miga-base 1.2.15.1 → 1.2.15.3

Sign up to get free protection for your applications and to get access to all the features.
Files changed (305) hide show
  1. checksums.yaml +4 -4
  2. data/lib/miga/cli/action/download/gtdb.rb +4 -1
  3. data/lib/miga/cli/action/gtdb_get.rb +4 -0
  4. data/lib/miga/remote_dataset/download.rb +3 -2
  5. data/lib/miga/remote_dataset.rb +44 -8
  6. data/lib/miga/taxonomy.rb +6 -0
  7. data/lib/miga/version.rb +2 -2
  8. data/test/remote_dataset_test.rb +3 -1
  9. metadata +6 -302
  10. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Archaea_SCG.hmm +0 -41964
  11. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Bacteria_SCG.hmm +0 -32439
  12. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm +0 -62056
  13. data/utils/FastAAI/FastAAI +0 -3659
  14. data/utils/FastAAI/FastAAI-legacy/FastAAI +0 -1336
  15. data/utils/FastAAI/FastAAI-legacy/kAAI_v1.0_virus.py +0 -1296
  16. data/utils/FastAAI/README.md +0 -84
  17. data/utils/enveomics/Docs/recplot2.md +0 -244
  18. data/utils/enveomics/Examples/aai-matrix.bash +0 -66
  19. data/utils/enveomics/Examples/ani-matrix.bash +0 -66
  20. data/utils/enveomics/Examples/essential-phylogeny.bash +0 -105
  21. data/utils/enveomics/Examples/unus-genome-phylogeny.bash +0 -100
  22. data/utils/enveomics/LICENSE.txt +0 -73
  23. data/utils/enveomics/Makefile +0 -52
  24. data/utils/enveomics/Manifest/Tasks/aasubs.json +0 -103
  25. data/utils/enveomics/Manifest/Tasks/blasttab.json +0 -790
  26. data/utils/enveomics/Manifest/Tasks/distances.json +0 -161
  27. data/utils/enveomics/Manifest/Tasks/fasta.json +0 -802
  28. data/utils/enveomics/Manifest/Tasks/fastq.json +0 -291
  29. data/utils/enveomics/Manifest/Tasks/graphics.json +0 -126
  30. data/utils/enveomics/Manifest/Tasks/mapping.json +0 -137
  31. data/utils/enveomics/Manifest/Tasks/ogs.json +0 -382
  32. data/utils/enveomics/Manifest/Tasks/other.json +0 -906
  33. data/utils/enveomics/Manifest/Tasks/remote.json +0 -355
  34. data/utils/enveomics/Manifest/Tasks/sequence-identity.json +0 -650
  35. data/utils/enveomics/Manifest/Tasks/tables.json +0 -308
  36. data/utils/enveomics/Manifest/Tasks/trees.json +0 -68
  37. data/utils/enveomics/Manifest/Tasks/variants.json +0 -111
  38. data/utils/enveomics/Manifest/categories.json +0 -165
  39. data/utils/enveomics/Manifest/examples.json +0 -162
  40. data/utils/enveomics/Manifest/tasks.json +0 -4
  41. data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +0 -69
  42. data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +0 -1
  43. data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +0 -1
  44. data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +0 -1
  45. data/utils/enveomics/Pipelines/assembly.pbs/README.md +0 -189
  46. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +0 -112
  47. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +0 -23
  48. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +0 -44
  49. data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +0 -50
  50. data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +0 -37
  51. data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +0 -68
  52. data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +0 -49
  53. data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +0 -80
  54. data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +0 -57
  55. data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +0 -63
  56. data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +0 -38
  57. data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +0 -73
  58. data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +0 -21
  59. data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +0 -72
  60. data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +0 -98
  61. data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +0 -1
  62. data/utils/enveomics/Pipelines/blast.pbs/README.md +0 -127
  63. data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +0 -109
  64. data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +0 -128
  65. data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +0 -16
  66. data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +0 -22
  67. data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +0 -26
  68. data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +0 -89
  69. data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +0 -29
  70. data/utils/enveomics/Pipelines/idba.pbs/README.md +0 -49
  71. data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +0 -95
  72. data/utils/enveomics/Pipelines/idba.pbs/run.pbs +0 -56
  73. data/utils/enveomics/Pipelines/trim.pbs/README.md +0 -54
  74. data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +0 -70
  75. data/utils/enveomics/Pipelines/trim.pbs/run.pbs +0 -130
  76. data/utils/enveomics/README.md +0 -42
  77. data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +0 -171
  78. data/utils/enveomics/Scripts/Aln.cat.rb +0 -221
  79. data/utils/enveomics/Scripts/Aln.convert.pl +0 -35
  80. data/utils/enveomics/Scripts/AlphaDiversity.pl +0 -152
  81. data/utils/enveomics/Scripts/BedGraph.tad.rb +0 -93
  82. data/utils/enveomics/Scripts/BedGraph.window.rb +0 -71
  83. data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +0 -102
  84. data/utils/enveomics/Scripts/BlastTab.addlen.rb +0 -63
  85. data/utils/enveomics/Scripts/BlastTab.advance.bash +0 -48
  86. data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +0 -55
  87. data/utils/enveomics/Scripts/BlastTab.catsbj.pl +0 -104
  88. data/utils/enveomics/Scripts/BlastTab.cogCat.rb +0 -76
  89. data/utils/enveomics/Scripts/BlastTab.filter.pl +0 -47
  90. data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +0 -194
  91. data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +0 -104
  92. data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +0 -157
  93. data/utils/enveomics/Scripts/BlastTab.recplot2.R +0 -48
  94. data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +0 -86
  95. data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +0 -119
  96. data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +0 -86
  97. data/utils/enveomics/Scripts/BlastTab.subsample.pl +0 -47
  98. data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +0 -114
  99. data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +0 -90
  100. data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +0 -123
  101. data/utils/enveomics/Scripts/Chao1.pl +0 -97
  102. data/utils/enveomics/Scripts/CharTable.classify.rb +0 -234
