miga-base 1.2.17.0 → 1.2.17.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/miga/version.rb +1 -1
- data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Archaea_SCG.hmm +41964 -0
- data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Bacteria_SCG.hmm +32439 -0
- data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm +62056 -0
- data/utils/FastAAI/FastAAI +3659 -0
- data/utils/FastAAI/FastAAI-legacy/FastAAI +1336 -0
- data/utils/FastAAI/FastAAI-legacy/kAAI_v1.0_virus.py +1296 -0
- data/utils/FastAAI/README.md +84 -0
- data/utils/enveomics/Docs/recplot2.md +244 -0
- data/utils/enveomics/Examples/aai-matrix.bash +66 -0
- data/utils/enveomics/Examples/ani-matrix.bash +66 -0
- data/utils/enveomics/Examples/essential-phylogeny.bash +105 -0
- data/utils/enveomics/Examples/unus-genome-phylogeny.bash +100 -0
- data/utils/enveomics/LICENSE.txt +73 -0
- data/utils/enveomics/Makefile +52 -0
- data/utils/enveomics/Manifest/Tasks/aasubs.json +103 -0
- data/utils/enveomics/Manifest/Tasks/blasttab.json +790 -0
- data/utils/enveomics/Manifest/Tasks/distances.json +161 -0
- data/utils/enveomics/Manifest/Tasks/fasta.json +802 -0
- data/utils/enveomics/Manifest/Tasks/fastq.json +291 -0
- data/utils/enveomics/Manifest/Tasks/graphics.json +126 -0
- data/utils/enveomics/Manifest/Tasks/mapping.json +137 -0
- data/utils/enveomics/Manifest/Tasks/ogs.json +382 -0
- data/utils/enveomics/Manifest/Tasks/other.json +906 -0
- data/utils/enveomics/Manifest/Tasks/remote.json +355 -0
- data/utils/enveomics/Manifest/Tasks/sequence-identity.json +650 -0
- data/utils/enveomics/Manifest/Tasks/tables.json +308 -0
- data/utils/enveomics/Manifest/Tasks/trees.json +68 -0
- data/utils/enveomics/Manifest/Tasks/variants.json +111 -0
- data/utils/enveomics/Manifest/categories.json +165 -0
- data/utils/enveomics/Manifest/examples.json +162 -0
- data/utils/enveomics/Manifest/tasks.json +4 -0
- data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +69 -0
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +1 -0
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +1 -0
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +1 -0
- data/utils/enveomics/Pipelines/assembly.pbs/README.md +189 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +112 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +23 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +44 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +50 -0
- data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +37 -0
- data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +68 -0
- data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +49 -0
- data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +80 -0
- data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +57 -0
- data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +63 -0
- data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +38 -0
- data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +73 -0
- data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +21 -0
- data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +72 -0
- data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +98 -0
- data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +1 -0
- data/utils/enveomics/Pipelines/blast.pbs/README.md +127 -0
- data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +109 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +128 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +16 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +22 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +26 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +89 -0
- data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +29 -0
- data/utils/enveomics/Pipelines/idba.pbs/README.md +49 -0
- data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +95 -0
- data/utils/enveomics/Pipelines/idba.pbs/run.pbs +56 -0
- data/utils/enveomics/Pipelines/trim.pbs/README.md +54 -0
- data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +70 -0
- data/utils/enveomics/Pipelines/trim.pbs/run.pbs +130 -0
- data/utils/enveomics/README.md +42 -0
- data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +171 -0
- data/utils/enveomics/Scripts/Aln.cat.rb +221 -0
- data/utils/enveomics/Scripts/Aln.convert.pl +35 -0
- data/utils/enveomics/Scripts/AlphaDiversity.pl +152 -0
- data/utils/enveomics/Scripts/BedGraph.tad.rb +93 -0
- data/utils/enveomics/Scripts/BedGraph.window.rb +71 -0
- data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +102 -0
- data/utils/enveomics/Scripts/BlastTab.addlen.rb +63 -0
- data/utils/enveomics/Scripts/BlastTab.advance.bash +48 -0
- data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +55 -0
- data/utils/enveomics/Scripts/BlastTab.catsbj.pl +104 -0
- data/utils/enveomics/Scripts/BlastTab.cogCat.rb +76 -0
- data/utils/enveomics/Scripts/BlastTab.filter.pl +47 -0
- data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +194 -0
- data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +104 -0
- data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +157 -0
- data/utils/enveomics/Scripts/BlastTab.recplot2.R +48 -0
- data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +86 -0
- data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +119 -0
- data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +86 -0
- data/utils/enveomics/Scripts/BlastTab.subsample.pl +47 -0
- data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +114 -0
- data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +90 -0
- data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +123 -0
- data/utils/enveomics/Scripts/Chao1.pl +97 -0
- data/utils/enveomics/Scripts/CharTable.classify.rb +234 -0
