miga-base 1.2.17.0 → 1.2.17.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (265) hide show
  1. checksums.yaml +4 -4
  2. data/lib/miga/version.rb +2 -2
  3. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Archaea_SCG.hmm +41964 -0
  4. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Bacteria_SCG.hmm +32439 -0
  5. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm +62056 -0
  6. data/utils/FastAAI/FastAAI +3659 -0
  7. data/utils/FastAAI/FastAAI-legacy/FastAAI +1336 -0
  8. data/utils/FastAAI/FastAAI-legacy/kAAI_v1.0_virus.py +1296 -0
  9. data/utils/FastAAI/README.md +84 -0
  10. data/utils/enveomics/Docs/recplot2.md +244 -0
  11. data/utils/enveomics/Examples/aai-matrix.bash +66 -0
  12. data/utils/enveomics/Examples/ani-matrix.bash +66 -0
  13. data/utils/enveomics/Examples/essential-phylogeny.bash +105 -0
  14. data/utils/enveomics/Examples/unus-genome-phylogeny.bash +100 -0
  15. data/utils/enveomics/LICENSE.txt +73 -0
  16. data/utils/enveomics/Makefile +52 -0
  17. data/utils/enveomics/Manifest/Tasks/aasubs.json +103 -0
  18. data/utils/enveomics/Manifest/Tasks/blasttab.json +790 -0
  19. data/utils/enveomics/Manifest/Tasks/distances.json +161 -0
  20. data/utils/enveomics/Manifest/Tasks/fasta.json +802 -0
  21. data/utils/enveomics/Manifest/Tasks/fastq.json +291 -0
  22. data/utils/enveomics/Manifest/Tasks/graphics.json +126 -0
  23. data/utils/enveomics/Manifest/Tasks/mapping.json +165 -0
  24. data/utils/enveomics/Manifest/Tasks/ogs.json +382 -0
  25. data/utils/enveomics/Manifest/Tasks/other.json +906 -0
  26. data/utils/enveomics/Manifest/Tasks/remote.json +356 -0
  27. data/utils/enveomics/Manifest/Tasks/sequence-identity.json +650 -0
  28. data/utils/enveomics/Manifest/Tasks/tables.json +308 -0
  29. data/utils/enveomics/Manifest/Tasks/trees.json +68 -0
  30. data/utils/enveomics/Manifest/Tasks/variants.json +111 -0
  31. data/utils/enveomics/Manifest/categories.json +165 -0
  32. data/utils/enveomics/Manifest/examples.json +162 -0
  33. data/utils/enveomics/Manifest/tasks.json +4 -0
  34. data/utils/enveomics/README.md +42 -0
  35. data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +171 -0
  36. data/utils/enveomics/Scripts/Aln.cat.rb +221 -0
  37. data/utils/enveomics/Scripts/Aln.convert.pl +35 -0
  38. data/utils/enveomics/Scripts/AlphaDiversity.pl +152 -0
  39. data/utils/enveomics/Scripts/BedGraph.tad.rb +138 -0
  40. data/utils/enveomics/Scripts/BedGraph.window.rb +71 -0
  41. data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +102 -0
  42. data/utils/enveomics/Scripts/BlastTab.addlen.rb +63 -0
  43. data/utils/enveomics/Scripts/BlastTab.advance.bash +48 -0
  44. data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +55 -0
  45. data/utils/enveomics/Scripts/BlastTab.catsbj.pl +104 -0
  46. data/utils/enveomics/Scripts/BlastTab.cogCat.rb +76 -0
  47. data/utils/enveomics/Scripts/BlastTab.filter.pl +47 -0
  48. data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +194 -0
  49. data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +104 -0
  50. data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +157 -0
  51. data/utils/enveomics/Scripts/BlastTab.recplot2.R +48 -0
  52. data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +86 -0
  53. data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +119 -0
  54. data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +86 -0
  55. data/utils/enveomics/Scripts/BlastTab.subsample.pl +47 -0
  56. data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +114 -0
  57. data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +90 -0
  58. data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +123 -0
  59. data/utils/enveomics/Scripts/Chao1.pl +97 -0
  60. data/utils/enveomics/Scripts/CharTable.classify.rb +234 -0
  61. data/utils/enveomics/Scripts/EBIseq2tax.rb +83 -0
  62. data/utils/enveomics/Scripts/FastA.N50.pl +60 -0
  63. data/utils/enveomics/Scripts/FastA.extract.rb +152 -0
  64. data/utils/enveomics/Scripts/FastA.filter.pl +52 -0
  65. data/utils/enveomics/Scripts/FastA.filterLen.pl +28 -0
  66. data/utils/enveomics/Scripts/FastA.filterN.pl +60 -0
  67. data/utils/enveomics/Scripts/FastA.fragment.rb +100 -0
  68. data/utils/enveomics/Scripts/FastA.gc.pl +42 -0
  69. data/utils/enveomics/Scripts/FastA.interpose.pl +93 -0
  70. data/utils/enveomics/Scripts/FastA.length.pl +38 -0
  71. data/utils/enveomics/Scripts/FastA.mask.rb +89 -0
  72. data/utils/enveomics/Scripts/FastA.per_file.pl +36 -0
  73. data/utils/enveomics/Scripts/FastA.qlen.pl +57 -0
  74. data/utils/enveomics/Scripts/FastA.rename.pl +65 -0
  75. data/utils/enveomics/Scripts/FastA.revcom.pl +23 -0
  76. data/utils/enveomics/Scripts/FastA.sample.rb +98 -0
  77. data/utils/enveomics/Scripts/FastA.slider.pl +85 -0
  78. data/utils/enveomics/Scripts/FastA.split.pl +55 -0
  79. data/utils/enveomics/Scripts/FastA.split.rb +79 -0
  80. data/utils/enveomics/Scripts/FastA.subsample.pl +131 -0
  81. data/utils/enveomics/Scripts/FastA.tag.rb +65 -0
  82. data/utils/enveomics/Scripts/FastA.toFastQ.rb +69 -0
  83. data/utils/enveomics/Scripts/FastA.wrap.rb +48 -0
  84. data/utils/enveomics/Scripts/FastQ.filter.pl +54 -0
  85. data/utils/enveomics/Scripts/FastQ.interpose.pl +90 -0
  86. data/utils/enveomics/Scripts/FastQ.maskQual.rb +89 -0
  87. data/utils/enveomics/Scripts/FastQ.offset.pl +90 -0
  88. data/utils/enveomics/Scripts/FastQ.split.pl +53 -0
  89. data/utils/enveomics/Scripts/FastQ.tag.rb +70 -0
  90. data/utils/enveomics/Scripts/FastQ.test-error.rb +81 -0
  91. data/utils/enveomics/Scripts/FastQ.toFastA.awk +24 -0
  92. data/utils/enveomics/Scripts/GFF.catsbj.pl +127 -0
  93. data/utils/enveomics/Scripts/GenBank.add_fields.rb +84 -0
  94. data/utils/enveomics/Scripts/HMM.essential.rb +351 -0
