miga-base 1.2.15.1 → 1.2.15.3

Sign up to get free protection for your applications and to get access to all the features.
Files changed (305) hide show
  1. checksums.yaml +4 -4
  2. data/lib/miga/cli/action/download/gtdb.rb +4 -1
  3. data/lib/miga/cli/action/gtdb_get.rb +4 -0
  4. data/lib/miga/remote_dataset/download.rb +3 -2
  5. data/lib/miga/remote_dataset.rb +44 -8
  6. data/lib/miga/taxonomy.rb +6 -0
  7. data/lib/miga/version.rb +2 -2
  8. data/test/remote_dataset_test.rb +3 -1
  9. metadata +6 -302
  10. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Archaea_SCG.hmm +0 -41964
  11. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Bacteria_SCG.hmm +0 -32439
  12. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm +0 -62056
  13. data/utils/FastAAI/FastAAI +0 -3659
  14. data/utils/FastAAI/FastAAI-legacy/FastAAI +0 -1336
  15. data/utils/FastAAI/FastAAI-legacy/kAAI_v1.0_virus.py +0 -1296
  16. data/utils/FastAAI/README.md +0 -84
  17. data/utils/enveomics/Docs/recplot2.md +0 -244
  18. data/utils/enveomics/Examples/aai-matrix.bash +0 -66
  19. data/utils/enveomics/Examples/ani-matrix.bash +0 -66
  20. data/utils/enveomics/Examples/essential-phylogeny.bash +0 -105
  21. data/utils/enveomics/Examples/unus-genome-phylogeny.bash +0 -100
  22. data/utils/enveomics/LICENSE.txt +0 -73
  23. data/utils/enveomics/Makefile +0 -52
  24. data/utils/enveomics/Manifest/Tasks/aasubs.json +0 -103
  25. data/utils/enveomics/Manifest/Tasks/blasttab.json +0 -790
  26. data/utils/enveomics/Manifest/Tasks/distances.json +0 -161
  27. data/utils/enveomics/Manifest/Tasks/fasta.json +0 -802
  28. data/utils/enveomics/Manifest/Tasks/fastq.json +0 -291
  29. data/utils/enveomics/Manifest/Tasks/graphics.json +0 -126
  30. data/utils/enveomics/Manifest/Tasks/mapping.json +0 -137
  31. data/utils/enveomics/Manifest/Tasks/ogs.json +0 -382
  32. data/utils/enveomics/Manifest/Tasks/other.json +0 -906
  33. data/utils/enveomics/Manifest/Tasks/remote.json +0 -355
  34. data/utils/enveomics/Manifest/Tasks/sequence-identity.json +0 -650
  35. data/utils/enveomics/Manifest/Tasks/tables.json +0 -308
  36. data/utils/enveomics/Manifest/Tasks/trees.json +0 -68
  37. data/utils/enveomics/Manifest/Tasks/variants.json +0 -111
  38. data/utils/enveomics/Manifest/categories.json +0 -165
  39. data/utils/enveomics/Manifest/examples.json +0 -162
  40. data/utils/enveomics/Manifest/tasks.json +0 -4
  41. data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +0 -69
  42. data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +0 -1
  43. data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +0 -1
  44. data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +0 -1
  45. data/utils/enveomics/Pipelines/assembly.pbs/README.md +0 -189
  46. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +0 -112
  47. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +0 -23
  48. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +0 -44
  49. data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +0 -50
  50. data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +0 -37
  51. data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +0 -68
  52. data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +0 -49
  53. data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +0 -80
  54. data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +0 -57
  55. data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +0 -63
  56. data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +0 -38
  57. data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +0 -73
  58. data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +0 -21
  59. data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +0 -72
  60. data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +0 -98
  61. data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +0 -1
  62. data/utils/enveomics/Pipelines/blast.pbs/README.md +0 -127
  63. data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +0 -109
  64. data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +0 -128
  65. data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +0 -16
  66. data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +0 -22
  67. data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +0 -26
  68. data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +0 -89
  69. data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +0 -29
  70. data/utils/enveomics/Pipelines/idba.pbs/README.md +0 -49
  71. data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +0 -95
  72. data/utils/enveomics/Pipelines/idba.pbs/run.pbs +0 -56
  73. data/utils/enveomics/Pipelines/trim.pbs/README.md +0 -54
  74. data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +0 -70
  75. data/utils/enveomics/Pipelines/trim.pbs/run.pbs +0 -130
  76. data/utils/enveomics/README.md +0 -42
  77. data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +0 -171
  78. data/utils/enveomics/Scripts/Aln.cat.rb +0 -221
  79. data/utils/enveomics/Scripts/Aln.convert.pl +0 -35
  80. data/utils/enveomics/Scripts/AlphaDiversity.pl +0 -152
  81. data/utils/enveomics/Scripts/BedGraph.tad.rb +0 -93
  82. data/utils/enveomics/Scripts/BedGraph.window.rb +0 -71
  83. data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +0 -102
  84. data/utils/enveomics/Scripts/BlastTab.addlen.rb +0 -63
  85. data/utils/enveomics/Scripts/BlastTab.advance.bash +0 -48
  86. data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +0 -55
  87. data/utils/enveomics/Scripts/BlastTab.catsbj.pl +0 -104
  88. data/utils/enveomics/Scripts/BlastTab.cogCat.rb +0 -76
  89. data/utils/enveomics/Scripts/BlastTab.filter.pl +0 -47
  90. data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +0 -194
  91. data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +0 -104
  92. data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +0 -157
  93. data/utils/enveomics/Scripts/BlastTab.recplot2.R +0 -48
  94. data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +0 -86
  95. data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +0 -119
  96. data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +0 -86
  97. data/utils/enveomics/Scripts/BlastTab.subsample.pl +0 -47
  98. data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +0 -114
  99. data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +0 -90
  100. data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +0 -123
  101. data/utils/enveomics/Scripts/Chao1.pl +0 -97
  102. data/utils/enveomics/Scripts/CharTable.classify.rb +0 -234
  103. data/utils/enveomics/Scripts/EBIseq2tax.rb +0 -83
  104. data/utils/enveomics/Scripts/FastA.N50.pl +0 -60