- data/utils/enveomics/Scripts/EBIseq2tax.rb +83 -0
- data/utils/enveomics/Scripts/FastA.N50.pl +60 -0
- data/utils/enveomics/Scripts/FastA.extract.rb +152 -0
- data/utils/enveomics/Scripts/FastA.filter.pl +52 -0
- data/utils/enveomics/Scripts/FastA.filterLen.pl +28 -0
- data/utils/enveomics/Scripts/FastA.filterN.pl +60 -0
- data/utils/enveomics/Scripts/FastA.fragment.rb +100 -0
- data/utils/enveomics/Scripts/FastA.gc.pl +42 -0
- data/utils/enveomics/Scripts/FastA.interpose.pl +93 -0
- data/utils/enveomics/Scripts/FastA.length.pl +38 -0
- data/utils/enveomics/Scripts/FastA.mask.rb +89 -0
- data/utils/enveomics/Scripts/FastA.per_file.pl +36 -0
- data/utils/enveomics/Scripts/FastA.qlen.pl +57 -0
- data/utils/enveomics/Scripts/FastA.rename.pl +65 -0
- data/utils/enveomics/Scripts/FastA.revcom.pl +23 -0
- data/utils/enveomics/Scripts/FastA.sample.rb +98 -0
- data/utils/enveomics/Scripts/FastA.slider.pl +85 -0
- data/utils/enveomics/Scripts/FastA.split.pl +55 -0
- data/utils/enveomics/Scripts/FastA.split.rb +79 -0
- data/utils/enveomics/Scripts/FastA.subsample.pl +131 -0
- data/utils/enveomics/Scripts/FastA.tag.rb +65 -0
- data/utils/enveomics/Scripts/FastA.toFastQ.rb +69 -0
- data/utils/enveomics/Scripts/FastA.wrap.rb +48 -0
- data/utils/enveomics/Scripts/FastQ.filter.pl +54 -0
- data/utils/enveomics/Scripts/FastQ.interpose.pl +90 -0
- data/utils/enveomics/Scripts/FastQ.maskQual.rb +89 -0
- data/utils/enveomics/Scripts/FastQ.offset.pl +90 -0
- data/utils/enveomics/Scripts/FastQ.split.pl +53 -0
- data/utils/enveomics/Scripts/FastQ.tag.rb +70 -0
- data/utils/enveomics/Scripts/FastQ.test-error.rb +81 -0
- data/utils/enveomics/Scripts/FastQ.toFastA.awk +24 -0
- data/utils/enveomics/Scripts/GFF.catsbj.pl +127 -0
- data/utils/enveomics/Scripts/GenBank.add_fields.rb +84 -0
- data/utils/enveomics/Scripts/HMM.essential.rb +351 -0
- data/utils/enveomics/Scripts/HMM.haai.rb +168 -0
- data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +83 -0
- data/utils/enveomics/Scripts/JPlace.distances.rb +88 -0
- data/utils/enveomics/Scripts/JPlace.to_iToL.rb +320 -0
- data/utils/enveomics/Scripts/M5nr.getSequences.rb +81 -0
- data/utils/enveomics/Scripts/MeTaxa.distribution.pl +198 -0
- data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +35 -0
- data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +49 -0
- data/utils/enveomics/Scripts/NCBIacc2tax.rb +92 -0
- data/utils/enveomics/Scripts/Newick.autoprune.R +27 -0
- data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +228 -0
- data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +32 -0
- data/utils/enveomics/Scripts/RefSeq.download.bash +48 -0
- data/utils/enveomics/Scripts/SRA.download.bash +55 -0
- data/utils/enveomics/Scripts/TRIBS.plot-test.R +36 -0
- data/utils/enveomics/Scripts/TRIBS.test.R +39 -0
- data/utils/enveomics/Scripts/Table.barplot.R +31 -0
- data/utils/enveomics/Scripts/Table.df2dist.R +30 -0
- data/utils/enveomics/Scripts/Table.filter.pl +61 -0
- data/utils/enveomics/Scripts/Table.merge.pl +77 -0
- data/utils/enveomics/Scripts/Table.prefScore.R +60 -0
- data/utils/enveomics/Scripts/Table.replace.rb +69 -0
- data/utils/enveomics/Scripts/Table.round.rb +63 -0
- data/utils/enveomics/Scripts/Table.split.pl +57 -0
- data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +227 -0
- data/utils/enveomics/Scripts/VCF.KaKs.rb +147 -0
- data/utils/enveomics/Scripts/VCF.SNPs.rb +88 -0
- data/utils/enveomics/Scripts/aai.rb +421 -0
- data/utils/enveomics/Scripts/ani.rb +362 -0
- data/utils/enveomics/Scripts/anir.rb +137 -0
- data/utils/enveomics/Scripts/clust.rand.rb +102 -0
- data/utils/enveomics/Scripts/gi2tax.rb +103 -0
- data/utils/enveomics/Scripts/in_silico_GA_GI.pl +96 -0
- data/utils/enveomics/Scripts/lib/data/dupont_2012_essential.hmm.gz +0 -0
- data/utils/enveomics/Scripts/lib/data/lee_2019_essential.hmm.gz +0 -0
- data/utils/enveomics/Scripts/lib/enveomics.R +1 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/anir.rb +293 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/bm_set.rb +175 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +24 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/errors.rb +17 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/gmm_em.rb +30 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +253 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/match.rb +88 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +182 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/rbm.rb +49 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +74 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +237 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/stats/rand.rb +31 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/stats/sample.rb +152 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/stats.rb +3 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/utils.rb +74 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +135 -0
- data/utils/enveomics/Scripts/ogs.annotate.rb +88 -0
- data/utils/enveomics/Scripts/ogs.core-pan.rb +160 -0
- data/utils/enveomics/Scripts/ogs.extract.rb +125 -0
- data/utils/enveomics/Scripts/ogs.mcl.rb +186 -0
- data/utils/enveomics/Scripts/ogs.rb +104 -0
- data/utils/enveomics/Scripts/ogs.stats.rb +131 -0
- data/utils/enveomics/Scripts/rbm-legacy.rb +172 -0
- data/utils/enveomics/Scripts/rbm.rb +108 -0
- data/utils/enveomics/Scripts/sam.filter.rb +148 -0
- data/utils/enveomics/Tests/Makefile +10 -0
- data/utils/enveomics/Tests/Mgen_M2288.faa +3189 -0
- data/utils/enveomics/Tests/Mgen_M2288.fna +8282 -0
- data/utils/enveomics/Tests/Mgen_M2321.fna +8288 -0