  95. data/utils/enveomics/Scripts/HMM.haai.rb +168 -0
  96. data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +83 -0
  97. data/utils/enveomics/Scripts/JPlace.distances.rb +88 -0
  98. data/utils/enveomics/Scripts/JPlace.to_iToL.rb +320 -0
  99. data/utils/enveomics/Scripts/M5nr.getSequences.rb +81 -0
  100. data/utils/enveomics/Scripts/MeTaxa.distribution.pl +198 -0
  101. data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +35 -0
  102. data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +49 -0
  103. data/utils/enveomics/Scripts/NCBIacc2tax.rb +92 -0
  104. data/utils/enveomics/Scripts/Newick.autoprune.R +27 -0
  105. data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +228 -0
  106. data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +32 -0
  107. data/utils/enveomics/Scripts/RefSeq.download.bash +48 -0
  108. data/utils/enveomics/Scripts/SRA.download.bash +67 -0
  109. data/utils/enveomics/Scripts/TRIBS.plot-test.R +36 -0
  110. data/utils/enveomics/Scripts/TRIBS.test.R +39 -0
  111. data/utils/enveomics/Scripts/Table.barplot.R +31 -0
  112. data/utils/enveomics/Scripts/Table.df2dist.R +30 -0
  113. data/utils/enveomics/Scripts/Table.filter.pl +61 -0
  114. data/utils/enveomics/Scripts/Table.merge.pl +77 -0
  115. data/utils/enveomics/Scripts/Table.prefScore.R +60 -0
  116. data/utils/enveomics/Scripts/Table.replace.rb +69 -0
  117. data/utils/enveomics/Scripts/Table.round.rb +63 -0
  118. data/utils/enveomics/Scripts/Table.split.pl +57 -0
  119. data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +227 -0
  120. data/utils/enveomics/Scripts/VCF.KaKs.rb +147 -0
  121. data/utils/enveomics/Scripts/VCF.SNPs.rb +88 -0
  122. data/utils/enveomics/Scripts/aai.rb +421 -0
  123. data/utils/enveomics/Scripts/ani.rb +362 -0
  124. data/utils/enveomics/Scripts/anir.rb +137 -0
  125. data/utils/enveomics/Scripts/clust.rand.rb +102 -0
  126. data/utils/enveomics/Scripts/gi2tax.rb +103 -0
  127. data/utils/enveomics/Scripts/in_silico_GA_GI.pl +96 -0
  128. data/utils/enveomics/Scripts/lib/data/dupont_2012_essential.hmm.gz +0 -0
  129. data/utils/enveomics/Scripts/lib/data/lee_2019_essential.hmm.gz +0 -0
  130. data/utils/enveomics/Scripts/lib/enveomics.R +1 -0
  131. data/utils/enveomics/Scripts/lib/enveomics_rb/anir.rb +293 -0
  132. data/utils/enveomics/Scripts/lib/enveomics_rb/bm_set.rb +175 -0
  133. data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +24 -0
  134. data/utils/enveomics/Scripts/lib/enveomics_rb/errors.rb +17 -0
  135. data/utils/enveomics/Scripts/lib/enveomics_rb/gmm_em.rb +30 -0
  136. data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +253 -0
  137. data/utils/enveomics/Scripts/lib/enveomics_rb/match.rb +88 -0
  138. data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +182 -0
  139. data/utils/enveomics/Scripts/lib/enveomics_rb/rbm.rb +49 -0
  140. data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +74 -0
  141. data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +237 -0
  142. data/utils/enveomics/Scripts/lib/enveomics_rb/stats/rand.rb +31 -0
  143. data/utils/enveomics/Scripts/lib/enveomics_rb/stats/sample.rb +152 -0
  144. data/utils/enveomics/Scripts/lib/enveomics_rb/stats.rb +3 -0
  145. data/utils/enveomics/Scripts/lib/enveomics_rb/utils.rb +74 -0
  146. data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +135 -0
  147. data/utils/enveomics/Scripts/ogs.annotate.rb +88 -0
  148. data/utils/enveomics/Scripts/ogs.core-pan.rb +160 -0
  149. data/utils/enveomics/Scripts/ogs.extract.rb +125 -0
  150. data/utils/enveomics/Scripts/ogs.mcl.rb +186 -0
  151. data/utils/enveomics/Scripts/ogs.rb +104 -0
  152. data/utils/enveomics/Scripts/ogs.stats.rb +131 -0
  153. data/utils/enveomics/Scripts/rbm-legacy.rb +172 -0
  154. data/utils/enveomics/Scripts/rbm.rb +108 -0
  155. data/utils/enveomics/Scripts/sam.filter.rb +148 -0
  156. data/utils/enveomics/Tests/Makefile +10 -0
  157. data/utils/enveomics/Tests/Mgen_M2288.faa +3189 -0
  158. data/utils/enveomics/Tests/Mgen_M2288.fna +8282 -0
  159. data/utils/enveomics/Tests/Mgen_M2321.fna +8288 -0
  160. data/utils/enveomics/Tests/Nequ_Kin4M.faa +2970 -0
  161. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
  162. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +7 -0
  163. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +17 -0
  164. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +137 -0
  165. data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +123 -0
  166. data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +200 -0
  167. data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +55 -0
  168. data/utils/enveomics/Tests/alkB.nwk +1 -0
  169. data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +13 -0
  170. data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +17 -0
  171. data/utils/enveomics/Tests/hiv1.faa +59 -0
  172. data/utils/enveomics/Tests/hiv1.fna +134 -0
  173. data/utils/enveomics/Tests/hiv2.faa +70 -0
  174. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +233 -0
  175. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +1 -0
  176. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +233 -0
  177. data/utils/enveomics/Tests/low-cov.bg.gz +0 -0
  178. data/utils/enveomics/Tests/phyla_counts.tsv +10 -0
  179. data/utils/enveomics/Tests/primate_lentivirus.ogs +11 -0
  180. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +9 -0
  181. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +8 -0
  182. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +6 -0
  183. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +9 -0
  184. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +6 -0
  185. data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +6 -0