  105. data/utils/enveomics/Scripts/FastA.extract.rb +0 -152
  106. data/utils/enveomics/Scripts/FastA.filter.pl +0 -52
  107. data/utils/enveomics/Scripts/FastA.filterLen.pl +0 -28
  108. data/utils/enveomics/Scripts/FastA.filterN.pl +0 -60
  109. data/utils/enveomics/Scripts/FastA.fragment.rb +0 -100
  110. data/utils/enveomics/Scripts/FastA.gc.pl +0 -42
  111. data/utils/enveomics/Scripts/FastA.interpose.pl +0 -93
  112. data/utils/enveomics/Scripts/FastA.length.pl +0 -38
  113. data/utils/enveomics/Scripts/FastA.mask.rb +0 -89
  114. data/utils/enveomics/Scripts/FastA.per_file.pl +0 -36
  115. data/utils/enveomics/Scripts/FastA.qlen.pl +0 -57
  116. data/utils/enveomics/Scripts/FastA.rename.pl +0 -65
  117. data/utils/enveomics/Scripts/FastA.revcom.pl +0 -23
  118. data/utils/enveomics/Scripts/FastA.sample.rb +0 -98
  119. data/utils/enveomics/Scripts/FastA.slider.pl +0 -85
  120. data/utils/enveomics/Scripts/FastA.split.pl +0 -55
  121. data/utils/enveomics/Scripts/FastA.split.rb +0 -79
  122. data/utils/enveomics/Scripts/FastA.subsample.pl +0 -131
  123. data/utils/enveomics/Scripts/FastA.tag.rb +0 -65
  124. data/utils/enveomics/Scripts/FastA.toFastQ.rb +0 -69
  125. data/utils/enveomics/Scripts/FastA.wrap.rb +0 -48
  126. data/utils/enveomics/Scripts/FastQ.filter.pl +0 -54
  127. data/utils/enveomics/Scripts/FastQ.interpose.pl +0 -90
  128. data/utils/enveomics/Scripts/FastQ.maskQual.rb +0 -89
  129. data/utils/enveomics/Scripts/FastQ.offset.pl +0 -90
  130. data/utils/enveomics/Scripts/FastQ.split.pl +0 -53
  131. data/utils/enveomics/Scripts/FastQ.tag.rb +0 -70
  132. data/utils/enveomics/Scripts/FastQ.test-error.rb +0 -81
  133. data/utils/enveomics/Scripts/FastQ.toFastA.awk +0 -24
  134. data/utils/enveomics/Scripts/GFF.catsbj.pl +0 -127
  135. data/utils/enveomics/Scripts/GenBank.add_fields.rb +0 -84
  136. data/utils/enveomics/Scripts/HMM.essential.rb +0 -351
  137. data/utils/enveomics/Scripts/HMM.haai.rb +0 -168
  138. data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +0 -83
  139. data/utils/enveomics/Scripts/JPlace.distances.rb +0 -88
  140. data/utils/enveomics/Scripts/JPlace.to_iToL.rb +0 -320
  141. data/utils/enveomics/Scripts/M5nr.getSequences.rb +0 -81
  142. data/utils/enveomics/Scripts/MeTaxa.distribution.pl +0 -198
  143. data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +0 -35
  144. data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +0 -49
  145. data/utils/enveomics/Scripts/NCBIacc2tax.rb +0 -92
  146. data/utils/enveomics/Scripts/Newick.autoprune.R +0 -27
  147. data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +0 -228
  148. data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +0 -32
  149. data/utils/enveomics/Scripts/RefSeq.download.bash +0 -48
  150. data/utils/enveomics/Scripts/SRA.download.bash +0 -55
  151. data/utils/enveomics/Scripts/TRIBS.plot-test.R +0 -36
  152. data/utils/enveomics/Scripts/TRIBS.test.R +0 -39
  153. data/utils/enveomics/Scripts/Table.barplot.R +0 -31
  154. data/utils/enveomics/Scripts/Table.df2dist.R +0 -30
  155. data/utils/enveomics/Scripts/Table.filter.pl +0 -61
  156. data/utils/enveomics/Scripts/Table.merge.pl +0 -77
  157. data/utils/enveomics/Scripts/Table.prefScore.R +0 -60
  158. data/utils/enveomics/Scripts/Table.replace.rb +0 -69
  159. data/utils/enveomics/Scripts/Table.round.rb +0 -63
  160. data/utils/enveomics/Scripts/Table.split.pl +0 -57
  161. data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +0 -227
  162. data/utils/enveomics/Scripts/VCF.KaKs.rb +0 -147
  163. data/utils/enveomics/Scripts/VCF.SNPs.rb +0 -88
  164. data/utils/enveomics/Scripts/aai.rb +0 -421
  165. data/utils/enveomics/Scripts/ani.rb +0 -362
  166. data/utils/enveomics/Scripts/anir.rb +0 -137
  167. data/utils/enveomics/Scripts/clust.rand.rb +0 -102
  168. data/utils/enveomics/Scripts/gi2tax.rb +0 -103
  169. data/utils/enveomics/Scripts/in_silico_GA_GI.pl +0 -96
  170. data/utils/enveomics/Scripts/lib/data/dupont_2012_essential.hmm.gz +0 -0
  171. data/utils/enveomics/Scripts/lib/data/lee_2019_essential.hmm.gz +0 -0
  172. data/utils/enveomics/Scripts/lib/enveomics.R +0 -1
  173. data/utils/enveomics/Scripts/lib/enveomics_rb/anir.rb +0 -293
  174. data/utils/enveomics/Scripts/lib/enveomics_rb/bm_set.rb +0 -175
  175. data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +0 -24
  176. data/utils/enveomics/Scripts/lib/enveomics_rb/errors.rb +0 -17
  177. data/utils/enveomics/Scripts/lib/enveomics_rb/gmm_em.rb +0 -30
  178. data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +0 -253
  179. data/utils/enveomics/Scripts/lib/enveomics_rb/match.rb +0 -88
  180. data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +0 -182
  181. data/utils/enveomics/Scripts/lib/enveomics_rb/rbm.rb +0 -49
  182. data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +0 -74
  183. data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +0 -237
  184. data/utils/enveomics/Scripts/lib/enveomics_rb/stats/rand.rb +0 -31
  185. data/utils/enveomics/Scripts/lib/enveomics_rb/stats/sample.rb +0 -152
  186. data/utils/enveomics/Scripts/lib/enveomics_rb/stats.rb +0 -3
  187. data/utils/enveomics/Scripts/lib/enveomics_rb/utils.rb +0 -74
  188. data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +0 -135
  189. data/utils/enveomics/Scripts/ogs.annotate.rb +0 -88
  190. data/utils/enveomics/Scripts/ogs.core-pan.rb +0 -160
  191. data/utils/enveomics/Scripts/ogs.extract.rb +0 -125
  192. data/utils/enveomics/Scripts/ogs.mcl.rb +0 -186
  193. data/utils/enveomics/Scripts/ogs.rb +0 -104
  194. data/utils/enveomics/Scripts/ogs.stats.rb +0 -131
  195. data/utils/enveomics/Scripts/rbm-legacy.rb +0 -172
  196. data/utils/enveomics/Scripts/rbm.rb +0 -108
  197. data/utils/enveomics/Scripts/sam.filter.rb +0 -148
  198. data/utils/enveomics/Tests/Makefile +0 -10
  199. data/utils/enveomics/Tests/Mgen_M2288.faa +0 -3189
  200. data/utils/enveomics/Tests/Mgen_M2288.fna +0 -8282
  201. data/utils/enveomics/Tests/Mgen_M2321.fna +0 -8288
  202. data/utils/enveomics/Tests/Nequ_Kin4M.faa +0 -2970
  203. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
  204. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +0 -7
  205. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +0 -17
  206. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +0 -137
  207. data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +0 -123
  208. data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +0 -200
  209. data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +0 -55
  210. data/utils/enveomics/Tests/alkB.nwk +0 -1
  211. data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +0 -13