- data/utils/enveomics/Tests/Nequ_Kin4M.faa +2970 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +7 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +17 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +137 -0
- data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +123 -0
- data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +200 -0
- data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +55 -0
- data/utils/enveomics/Tests/alkB.nwk +1 -0
- data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +13 -0
- data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +17 -0
- data/utils/enveomics/Tests/hiv1.faa +59 -0
- data/utils/enveomics/Tests/hiv1.fna +134 -0
- data/utils/enveomics/Tests/hiv2.faa +70 -0
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +233 -0
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +1 -0
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +233 -0
- data/utils/enveomics/Tests/phyla_counts.tsv +10 -0
- data/utils/enveomics/Tests/primate_lentivirus.ogs +11 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +9 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +8 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +6 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +9 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +6 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +6 -0
- data/utils/enveomics/build_enveomics_r.bash +45 -0
- data/utils/enveomics/enveomics.R/DESCRIPTION +31 -0
- data/utils/enveomics/enveomics.R/NAMESPACE +39 -0
- data/utils/enveomics/enveomics.R/R/autoprune.R +155 -0
- data/utils/enveomics/enveomics.R/R/barplot.R +184 -0
- data/utils/enveomics/enveomics.R/R/cliopts.R +135 -0
- data/utils/enveomics/enveomics.R/R/df2dist.R +154 -0
- data/utils/enveomics/enveomics.R/R/growthcurve.R +331 -0
- data/utils/enveomics/enveomics.R/R/prefscore.R +79 -0
- data/utils/enveomics/enveomics.R/R/recplot.R +354 -0
- data/utils/enveomics/enveomics.R/R/recplot2.R +1631 -0
- data/utils/enveomics/enveomics.R/R/tribs.R +583 -0
- data/utils/enveomics/enveomics.R/R/utils.R +80 -0
- data/utils/enveomics/enveomics.R/README.md +81 -0
- data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
- data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
- data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +16 -0
- data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +16 -0
- data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +16 -0
- data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +25 -0
- data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +46 -0
- data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +23 -0
- data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +47 -0
- data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +23 -0
- data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +23 -0
- data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +40 -0
- data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +103 -0
- data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +67 -0
- data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +24 -0
- data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +45 -0
- data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +44 -0
- data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +47 -0
- data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +75 -0
- data/utils/enveomics/enveomics.R/man/enve.prefscore.Rd +50 -0
- data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +44 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +139 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +45 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +24 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +77 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +25 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +21 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +47 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +29 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +45 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +36 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +27 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +52 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +17 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +51 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +43 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +82 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +59 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +27 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +36 -0
- data/utils/enveomics/enveomics.R/man/enve.selvector.Rd +23 -0
- data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +68 -0
- data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +28 -0
- data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +27 -0
- data/utils/enveomics/enveomics.R/man/growth.curves.Rd +14 -0
- data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +13 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +78 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +46 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +45 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +125 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +19 -0
- data/utils/enveomics/globals.mk +8 -0
- data/utils/enveomics/manifest.json +9 -0
- data/utils/multitrim/Multitrim How-To.pdf +0 -0
- data/utils/multitrim/README.md +67 -0
- data/utils/multitrim/multitrim.py +1555 -0
- data/utils/multitrim/multitrim.yml +13 -0
- metadata +301 -5
@@ -0,0 +1,331 @@
|
|
1
|
+
#==============> Define S4 classes
|
2
|
+
|
3
|
+
#' Enveomics: Growth Curve S4 Class
|
4
|
+
#'
|
5
|
+
#' Enve-omics representation of fitted growth curves.