  103. data/utils/enveomics/Scripts/EBIseq2tax.rb +0 -83
  104. data/utils/enveomics/Scripts/FastA.N50.pl +0 -60
  105. data/utils/enveomics/Scripts/FastA.extract.rb +0 -152
  106. data/utils/enveomics/Scripts/FastA.filter.pl +0 -52
  107. data/utils/enveomics/Scripts/FastA.filterLen.pl +0 -28
  108. data/utils/enveomics/Scripts/FastA.filterN.pl +0 -60
  109. data/utils/enveomics/Scripts/FastA.fragment.rb +0 -100
  110. data/utils/enveomics/Scripts/FastA.gc.pl +0 -42
  111. data/utils/enveomics/Scripts/FastA.interpose.pl +0 -93
  112. data/utils/enveomics/Scripts/FastA.length.pl +0 -38
  113. data/utils/enveomics/Scripts/FastA.mask.rb +0 -89
  114. data/utils/enveomics/Scripts/FastA.per_file.pl +0 -36
  115. data/utils/enveomics/Scripts/FastA.qlen.pl +0 -57
  116. data/utils/enveomics/Scripts/FastA.rename.pl +0 -65
  117. data/utils/enveomics/Scripts/FastA.revcom.pl +0 -23
  118. data/utils/enveomics/Scripts/FastA.sample.rb +0 -98
  119. data/utils/enveomics/Scripts/FastA.slider.pl +0 -85
  120. data/utils/enveomics/Scripts/FastA.split.pl +0 -55
  121. data/utils/enveomics/Scripts/FastA.split.rb +0 -79
  122. data/utils/enveomics/Scripts/FastA.subsample.pl +0 -131
  123. data/utils/enveomics/Scripts/FastA.tag.rb +0 -65
  124. data/utils/enveomics/Scripts/FastA.toFastQ.rb +0 -69
  125. data/utils/enveomics/Scripts/FastA.wrap.rb +0 -48
  126. data/utils/enveomics/Scripts/FastQ.filter.pl +0 -54
  127. data/utils/enveomics/Scripts/FastQ.interpose.pl +0 -90
  128. data/utils/enveomics/Scripts/FastQ.maskQual.rb +0 -89
  129. data/utils/enveomics/Scripts/FastQ.offset.pl +0 -90
  130. data/utils/enveomics/Scripts/FastQ.split.pl +0 -53
  131. data/utils/enveomics/Scripts/FastQ.tag.rb +0 -70
  132. data/utils/enveomics/Scripts/FastQ.test-error.rb +0 -81
  133. data/utils/enveomics/Scripts/FastQ.toFastA.awk +0 -24
  134. data/utils/enveomics/Scripts/GFF.catsbj.pl +0 -127
  135. data/utils/enveomics/Scripts/GenBank.add_fields.rb +0 -84
  136. data/utils/enveomics/Scripts/HMM.essential.rb +0 -351
  137. data/utils/enveomics/Scripts/HMM.haai.rb +0 -168
  138. data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +0 -83
  139. data/utils/enveomics/Scripts/JPlace.distances.rb +0 -88
  140. data/utils/enveomics/Scripts/JPlace.to_iToL.rb +0 -320
  141. data/utils/enveomics/Scripts/M5nr.getSequences.rb +0 -81
  142. data/utils/enveomics/Scripts/MeTaxa.distribution.pl +0 -198
  143. data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +0 -35
  144. data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +0 -49
  145. data/utils/enveomics/Scripts/NCBIacc2tax.rb +0 -92
  146. data/utils/enveomics/Scripts/Newick.autoprune.R +0 -27
  147. data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +0 -228
  148. data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +0 -32
  149. data/utils/enveomics/Scripts/RefSeq.download.bash +0 -48
  150. data/utils/enveomics/Scripts/SRA.download.bash +0 -55
  151. data/utils/enveomics/Scripts/TRIBS.plot-test.R +0 -36
  152. data/utils/enveomics/Scripts/TRIBS.test.R +0 -39
  153. data/utils/enveomics/Scripts/Table.barplot.R +0 -31
  154. data/utils/enveomics/Scripts/Table.df2dist.R +0 -30
  155. data/utils/enveomics/Scripts/Table.filter.pl +0 -61
  156. data/utils/enveomics/Scripts/Table.merge.pl +0 -77
  157. data/utils/enveomics/Scripts/Table.prefScore.R +0 -60
  158. data/utils/enveomics/Scripts/Table.replace.rb +0 -69
  159. data/utils/enveomics/Scripts/Table.round.rb +0 -63
  160. data/utils/enveomics/Scripts/Table.split.pl +0 -57
  161. data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +0 -227
  162. data/utils/enveomics/Scripts/VCF.KaKs.rb +0 -147
  163. data/utils/enveomics/Scripts/VCF.SNPs.rb +0 -88
  164. data/utils/enveomics/Scripts/aai.rb +0 -421
  165. data/utils/enveomics/Scripts/ani.rb +0 -362
  166. data/utils/enveomics/Scripts/anir.rb +0 -137
  167. data/utils/enveomics/Scripts/clust.rand.rb +0 -102
  168. data/utils/enveomics/Scripts/gi2tax.rb +0 -103
  169. data/utils/enveomics/Scripts/in_silico_GA_GI.pl +0 -96
  170. data/utils/enveomics/Scripts/lib/data/dupont_2012_essential.hmm.gz +0 -0
  171. data/utils/enveomics/Scripts/lib/data/lee_2019_essential.hmm.gz +0 -0
  172. data/utils/enveomics/Scripts/lib/enveomics.R +0 -1
  173. data/utils/enveomics/Scripts/lib/enveomics_rb/anir.rb +0 -293
  174. data/utils/enveomics/Scripts/lib/enveomics_rb/bm_set.rb +0 -175
  175. data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +0 -24
  176. data/utils/enveomics/Scripts/lib/enveomics_rb/errors.rb +0 -17
  177. data/utils/enveomics/Scripts/lib/enveomics_rb/gmm_em.rb +0 -30
  178. data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +0 -253
  179. data/utils/enveomics/Scripts/lib/enveomics_rb/match.rb +0 -88
  180. data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +0 -182
  181. data/utils/enveomics/Scripts/lib/enveomics_rb/rbm.rb +0 -49
  182. data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +0 -74
  183. data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +0 -237
  184. data/utils/enveomics/Scripts/lib/enveomics_rb/stats/rand.rb +0 -31
  185. data/utils/enveomics/Scripts/lib/enveomics_rb/stats/sample.rb +0 -152
  186. data/utils/enveomics/Scripts/lib/enveomics_rb/stats.rb +0 -3
  187. data/utils/enveomics/Scripts/lib/enveomics_rb/utils.rb +0 -74
  188. data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +0 -135
  189. data/utils/enveomics/Scripts/ogs.annotate.rb +0 -88
  190. data/utils/enveomics/Scripts/ogs.core-pan.rb +0 -160
  191. data/utils/enveomics/Scripts/ogs.extract.rb +0 -125
  192. data/utils/enveomics/Scripts/ogs.mcl.rb +0 -186
  193. data/utils/enveomics/Scripts/ogs.rb +0 -104
  194. data/utils/enveomics/Scripts/ogs.stats.rb +0 -131
  195. data/utils/enveomics/Scripts/rbm-legacy.rb +0 -172
  196. data/utils/enveomics/Scripts/rbm.rb +0 -108
  197. data/utils/enveomics/Scripts/sam.filter.rb +0 -148
  198. data/utils/enveomics/Tests/Makefile +0 -10
  199. data/utils/enveomics/Tests/Mgen_M2288.faa +0 -3189
  200. data/utils/enveomics/Tests/Mgen_M2288.fna +0 -8282
  201. data/utils/enveomics/Tests/Mgen_M2321.fna +0 -8288
  202. data/utils/enveomics/Tests/Nequ_Kin4M.faa +0 -2970
  203. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
  204. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +0 -7
  205. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +0 -17
  206. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +0 -137
  207. data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +0 -123