  212. data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +0 -17
  213. data/utils/enveomics/Tests/hiv1.faa +0 -59
  214. data/utils/enveomics/Tests/hiv1.fna +0 -134
  215. data/utils/enveomics/Tests/hiv2.faa +0 -70
  216. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +0 -233
  217. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +0 -1
  218. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +0 -233
  219. data/utils/enveomics/Tests/phyla_counts.tsv +0 -10
  220. data/utils/enveomics/Tests/primate_lentivirus.ogs +0 -11
  221. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +0 -9
  222. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +0 -8
  223. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +0 -6
  224. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +0 -9
  225. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +0 -6
  226. data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +0 -6
  227. data/utils/enveomics/build_enveomics_r.bash +0 -45
  228. data/utils/enveomics/enveomics.R/DESCRIPTION +0 -31
  229. data/utils/enveomics/enveomics.R/NAMESPACE +0 -39
  230. data/utils/enveomics/enveomics.R/R/autoprune.R +0 -155
  231. data/utils/enveomics/enveomics.R/R/barplot.R +0 -184
  232. data/utils/enveomics/enveomics.R/R/cliopts.R +0 -135
  233. data/utils/enveomics/enveomics.R/R/df2dist.R +0 -154
  234. data/utils/enveomics/enveomics.R/R/growthcurve.R +0 -331
  235. data/utils/enveomics/enveomics.R/R/prefscore.R +0 -79
  236. data/utils/enveomics/enveomics.R/R/recplot.R +0 -354
  237. data/utils/enveomics/enveomics.R/R/recplot2.R +0 -1631
  238. data/utils/enveomics/enveomics.R/R/tribs.R +0 -583
  239. data/utils/enveomics/enveomics.R/R/utils.R +0 -80
  240. data/utils/enveomics/enveomics.R/README.md +0 -81
  241. data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
  242. data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
  243. data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +0 -16
  244. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +0 -16
  245. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +0 -16
  246. data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +0 -25
  247. data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +0 -46
  248. data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +0 -23
  249. data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +0 -47
  250. data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +0 -23
  251. data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +0 -23
  252. data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +0 -40
  253. data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +0 -103
  254. data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +0 -67
  255. data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +0 -24
  256. data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +0 -19
  257. data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +0 -45
  258. data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +0 -44
  259. data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +0 -47
  260. data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +0 -75
  261. data/utils/enveomics/enveomics.R/man/enve.prefscore.Rd +0 -50
  262. data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +0 -44
  263. data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +0 -139
  264. data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +0 -45
  265. data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +0 -24
  266. data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +0 -77
  267. data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +0 -25
  268. data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +0 -21
  269. data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +0 -19
  270. data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +0 -19
  271. data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +0 -47
  272. data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +0 -29
  273. data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +0 -18
  274. data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +0 -45
  275. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +0 -36
  276. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +0 -19
  277. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +0 -19
  278. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +0 -27
  279. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +0 -52
  280. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +0 -17
  281. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +0 -51
  282. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +0 -43
  283. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +0 -82
  284. data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +0 -59
  285. data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +0 -27
  286. data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +0 -36
  287. data/utils/enveomics/enveomics.R/man/enve.selvector.Rd +0 -23
  288. data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +0 -68
  289. data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +0 -28
  290. data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +0 -27
  291. data/utils/enveomics/enveomics.R/man/growth.curves.Rd +0 -14
  292. data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +0 -13
  293. data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +0 -78
  294. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +0 -46
  295. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +0 -45
  296. data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +0 -125
  297. data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +0 -19
  298. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +0 -19
  299. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +0 -19
  300. data/utils/enveomics/globals.mk +0 -8
  301. data/utils/enveomics/manifest.json +0 -9
  302. data/utils/multitrim/Multitrim How-To.pdf +0 -0
  303. data/utils/multitrim/README.md +0 -67
  304. data/utils/multitrim/multitrim.py +0 -1555
  305. data/utils/multitrim/multitrim.yml +0 -13
@@ -1,1296 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- """
4
- ########################################################################
5
- # Author: Carlos Ruiz
6
- # Intitution: Georgia Institute of Technology
7
- # Version: 0.8
8
- # Date: March 02, 2020
9
-
10
- # Description: Calculates the average amino acid identity using k-mers
11
- from single copy genes. It is a faster version of the regular AAI (Blast
12
- or Diamond) and the hAAI implemented in MiGA.
