstance(temp_dict,dict):
926
+ query_kmer_dict_list.append(temp_dict)
927
+ else:
928
+ exit("One of the query database files appear to have the wrong format. Please provide a correctly formated databases.")
929
+ query_kmer_dict = merge_dicts(query_kmer_dict_list)
930
+ # If only the reference has a db
931
+ elif query_database == None and reference_database != None:
932
+ with open(reference_database) as reference_database_files:
933
+ for db_location in reference_database_files:
934
+ if Path(db_location.strip()).is_file():
935
+ with gzip.open(db_location.strip(), 'rb') as database_handle:
936
+ temp_dict = pickle.load(database_handle)
937
+ if isinstance(temp_dict,dict):
938
+ reference_kmer_dict_list.append(temp_dict)
939
+ else:
940
+ exit("One of the reference database files appear to have the wrong format. Please provide a correctly formated databases.")
941
+ reference_kmer_dict = merge_dicts(reference_kmer_dict_list)
942
+ # ------------------------------------------------------
943
+
944
+ # Get files from the query and reference lists and then
945
+ # create a dictionary with resulting filenames and a list with dictionary keys
946
+ # The structure of the dictionary is:
947
+ # original_query, proteins, hmms, filtered_hmms
948
+ # ------------------------------------------------------
949
+ # First parse the query:
950
+ query_list = []
951
+ query_file_names = {}
952
+ # For bacterial genomes
953
+ if virus == False:
954
+ if query_database != None:
955
+ pass
956
+ else:
957
+ with open(query_input, 'r') as query_input_fh:
958
+ for line in query_input_fh:
959
+ query_list.append(line.strip())
960
+ for index, query in enumerate(query_list):
961
+ query_name = str(Path(query).name)
962
+ if extension != None:
963
+ query_name = query_name.replace(extension, "")
964
+ if query_hmms != None:
965
+ query_protein_list = []
966
+ with open(query_proteins, 'r') as query_protein_fh:
967
+ for line in query_protein_fh:
968
+ query_protein_list.append(line.strip())
969
+ query_file_names[query_name] = [None, query_protein_list[index], query, query + '.filt']
970
+ elif query_proteins != None:
971
+ query_file_names[query_name] = [None, query, query + '.hmm', query + '.hmm.filt']
972
+ elif query_genomes != None:
973
+ query_file_names[query_name] = [query, query + '.faa', query + '.faa.hmm', query + '.faa.hmm.filt']
974
+ # For viral genomes
975
+ else:
976
+ if query_database != None:
977
+ pass
978
+ else:
979
+ with open(query_input, 'r') as query_input_fh:
980
+ for line in query_input_fh:
981
+ query_list.append(line.strip())
982
+ for index, query in enumerate(query_list):
983
+ query_name = str(Path(query).name)
984
+ if extension != None:
985
+ query_name = query_name.replace(extension, "")
986
+ if query_proteins != None:
987
+ query_file_names[query_name] = [None, query]
988
+ elif query_genomes != None:
989
+ query_file_names[query_name] = [query, query + '.faa']
990
+
991
+ # Then parse the references:
992
+ reference_list = []
993
+ reference_file_names = {}
994
+ if same_inputs == True:
995
+ pass
996
+ else:
997
+ # For bacterial genomes
998
+ if virus == False:
999
+ if reference_database != None:
1000
+ pass
1001
+ else:
1002
+ with open(reference_input, 'r') as reference_input_fh:
1003
+ for line in reference_input_fh:
1004
+ reference_list.append(line.strip())
1005
+ for index, reference in enumerate(reference_list):
1006
+ reference_name = str(Path(reference).name)
1007
+ if extension != None:
1008
+ reference_name = reference_name.replace(extension, "")
1009
+ if reference_hmms != None:
1010
+ reference_protein_list = []
1011
+ with open(reference_proteins, 'r') as reference_protein_fh:
1012
+ for line in reference_protein_fh:
1013
+ reference_protein_list.append(line.strip())
1014
+ reference_file_names[reference_name] = [None, reference_protein_list[index], reference, reference + '.filt']
1015
+ elif reference_proteins != None:
1016
+ reference_file_names[reference_name] = [None, reference, reference + '.hmm', reference + '.hmm.filt']
1017
+ elif query_genomes != None:
1018
+ reference_file_names[reference_name] = [reference, reference + '.faa', reference + '.faa.hmm', reference + '.faa.hmm.filt']
1019
+ # For viral genomes
1020
+ else:
1021
+ if reference_database != None:
1022
+ pass
1023
+ else:
1024
+ with open(reference_input, 'r') as reference_input_fh:
1025
+ for line in reference_input_fh:
1026
+ reference_list.append(line.strip())
1027
+ for index, reference in enumerate(reference_list):
1028
+ reference_name = str(Path(reference).name)
1029
+ if extension != None:
1030
+ reference_name = reference_name.replace(extension, "")
1031
+ if reference_proteins != None:
1032
+ reference_file_names[reference_name] = [None, reference]
1033
+ elif query_genomes != None:
1034
+ reference_file_names[reference_name] = [reference, reference + '.faa']
1035
+ # ------------------------------------------------------
1036
+
1037
+ # Pre-index and store databases
1038
+ # ------------------------------------------------------
1039
+ # Pre-index queries
1040
+ if query_kmer_dict == None:
1041
+ print("Processing queries...")