|
6
|
+
#'
|
7
|
+
#' @slot design \code{(array)} Experimental design of the experiment.
|
8
|
+
#' @slot models \code{(list)} Fitted growth curve models.
|
9
|
+
#' @slot predict \code{(list)} Fitted growth curve values.
|
10
|
+
#' @slot call \code{(call)} Call producing this object.
|
11
|
+
#'
|
12
|
+
#' @author Luis M. Rodriguez-R [aut, cre]
|
13
|
+
#'
|
14
|
+
#' @exportClass
|
15
|
+
|
16
|
+
enve.GrowthCurve <- setClass("enve.GrowthCurve",
|
17
|
+
representation(
|
18
|
+
design = "array",
|
19
|
+
models = "list",
|
20
|
+
predict = "list",
|
21
|
+
call='call')
|
22
|
+
,package='enveomics.R');
|
23
|
+
|
24
|
+
#' Attribute accessor
|
25
|
+
#'
|
26
|
+
#' @param x Object
|
27
|
+
#' @param name Attribute name
|
28
|
+
setMethod("$", "enve.GrowthCurve", function(x, name) attr(x, name))
|
29
|
+
|
30
|
+
#' Enveomics: Plot of Growth Curve
|
31
|
+
#'
|
32
|
+
#' Plots an \code{\link{enve.GrowthCurve}} object.
|
33
|
+
#'
|
34
|
+
#' @param x An \code{\link{enve.GrowthCurve}} object to plot.
|
35
|
+
#' @param col Base colors to use for the different samples. Can be recycled.
|
36
|
+
#' By default, grey for one sample or rainbow colors for more than one.
|
37
|
+
#' @param pt.alpha Color alpha for the observed data points, using \code{col}
|
38
|
+
#' as a base.
|
39
|
+
#' @param ln.alpha Color alpha for the fitted growth curve, using \code{col}
|
40
|
+
#' as a base.
|
41
|
+
#' @param ln.lwd Line width for the fitted curve.
|
42
|
+
#' @param ln.lty Line type for the fitted curve.
|
43
|
+
#' @param band.alpha Color alpha for the confidence interval band of the
|
44
|
+
#' fitted growth curve, using \code{col} as a base.
|
45
|
+
#' @param band.density Density of the filling pattern in the interval band.
|
46
|
+
#' If \code{NULL}, a solid color is used.
|
47
|
+
#' @param band.angle Angle of the density filling pattern in the interval
|
48
|
+
#' band. Ignored if \code{band.density} is \code{NULL}.
|
49
|
+
#' @param xp.alpha Color alpha for the line connecting individual experiments,
|
50
|
+
#' using \code{col} as a base.
|
51
|
+
#' @param xp.lwd Width of line for the experiments.
|
52
|
+
#' @param xp.lty Type of line for the experiments.
|
53
|
+
#' @param pch Point character for observed data points.
|
54
|
+
#' @param new Should a new plot be generated? If \code{FALSE}, the existing
|
55
|
+
#' canvas is used.
|
56
|
+
#' @param legend Should the plot include a legend? If \code{FALSE}, no legend
|
57
|
+
#' is added. If \code{TRUE}, a legend is added in the bottom-right corner.
|
58
|
+
#' Otherwise, a legend is added in the position specified as \code{xy.coords}.
|
59
|
+
#' @param add.params Should the legend include the parameters of the fitted
|
60
|
+
#' model?
|
61
|
+
#' @param ... Any other graphic parameters.