13
- ########################################################################
14
- """
15
-
16
- ################################################################################
17
- """---0.0 Import Modules---"""
18
- import subprocess, argparse, multiprocessing, datetime, shutil
19
- import textwrap, pickle, gzip
20
- from random import randint
21
- from pathlib import Path
22
- from sys import argv
23
- from sys import exit
24
- from functools import partial
25
- from os.path import realpath
26
- import numpy
27
- import tempfile
28
-
29
-
30
- ################################################################################
31
- """---1.0 Define Functions---"""
32
- # --- Run prodigal ---
33
- # ------------------------------------------------------
34
- def run_prodigal(input_file):
35
- """
36
- Runs prodigal, compares translation tables and stores faa files
37
-
38
- Arguments:
39
- input_file -- Path to genome FastA file
40
-
41
- Returns:
42
- output -- Path to amino acid fasta result
43
- """
44
- # Predict proteins with translation tables 4 and 11
45
- file_path = Path(input_file)
46
- filename = file_path.name
47
- folder = file_path.parent
48
- protein_output = folder / (filename + '.faa')
49
- output_11 = folder / (filename + '.faa.11')
50
- temp_output = folder / (filename + '.temp')
51
- subprocess.call(["prodigal", "-i", str(file_path), "-a", str(output_11),
52
- "-p", "meta", "-q", "-o", str(temp_output)])
53
- output_4 = folder / (filename + '.faa.4')
54
- temp_output = folder / (filename + '.temp')
55
- subprocess.call(["prodigal", "-i", str(file_path), "-a", str(output_4),
56
- "-p", "meta", "-g", "4", "-q", "-o", str(temp_output)])
57
-
58
- # Compare translation tables
59
- length_4 = 0
60
- length_11 = 0
61
- with open(output_4, 'r') as table_4:
62
- for line in table_4:
63
- if line.startswith(">"):
64
- continue
65
- else:
66
- length_4 += len(line.strip())
67
-
68
- with open(output_11, 'r') as table_11:
69
- for line in table_11:
70
- if line.startswith(">"):
71
- continue
72
- else:
73
- length_11 += len(line.strip())
74
-
75
- if (length_4 / length_11) >= 1.1:
76
- shutil.copy(output_4, protein_output)
77
- else:
78
- shutil.copy(str(output_11), str(protein_output))
79
-
80
- # Remove intermediate files
81
- output_4.unlink()
82
- output_11.unlink()
83
- temp_output.unlink()
84
-
85
- # Remove stop '*' codons from protein sequences
86
- with open(protein_output, 'r') as final_protein, open(temp_output, 'w') as temporal_file:
87
- for line in final_protein:
88
- if line.startswith(">"):
89
- temporal_file.write("{}".format(line))
90
- else:
91
- line = line.replace('*', '')
92
- temporal_file.write("{}".format(line))
93
- shutil.copy(str(temp_output), str(protein_output))
94
- temp_output.unlink()
95
-
96
- return str(protein_output)
97
- # ------------------------------------------------------
98
-
99
- # --- Run prodigal for viruses ---
100
- # ------------------------------------------------------
101
- def run_prodigal_virus(input_file):
102
- """
103
- Runs prodigal, compares translation tables and stores faa files
104
-
105
- Arguments:
106
- input_file -- Path to genome FastA file
107
-
108
- Returns:
109
- output -- Path to amino acid fasta result
110
- """
111
- # Predict proteins with translation tables 4 and 11
112
- file_path = Path(input_file)
113
- filename = file_path.name
114
- folder = file_path.parent
115
- protein_output = folder / (filename + '.faa')
116
- temp_output = folder / (filename + '.temp')
117
- subprocess.call(["prodigal", "-i", str(file_path), "-a", str(protein_output),
118
- "-p", "meta", "-q", "-o", str(temp_output)])
119
-
120
- # Remove intermediate files
121
- temp_output.unlink()
122
-
123
- # Remove stop '*' codons from protein sequences
124
- with open(protein_output, 'r') as final_protein, open(temp_output, 'w') as temporal_file:
125
- for line in final_protein:
126
- if line.startswith(">"):
127
- temporal_file.write("{}".format(line))
128
- else:
129
- line = line.replace('*', '')
130
- temporal_file.write("{}".format(line))
131
- shutil.copy(str(temp_output), str(protein_output))
132
- temp_output.unlink()
133
-
134
- return str(protein_output)
135
- # ------------------------------------------------------
136
-
137
- # --- Run hmmsearch ---
138
- # ------------------------------------------------------
139
- def run_hmmsearch(input_file):
140
- """
141
- Runs hmmsearch on the set of SCGs and select the
142
- best Archaea or Bacterial model
143
-
144
- Arguments:
145
- input_file -- Path to protein FastA file
146
-
147
- Returns:
148
- output -- Path to hmmsearch hits table
149
- """
150
- file_path = Path(input_file)
151
- folder = file_path.parent
152
- name = file_path.name
153
- hmm_output = folder / (name + '.hmm')
154
- temp_output = folder / (name + '.temp')
155
- script_path = Path(realpath(__file__))
156
- script_dir = script_path.parent
157
- hmm_complete_model = script_dir / "00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm"
158
- subprocess.call(["hmmsearch", "--tblout", str(hmm_output), "-o", str(temp_output), "--cut_tc", "--cpu", "1",
159
- str(hmm_complete_model), str(file_path)])
160
- temp_output.unlink()
161
- return str(hmm_output)
162
- # ------------------------------------------------------
163
-
164
- # --- Filter HMM results for best matches ---
165
- # ------------------------------------------------------
166
- def hmm_filter(scg_hmm_file, keep):
167
- """
168
- Filters HMM results for best hits per protein
169
-
170
- Arguments:
171
- SCG_HMM_file {file path} -- Path to HMM results file
172
- keep {bool} -- Keep HMM files
173
-
174
- Returns:
175
- outfile -- Path to filtered files
176
- """
177
- hmm_path = Path(scg_hmm_file)
178
- name = hmm_path.name
179
- folder = hmm_path.parent
180
- outfile = folder / (name + '.filt')
181
- hmm_hit_dict = {}
182
- with open(scg_hmm_file, 'r') as hit_file:
183
- for line in hit_file:
184
- if line.startswith("#"):
185
- continue
186
- else:
187
- hit = line.strip().split()
188
- protein_name = hit[0]
189
- score = float(hit[8])
190
- if protein_name in hmm_hit_dict:
191
- if score > hmm_hit_dict[protein_name][0]:
192
- hmm_hit_dict[protein_name] = [score, line]
193
- elif score < hmm_hit_dict[protein_name][0]:
194
- continue
195
- else:
196
- if randint(2) > 0:
197
- hmm_hit_dict[protein_name] = [score, line]
198
- else:
199
- hmm_hit_dict[protein_name] = [score, line]
200
- with open(outfile, 'w') as output:
201
- for hits in hmm_hit_dict.values():
202
- output.write("{}".format(hits[1]))
203
- return str(outfile)
204
- # ------------------------------------------------------
205
-
206
- # --- Find Kmers from HMM results ---
207
- # ------------------------------------------------------
208
- def kmer_extract(input_files):
209
- """
210
- Extract kmers from protein files that have hits
211
- in the HMM searches.