1042
+ # If using bacterial genomes
1043
+ if virus == False:
1044
+ if query_hmms != None:
1045
+ query_hmm_results = query_list
1046
+ elif query_proteins != None:
1047
+ query_protein_files = query_list
1048
+ print("Searching against HMM models...")
1049
+ try:
1050
+ pool = multiprocessing.Pool(threads)
1051
+ query_hmm_results = pool.map(run_hmmsearch, query_protein_files)
1052
+ finally:
1053
+ pool.close()
1054
+ pool.join()
1055
+ elif query_genomes != None:
1056
+ print("Predicting proteins...")
1057
+ # Predict query proteins
1058
+ try:
1059
+ pool = multiprocessing.Pool(threads)
1060
+ query_protein_files = pool.map(run_prodigal, query_list)
1061
+ finally:
1062
+ pool.close()
1063
+ pool.join()
1064
+ print("Done!")
1065
+ print("Searching against HMM models...")
1066
+ # Run hmmsearch against proteins predicted
1067
+ try:
1068
+ pool = multiprocessing.Pool(threads)
1069
+ query_hmm_results = pool.map(run_hmmsearch, query_protein_files)
1070
+ finally:
1071
+ pool.close()
1072
+ pool.join()
1073
+ print("Done!")
1074
+ print("Filtering query hmmsearch results...")
1075
+ # Filter query HMM search results
1076
+ try:
1077
+ pool = multiprocessing.Pool(threads)
1078
+ pool.map(partial(hmm_filter, keep=keep), query_hmm_results)
1079
+ finally:
1080
+ pool.close()
1081
+ pool.join()
1082
+ print("Extracting kmers from query proteins...")
1083
+ # Finding kmers for all queries
1084
+ query_information = []
1085
+ for name, values in query_file_names.items():
1086
+ query_information.append((name, values[1], values[3]))
1087
+ try:
1088
+ pool = multiprocessing.Pool(threads)
1089
+ kmer_results = pool.map(kmer_extract, query_information)
1090
+ finally:
1091
+ pool.close()
1092
+ pool.join()
1093
+ query_kmer_dict = merge_dicts(kmer_results)
1094
+ del kmer_results
1095
+ # If using viral genomes
1096
+ else:
1097
+ if query_genomes != None:
1098
+ print("Predicting proteins...")
1099
+ # Predict query proteins
1100
+ try:
1101
+ pool = multiprocessing.Pool(threads)
1102
+ query_protein_files = pool.map(run_prodigal_virus, query_list)
1103
+ finally:
1104
+ pool.close()
1105
+ pool.join()
1106
+ print("Done!")
1107
+ elif query_proteins != None:
1108
+ query_protein_files = query_list
1109
+ print("Extracting kmers from query proteins...")