|
62
|
+
#'
|
63
|
+
#' @author Luis M. Rodriguez-R [aut, cre]
|
64
|
+
#'
|
65
|
+
#' @method plot enve.GrowthCurve
|
66
|
+
#' @export
|
67
|
+
|
68
|
+
#==============> Define S4 methods
|
69
|
+
plot.enve.GrowthCurve <- function
|
70
|
+
(x,
|
71
|
+
col,
|
72
|
+
pt.alpha=0.9,
|
73
|
+
ln.alpha=1.0,
|
74
|
+
ln.lwd=1,
|
75
|
+
ln.lty=1,
|
76
|
+
band.alpha=0.4,
|
77
|
+
band.density=NULL,
|
78
|
+
band.angle=45,
|
79
|
+
xp.alpha=0.5,
|
80
|
+
xp.lwd=1,
|
81
|
+
xp.lty=1,
|
82
|
+
pch=19,
|
83
|
+
new=TRUE,
|
84
|
+
legend=new,
|
85
|
+
add.params=FALSE,
|
86
|
+
...
|
87
|
+
){
|
88
|
+
|
89
|
+
# Arguments
|
90
|
+
if(missing(col)){
|
91
|
+
col <-
|
92
|
+
if(length(x$design)==0) grey(0.2)
|
93
|
+
else rainbow(length(x$design), v=3/5, s=3/5)
|
94
|
+
}
|
95
|
+
|
96
|
+
if(new){
|
97
|
+
# Initiate canvas
|
98
|
+
od.fit.max <- max(sapply(x$predict, function(x) max(x[,"upr"])))
|
99
|
+
od.obs.max <- max(sapply(x$models, function(x) max(x$data[,"od"])))
|
100
|
+
opts <- list(...)
|
101
|
+
plot.defaults <- list(xlab="Time", ylab="Density",
|
102
|
+
xlim=range(x$predict[[1]][,"t"]), ylim=c(0, max(od.fit.max, od.obs.max)))
|
103
|
+
for(i in names(plot.defaults)){
|
104
|
+
if(is.null(opts[[i]])) opts[[i]] <- plot.defaults[[i]]
|
105
|
+
}
|
106
|
+
opts[["x"]] <- 1
|
107
|
+
opts[["type"]] <- "n"
|
108
|
+
do.call(plot, opts)
|
109
|
+
}
|
110
|
+
|
111
|
+
# Graphic default
|
112
|
+
pch <- rep(pch, length.out=length(x$design))
|
113
|
+
col <- rep(col, length.out=length(x$design))
|
114
|
+
pt.col <- enve.col2alpha(col, pt.alpha)
|
115
|
+
ln.col <- enve.col2alpha(col, ln.alpha)
|
116
|
+
band.col <- enve.col2alpha(col, band.alpha)
|
117
|
+
xp.col <- enve.col2alpha(col, xp.alpha)
|
118
|
+
band.angle <- rep(band.angle, length.out=length(x$design))
|
119
|
+
if(!all(is.null(band.density))){
|
120
|
+
band.density <- rep(band.density, length.out=length(x$design))
|
121
|
+
}
|
122
|
+
|
123
|
+
for(i in 1:length(x$design)){
|
124
|
+
# Observed data
|
125
|
+
d <- x$models[[i]]$data
|
126
|
+
points(d[,"t"], d[,"od"], pch=pch[i], col=pt.col[i])
|
127
|
+
for(j in unique(d[,"replicate"])){
|
128
|
+
sel <- d[,"replicate"]==j
|
129
|
+
lines(d[sel,"t"], d[sel,"od"], col=xp.col[i], lwd=xp.lwd, lty=xp.lty)
|
130
|
+
}
|
131
|
+
# Fitted growth curves
|
132
|
+
if(x$models[[i]]$convInfo$isConv){
|
133
|
+
d <- x$predict[[i]]
|
134
|
+
lines(d[,"t"], d[,"fit"], col=ln.col[i], lwd=ln.lwd, lty=ln.lty)
|
135
|
+
polygon(c(d[,"t"], rev(d[,"t"])), c(d[,"lwr"], rev(d[,"upr"])),
|
136
|
+
border=NA, col=band.col[i], density=band.density[i],
|
137
|
+
angle=band.angle[i])
|
138
|
+
}
|
139
|
+
}
|
140
|
+
|
141
|
+
if(!all(is.logical(legend)) || legend){
|
142
|
+
if(all(is.logical(legend))) legend <- "bottomright"
|
143
|
+
legend.txt <- names(x$design)
|
144
|
+
if(add.params){
|
145
|
+
for(p in names(coef(x$models[[1]]))){
|
146
|
+
legend.txt <- paste(legend.txt, ", ", p, "=",
|
147
|
+
sapply(x$models, function(x) signif(coef(x)[p],2)) , sep="")
|
148
|
+
}
|
149
|
+
}
|
150
|
+
legend(legend, legend=legend.txt, pch=pch, col=ln.col)
|
151
|
+
}
|
152
|
+
}
|
153
|
+
|
154
|
+
#' Enveomics: Summary of Growth Curve
|
155
|
+
#'
|
156
|
+
#' Summary of an \code{\link{enve.GrowthCurve}} object.
|
157
|
+
#'
|
158
|
+
#' @param object An \code{\link{enve.GrowthCurve}} object.