212
-
213
- Arguments:
214
- SCG_HMM_file {file path} -- Path to filtered HMM results.
215
-
216
- Returns:
217
- [genome_kmers] -- Dictionary of kmers per gene.
218
- """
219
- final_filename = input_files[0]
220
- protein_file = input_files[1]
221
- scg_hmm_file = input_files[2]
222
- positive_matches = {}
223
- positive_proteins = []
224
- with open(scg_hmm_file, 'r') as hmm_input:
225
- for line in hmm_input:
226
- line = line.strip().split()
227
- protein_name = line[0]
228
- model_name = line[3]
229
- score = line[8]
230
- if model_name in positive_matches:
231
- if score > positive_matches[model_name][1]:
232
- positive_matches[model_name] = [protein_name, score]
233
- else:
234
- continue
235
- else:
236
- positive_matches[model_name] = [protein_name, score]
237
- for proteins in positive_matches.values():
238
- positive_proteins.append(proteins[0])
239
- scg_kmers = read_kmers_from_file(protein_file, positive_proteins, 4)
240
- for accession, protein in positive_matches.items():
241
- scg_kmers[accession] = scg_kmers.pop(protein[0])
242
- genome_kmers = {final_filename : scg_kmers}
243
- return genome_kmers
244
- # ------------------------------------------------------
245
-
246
- # --- Extract kmers from protein sequences ---
247
- # ------------------------------------------------------
248
- def read_kmers_from_file(filename, positive_hits, ksize):
249
- scg_kmers = {}
250
- store_sequence = False
251
- protein_name = ""
252
- protein_sequence = ""
253
- with open(filename) as fasta_in:
254
- for line in fasta_in:
255
- if line.startswith(">"):
256
- if store_sequence == True:
257
- kmers = build_kmers(protein_sequence, ksize)
258
- scg_kmers[protein_name] = kmers
259
- protein_sequence = ""
260
- store_sequence = False
261
- line = line.replace(">", "")
262
- protein_name = line.strip().split()[0]
263
- if protein_name in positive_hits:
264
- store_sequence = True
265
- else:
266
- if store_sequence == True:
267
- protein_sequence += line.strip()
268
- else:
269
- continue
270
- if store_sequence == True:
271
- kmers = build_kmers(protein_sequence, ksize)
272
- scg_kmers[protein_name] = kmers
273
- return scg_kmers
274
- # ------------------------------------------------------
275
-
276
- # --- Extract kmers from viral protein sequences ---
277
- # ------------------------------------------------------
278
- def read_viral_kmers_from_file(input_information):
279
- final_filename = input_information[0]
280
- protein_file = input_information[1]
281
- kmer_size = input_information[2]
282
- scg_kmers = set()
283
- protein_sequence = ""
284
- store_sequence = False
285
- with open(protein_file) as fasta_in:
286
- for line in fasta_in:
287
- if line.startswith(">"):
288
- if store_sequence == True:
289
- kmers = build_kmers(protein_sequence, kmer_size)
290
- kmers = set(kmers.split(","))
291
- scg_kmers.update(kmers)
292
- protein_sequence = ""
293
- else:
294
- protein_sequence = ""
295
- store_sequence = True
296
- else:
297
- protein_sequence += line.strip()
298
- genome_kmers = {final_filename : list(scg_kmers)}
299
- return genome_kmers
300
- # ------------------------------------------------------
301
-
302
- # --- Build Kmers ---
303
- # ------------------------------------------------------
304
- def build_kmers(sequence, ksize):
305
- kmers = []
306
- n_kmers = len(sequence) - ksize + 1
307
-
308
- for i in range(n_kmers):
309
- kmer = sequence[i:i + ksize]
310
- kmers.append(kmer)
311
- kmers_set = ','.join(set(kmers))
312
- return kmers_set
313
- # ------------------------------------------------------
314
-
315
- # --- Parse kAAI when query == reference ---
316
- #Carlos, This function is not used with the new changes
317
- # ------------------------------------------------------
318
- def single_kaai_parser(query_id):
319
- """
320
- Calculates Jaccard distances on kmers from proteins shared
321
-
322
- Arguments:
323
- query_id {str} -- Id of the query genome
324
-
325
- Returns:
326
- [Path to output] -- Path to output file
327
- """
328
- file_path = Path(query_id)
329
-
330
- #Carlos, tempdir for safety
331
- tmp_folder = tempfile.TemporaryDirectory()
332
- running_folder = tmp_folder.name
333
-
334
-
335
- temp_output = running_folder / file_path.with_suffix('.aai.temp')
336
- # Get number and list of SCG detected in query
337
- query_num_scg = len(query_kmer_dictionary[query_id])
338
- query_scg_list = query_kmer_dictionary[query_id].keys()
339
- # Start comparison with all genomes in the query dictionary
340
- with open(temp_output, 'w') as out_file:
341
- for target_genome, scg_ids in query_kmer_dictionary.items():
342
- jaccard_similarities = []
343
- # Get number and list of SCG detected in reference
344
- target_num_scg = len(scg_ids)
345
- target_scg_list = scg_ids.keys()
346
- # Choose the smallest set of proteins
347
- if query_num_scg > target_num_scg:
348
- final_scg_list = target_scg_list
349
- else:
350
- final_scg_list = query_scg_list
351
- # Compare all the proteins in the final SCG list
352
- for accession in final_scg_list:
353
- if accession in query_scg_list and accession in target_scg_list:
354
- # Get set and list for each SCG accession
355
- kmers_query = set(query_kmer_dictionary[query_id][accession].split(','))
356
- kmers_target = query_kmer_dictionary[target_genome][accession].split(',')
357
- # Calculate jaccard_similarity
358
- intersection = len(kmers_query.intersection(kmers_target))
359
- union = len(kmers_query.union(kmers_target))
360
- jaccard_similarities.append(intersection / union)
361
- else:
362
- continue
363
- try:
364
- n = len(jaccard_similarities)
365
- mean = sum(jaccard_similarities)/n
366
- var = sum([ (x - mean)**2 for x in jaccard_similarities ])/(n - 1)
367
- out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
368
- round(mean, 4), round(var**0.5, 4),
369
- len(jaccard_similarities), len(final_scg_list)))
370
- except:
371
- out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
372
- "NA", "NA", "NA", "NA"))
373
-
374
- return temp_output
375
- # ------------------------------------------------------
376
-
377
- # --- Parse viral kAAI when query == reference ---
378