  208. data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +0 -200
  209. data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +0 -55
  210. data/utils/enveomics/Tests/alkB.nwk +0 -1
  211. data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +0 -13
  212. data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +0 -17
  213. data/utils/enveomics/Tests/hiv1.faa +0 -59
  214. data/utils/enveomics/Tests/hiv1.fna +0 -134
  215. data/utils/enveomics/Tests/hiv2.faa +0 -70
  216. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +0 -233
  217. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +0 -1
  218. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +0 -233
  219. data/utils/enveomics/Tests/phyla_counts.tsv +0 -10
  220. data/utils/enveomics/Tests/primate_lentivirus.ogs +0 -11
  221. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +0 -9
  222. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +0 -8
  223. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +0 -6
  224. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +0 -9
  225. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +0 -6
  226. data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +0 -6
  227. data/utils/enveomics/build_enveomics_r.bash +0 -45
  228. data/utils/enveomics/enveomics.R/DESCRIPTION +0 -31
  229. data/utils/enveomics/enveomics.R/NAMESPACE +0 -39
  230. data/utils/enveomics/enveomics.R/R/autoprune.R +0 -155
  231. data/utils/enveomics/enveomics.R/R/barplot.R +0 -184
  232. data/utils/enveomics/enveomics.R/R/cliopts.R +0 -135
  233. data/utils/enveomics/enveomics.R/R/df2dist.R +0 -154
  234. data/utils/enveomics/enveomics.R/R/growthcurve.R +0 -331
  235. data/utils/enveomics/enveomics.R/R/prefscore.R +0 -79
  236. data/utils/enveomics/enveomics.R/R/recplot.R +0 -354
  237. data/utils/enveomics/enveomics.R/R/recplot2.R +0 -1631
  238. data/utils/enveomics/enveomics.R/R/tribs.R +0 -583
  239. data/utils/enveomics/enveomics.R/R/utils.R +0 -80
  240. data/utils/enveomics/enveomics.R/README.md +0 -81
  241. data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
  242. data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
  243. data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +0 -16
  244. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +0 -16
  245. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +0 -16
  246. data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +0 -25
  247. data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +0 -46
  248. data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +0 -23
  249. data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +0 -47
  250. data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +0 -23
  251. data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +0 -23
  252. data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +0 -40
  253. data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +0 -103
  254. data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +0 -67
  255. data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +0 -24
  256. data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +0 -19
  257. data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +0 -45
  258. data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +0 -44
  259. data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +0 -47
  260. data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +0 -75
  261. data/utils/enveomics/enveomics.R/man/enve.prefscore.Rd +0 -50
  262. data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +0 -44
  263. data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +0 -139
  264. data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +0 -45
  265. data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +0 -24
  266. data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +0 -77
  267. data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +0 -25
  268. data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +0 -21
  269. data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +0 -19
  270. data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +0 -19
  271. data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +0 -47
  272. data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +0 -29
  273. data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +0 -18
  274. data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +0 -45
  275. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +0 -36
  276. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +0 -19
  277. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +0 -19
  278. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +0 -27
  279. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +0 -52
  280. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +0 -17
  281. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +0 -51
  282. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +0 -43
  283. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +0 -82
  284. data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +0 -59
  285. data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +0 -27
  286. data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +0 -36
  287. data/utils/enveomics/enveomics.R/man/enve.selvector.Rd +0 -23
  288. data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +0 -68
  289. data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +0 -28
  290. data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +0 -27
  291. data/utils/enveomics/enveomics.R/man/growth.curves.Rd +0 -14
  292. data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +0 -13
  293. data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +0 -78
  294. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +0 -46
  295. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +0 -45
  296. data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +0 -125
  297. data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +0 -19
  298. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +0 -19
  299. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +0 -19
  300. data/utils/enveomics/globals.mk +0 -8
  301. data/utils/enveomics/manifest.json +0 -9
  302. data/utils/multitrim/Multitrim How-To.pdf +0 -0
  303. data/utils/multitrim/README.md +0 -67
  304. data/utils/multitrim/multitrim.py +0 -1555
  305. data/utils/multitrim/multitrim.yml +0 -13
@@ -1,84 +0,0 @@
1
- # FastAAI
2
- Fast estimation of Average Amino Acid Identities (AAI) for bacterial and viral genomes.