|
159
|
+
#' @param ... No additional parameters are currently supported.
|
160
|
+
#'
|
161
|
+
#' @author Luis M. Rodriguez-R [aut, cre]
|
162
|
+
#'
|
163
|
+
#' @method summary enve.GrowthCurve
|
164
|
+
#' @export
|
165
|
+
|
166
|
+
summary.enve.GrowthCurve <- function(
|
167
|
+
object,
|
168
|
+
...
|
169
|
+
){
|
170
|
+
|
171
|
+
x <- object
|
172
|
+
cat('===[ enve.GrowthCurves ]------------------\n')
|
173
|
+
for(i in names(x$design)){
|
174
|
+
cat(i, ':\n', sep='')
|
175
|
+
if(x$models[[i]]$convInfo$isConv){
|
176
|
+
for(j in names(coef(x$models[[i]]))){
|
177
|
+
cat(' - ', j, ' = ', coef(x$models[[i]])[j], '\n', sep='')
|
178
|
+
}
|
179
|
+
}else{
|
180
|
+
cat(' Model didn\'t converge:\n ',
|
181
|
+
x$models[[i]]$convInfo$stopMessage, '\n', sep='')
|
182
|
+
}
|
183
|
+
cat(' ', nrow(x$models[[i]]$data), ' observations, ',
|
184
|
+
length(unique(x$models[[i]]$data[,"replicate"])), ' replicates.\n',
|
185
|
+
sep='')
|
186
|
+
}
|
187
|
+
cat('------------------------------------------\n')
|
188
|
+
cat('call:',as.character(attr(x,'call')),'\n')
|
189
|
+
cat('------------------------------------------\n')
|
190
|
+
}
|
191
|
+
|
192
|
+
#' Enveomics: Growth Curve
|
193
|
+
#'
|
194
|
+
#' Calculates growth curves using the logistic growth function.
|
195
|
+
#'
|
196
|
+
#' @param x Data frame (or coercible) containing the observed growth data
|
197
|
+
#' (e.g., O.D. values). Each column is an independent growth curve and each
|
198
|
+
#' row is a time point. \code{NA}'s are allowed.
|
199
|
+
#' @param times Vector with the times at which each row was taken. By default,
|
200
|
+
#' all rows are assumed to be part of constantly periodic measurements.
|
201
|
+
#' @param triplicates If \code{TRUE}, the columns are assumed to be sorted by
|
202
|
+
#' sample with three replicates by sample. It requires a number of columns
|
203
|
+
#' multiple of 3.
|
204
|
+
#' @param design Experimental design of the data. An \strong{array} of mode list
|
205
|
+
#' with sample names as index and the list of column names in each sample as
|
206
|
+
#' the values. By default, each column is assumed to be an independent sample
|
207
|
+
#' if \code{triplicates} is \code{FALSE}, or every three columns are assumed
|
208
|
+
#' to be a sample if \code{triplicates} is \code{TRUE}. In the latter case,
|
209
|
+
#' samples are simply numbered.
|
210
|
+
#' @param new.times Values of time for the fitted curve.
|
211
|
+
#' @param level Confidence (or prediction) interval in the fitted curve.
|
212
|
+
#' @param interval Type of interval to be calculated for the fitted curve.
|
213
|
+
#' @param plot Should the growth curve be plotted?
|
214
|
+
#' @param FUN Function to fit. By default: logistic growth with paramenters
|
215
|
+
#' \code{K}: carrying capacity,
|
216
|
+
#' \code{r}: intrinsic growth rate, and
|
217
|
+
#' \code{P0}: Initial population.
|
218
|
+
#' @param nls.opt Any additional options passed to \code{nls}.
|
219
|
+
#' @param ... Any additional parameters to be passed to
|
220
|
+
#' \code{plot.enve.GrowthCurve}.
|
221
|
+
#'
|
222
|
+
#' @return Returns an \code{\link{enve.GrowthCurve}} object.
|
223
|
+
#'
|
224
|
+
#' @author Luis M. Rodriguez-R [aut, cre]
|
225
|
+
#'
|
226
|
+
#' @examples
|
227
|
+
#' # Load data
|
228
|
+
#' data("growth.curves", package="enveomics.R", envir=environment())
|
229
|
+
#' # Generate growth curves with different colors
|
230
|
+
#' g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
|
231
|
+
#' # Generate black-and-white growth curves with different symbols
|
232
|
+
#' plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
|
233
|
+
#'
|
234
|
+
#' @export
|
235
|
+
|
236
|
+
#==============> Core functions
|
237
|
+
enve.growthcurve <- structure(function(
|
238
|
+
x,
|
239
|
+
times=1:nrow(x),
|
240
|
+
triplicates=FALSE,
|
241
|
+
design,
|
242
|
+
new.times=seq(min(times), max(times), length.out=length(times)*10),
|
243
|
+
level=0.95,
|
244
|
+
interval=c("confidence","prediction"),
|
245
|
+
plot=TRUE,
|
246
|
+
FUN=function(t,K,r,P0) K*P0*exp(r*t)/(K+P0*(exp(r*t)-1)),
|
247
|
+
nls.opt=list(),
|
248
|
+
...