  186. data/utils/enveomics/build_enveomics_r.bash +45 -0
  187. data/utils/enveomics/enveomics.R/DESCRIPTION +31 -0
  188. data/utils/enveomics/enveomics.R/NAMESPACE +39 -0
  189. data/utils/enveomics/enveomics.R/R/autoprune.R +167 -0
  190. data/utils/enveomics/enveomics.R/R/barplot.R +203 -0
  191. data/utils/enveomics/enveomics.R/R/cliopts.R +141 -0
  192. data/utils/enveomics/enveomics.R/R/df2dist.R +192 -0
  193. data/utils/enveomics/enveomics.R/R/growthcurve.R +349 -0
  194. data/utils/enveomics/enveomics.R/R/prefscore.R +79 -0
  195. data/utils/enveomics/enveomics.R/R/recplot.R +419 -0
  196. data/utils/enveomics/enveomics.R/R/recplot2.R +1698 -0
  197. data/utils/enveomics/enveomics.R/R/tribs.R +638 -0
  198. data/utils/enveomics/enveomics.R/R/utils.R +90 -0
  199. data/utils/enveomics/enveomics.R/README.md +81 -0
  200. data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
  201. data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
  202. data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +16 -0
  203. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +16 -0
  204. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +16 -0
  205. data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +25 -0
  206. data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +47 -0
  207. data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +23 -0
  208. data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +47 -0
  209. data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +26 -0
  210. data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +26 -0
  211. data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +44 -0
  212. data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +111 -0
  213. data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +67 -0
  214. data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +34 -0
  215. data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +25 -0
  216. data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +59 -0
  217. data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +63 -0
  218. data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +46 -0
  219. data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +78 -0
  220. data/utils/enveomics/enveomics.R/man/enve.prefscore.Rd +50 -0
  221. data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +44 -0
  222. data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +147 -0
  223. data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +45 -0
  224. data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +27 -0
  225. data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +77 -0
  226. data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +28 -0
  227. data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +24 -0
  228. data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +22 -0
  229. data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +22 -0
  230. data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +52 -0
  231. data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +29 -0
  232. data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +21 -0
  233. data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +45 -0
  234. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +34 -0
  235. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +23 -0
  236. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +24 -0
  237. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +31 -0
  238. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +56 -0
  239. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +20 -0
  240. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +51 -0
  241. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +43 -0
  242. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +82 -0
  243. data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +59 -0
  244. data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +27 -0
  245. data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +36 -0
  246. data/utils/enveomics/enveomics.R/man/enve.selvector.Rd +23 -0
  247. data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +68 -0
  248. data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +28 -0
  249. data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +27 -0
  250. data/utils/enveomics/enveomics.R/man/growth.curves.Rd +14 -0
  251. data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +13 -0
  252. data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +81 -0
  253. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +49 -0
  254. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +48 -0
  255. data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +125 -0
  256. data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +22 -0
  257. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +22 -0
  258. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +22 -0
  259. data/utils/enveomics/globals.mk +8 -0
  260. data/utils/enveomics/manifest.json +9 -0
  261. data/utils/multitrim/Multitrim How-To.pdf +0 -0
  262. data/utils/multitrim/README.md +67 -0
  263. data/utils/multitrim/multitrim.py +1555 -0
  264. data/utils/multitrim/multitrim.yml +13 -0
  265. metadata +268 -6
@@ -0,0 +1,638 @@
1
+
2
+ # Use as:
3
+ # > # Estimate reference (null) model:
4
+ # > tab <- read.table('Ecoli-ML-dmatrix.txt', sep='\t', h=T, row.names=1)
5
+ # > dist <- as.dist(tab);
6
+ # > all.dist <- enve.tribs(dist);
7
+ # >
8
+ # > # Estimate subset (test) model:
9
+ # > lee <- read.table('LEE-strains.txt', as.is=T)$V1
10
+ # > lee.dist <- enve.tribs(dist, lee, subsamples=seq(0,1,by=0.05), threads=12,
11
+ # + verbosity=2, pre.tribs=all.dist.merge);
12
+ # ...