3
- Includes a module for the classification of viral genomes.
4
-
5
- ## Content Table
6
- * [Features](#features)
7
- * [Citation](#citation)
8
- * [Requirements](#requirements)
9
- * [Installation](#installation)
10
- * [Usage](#usage)
11
- * [FAQs](#faqs)
12
- * [License](#license)
13
-
14
- ## Features
15
- Coming soon
16
-
17
- ## Citation
18
- Coming soon
19
-
20
- ## Requirements:
21
- - Programs:
22
- - [HMMER](http://hmmer.org/) >= 3.1
23
- - Python >=3.6,<3.9
24
- - Base Python Modules:
25
- - argparse
26
- - datetime
27
- - pathlib
28
- - shutil
29
- - subprocess
30
- - gzip
31
- - multiprocessing
32
- - textwrap
33
- - pickle
34
- - tempfile
35
- - sys
36
- - functools
37
- - Additional Python Modules:
38
- - numpy
39
-
40
- ## Installation
41
- ### Conda Installation
42
- FastAAIIt appears we need a bunch of pre-requisites to run FastAAI No worries, their installation using Conda is quite easy. If you don't have Conda, you can install it as follows:
43
- 1. Download Anaconda from https://www.anaconda.com/products/individual.
44
- 2. Run `bash Anaconda-latest-Linux-x86_64.sh` and follow the installation instructions.
45
- 3. Once installed you can run `conda -V`. You should get the version of conda that you installed.
46
-
47
- Now, let's add the conda channels required to install the pre-requisites:
48
-
49
- ```bash
50
- conda config --add channels conda-forge
51
- conda config --add channels bioconda
52
- conda config --add channels cruizperez
53
- ```
54
-
55
- Then, create an environment for MicrobeAnnotator:
56
-
57
- ```bash
58
- conda create -n fastaai hmmer prodigal numpy python=3.7 fastaai
59
- ```
60
-
61
- And activate it:
62
-
63
- ```bash
64
- conda activate microbeannotator
65
- ```
66
-
67
- Both main scripts (microbeannotator and microbeannotator_db_builder) should be in your path ready for use!
68
- This should take care of most of the requirements except for Aspera Connect and KofamScan, which are a little more involved. Let's install those.
69
-
70
- ### Pip Installation
71
- #Once you have installed the pre-requisites to run MicrobeAnnotator, or if you already had them and you are not using Conda, you can install MicrobeAnnotator using pip:
72
-
73
-
74
- ## Usage
75
- ### Database creation
76
-
77
-
78
- ## FAQs
79
-
80
-
81
-
82
- ## License
83
-
84
- See LICENSE
@@ -1,244 +0,0 @@
1
- # Recruitment plots
2
-
3
- ## Aims
4
-
5
- This document aims to cover the technical aspects of the recruitment plot functions in the
6
- `enveomics.R` package, focusing on the peak finder and gene-content diversity analyses.
7
-
8
- ## Caveats
9
-
10
- This is a __*working document*__, describing unstable and/or experimental code. The material
11
- here is susceptible of changes without warning, pay attention to the modification date and (if
12
- in doubt) the commit history. The definitions and default parameters of the functions described
13
- here may change in the near future as result of further experimentation or more stable
14
- implementations.
15
-
16
- The current document was generated and tested with the `enveomics.R` package version 1.3. To
17
- check your current version in R, use `packageVersion('enveomics.R')`.
18
-
19
- > **IMPORTANT**: Some of the functions described here may return unexpected results with your data.
20
- > Carefully evaluate all your results.
21
-
22
- ---
23
-
24
- ## Package: `enveomics.R`
25
-
26
- The functionalities described here are provided by the `enveomics.R` package. Some features
27
- described here are updated more frequently than the official
28
- [CRAN releases](https://CRAN.R-project.org/package=enveomics.R). In order to have the latest
29
- updates (package HEAD), download (or update), and install this git repository.
30
-
31
- ### Quick installation guide
32
-
33
- :globe_with_meridians: To install the latest stable version available in CRAN, use in R:
34
-
35
- ```R
36
- install.packages(c('enveomics.R','optparse'))
37
- ```
38
-
39
- :octocat: To install the latest HEAD version (potentially unstable) available in GitHub, use in R:
40
-
41
- ```R
42
- install.packages('devtools')
43
- library('devtools')
44
- install_github('lmrodriguezr/enveomics', subdir='enveomics.R')
45
- ```
46
-
47
- ---
48
-
49
- ## Recruitment plots: `enve.recplot2`
50
-
51
- The first step in this analysis is the mapping of reads to the genome, processed with
52
- [BlastTab.catsbj.pl](http://enve-omics.ce.gatech.edu/enveomics/docs?t=BlastTab.catsbj.pl).
53
- We'll assume the mapping is saved in the file `my-mapping.tab` and this is also the
54
- prefix of the processed files.
55
-
56
- Once you have these input files (`.rec` and `.lim`), you can build the recruitment plot.
57
- For this, you'll have two options.
58
-
59
- ### Option 1: Using the `BlastTab.recplot2.R` stand-alone script
60
-
61
- The stand-alone script
62
- [BlastTab.recplot2.R](http://enve-omics.ce.gatech.edu/enveomics/docs?t=BlastTab.recplot2.R)
63
- is the easiest option to run, and should be the preferred method if you're automating
64
- this analysis to process several mappings, but it doesn't offer access to advanced options.