|
249
|
+
){
|
250
|
+
|
251
|
+
# Arguments
|
252
|
+
if(missing(design)){
|
253
|
+
design <-
|
254
|
+
if(triplicates)
|
255
|
+
tapply(colnames(x), colnames(x)[rep(1:(ncol(x)/3)*3-2, each=3)], c,
|
256
|
+
simplify=FALSE)
|
257
|
+
else tapply(colnames(x), colnames(x), c, simplify=FALSE)
|
258
|
+
}
|
259
|
+
mod <- list()
|
260
|
+
fit <- list()
|
261
|
+
interval <- match.arg(interval)
|
262
|
+
enve._growth.fx <- NULL
|
263
|
+
enve._growth.fx <<- FUN
|
264
|
+
|
265
|
+
for(sample in names(design)){
|
266
|
+
od <- c()
|
267
|
+
for(col in design[[sample]]){
|
268
|
+
od <- c(od, x[,col])
|
269
|
+
}
|
270
|
+
data <- data.frame(t=rep(times, length(design[[sample]])), od=od,
|
271
|
+
replicate=rep(1:length(design[[sample]]), each=length(times)))
|
272
|
+
data <- data[!is.na(data$od),]
|
273
|
+
opts <- nls.opt
|
274
|
+
opts[["data"]] <- data
|
275
|
+
opt.defaults <- list(formula = od ~ enve._growth.fx(t, K, r, P0),
|
276
|
+
algorithm="port", lower=list(P0=1e-16),
|
277
|
+
control=nls.control(warnOnly=TRUE),
|
278
|
+
start=list(
|
279
|
+
K = 2*max(data$od),
|
280
|
+
r = length(times)/max(data$t),
|
281
|
+
P0 = min(data$od[data$od>0])
|
282
|
+
))
|
283
|
+
for(i in names(opt.defaults)){
|
284
|
+
if(is.null(opts[[i]])){
|
285
|
+
opts[[i]] <- opt.defaults[[i]]
|
286
|
+
}
|
287
|
+
}
|
288
|
+
mod[[sample]] <- do.call(nls, opts)
|
289
|
+
fit[[sample]] <- cbind(t=new.times,
|
290
|
+
predFit(mod[[sample]], level=level, interval=interval,
|
291
|
+
newdata=data.frame(t=new.times)))
|
292
|
+
}
|
293
|
+
enve._growth.fx <<- NULL
|
294
|
+
gc <- new("enve.GrowthCurve",
|
295
|
+
design=design, models=mod, predict=fit,
|
296
|
+
call=match.call());
|
297
|
+
if(plot) plot(gc, ...);
|
298
|
+
return(gc)
|
299
|
+
}, ex=function(){
|
300
|
+
# Load data
|
301
|
+
data("growth.curves", package="enveomics.R", envir=environment())
|
302
|
+
# Generate growth curves with different colors
|
303
|
+
g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
|
304
|
+
# Generate black-and-white growth curves with different symbols
|
305
|
+
plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
|
306
|
+
});
|
307
|
+
|
308
|
+
#' Enveomics: Color to Alpha
|
309
|
+
#'
|
310
|
+
#' Takes a vector of colors and sets the alpha.
|
311
|
+
#'
|
312
|
+
#' @param x A vector of any value base colors.
|
313
|
+
#' @param alpha Alpha level to set (in the 0-1 range).
|
314
|
+
#'
|
315
|
+
#' @author Luis M. Rodriguez-R [aut, cre]
|
316
|
+
#'
|
317
|
+
#' @export
|
318
|
+
|
319
|
+
enve.col2alpha <- function(
|
320
|
+
x,
|
321
|
+
alpha
|
322
|
+
){
|
323
|
+
out <- c()
|
324
|
+
for(i in x){
|
325
|
+
opt <- as.list(col2rgb(i)[,1]/256)
|
326
|
+
opt[["alpha"]] = alpha
|
327
|
+
out <- c(out, do.call(rgb, opt))
|
328
|
+
}
|
329
|
+
names(out) <- names(x)
|
330
|
+
return(out)
|
331
|
+
}
|
@@ -0,0 +1,79 @@
|
|
1
|
+
#' Enveomics: Pref Score
|
2
|
+
#'
|
3
|
+
#' Estimate preference score of species based on occupancy in biased sample sets
|
4
|
+
#'
|
5
|
+
#' @param x
|
6
|
+
#' Occupancy matrix (logical or numeric binary) with species as rows and samples
|
7
|
+
#' as columns
|
8
|
+
#' @param set
|
9
|
+
#' Vector indicating samples in the test set. It can be any selection vector:
|
10
|
+
#' boolean (same length as the number of columns in \code{x}), or numeric or
|
11
|
+
#' character vector with indexes of the \code{x} columns.