- # ------------------------------------------------------
379
- def single_virus_kaai_parser(query_id):
380
- """
381
- Calculates Jaccard distances on kmers from viral proteins
382
-
383
- Arguments:
384
- query_id {str} -- Id of the query genome
385
-
386
- Returns:
387
- [Path to output] -- Path to output file
388
- """
389
- file_path = Path(query_id)
390
-
391
- #Carlos, tempdir for safety
392
- tmp_folder = tempfile.TemporaryDirectory()
393
- running_folder = tmp_folder.name
394
-
395
-
396
- temp_output = running_folder / file_path.with_suffix('.aai.temp')
397
- # Start comparison with all genomes in the query dictionary
398
- with open(temp_output, 'w') as out_file:
399
- for target_genome, kmers_target in query_kmer_dictionary.items():
400
- jaccard_index = None
401
- kmers_query = set(query_kmer_dictionary[query_id])
402
- intersection = len(kmers_query.intersection(kmers_target))
403
- union = len(kmers_query.union(kmers_target))
404
- try:
405
- jaccard_index = intersection / union
406
- out_file.write("{}\t{}\t{}\n".format(query_id, target_genome, jaccard_index))
407
- except:
408
- out_file.write("{}\t{}\tNA\n".format(query_id, target_genome))
409
- return temp_output
410
- # ------------------------------------------------------
411
-
412
- # --- Parse kAAI when query != reference ---
413
- # ------------------------------------------------------
414
- def double_kaai_parser(query_id):
415
- """
416
- Calculates Jaccard distances on kmers from proteins shared
417
-
418
- Arguments:
419
- query_id {str} -- Id of the query genome
420
-
421
- Returns:
422
- [Path to output] -- Path to output file
423
- """
424
- file_path = Path(query_id)
425
-
426
- #Carlos, tempdir for safety
427
- tmp_folder = tempfile.TemporaryDirectory()
428
- running_folder = tmp_folder.name
429
-
430
-
431
- temp_output = running_folder / file_path.with_suffix('.aai.temp')
432
- # Get number and list of SCG detected in query
433
- query_num_scg = len(query_kmer_dictionary[query_id])
434
- query_scg_list = query_kmer_dictionary[query_id].keys()
435
- # Start comparison with all genomes in the query dictionary
436
- with open(temp_output, 'w') as out_file:
437
- for target_genome, scg_ids in ref_kmer_dictionary.items():
438
- jaccard_similarities = []
439
- # Get number and list of SCG detected in reference
440
- target_num_scg = len(scg_ids)
441
- target_scg_list = scg_ids.keys()
442
- # Choose the smallest set of proteins
443
- if query_num_scg > target_num_scg:
444
- final_scg_list = target_scg_list
445
- else:
446
- final_scg_list = query_scg_list
447
- # Compare all the proteins in the final SCG list
448
- for accession in final_scg_list:
449
- if accession in query_scg_list and accession in target_scg_list:
450
- # Get set and list for each SCG accession
451
- kmers_query = set(query_kmer_dictionary[query_id][accession].split(','))
452
- kmers_target = ref_kmer_dictionary[target_genome][accession].split(',')
453
- # Calculate jaccard_similarity
454
- intersection = len(kmers_query.intersection(kmers_target))
455
- union = len(kmers_query.union(kmers_target))
456
- jaccard_similarities.append(intersection / union)
457
- else:
458
- continue
459
- try:
460
- n = len(jaccard_similarities)
461
- mean = sum(jaccard_similarities)/n
462
- var = sum([ (x - mean)**2 for x in jaccard_similarities ])/(n - 1)
463
- out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
464
- round(mean, 4), round(var**0.5, 4),
465
- len(jaccard_similarities), len(final_scg_list)))
466
- except:
467
- out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
468
- "NA", "NA", "NA", "NA"))
469
- return temp_output
470
- # ------------------------------------------------------
471
-
472
- # --- Parse viral kAAI when query != reference ---
473
- # ------------------------------------------------------
474
- def double_viral_kaai_parser(query_id):
475
- """
476
- Calculates Jaccard distances on kmers from viral proteins
477
-
478
- Arguments:
479
- query_id {str} -- Id of the query genome
480
-
481
- Returns:
482
- [Path to output] -- Path to output file
483
- """
484
- file_path = Path(query_id)
485
-
486
- #Carlos, tempdir for safety
487
- tmp_folder = tempfile.TemporaryDirectory()
488
- running_folder = tmp_folder.name
489
-
490
-
491
- temp_output = running_folder / file_path.with_suffix('.aai.temp')
492
- # Start comparison with all genomes in the query dictionary
493
- with open(temp_output, 'w') as out_file:
494
- for target_genome, kmers_target in ref_kmer_dictionary.items():
495
- jaccard_index = None
496
- kmers_query = set(query_kmer_dictionary[query_id])
497
- intersection = len(kmers_query.intersection(kmers_target))
498
- union = len(kmers_query.union(kmers_target))
499
- try:
500
- jaccard_index = intersection / union
501
- out_file.write("{}\t{}\t{}\n".format(query_id, target_genome, jaccard_index))
502
- except:
503
- out_file.write("{}\t{}\tNA\n".format(query_id, target_genome))
504
- return temp_output
505
- # ------------------------------------------------------
506
-
507
- # --- Query == Reference initializer function ---
508
- # ------------------------------------------------------
509
- def single_dictionary_initializer(_dictionary):
510
- """
511
- Make dictionary available for multiprocessing
512
- """
513
- global query_kmer_dictionary
514
- query_kmer_dictionary = _dictionary
515
- # ------------------------------------------------------
516
-
517
- # --- Query != Reference initializer function ---
518
- # ------------------------------------------------------
519
- def two_dictionary_initializer(_query_dictionary, _ref_dictionary):
520
- """
521
- Make dictionary available for multiprocessing
522
- """
523
- global query_kmer_dictionary
524
- global ref_kmer_dictionary
525
- query_kmer_dictionary = _query_dictionary
526
- ref_kmer_dictionary = _ref_dictionary
527
- # ------------------------------------------------------
528
-
529
- # --- Merge kmer dictionaries ---
530
- # ------------------------------------------------------
531
- def merge_dicts(dictionaries):
532
- """
533
- Given any number of dicts, shallow copy and merge into a new dict,
534
- precedence goes to key value pairs in latter dicts.