13
+ # >
14
+ # > # Plot reference and selection at different subsampling levels:
15
+ # > plot(all.dist, t='boxplot');
16
+ # > plot(lee, new=FALSE, col='darkred');
17
+ # ...
18
+ # >
19
+ # > # Test significance of overclustering (or overdispersion):
20
+ # > lee.test <- enve.tribs.test(dist, lee, pre.tribs=all.dist.merge,
21
+ # + verbosity=2, threads=12);
22
+ # > summary(lee.test);
23
+ # > plot(lee.test);
24
+ # ...
25
+
26
+
27
+
28
+ #==============> Define S4 classes
29
+
30
+ #' Enveomics: TRIBS S4 Class
31
+ #'
32
+ #' Enve-omics representation of "Transformed-space Resampling In Biased Sets
33
+ #' (TRIBS)". This object represents sets of distances between objects,
34
+ #' sampled nearly-uniformly at random in "distance space". Subsampling
35
+ #' without selection is trivial, since both the distances space and the
36
+ #' selection occur in the same transformed space. However, it's useful to
37
+ #' compare randomly subsampled sets against a selected set of objects. This
38
+ #' is intended to identify overdispersion or overclustering (see
39
+ #' \code{\link{enve.TRIBStest}}) of a subset against the entire collection of
40
+ #' objects with minimum impact of sampling biases. This object can be produced
41
+ #' by \code{\link{enve.tribs}} and supports S4 methods \code{plot} and
42
+ #' \code{summary}.
43
+ #'
44
+ #' @slot distance \code{(numeric)} Centrality measurement of the distances
45
+ #' between the selected objects (without subsampling).
46
+ #' @slot points \code{(matrix)} Position of the different objects in distance
47
+ #' space.
48
+ #' @slot distances \code{(matrix)} Subsampled distances, where the rows are
49
+ #' replicates and the columns are subsampling levels.
50
+ #' @slot spaceSize \code{(numeric)} Number of objects.
51
+ #' @slot selSize \code{(numeric)} Number of selected objects.
52
+ #' @slot dimensions \code{(numeric)} Number of dimensions in the distance space.
53
+ #' @slot subsamples \code{(numeric)} Subsampling levels (as fractions, from
54
+ #' 0 to 1).
55
+ #' @slot call \code{(call)} Call producing this object.
56
+ #'
57
+ #' @author Luis M. Rodriguez-R [aut, cre]
58
+ #'
59
+ #' @exportClass
60
+
61
+ enve.TRIBS <- setClass("enve.TRIBS",
62
+ representation(
63
+ distance='numeric',
64
+ points='matrix',
65
+ distances='matrix',
66
+ spaceSize='numeric',
67
+ selSize='numeric',
68
+ dimensions='numeric',
69
+ subsamples='numeric',
70
+ call='call')
71
+ ,package='enveomics.R'
72
+ );
73
+
74
+ #' Enveomics: TRIBS Test S4 Class
75
+ #'
76
+ #' Test of significance of overclustering or overdispersion in a selected
77
+ #' set of objects with respect to the entire set (see \code{\link{enve.TRIBS}}).
78
+ #' This object can be produced by \code{\link{enve.tribs.test}} and supports S4
79
+ #' methods \code{plot} and \code{summary}.
80
+ #'
81
+ #' @slot pval.gt \code{(numeric)}
82
+ #' P-value for the overdispersion test.
83
+ #' @slot pval.lt \code{(numeric)}
84
+ #' P-value for the overclustering test.
85
+ #' @slot all.dist \code{(numeric)}
86
+ #' Empiric PDF of distances for the entire dataset (subsampled at selection
87
+ #' size).
88
+ #' @slot sel.dist \code{(numeric)}
89
+ #' Empiric PDF of distances for the selected objects (without subsampling).
90
+ #' @slot diff.dist \code{(numeric)}
91
+ #' Empiric PDF of the difference between \code{all.dist} and \code{sel.dist}.
92
+ #' The p-values are estimating by comparing areas in this PDF greater than and
93
+ #' lesser than zero.
94
+ #' @slot dist.mids \code{(numeric)}
95
+ #' Midpoints of the empiric PDFs of distances.
96
+ #' @slot diff.mids \code{(numeric)}
97
+ #' Midpoints of the empiric PDF of difference of distances.
98
+ #' @slot call \code{(call)}
99
+ #' Call producing this object.
100
+ #'
101
+ #' @author Luis M. Rodriguez-R [aut, cre]
102
+ #'
103
+ #' @exportClass
104
+
105
+ enve.TRIBStest <- setClass(
106
+ "enve.TRIBStest",
107
+ representation(
108
+ pval.gt = "numeric",
109
+ pval.lt = "numeric",
110
+ all.dist = "numeric",
111
+ sel.dist = "numeric",
112
+ diff.dist = "numeric",
113
+ dist.mids = "numeric",
114
+ diff.mids = "numeric",
115
+ call = "call"
116
+ ), package = "enveomics.R"
117
+ )
118
+
119
+ #==============> Define S4 methods
120
+
121
+ #' Enveomics: TRIBS Summary
122
+ #'
123
+ #' Summary of an \code{\link{enve.TRIBS}} object.
124
+ #'
125
+ #' @param object
126
+ #' \code{\link{enve.TRIBS}} object.
127
+ #' @param ...
128
+ #' No additional parameters are currently supported.