1110
+ query_information = []
1111
+ for name, values in query_file_names.items():
1112
+ query_information.append((name, values[1], 4))
1113
+ try:
1114
+ pool = multiprocessing.Pool(threads)
1115
+ kmer_results = pool.map(read_viral_kmers_from_file, query_information)
1116
+ finally:
1117
+ pool.close()
1118
+ pool.join()
1119
+ query_kmer_dict = merge_dicts(kmer_results)
1120
+ del kmer_results
1121
+
1122
+ # Pre-index references (if different from queries)
1123
+ if same_inputs == False and reference_kmer_dict == None:
1124
+ print("Processing references...")
1125
+ # If using bacterial genomes
1126
+ if virus == False:
1127
+ if reference_hmms != None:
1128
+ reference_hmm_results = reference_list
1129
+ elif reference_proteins != None:
1130
+ reference_protein_files = reference_list
1131
+ print("Searching against HMM models... ")
1132
+ try:
1133
+ pool = multiprocessing.Pool(threads)
1134
+ reference_hmm_results = pool.map(run_hmmsearch, reference_protein_files)
1135
+ finally:
1136
+ pool.close()
1137
+ pool.join()
1138
+ if reference_genomes != None:
1139
+ print("Predicting proteins...")
1140
+ # Predict reference proteins
1141
+ try:
1142
+ pool = multiprocessing.Pool(threads)
1143
+ reference_protein_files = pool.map(run_prodigal, reference_list)
1144
+ finally:
1145
+ pool.close()
1146
+ pool.join()
1147
+ print("Done!")
1148
+ print("Searching against HMM models...")
1149
+ # Run hmmsearch against proteins predicted
1150
+ try:
1151
+ pool = multiprocessing.Pool(threads)
1152
+ reference_hmm_results = pool.map(run_hmmsearch, reference_protein_files)
1153
+ finally:
1154
+ pool.close()
1155
+ pool.join()
1156
+ print("Done!")
1157
+ print("Filtering reference hmmsearch results...")
1158
+ # Filter reference HMM search results
1159
+ try:
1160
+ pool = multiprocessing.Pool(threads)
1161
+ pool.map(partial(hmm_filter, keep=keep), reference_hmm_results)
1162
+ finally:
1163
+ pool.close()
1164
+ pool.join()
1165
+ print("Extracting kmers from reference proteins...")
1166
+ # Finding kmers for all queries
1167
+ reference_information = []
1168
+ for name, values in reference_file_names.items():
1169
+ reference_information.append((name, values[1], values[3]))
1170
+ try:
1171
+ pool = multiprocessing.Pool(threads)
1172
+ kmer_results = pool.map(kmer_extract, reference_information)
1173
+ finally:
1174
+ pool.close()
1175
+ pool.join()
1176
+ reference_kmer_dict = merge_dicts(kmer_results)
1177
+ del kmer_results
1178
+ # If using viral genomes
1179
+ else:
1180
+ if query_genomes != None:
1181
+ print("Predicting proteins...")
1182
+ # Predict query proteins
1183
+ try:
1184
+ pool = multiprocessing.Pool(threads)
1185
+ query_protein_files = pool.map(run_prodigal, query_list)
1186
+ finally:
1187
+ pool.close()
1188
+ pool.join()
1189
+ print("Done!")
1190
+ elif query_proteins != None:
1191
+ query_protein_files = query_list
1192
+ print("Extracting kmers from query proteins...")
1193
+ reference_information = []
1194
+ for name, values in reference_file_names.items():
1195
+ reference_information.append((name, values[1], 4))
1196
+ try:
1197
+ pool = multiprocessing.Pool(threads)
1198
+ kmer_results = pool.map(read_viral_kmers_from_file, reference_information)
1199
+ finally:
1200
+ pool.close()
1201
+ pool.join()
1202
+ query_kmer_dict = merge_dicts(kmer_results)
1203
+ del kmer_results
1204
+ # ------------------------------------------------------
1205
+
1206
+ # Create or database(s) and compress it(them)
1207
+ # ------------------------------------------------------
1208
+ if same_inputs == True and query_database == None:
1209
+ print("Saving pre-indexed database...")
1210
+ query_database_name = query_input + '.db.gz'
1211
+ with gzip.open(query_database_name, 'wb') as database_handle:
1212
+ pickle.dump(query_kmer_dict, database_handle, protocol=4)
1213
+ if same_inputs == False and query_database == None and reference_database == None:
1214
+ print("Saving pre-indexed databases...")