535
- """
536
- result = {}
537
- for kmer_dictionary in dictionaries:
538
- result.update(kmer_dictionary)
539
- return result
540
- # ------------------------------------------------------
541
-
542
-
543
- #My version 1 - numpy-ized
544
- def single_kaai_parser_all_v_all(args):
545
- """
546
- Calculates Jaccard distances on kmers from proteins shared
547
-
548
- Arguments:
549
- query_id {str} -- Id of the query genome
550
-
551
- Returns:
552
- [Path to output] -- Path to output file
553
- """
554
- #Use split as slice if true
555
-
556
- query_id = args[0]
557
- skip_first_n = args[1]
558
-
559
- file_path = Path(query_id)
560
-
561
- tmp_folder = tempfile.TemporaryDirectory()
562
- running_folder = tmp_folder.name
563
-
564
- #Just for my own testing. Temp dir is definitely the correct choice, here.
565
- #running_folder = Path("faster_kaai")
566
-
567
- temp_output = running_folder / file_path.with_suffix('.aai.temp')
568
-
569
-
570
- #The goal is to numpy-ize the following loop in all possible aspects for a (hopeful) speed increase
571
-
572
-
573
- #query_num_scg = len(query_kmer_dictionary[query_id])
574
-
575
- query_scg_list = numpy.array(list(query_kmer_dictionary[query_id].keys()))
576
-
577
- with open(temp_output, 'w') as out_file:
578
-
579
- '''
580
- Target genomes each control a set of protein family keys
581
-
582
- The goal is to get the jaccard index for the kmers in all cases
583
- of shared protein families for the two genomes in question, for
584
- each pair of genomes
585
-
586
- From above, we have the number of proteins in the query dict
587
- and a list of the IDs
588
-
589
- below we get the number of proteins in the target dict
590
- and a list of the IDs
591
-
592
- 1 choose the shorter list (each item has to be in both to be used, after all)
593
- 2 check if each family is in both lists
594
- (kind of an unnecessarily big search cost, yeah? O(n) time with very few n = 1 cases; maybe we can make a dict of dicts of IDs, and check with try: [ID] except: ?)
595
- 3 get all of the jaccard similarities for kmers in shared protein families
596
-
597
- 4 calculate the mean and variance for each similarity set
598
-
599
- 5 repeat for the remaining genomes.
600
-
601
- '''
602
-
603
- #for target_genome, scg_ids in query_kmer_dictionary.items():
604
- for target_genome in list(query_kmer_dictionary.keys())[skip_first_n:]:
605
- scg_ids = query_kmer_dictionary[target_genome]
606
-
607
- #If self, 1.0 similarity.
608
- if query_id == target_genome:
609
- out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
610
- 1.0, 0.0,
611
- len(query_scg_list), len(query_scg_list)))
612
- continue
613
-
614
- jaccard_similarities = []
615
- # Get number and list of SCG detected in reference
616
- #target_num_scg = len(scg_ids)
617
- target_scg_list = numpy.array(list(scg_ids.keys()))
618
-
619
- final_scg_list = numpy.intersect1d(query_scg_list, target_scg_list)
620
-
621
- #I would like to figure out how to vectorize this.
622
- for accession in final_scg_list:
623
- #Because of the prep work, these are already numpy arrays of numbers keying to the kmers they represent from the old kmer dict..
624
- kmers_query = query_kmer_dictionary[query_id][accession]
625
- kmers_target = query_kmer_dictionary[target_genome][accession]
626
-
627
- # Calculate jaccard_similarity - intersection is by far the slowest step, so this is by far the best place to optimize.
628
- if len(kmers_query) < len(kmers_target):
629
- intersection = len(intersect1d_searchsorted(kmers_query, kmers_target))
630
- else:
631
- intersection = len(intersect1d_searchsorted(kmers_target, kmers_query))
632
-
633
- union = len(numpy.union1d(kmers_query, kmers_target))
634
- jaccard_similarities.append(intersection / union)
635
-
636
- #Allow for numpy in-builts; they're a little faster.
637
- jaccard_similarities = numpy.array(jaccard_similarities, dtype=numpy.float_)
638
-
639
- try:
640
- #No longer needed.
641
- #n = len(jaccard_similarities)
642
- mean = numpy.mean(jaccard_similarities)
643
- var = numpy.std(jaccard_similarities)
644
- out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
645
- round(mean, 4), round(var, 4),
646
- len(jaccard_similarities), len(final_scg_list)))
647
- except:
648
- out_file.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
649
- "NA", "NA", "NA", "NA"))
650
- return temp_output
651
-
652
-
653
- def initializer_tracker(_dictionary1, _dictionary2):
654
- """
655
- Make dictionary available for multiprocessing
656
- """
657
- global kmer_dict
658
- global tracker_dict
659
- kmer_dict = _dictionary1
660
- tracker_dict = _dictionary2
661
-
662
-
663
- def unique_kmers(kmer_dict):
664
-
665
- tracker_dict = {}
666
-
667
- counter = 0
668
-
669
- for file in kmer_dict:
670
- for id in kmer_dict[file]:
671
- #These are the actual kmers
672
- for kmer in kmer_dict[file][id].split(','):
673
- #Hash might be fast?