129
+ #'
130
+ #' @return No return value.
131
+ #'
132
+ #' @author Luis M. Rodriguez-R [aut, cre]
133
+ #'
134
+ #' @method summary enve.TRIBS
135
+ #' @export
136
+ summary.enve.TRIBS <- function(object, ...) {
137
+ cat("===[ enve.TRIBS ]-------------------------\n")
138
+ cat("Selected", attr(object, "selSize"), "of",
139
+ attr(object, "spaceSize"), "objects in",
140
+ attr(object, "dimensions"), "dimensions.\n")
141
+ cat("Collected", length(attr(object, "subsamples")), "subsamples with",
142
+ nrow(attr(object, "distances")), "replicates each.\n")
143
+ cat("------------------------------------------\n")
144
+ cat("call:", as.character(attr(object, "call")), "\n")
145
+ cat("------------------------------------------\n")
146
+ }
147
+
148
+ #' Enveomics: TRIBS Plot
149
+ #'
150
+ #' Plot an \code{\link{enve.TRIBS}} object.
151
+ #'
152
+ #' @param x
153
+ #' \code{\link{enve.TRIBS}} object to plot.
154
+ #' @param new
155
+ #' Should a new canvas be drawn?
156
+ #' @param type
157
+ #' Type of plot. The \strong{points} plot shows all the replicates, the
158
+ #' \strong{boxplot} plot represents the values found by
159
+ #' \code{\link[grDevices]{boxplot.stats}}.
160
+ #' as areas, and plots the outliers as points.
161
+ #' @param col
162
+ #' Color of the areas and/or the points.
163
+ #' @param pt.cex
164
+ #' Size of the points.
165
+ #' @param pt.pch
166
+ #' Points character.
167
+ #' @param pt.col
168
+ #' Color of the points.
169
+ #' @param ln.col
170
+ #' Color of the lines.
171
+ #' @param ...
172
+ #' Any additional parameters supported by \code{plot}.
173
+ #'
174
+ #' @return No return value.
175
+ #'
176
+ #' @author Luis M. Rodriguez-R [aut, cre]
177
+ #'
178
+ #' @method plot enve.TRIBS
179
+ #' @export
180
+
181
+ plot.enve.TRIBS <- function(
182
+ x,
183
+ new = TRUE,
184
+ type = c("boxplot", "points"),
185
+ col = "#00000044",
186
+ pt.cex = 1/2,
187
+ pt.pch = 19,
188
+ pt.col = col,
189
+ ln.col = col,
190
+ ...
191
+ ) {
192
+ type <- match.arg(type)
193
+ plot.opts <- list(
194
+ xlim = range(attr(x, "subsamples")) * attr(x, "selSize"),
195
+ ylim = range(attr(x, "distances")), ..., t = "n", x = 1
196
+ )
197
+ if (new) do.call(plot, plot.opts)
198
+ abline(h = attr(x, "distance"), lty = 3, col = ln.col)
199
+ replicates <- nrow(attr(x, "distances"))
200
+ if (type == "points") {
201
+ for (i in 1:ncol(attr(x, "distances")))
202
+ points(
203
+ rep(round(attr(x, "subsamples")[i] * attr(x, "selSize")), replicates),
204
+ attr(x, "distances")[, i],
205
+ cex = pt.cex, pch = pt.pch, col = pt.col
206
+ )
207
+ } else {
208
+ stats <- matrix(NA, nrow = 7, ncol = ncol(attr(x, "distances")))
209
+ for (i in 1:ncol(attr(x, "distances"))) {
210
+ b <- boxplot.stats(attr(x, "distances")[, i])
211
+ points(
212
+ rep(
213
+ round(attr(x, "subsamples")[i] * attr(x, "selSize")), length(b$out)
214
+ ),
215
+ b$out, cex = pt.cex, pch = pt.pch, col = pt.col
216
+ )
217
+ stats[, i] <- c(b$conf, b$stats[c(1, 5, 2, 4, 3)])
218
+ }
219
+ x <- round(attr(x, "subsamples") * attr(x, "selSize"))
220
+ for (i in c(1, 3, 5))
221
+ polygon(
222
+ c(x, rev(x)), c(stats[i, ], rev(stats[i + 1, ])), border = NA, col = col
223
+ )
224
+ lines(x, stats[7, ], col = ln.col, lwd = 2)
225
+ }
226
+ }
227
+
228
+ #' Enveomics: TRIBS Summary Test
229
+ #'
230
+ #' Summary of an \code{\link{enve.TRIBStest}} object.
231
+ #'
232
+ #' @param object
233
+ #' \code{\link{enve.TRIBStest}} object.
234
+ #' @param ...
235
+ #' No additional parameters are currently supported.
236
+ #'
237
+ #' @return No return value.
238
+ #'
239
+ #' @author Luis M. Rodriguez-R [aut, cre]
240
+ #'
241
+ #' @method summary enve.TRIBStest
242
+ #' @export
243
+
244
+ summary.enve.TRIBStest <- function(object, ...) {
245
+ cat("===[ enve.TRIBStest ]---------------------\n")
246
+ cat("Alternative hypothesis:\n")
247
+ cat(" The distances in the selection are\n")
248
+ if (attr(object, "pval.gt") > attr(object, "pval.lt")) {
249
+ cat(" smaller than in the entire dataset\n (overclustering)\n")
250
+ } else {
251
+ cat(" larger than in the entire dataset\n (overdispersion)\n")
252
+ }
253
+ p.val <- min(attr(object, "pval.gt"), attr(object, "pval.lt"))
254
+ if (p.val == 0) {
255
+ diff.dist <- attr(object, "diff.dist")
256
+ p.val.lim <- min(diff.dist[diff.dist > 0])
257
+ cat("\n P-value <= ", signif(p.val.lim, 4), sep = "")
258
+ } else {
259
+ p.val.lim <- p.val
260
+ cat("\n P-value: ", signif(p.val, 4), sep = "")
261
+ }
262
+ cat(" ", ifelse(p.val.lim <= 0.01, "**",
263
+ ifelse(p.val.lim<=0.05, "*", "")), "\n", sep = "")
264
+ cat("------------------------------------------\n")
265
+ cat("call:", as.character(attr(object, "call")), "\n")
266
+ cat("------------------------------------------\n")
267
+ }
268
+
269
+ #' Enveomics: TRIBS Plot Test
270
+ #'
271
+ #' Plots an \code{\link{enve.TRIBStest}} object.