65
-
66
- You can run it like this using two CPUs:
67
-
68
- ```bash
69
- BlastTab.recplot2.R --prefix my-mapping.tab --threads 2 my-recplot.rdata my-recplot.pdf
70
- ```
71
-
72
- > **NOTE 1**: It's NOT recommended to map reads against genes, the recommended strategy is to
73
- > map against contigs. However, if you did map reads against genes, you may want to use the
74
- > `--pos-breaks 0` option to use each gene as a recruitment window.
75
- >
76
- > **NOTE 2**: If you want to plot the population peaks at this step, simply pass the
77
- > `--peaks-col darkred` option.
78
-
79
- Now you should have two output files: `my-recplot.rdata`, containing your `enve.RecPlot2` R
80
- object, and `my-recplot.pdf` with the graphical output of the recruitment plot.
81
-
82
- ### Option 2: Using the `enve.recplot2` R function
83
-
84
- If you require access to advanced options, or for some other reason prefer to calculate the
85
- recruitment plot interactively, you can directly use the `enve.recplot2` R function. This is
86
- and example session in R:
87
-
88
- ```R
89
- # Load the package
90
- library(enveomics.R)
91
- # Open the PDF
92
- pdf('my-recplot.pdf')
93
- # Build and plot the object using two threads and no peak detection
94
- # (to turn on peak detection, simply remove `peaks.col=NA`)
95
- rp <- enve.recplot2('my-mapping.tab', threads=2, peaks.col=NA)
96
- # Close the PDF
97
- dev.off()
98
- # Save the object
99
- save(rp, file='my-recplot.rdata')
100
- ```
101
-
102
- > **IMPORTANT**: Remember to save the `enve.RecPlot2` R object (that's the last line above)
103
- > before closing the R session.
104
-
105
- Naturally, you may want to see what other (advanced) options you have. You can access the
106
- documentation of the function in R using `?enve.recplot2`.
107
-
108
- ---
109
-
110
- ## Summary statistics
111
-
112
- Here we explore some frequently used summary statistics from recruitment plots. First, load the
113
- package and the `enve.RecPlot2` object you saved previously, in R:
114
-
115
- ```R
116
- library(enveomics.R)
117
- load('my-recplot.rdata')
118
- ```
119
-
120
- ### Centrality measures of sequencing depth
121
-
122
- ```R
123
- mean(enve.recplot2.seqdepth(rp)) # <- Average
124
- median(enve.recplot2.seqdepth(rp)) # <- Median
125
- enve.truncate(enve.recplot2.seqdepth(rp)) # <- 95% Central Truncated Mean
126
- enve.truncate(enve.recplot2.seqdepth(rp), 0.9) # <- 90% Central Truncated Mean
127
- ```
128
-
129
- The functions above only use hits with identity above the cutoff for "in-group" (by default: 95%).
130
- In order to estimate the sequencing depth with a different identity cutoff, modify the cutoff first:
131
-
132
- ```R
133
- rp98 <- enve.recplot2.changeCutoff(rp, 98) # <- Change to ≥98%
134
- mean(enve.recplot2.seqdepth(rp98)) # <- Average (for the new object)
135
- median(enve.recplot2.seqdepth(rp98)) # <- Median (for the new object)
136
- ```
137
-
138
- ### Average and median sequencing depth excluding zero-coverage windows
139
-
140
- ```R
141
- seqdepth <- enve.recplot2.seqdepth(rp)
142
- mean(seqdepth[seqdepth>0]) # <- Average
143
- median(seqdepth[seqdepth>0]) # <- Median
144
- ```
145
-
146
- ### Average Nucleotide Identity from reads (ANIr)
147
-
148
- ```R
149
- enve.recplot2.ANIr(rp) # <- Complete recruitment plot
150
- enve.recplot2.ANIr(rp, c(90,100)) # <- All reads above 90% (recommended for intra-population)
151
- enve.recplot2.ANIr(rp, c(95,100)) # <- Reads above 95%
152
- enve.recplot2.ANIr(rp, c( 0, 90)) # <- Between populations (other species)
153
- ```
154
-
155
- ### Coordinates of each sequence window with their respective sequencing depth
156
-
157
- ```R
158
- d <- enve.recplot2.coordinates(rp)
159
- d$seqdepth <- enve.recplot2.seqdepth(rp)
160
- d
161
- ```
162
-
163
- ### Sequencing breadth (upper boundary)
164
-
165
- This estimate depends on the window size. The smaller the window size, the better the
166
- estimate. When the window size is 1bp, the estimate is exact, otherwise it's consistently
167
- biased (overestimate).
168
-
169
- ```R
170
- mean(enve.recplot2.seqdepth(rp) > 0)
171
- ```
172
-
173
- ---
174
-
175
- ## Peak-finder: `enve.recplot2.findPeaks`
176
-
177
- In this step we will try to identify one or multiple population peaks corresponding to different
178
- sub-populations and/or composites of sub-populations.
179
-
180
- > **NOTE** This step can be performed together with the step above, but we separate it here for
181
- > two reasons: **(1)** This step is much more unstable but less computationally demanding than the
182
- > step before, so it makes sense to re-run only this part with different parameters and/or
183
- > package updates; and **(2)** We want to save the R objects independently, so the following steps
184
- > are more clear.
185
-
186
- In R:
187
-
188
- ```R
189
- # Load the package
190
- library(enveomics.R)
191
- # Load the `enve.RecPlot2` object you saved previously
192
- load('my-recplot.rdata')
193
- # Find the peaks
194
- peaks <- enve.recplot2.findPeaks(rp)
195
- # Save the peaks R object (optional)
196
- save(peaks, file='my-recplot-peaks.rdata')
197
- # Plot the peaks in a PDF (optional)
198
- pdf('my-recplot-peaks.pdf')
199
- p <- plot(rp, use.peaks=peaks, layout=4) # <- Remove `layout=4` for the full plot
200
- dev.off()
201
- ```
202
-
203
- The key function here is `enve.recplot2.findPeaks`. This function has several parameters, depending on
204
- the method used. To see all supported methods, use `?enve.recplot2.findPeaks`. To see all the options
205
- of the default method (`'emauto'`) use `?enve.recplot2.findPeaks.emauto`.