1215
+ query_database_name = query_input + '.db.gz'
1216
+ reference_database_name = reference_input + '.db.gz'
1217
+ with gzip.open(query_database_name, 'wb') as database_handle:
1218
+ pickle.dump(query_kmer_dict, database_handle, protocol=4)
1219
+ with gzip.open(reference_database_name, 'wb') as database_handle:
1220
+ pickle.dump(reference_kmer_dict, database_handle, protocol=4)
1221
+ elif same_inputs == False and query_database == None:
1222
+ print("Saving pre-indexed query database...")
1223
+ query_database_name = query_input + '.db.gz'
1224
+ with gzip.open(query_database_name, 'wb') as database_handle:
1225
+ pickle.dump(query_kmer_dict, database_handle, protocol=4)
1226
+ elif same_inputs == False and reference_database == None:
1227
+ print("Saving pre-indexed reference database...")
1228
+ reference_database_name = reference_input + '.db.gz'
1229
+ with gzip.open(reference_database_name, 'wb') as database_handle:
1230
+ pickle.dump(reference_kmer_dict, database_handle, protocol=4)
1231
+ # ------------------------------------------------------
1232
+ # Calculate Jaccard distances
1233
+ # ------------------------------------------------------
1234
+ if index_db == True:
1235
+ print("Finished pre-indexing databases.")
1236
+ print("Next time you can run the program using only these files with --qd and(or) --rd.")
1237
+ else:
1238
+ print("Calculating shared Kmer fraction...")
1239
+ if virus == False:
1240
+ if same_inputs == True:
1241
+ query_id_list = query_kmer_dict.keys()
1242
+ try:
1243
+
1244
+ fixed_dict, smart_args = numpyize_kmers(query_kmer_dict)
1245
+ #single_dictionary_initializer(fixed_dict)
1246
+
1247
+ pool = multiprocessing.Pool(threads, initializer = single_dictionary_initializer, initargs = (fixed_dict,))
1248
+ Fraction_Results = pool.map(single_kaai_parser_all_v_all, smart_args)
1249
+ finally:
1250
+ pool.close()
1251
+ pool.join()
1252
+ else:
1253
+ query_id_list = query_kmer_dict.keys()
1254
+ try:
1255
+ pool = multiprocessing.Pool(threads, initializer = two_dictionary_initializer, initargs = (query_kmer_dict, reference_kmer_dict))
1256
+ Fraction_Results = pool.map(double_kaai_parser, query_id_list)
1257
+ finally:
1258
+ pool.close()
1259
+ pool.join()
1260
+ else:
1261
+ if same_inputs == True:
1262
+ query_id_list = query_kmer_dict.keys()
1263
+ try:
1264
+ pool = multiprocessing.Pool(threads, initializer = single_dictionary_initializer, initargs = (query_kmer_dict,))
1265
+ Fraction_Results = pool.map(single_virus_kaai_parser, query_id_list)
1266
+ finally:
1267
+ pool.close()
1268
+ pool.join()
1269
+ else:
1270
+ query_id_list = query_kmer_dict.keys()
1271
+ try:
1272
+ pool = multiprocessing.Pool(threads, initializer = two_dictionary_initializer, initargs = (query_kmer_dict, reference_kmer_dict))
1273
+ Fraction_Results = pool.map(double_viral_kaai_parser, query_id_list)
1274
+ finally:
1275
+ pool.close()
1276
+ pool.join()
1277
+ # ------------------------------------------------------
1278
+
1279
+ # Merge results into a single output
1280
+ # ------------------------------------------------------
1281
+ print("Merging results...")
1282
+ with open(output, 'w') as outfile:
1283
+ for file in Fraction_Results:
1284
+ with open(file) as Temp:
1285
+ shutil.copyfileobj(Temp, outfile)
1286
+ file.unlink()
1287
+ print("kAAI finishied correctly on {}".format(datetime.datetime.now()))
1288
+ # ------------------------------------------------------
1289
+ # If comparing viral genomes
1290
+
1291
+
1292
+
1293
+
1294
+
1295
+ if __name__ == "__main__":
1296
+ main()