272
+ #'
273
+ #' @param x
274
+ #' \code{\link{enve.TRIBStest}} object to plot.
275
+ #' @param type
276
+ #' What to plot. \code{overlap} generates a plot of the two contrasting
277
+ #' empirical PDFs (to compare against each other), \code{difference} produces a
278
+ #' plot of the differences between the empirical PDFs (to compare against zero).
279
+ #' @param col
280
+ #' Main color of the plot if type=\code{difference}.
281
+ #' @param col1
282
+ #' First color of the plot if type=\code{overlap}.
283
+ #' @param col2
284
+ #' Second color of the plot if type=\code{overlap}.
285
+ #' @param ylab
286
+ #' Y-axis label.
287
+ #' @param xlim
288
+ #' X-axis limits.
289
+ #' @param ylim
290
+ #' Y-axis limits.
291
+ #' @param ...
292
+ #' Any other graphical arguments.
293
+ #'
294
+ #' @return No return value.
295
+ #'
296
+ #' @author Luis M. Rodriguez-R [aut, cre]
297
+ #'
298
+ #' @method plot enve.TRIBStest
299
+ #' @export
300
+
301
+ plot.enve.TRIBStest <- function(
302
+ x,
303
+ type =c("overlap", "difference"),
304
+ col = "#00000044",
305
+ col1 = col,
306
+ col2 = "#44001144",
307
+ ylab = "Probability",
308
+ xlim = range(attr(x, "dist.mids")),
309
+ ylim = c(0, max(c(attr(x, "all.dist"), attr(x, "sel.dist")))),
310
+ ...
311
+ ) {
312
+ type <- match.arg(type)
313
+ if (type == "overlap") {
314
+ plot.opts <- list(
315
+ xlim = xlim, ylim = ylim, ylab = ylab, ..., t = "n", x = 1
316
+ )
317
+ do.call(plot, plot.opts)
318
+ bins <- length(attr(x, "dist.mids"))
319
+ polygon(
320
+ attr(x, "dist.mids")[c(1, 1:bins, bins)],
321
+ c(0, attr(x, "all.dist"), 0), col = col1,
322
+ border = do.call(rgb, as.list(c(col2rgb(col1) / 256, 0.5)))
323
+ )
324
+ polygon(
325
+ attr(x, "dist.mids")[c(1, 1:bins, bins)],
326
+ c(0, attr(x, "sel.dist"), 0), col = col2,
327
+ border = do.call(rgb, as.list(c(col2rgb(col2) / 256, 0.5)))
328
+ )
329
+ } else {
330
+ plot.opts <- list(
331
+ xlim = range(attr(x, "diff.mids")),
332
+ ylim = c(0,max(attr(x, 'diff.dist'))),
333
+ ylab = ylab, ..., t = "n", x = 1
334
+ )
335
+ do.call(plot, plot.opts)
336
+ bins <- length(attr(x, "diff.mids"))
337
+ polygon(
338
+ attr(x, "diff.mids")[c(1, 1:bins, bins)],
339
+ c(0, attr(x, "diff.dist"), 0), col = col,
340
+ border = do.call(rgb, as.list(c(col2rgb(col) / 256, 0.5)))
341
+ )
342
+ }
343
+ }
344
+
345
+ #' Enveomics: TRIBS Merge
346
+ #'
347
+ #' Merges two \code{\link{enve.TRIBS}} objects generated from the same objects
348
+ #' at different subsampling levels.
349
+ #'
350
+ #' @param x
351
+ #' First \code{\link{enve.TRIBS}} object.
352
+ #' @param y
353
+ #' Second \code{\link{enve.TRIBS}} object.
354
+ #'
355
+ #' @return Returns an \code{\link{enve.TRIBS}} object.
356
+ #'
357
+ #' @author Luis M. Rodriguez-R [aut, cre]
358
+ #'
359
+ #' @export
360
+
361
+ enve.TRIBS.merge <- function(x, y) {
362
+ # Check consistency
363
+ if (attr(x, "distance") != attr(y, "distance"))
364
+ stop("Total distances in objects are different.")
365
+ if (any(attr(x, "points") != attr(y, "points")))
366
+ stop("Points in objects are different.")
367
+ if (attr(x, "spaceSize") != attr(y, "spaceSize"))
368
+ stop("Space size in objects are different.")
369
+ if (attr(x, "selSize") != attr(y, "selSize"))
370
+ stop("Selection size in objects are different.")
371
+ if (attr(x, "dimensions") != attr(y, "dimensions"))
372
+ stop("Dimensions in objects are different.")
373
+ if (nrow(attr(x, "distances")) != nrow(attr(y, "distances")))
374
+ stop("Replicates in objects are different.")