206
-
207
- ---
208
-
209
- ## Gene-content diversity: `enve.recplot2.extractWindows`
210
-
211
- In R:
212
-
213
- ```R
214
- # Load the package and the objects (unless you're still in the same session from the last step)
215
- library(enveomics.R)
216
- load('my-recplot.rdata')
217
- load('my-recplot-peaks.rdata')
218
- # Find the peak representing the core genome
219
- cp <- enve.recplot2.corePeak(peaks)
220
- #-----
221
- # The following functions illustrate how to obtain different results. Please explore the resulting
222
- # objects and the associated documentation
223
- #-----
224
- # Find the coordinates of windows significantly below the average sequencing depth
225
- div <- enve.recplot2.extractWindows(rp, cp, seq.names=TRUE)
226
- # Add sequencing depth
227
- div$seqdepth <- enve.recplot2.seqdepth(rp, as.numeric(rownames(div)))
228
- # Save the coordinates as a tab-delimited table
229
- write.table(div, 'my-low-seqdepth.tsv', quote=FALSE, sep='\t', row.names=FALSE)
230
- # Find all the windows with sequencing depth zero
231
- zero <- enve.recplot2.coordinates(rp, enve.recplot2.seqdepth(rp)==0)
232
- ```
233
-
234
- ---
235
-
236
- ## To do
237
-
238
- - [x] Document structure
239
- - [x] Package: `enveomics.R`
240
- - [x] Recruitment plots: `enve.recplot2`
241
- - [x] Summary statistics
242
- - [x] Peak-finder: `enve.recplot2.findPeaks`
243
- - [x] Gene-content diversity: `enve.recplot2.extractWindows`
244
- - [ ] Compare identity profiles: `enve.recplot2.compareIdentities`
@@ -1,66 +0,0 @@
1
- #!/bin/bash
2
-
3
- # @author Luis M. Rodriguez-R
4
- # @license Artistic-2.0
5
-
6
- set -e # <- So it stops if there is an error
7
- function exists { [[ -e "$1" ]] ; } # <- To test *any* of many files
8
-
9
- OUT=$1 # <- Output file
10
- [[ -n "$1" ]] && shift
11
- SEQS=("$@") # <- list of all genomes
12
- THR=2 # <- Number or threads
13
- DEF_DIST=0.9 # <- Default distance when AAI cannot be reliably estimated
14
-
15
- # This is just the help message
16
- if [[ $# -lt 2 ]] ; then
17
- echo "
18
- Use case: Building AAI matrices from a collection of genomes.
19
-
20
- IMPORTANT
21
- This script is functional, but it's mainly intended for illustrative purposes.
22
- Please take a look at the code first.
23
-
24
- Usage:
25
- $0 <output.txt> <genomes...>
26
-
27
- <output.txt> The output AAI list, in tab-delimited form containing the
28
- following columns: (1) Sequence A, (2) Sequence B, (3)
29
- AAI, (4) AAI-SD, (5) Proteins used, (6) Number of proteins in
30
- the smallest genome, (7) Percentage of the genome shared.
31
- <genomes...> The list of files containing the genomes (at least 2).
32
-
33
- " >&2
34
- exit
35
- fi
36
-
37
- # 00. Create environment
38
- export PATH=$(dirname "$0")/../Scripts:$PATH
39
-
40
- # 01. Calculate AAI
41
- echo "[01/03] Calculating AAI"
42
- for i in "${SEQS[@]}" ; do
43
- for j in "${SEQS[@]}" ; do
44
- echo -n " o $i vs $j: "
45
- AAI=$(aai.rb -1 "$i" -2 "$j" -S "$OUT.db" -t "$THR" \
46
- --no-save-rbm --auto --quiet)
47
- echo ${AAI:-Below detection}
48
- [[ "$i" == "$j" ]] && break
49
- done
50
- done
51
-
52
- # 02. Extract matrix
53
- echo "[02/03] Extracting list"
54
- echo -e "SeqA\tSeqB\tAAI\tSD\tN\tOmega\tFrx" > "$OUT"
55
- echo "select seq1, seq2, aai, sd, n, omega, (100.0*n/omega) from aai;" \
56
- | sqlite3 "$OUT.db" | tr '|' '\t' >> "$OUT"
57
-
58
- # 03. Make it a distance matrix.
59
- echo "[03/03] Generating distance matrix"
60
- echo "
61
- source('$(dirname $0)/../enveomics.R/R/df2dist.R');
62
- a <- read.table('$OUT', sep = '\\t', header = TRUE, as.is = TRUE, quote = '');
63
- aai.d <- enve.df2dist(a, default.d = $DEF_DIST, max.sim = 100);
64
- write.table(as.matrix(aai.d), '$OUT.dist',
65
- quote = FALSE, col.names = NA, row.names = TRUE, sep = '\\t')
66
- " | R --vanilla >/dev/null
@@ -1,66 +0,0 @@
1
- #!/bin/bash
2
-
3
- # @author Luis M. Rodriguez-R
4
- # @license Artistic-2.0
5
-
6
- set -e # <- So it stops if there is an error
7
- function exists { [[ -e "$1" ]] ; } # <- To test *any* of many files
8
-
9
- OUT=$1 # <- Output file
10
- [[ -n "$1" ]] && shift
11
- SEQS=("$@") # <- list of all genomes
12
- THR=2 # <- Number or threads
13
- DEF_DIST=0.9 # <- Default distance when ANI cannot be reliably estimated
14
-
15
- # This is just the help message
16
- if [[ $# -lt 2 ]] ; then
17
- echo "
18
- Use case: Building ANI matrices from a collection of genomes.
19
-
20
- IMPORTANT
21
- This script is functional, but it's mainly intended for illustrative purposes.
22
- Please take a look at the code first.