|
12
|
+
#' @param ignore
|
13
|
+
#' Vector indicating species to ignore. It can be any selection vector with
|
14
|
+
#' respect to the rows in \code{x} (see \code{set}).
|
15
|
+
#' @param signif.thr Absolute value of the significance threshold
|
16
|
+
#' @param plot Indicates if a plot should be generated
|
17
|
+
#' @param col.above Color for points significantly above zero
|
18
|
+
#' @param col.equal Color for points not significantly different from zero
|
19
|
+
#' @param col.below Color for points significantly below zero
|
20
|
+
#' @param ... Any additional parameters supported by \code{plot}
|
21
|
+
#'
|
22
|
+
#' @return Returns a named vector of preference scores.
|
23
|
+
#'
|
24
|
+
#' @author Luis M. Rodriguez-R [aut, cre]
|
25
|
+
#'
|
26
|
+
#' @export
|
27
|
+
|
28
|
+
enve.prefscore <- function
|
29
|
+
(
|
30
|
+
x,
|
31
|
+
set,
|
32
|
+
ignore = NULL,
|
33
|
+
signif.thr,
|
34
|
+
plot = TRUE,
|
35
|
+
col.above = rgb(148, 17, 0, maxColorValue = 255),
|
36
|
+
col.equal = rgb(189, 189, 189, maxColorValue = 255),
|
37
|
+
col.below = rgb(47, 84, 150, maxColorValue = 255),
|
38
|
+
...
|
39
|
+
) {
|
40
|
+
# Normalize classes and filter universe
|
41
|
+
x <- !!as.matrix(x)
|
42
|
+
if(is.null(colnames(x))) colnames(x) <- 1:ncol(x)
|
43
|
+
if(is.null(rownames(x))) rownames(x) <- 1:nrow(x)
|
44
|
+
set <- enve.selvector(set, colnames(x))
|
45
|
+
universe <- !enve.selvector(ignore, rownames(x))
|
46
|
+
x.u <- x[universe, ]
|
47
|
+
if(missing(signif.thr)) signif.thr <- 1 + 100 / length(universe)
|
48
|
+
|
49
|
+
# Base (null) probabilities
|
50
|
+
p_a <- (rowSums(x.u) + 1) / (ncol(x.u) + 2)
|
51
|
+
p_b <- (colSums(x.u) + 1) / (nrow(x.u) + 2)
|
52
|
+
p_p <- p_a %*% t(p_b)
|
53
|
+
|
54
|
+
# Set preference score
|
55
|
+
expected <- (rowSums(p_p[, set]) - rowSums(p_p[, !set])) / sum(p_p)
|
56
|
+
observed <- (rowSums(x.u[, set]) - rowSums(x.u[, !set])) / sum(x.u)
|
57
|
+
y <- observed / abs(expected)
|
58
|
+
names(y) <- rownames(x)[universe]
|
59
|
+
y.code <- cut(y, c(-Inf, -signif.thr, signif.thr, Inf), 1:3)
|
60
|
+
|
61
|
+
# Plot
|
62
|
+
if(plot) {
|
63
|
+
idx <- (1:nrow(x))[universe]
|
64
|
+
opts.def <- list(x = idx, y = y, ylim = c(-1, 1) * max(abs(y)),
|
65
|
+
xlab = 'Species', ylab = 'Preference score', xlim = c(0, nrow(x)+1),
|
66
|
+
col = c(col.above, col.equal, col.below)[y.code],
|
67
|
+
las = 1, xaxs = 'i', pch = 15)
|
68
|
+
opts <- list(...)
|
69
|
+
for(i in names(opts.def)) if(is.null(opts[[i]])) opts[[i]] <- opts.def[[i]]
|
70
|
+
do.call('plot', opts)
|
71
|
+
abline(h = 0, lty = 1, col = rgb(0, 0, 0, 1/4))
|
72
|
+
abline(h = c(-1, 1) * signif.thr, lty = 2, col = rgb(0, 0, 0, 1/4))
|
73
|
+
}
|
74
|
+
|
75
|
+
# Print and return
|
76
|
+
print(table(c(c('<', '=', '>')[y.code], rep('Tot', length(y.code)))))
|
77
|
+
cat('---------\n')
|
78
|
+
return(y)
|
79
|
+
}
|