375
+
376
+ # Merge
377
+ a <- attr(x, "subsamples")
378
+ b <- attr(y, "subsamples")
379
+ o <- order(c(a, b))
380
+ o <- o[!duplicated(c(a, b)[o])]
381
+ d <- cbind(attr(x, "distances"), attr(y, "distances"))[, o]
382
+ z <- new(
383
+ "enve.TRIBS",
384
+ distance = attr(x, "distance"), points = attr(x, "points"),
385
+ distances = d, spaceSize = attr(x, "spaceSize"),
386
+ selSize = attr(x, "selSize"), dimensions = attr(x, "dimensions"),
387
+ subsamples = c(a, b)[o], call = match.call()
388
+ )
389
+ return(z)
390
+ }
391
+
392
+ #==============> Define core functions
393
+
394
+ #' Enveomics: TRIBS Test
395
+ #'
396
+ #' Estimates the empirical difference between all the distances in a set of
397
+ #' objects and a subset, together with its statistical significance.
398
+ #'
399
+ #' @param dist
400
+ #' Distances as \code{dist} object.
401
+ #' @param selection
402
+ #' Selection defining the subset.
403
+ #' @param bins
404
+ #' Number of bins to evaluate in the range of distances.
405
+ #' @param ...
406
+ #' Any other parameters supported by \code{\link{enve.tribs}},
407
+ #' except \code{subsamples}.
408
+ #'
409
+ #' @return Returns an \code{\link{enve.TRIBStest}} object.
410
+ #'
411
+ #' @author Luis M. Rodriguez-R [aut, cre]
412
+ #'
413
+ #' @export
414
+
415
+ enve.tribs.test <- function(dist, selection, bins = 50, ...) {
416
+ s.tribs <- enve.tribs(dist, selection, subsamples = c(0,1), ...)
417
+ a.tribs <- enve.tribs(
418
+ dist,
419
+ subsamples = c(0, attr(s.tribs, "selSize") / attr(s.tribs, "spaceSize")),
420
+ ...
421
+ )
422
+ s.dist <- attr(s.tribs, "distances")[, 2]
423
+ a.dist <- attr(a.tribs, "distances")[, 2]
424
+ range <- range(c(s.dist, a.dist))
425
+ a.f <- hist(
426
+ a.dist, breaks = seq(range[1], range[2], length.out = bins), plot = FALSE
427
+ )
428
+ s.f <- hist(
429
+ s.dist, breaks = seq(range[1], range[2], length.out = bins), plot = FALSE
430
+ )
431
+ zp.f <- c()
432
+ zz.f <- 0
433
+ zn.f <- c()
434
+ p.x <- a.f$counts / sum(a.f$counts)
435
+ p.y <- s.f$counts / sum(s.f$counts)
436
+ for (z in 1:length(a.f$mids)) {
437
+ zn.f[z] <- 0
438
+ zz.f <- 0
439
+ zp.f[z] <- 0
440
+ for (k in 1:length(a.f$mids)) {
441
+ if (z < k) {
442
+ zp.f[z] <- zp.f[z] + p.x[k] * p.y[k-z]
443
+ zn.f[z] <- zn.f[z] + p.x[k-z] * p.y[k]
444
+ }
445
+ zz.f <- zz.f + p.x[k] * p.y[k]
446
+ }
447
+ }
448
+ return(
449
+ new(
450
+ "enve.TRIBStest",
451
+ pval.gt = sum(c(zz.f, zp.f)), pval.lt = sum(c(zz.f, zn.f)),
452
+ all.dist = p.x, sel.dist = p.y, diff.dist = c(rev(zn.f), zz.f, zp.f),
453
+ dist.mids = a.f$mids,
454
+ diff.mids = seq(
455
+ diff(range(a.f$mids)),
456
+ -diff(range(a.f$mids)),
457
+ length.out = 1 + 2 * length(a.f$mids)
458
+ ),
459
+ call=match.call()
460
+ )
461
+ )
462
+ }
463
+
464
+ #' Enveomics: TRIBS
465
+ #'
466
+ #' Subsample any objects in "distance space" to reduce the effect of
467
+ #' sample-clustering. This function was originally designed to subsample
468
+ #' genomes in "phylogenetic distance space", a clear case of strong
469
+ #' clustering bias in sampling, by Luis M. Rodriguez-R and Michael R
470
+ #' Weigand.
471
+ #'
472
+ #' @param dist
473
+ #' Distances as a \code{dist} object.
474
+ #' @param selection
475
+ #' Objects to include in the subsample. By default, all objects are
476
+ #' selected.
477
+ #' @param replicates
478
+ #' Number of replications per point.
479
+ #' @param summary.fx
480
+ #' Function to summarize the distance distributions in a given replicate. By
481
+ #' default, the median distance is estimated.
482
+ #' @param dist.method
483
+ #' Distance method between random points and samples in the transformed
484
+ #' space. See \code{dist}.
485
+ #' @param subsamples
486
+ #' Subsampling fractions.
487
+ #' @param dimensions
488
+ #' Dimensions to use in the NMDS. By default, 5\% of the selection length.
489
+ #' @param metaMDS.opts
490
+ #' Any additional options to pass to metaMDS, as \code{list}.
491
+ #' @param threads
492
+ #' Number of threads to use.
493
+ #' @param verbosity
494
+ #' Verbosity. Use 0 to run quietly, increase for additional information.
495
+ #' @param points
496
+ #' Optional. If passed, the MDS step is skipped and this object is used
497
+ #' instead. It can be the \code{$points} slot of class \code{metaMDS}
498
+ #' (from \code{vegan}).
499
+ #' It must be a matrix or matrix-coercible object, with samples as rows and
500
+ #' dimensions as columns.