23
-
24
- Usage:
25
- $0 <output.txt> <genomes...>
26
-
27
- <output.txt> The output ANI list, in tab-delimited form containing the
28
- following columns: (1) Sequence A, (2) Sequence B, (3)
29
- ANI, (4) ANI-SD, (5) Fragments used, (6) Maximum number
30
- of fragments, (7) Percentage of the genome shared.
31
- <genomes...> The list of files containing the genomes (at least 2).
32
-
33
- " >&2
34
- exit
35
- fi
36
-
37
- # 00. Create environment
38
- export PATH=$(dirname "$0")/../Scripts:$PATH
39
-
40
- # 01. Calculate ANI
41
- echo "[01/03] Calculating ANI"
42
- for i in "${SEQS[@]}" ; do
43
- for j in "${SEQS[@]}" ; do
44
- echo -n " o $i vs $j: "
45
- ANI=$(ani.rb -1 "$i" -2 "$j" -S "$OUT.db" -t "$THR" \
46
- --no-save-rbm --no-save-regions --auto --quiet)
47
- echo ${ANI:-Below detection}
48
- [[ "$i" == "$j" ]] && break
49
- done
50
- done
51
-
52
- # 02. Extract matrix
53
- echo "[02/03] Extracting list"
54
- echo -e "SeqA\tSeqB\tANI\tSD\tN\tOmega\tFrx" > "$OUT"
55
- echo "select seq1, seq2, ani, sd, n, omega, (100.0*n/omega) from ani;" \
56
- | sqlite3 "$OUT.db" | tr '|' '\t' >> "$OUT"
57
-
58
- # 03. Make it a distance matrix.
59
- echo "[03/03] Generating distance matrix"
60
- echo "
61
- source('$(dirname $0)/../enveomics.R/R/df2dist.R');
62
- a <- read.table('$OUT', sep = '\\t', header = TRUE, as.is = TRUE, quote = '');
63
- ani.d <- enve.df2dist(a, default.d = $DEF_DIST, max.sim = 100);
64
- write.table(as.matrix(ani.d), '$OUT.dist',
65
- quote = FALSE, col.names = NA, row.names = TRUE, sep = '\\t')
66
- " | R --vanilla >/dev/null
@@ -1,105 +0,0 @@
1
- #!/bin/bash
2
-
3
- #
4
- # @author Luis M. Rodriguez-R
5
- # @update Mar-23-2016
6
- # @license artistic license 2.0
7
- #
8
-
9
- set -e # <- So it stops if there is an error
10
- function exists { [[ -e "$1" ]] ; } # <- To test *any* of many files
11
-
12
- ORG=$1 # <- Organism (see help)
13
- THR=2 # <- Number or threads
14
-
15
- # This is just the help message
16
- if [[ "$ORG" == "" ]] ; then
17
- echo "
18
- Use case: Essential genes phylogeny of a species. The essential genes are a
19
- collection of genes typically found in single copy in archaeal and bacterial
20
- genomes
21
-
22
- IMPORTANT
23
- This script is functional, but it's mainly intended for illustrative purposes.
24
- Please take a look at the code first.
25
-
26
- Usage:
27
- $0 <organism>
28
-
29
- <organism> The organism to use (e.g., Streptococcus_pneumoniae).
30
-
31
- " >&2
32
- exit
33
- fi
34
-
35
- # 00. Create environment
36
- export PATH=$(dirname $0)/../Scripts:$PATH
37
- if [[ -e $ORG ]] ; then
38
- echo "Cowardly refusing to overwrite $ORG, please remove archive first." >&2
39
- exit 1
40
- fi
41
- mkdir $ORG
42
- for i in 01.proteome 02.essential 03.aln 04.cat 05.raxml 06.autoprune ; do
43
- mkdir $ORG/$i
44
- done
45
-
46
- # 01. Download proteomes
47
- echo "[01/06] Downloading and guzipping data"
48
- RefSeq.download.bash $ORG .faa.gz "Complete Genome" $ORG/01.proteome
49
- rm $ORG/01.proteome/assembly_summary.txt
50
- for i in $ORG/01.proteome/* ; do
51
- b=$(basename $i | perl -pe 's/[^A-Za-z0-9]/_/g' | perl -pe 's/_+$//')
52
- if exists $i/*.faa.gz ; then
53
- for j in $i/*.faa.gz ; do gunzip $j ; done
54
- cat $i/*.faa > $ORG/01.proteome/$b.faa
55
- fi
56
- rm -R $i
57
- done
58
-
59
- # 02. Essential genes
60
- echo "[02/06] Idenfifying essential genes"
61
- N=0
62
- for i in $ORG/01.proteome/*.faa ; do # <- This loop could be parallelized
63
- genomeA=$(basename $i .faa)
64
- dir=$ORG/02.essential/$genomeA
65
- mkdir $dir
66
- HMM.essential.rb -i $i -m $dir/ -R $dir/log.txt -r $genomeA -t $THR
67
- let N=$N+1
68
- done
69
-
70
- # 03. Find core and align groups
71
- echo "[03/06] Identifying core essentials and aligning groups"
72
- CORE_ESS=$(basename -s .faa $ORG/02.essential/*/*.faa | sort | uniq -c \
73
- | awk '$1=='$N'{print $2}')
74
- for b in $CORE_ESS ; do # <- This loop could be parallelized
75
- cat $ORG/02.essential/*/$b.faa > $ORG/03.aln/$b.faa
76
- clustalo -i $ORG/03.aln/$b.faa -o $ORG/03.aln/$b.aln #--threads=$THR
77
- done
78
-
79
- # 04. Concatenate alignment
80
- echo "[04/06] Concatenating alignments and removing invariable sites"
81
- Aln.cat.rb -I -c $ORG/04.cat/essential.raxcoords -i '|' $ORG/03.aln/*.aln \
82
- > $ORG/04.cat/essential.aln 2> $ORG/04.cat/essential.log
83
-
84
- # 05. Run RAxML
85
- echo "[05/06] Inferring phylogeny"
86
- # You REALLY should consider running the following with more threads (-T) and,
87
- # if possible, multi-nodes using MPI
88
- cd $ORG/05.raxml
89
- raxmlHPC-PTHREADS -T $THR -p 1234 \
90
- -s ../04.cat/essential.aln -q ../04.cat/essential.raxcoords \
91
- -m PROTCATGTR -n UNUS # IMPORTANT: Please read the documentation of RAxML
92
- # before running this line, so you know
93
- # that you're running what you really want. Check
94
- # options for bootstrapping and the different
95
- # algorithms (-f). Note that -m is required, but the
96
- # file unus.raxcoords specifies "AUTO", so RAxML will
97
- # attempt to find the model resulting in the highest
98
- # likelihood.