501
+ #' @param pre.tribs
502
+ #' Optional. If passed, the points are recovered from this object (except if
503
+ #' \code{points} is also passed. This should be an \code{\link{enve.TRIBS}}
504
+ #' object estimated on the same objects (the selection is unimportant).
505
+ #'
506
+ #' @return Returns an \code{\link{enve.TRIBS}} object.
507
+ #'
508
+ #' @author Luis M. Rodriguez-R [aut, cre]
509
+ #'
510
+ #' @export
511
+
512
+ enve.tribs <- function(
513
+ dist,
514
+ selection = labels(dist),
515
+ replicates = 1000,
516
+ summary.fx = median,
517
+ dist.method = "euclidean",
518
+ subsamples = seq(0, 1, by = 0.01),
519
+ dimensions = ceiling(length(selection) * 0.05),
520
+ metaMDS.opts = list(),
521
+ threads = 2,
522
+ verbosity = 1,
523
+ points,
524
+ pre.tribs
525
+ ) {
526
+ # Sanity checks
527
+ if (!is(dist, "dist"))
528
+ stop("`dist` parameter must be a `dist` object.")
529
+
530
+ # 1. NMDS
531
+ if (missing(points)) {
532
+ if (missing(pre.tribs)) {
533
+ if (verbosity > 0) cat("===[ Estimating NMDS ]\n")
534
+ if (!suppressPackageStartupMessages(
535
+ requireNamespace("vegan", quietly=TRUE))
536
+ ) stop("Unavailable required package: `vegan`.")
537
+ mds.args <- c(
538
+ metaMDS.opts,
539
+ list(comm = dist, k = dimensions, trace = verbosity)
540
+ )
541
+ points <- do.call(vegan::metaMDS, mds.args)$points
542
+ } else {
543
+ points <- attr(pre.tribs, "points")
544
+ dimensions <- ncol(points)
545
+ }
546
+ } else {
547
+ points <- as.matrix(points)
548
+ dimensions <- ncol(points)
549
+ }
550
+
551
+ # 2. Pad ranges
552
+ if (verbosity > 0) cat("===[ Padding ranges ]\n")
553
+ dots <- matrix(
554
+ NA, nrow = nrow(points), ncol = dimensions,
555
+ dimnames = list(rownames(points), 1:dimensions)
556
+ )
557
+ selection <- selection[!is.na(match(selection, rownames(dots)))]
558
+ for (dim in 1:dimensions) {
559
+ dimRange <- range(points[, dim]) + c(-1, 1) *
560
+ diff(range(points[, 1])) / length(selection)
561
+ dots[, dim] <- (points[, dim] - dimRange[1]) / diff(dimRange)
562
+ }
563
+
564
+ # 3. Select points and summarize distances
565
+ if (verbosity > 0) cat("===[ Sub-sampling ]\n")
566
+ distances <- matrix(
567
+ NA, nrow = replicates, ncol = length(subsamples),
568
+ dimnames = list(1:replicates, as.character(subsamples))
569
+ )
570
+ cl <- makeCluster(threads)
571
+ for (frx in subsamples) {
572
+ if (verbosity > 1) cat("Sub-sampling at ", (frx * 100), "%\n", sep = "")
573
+ distances[, as.character(frx)] <- parSapply(
574
+ cl, 1:replicates, enve.__tribs, frx,
575
+ match(selection, rownames(dots)), dimensions, dots, dist.method,
576
+ summary.fx, dist
577
+ )
578
+ }
579
+ stopCluster(cl)
580
+
581
+ # 4. Build object and return
582
+ return(
583
+ new(
584
+ "enve.TRIBS",
585
+ distance = do.call(
586
+ summary.fx, list(as.matrix(dist)[selection, selection])
587
+ ),
588
+ points = points, distances = distances, spaceSize = nrow(points),
589
+ selSize = length(selection), dimensions = dimensions,
590
+ subsamples = subsamples, call = match.call()
591
+ )
592
+ )
593
+ }
594
+
595
+ #' Enveomics: TRIBS - Internal Ancillary Function
596
+ #'
597
+ #' Internal ancillary function (see \code{\link{enve.tribs}}).
598
+ #'
599
+ #' @param rep Replicates
600
+ #' @param frx Fraction
601
+ #' @param selection Selection
602
+ #' @param dimensions Dimensions
603
+ #' @param dots Sampling points
604
+ #' @param dist.method Distance method
605
+ #' @param summary.fx Summary function
606
+ #' @param dist Distance
607
+ #'
608
+ #' @return A numeric indicating the \code{summary.fx} value applied to the
609
+ #' distance matrix subset
610
+ #'
611
+ #' @author Luis M. Rodriguez-R [aut, cre]
612
+ #'
613
+ #' @export
614
+
615
+ enve.__tribs <- function(
616
+ rep, frx, selection, dimensions, dots, dist.method, summary.fx, dist
617
+ ) {
618
+ sample <- c()
619
+ if (frx == 0) return(0)
620
+ for (point in 1:round(frx * length(selection))) {
621
+ rand.point <- runif(dimensions)
622
+ closest.dot <- ""
623
+ closest.dist <- Inf
624
+ for (dot in selection) {
625
+ dot.dist <- as.numeric(
626
+ dist(matrix(c(rand.point, dots[dot,]), nrow = 2, byrow = TRUE),
627
+ method = dist.method)
628
+ )
629
+ if (dot.dist < closest.dist) {
630
+ closest.dot <- dot
631
+ closest.dist <- dot.dist
632
+ }
633
+ }
634
+ sample <- c(sample, closest.dot)
635
+ }
636
+ return(do.call(summary.fx, list(as.matrix(dist)[sample, sample])))
637
+ }
638
+