99
- cd ../..
100
-
101
- # 06. Autoprune
102
- echo "[06/06] Auto-pruning the tree"
103
- Newick.autoprune.R --t $ORG/05.raxml/RAxML_bestTree.UNUS --min_dist 0.001 \
104
- $ORG/06.autoprune/essential-pruned.nwk
105
-
@@ -1,100 +0,0 @@
1
- #!/bin/bash
2
-
3
- #
4
- # @author Luis M. Rodriguez-R
5
- # @update Oct-20-2015
6
- # @license artistic license 2.0
7
- #
8
-
9
- ORG=$1 # <- Organism (see help)
10
- THR=2 # <- Number or threads
11
-
12
- # This is just the help message
13
- if [[ "$ORG" == "" ]] ; then
14
- echo "
15
- Use case: Unus genome phylogeny of a species. The unus genome is the collection
16
- of orthologous groups in a set of genomes that has exactly one gene per genome,
17
- i.e., the core genome minus in-paralogs.
18
-
19
- IMPORTANT
20
- This script is functional, but it's mainly intended for illustrative purposes.
21
- Please take a look at the code first.
22
-
23
- Usage:
24
- $0 <organism>
25
-
26
- <organism> The organism to use (e.g., Streptococcus_pneumoniae).
27
-
28
- " >&2
29
- exit
30
- fi
31
-
32
- # 00. Create environment
33
- export PATH=$(dirname $0)/../Scripts:$PATH
34
- if [[ -e $ORG ]] ; then
35
- echo "Cowardly refusing to overwrite $ORG, please remove archive first." >&2
36
- exit 1
37
- fi
38
- mkdir $ORG
39
- for i in 01.proteome 02.rbm 03.ogs 04.aln 05.cat 06.raxml ; do
40
- mkdir $ORG/$i
41
- done
42
-
43
- # 01. Download proteomes
44
- echo "[01/06] Downloading and guzipping data"
45
- RefSeq.download.bash $ORG .faa.gz "Complete Genome" $ORG/01.proteome
46
- rm $ORG/01.proteome/assembly_summary.txt
47
- for i in $ORG/01.proteome/* ; do
48
- b=$(basename $i | perl -pe 's/[^A-Za-z0-9]/_/g' | perl -pe 's/_+$//')
49
- for j in $i/*.faa.gz ; do gunzip $j ; done
50
- cat $i/*.faa > $ORG/01.proteome/$b.faa.tmp
51
- FastA.tag.rb -i $ORG/01.proteome/$b.faa.tmp -o $ORG/01.proteome/$b.faa.tmp -d
52
- rm -R $i $ORG/01.proteome/$b.faa.tmp
53
- done
54
-
55
- # 02. Reciprocal Best Matches
56
- echo "[02/06] Idenfifying Reciprocal Best Matches"
57
- for i in $ORG/01.proteome/*.faa ; do # <- This nested loop could be parallelized
58
- genomeA=$(basename $i .faa)
59
- for j in $ORG/01.proteome/*.faa ; do
60
- genomeB=$(basename $j .faa)
61
- rbm.rb -1 $i -2 $j -t $THR > $ORG/02.rbm/$genomeA-$genomeB.rbm
62
- [[ "$i" == "$j" ]] && continue # <- Ignore if it simplifies distribution
63
- done
64
- done
65
-
66
- # 03. Orthologous Groups
67
- echo "[03/06] Compiling Orthologous Groups"
68
- ogs.mcl.rb -d $ORG/02.rbm -o $ORG/03.ogs/pangenome.ogs -t $THR
69
-
70
- # 04. Extract unus genome and align groups
71
- echo "[04/06] Extracting unus genome and aligning OGs"
72
- ogs.extract.rb -i $ORG/03.ogs/pangenome.ogs -s $ORG/01.proteome/%s.faa \
73
- -o $ORG/04.aln/ -c 1 -d 1 -p
74
- for i in $ORG/04.aln/*.fa ; do # <- This loop could be parallelized
75
- b=$(basename $i .fa)
76
- clustalo -i $i -o $ORG/04.aln/$b.aln --threads=$THR
77
- done
78
-
79
- # 05. Concatenate alignment
80
- echo "[05/06] Concatenating alignments and removing invariable sites"
81
- Aln.cat.rb -I -c $ORG/05.cat/unus.raxcoords -i - $ORG/04.aln/*.aln \
82
- > $ORG/05.cat/unus.aln 2> $ORG/05.cat/unus.log
83
-
84
- # 06. Run RAxML
85
- echo "[06/06] Inferring phylogeny"
86
- # You REALLY should consider running the following with more threads (-T) and,
87
- # if possible, multi-nodes using MPI
88
- cd $ORG/06.raxml
89
- raxmlHPC-PTHREADS -T $THR -p 1234 \
90
- -s ../05.cat/unus.aln -q ../05.cat/unus.raxcoords \
91
- -m PROTCATGTR -n UNUS # IMPORTANT: Please read the documentation of RAxML
92
- # before running this line, so you know
93
- # that you're running what you really
94
- # want. Check options for bootstrapping
95
- # and the different algorithms (-f). Note
96
- # that -m is required, but the file
97
- # unus.raxcoords specifies "AUTO", so
98
- # RAxML will attempt to find the model
99
- # resulting in the highest likelihood.
100
-