674
- try:
675
- tracker_dict[kmer]
676
- except:
677
- tracker_dict[kmer] = counter
678
- counter += 1
679
-
680
- return tracker_dict
681
-
682
-
683
- def convert_kmers_to_indices(kmer_dict):
684
- for genome in kmer_dict:
685
- inner_count = 0
686
- cur_tup = string_to_tup(genome)
687
- for pf in kmer_dict[genome]:
688
- kmer_dict[genome][pf] = cur_tup[inner_count]
689
- inner_count += 1
690
-
691
- return kmer_dict
692
-
693
- def string_to_tup(genome):
694
- sets = []
695
- for pf in kmer_dict[genome]:
696
- curset = []
697
- for kmer in kmer_dict[genome][pf].split(","):
698
- curset.append(tracker_dict[kmer])
699
-
700
- #Do all the overhead here, ONCE.
701
- sets.append(numpy.sort(numpy.unique(numpy.array(curset, dtype=numpy.int32))))
702
-
703
- return(sets)
704
-
705
- def numpyize_kmers(kmer_dict):
706
- #make kmer global for tracker
707
- single_dictionary_initializer(kmer_dict)
708
- #get a list of kmer - index for all unique kmers
709
- print("Indexing unique kmers")
710
- tracker = unique_kmers(kmer_dict)
711
- #Make these global for other functions
712
- initializer_tracker(kmer_dict, tracker)
713
- #convert comma sep. strings of kmers to ascending sorted lists of unique integers corresponding to the kmers in each protein, for each genome
714
- print("Keying kmers")
715
- kmer_dict = convert_kmers_to_indices(kmer_dict)
716
-
717
- #Get skip indices
718
- smartargs = []
719
- genome_ids = list(kmer_dict.keys())
720
- for i in range(0, len(genome_ids)):
721
- smartargs.append([genome_ids[i], i])
722
-
723
- print("Beginning AAI calculations now.")
724
-
725
- return kmer_dict, smartargs
726
-
727
- #relies on assuming that the values in both of these arrays are unique and sorted, which I do in str_to_tup
728
- def intersect1d_searchsorted(A,B):
729
- idx = numpy.searchsorted(B,A)
730
- idx[idx==len(B)] = 0
731
- return A[B[idx] == A]
732
-
733
-
734
- ################################################################################
735
- """---2.0 Main Function---"""
736
-
737
- def main():
738
- # Setup parser for arguments.
739
- parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
740
- description='''This script calculates the average amino acid identity using k-mers\n'''
741
- '''from single copy genes. It is a faster version of the regular AAI '''
742
- '''(Blast or Diamond) and the hAAI implemented in MiGA.'''
743
- '''Usage: ''' + argv[0] + ''' -p [Protein Files] -t [Threads] -o [Output]\n'''
744
- '''Global mandatory parameters: -g [Genome Files] OR -p [Protein Files] OR -s [SCG HMM Results] -o [AAI Table Output]\n'''
745
- '''Optional Database Parameters: See ''' + argv[0] + ' -h')
746
- mandatory_options = parser.add_argument_group('Mandatory i/o options. You must select an option for the queries and one for the references.')
747
- mandatory_options.add_argument('--qg', dest='query_genomes', action='store', required=False,
748
- help='File with list of query genomes.')
749
- mandatory_options.add_argument('--qp', dest='query_proteins', action='store', required=False,
750
- help='File with list of query proteins.')
751
- mandatory_options.add_argument('--qh', dest='query_hmms', action='store', required=False,
752
- help=textwrap.dedent('''
753
- File with list of pre-computed query hmmsearch results.
754
- If you select this option you must also provide a file with
755
- a list of protein files for the queries (with --qp).
756
- '''))
757
- mandatory_options.add_argument('--qd', dest='query_database', action='store', required=False,
758
- help='File with list of pre-indexed query databases.')
759
- mandatory_options.add_argument('--rg', dest='reference_genomes', action='store', required=False,
760
- help='File with list of reference genomes.')
761
- mandatory_options.add_argument('--rp', dest='reference_proteins', action='store', required=False,
762
- help='File with list of reference proteins.')
763
- mandatory_options.add_argument('--rh', dest='reference_hmms', action='store', required=False,
764
- help=textwrap.dedent('''
765
- File with list of pre-computed reference hmmsearch results.
766
- If you select this option you must also provide a file with
767
- a list of protein files for the references (with --qp).
768
- '''))
769
- mandatory_options.add_argument('--rd', dest='reference_database', action='store', required=False,
770
- help='File with list of pre-indexed reference databases.')
771
- mandatory_options.add_argument('-o', '--output', dest='output', action='store', required=False, help='Output file. By default kaai_comparisons.txt')
772
- additional_input_options = parser.add_argument_group('Behavior modification options.')
773
- additional_input_options.add_argument('-e', '--ext', dest='extension', action='store', required=False,
774
- help='Extension to remove from original filename, e.g. ".fasta"')
775
- additional_input_options.add_argument('-i', '--index', dest='index_db', action='store_true', required=False,
776
- help='Only index and store databases, i.e., do not perform comparisons.')
777
- misc_options = parser.add_argument_group('Miscellaneous options')
778
- misc_options.add_argument('--virus', dest='virus', action='store_true', required=False,
779
- help='Toggle virus-virus comparisons. Use only with viral genomes or proteins.')
780
- misc_options.add_argument('-t', '--threads', dest='threads', action='store', default=1, type=int, required=False,
781
- help='Number of threads to use, by default 1')
782
- misc_options.add_argument('-k', '--keep', dest='keep', action='store_false', required=False,
783
- help='Keep intermediate files, by default true')
784
-
785
- args = parser.parse_args()
786
-
787
- query_genomes = args.query_genomes
788
- reference_genomes = args.reference_genomes
789
- query_proteins = args.query_proteins
790
- reference_proteins = args.reference_proteins
791
- query_hmms = args.query_hmms
792
- reference_hmms = args.reference_hmms
793
- query_database = args.query_database
794
- reference_database = args.reference_database
795
- output = args.output
796
- if output == None:
797
- output == "kaai_comparisons.txt"
798
- extension = args.extension
799
- index_db = args.index_db
800
- threads = args.threads
801
- keep = args.keep
802
- virus = args.virus
803
-
804
- print("kAAI started on {}".format(datetime.datetime.now()))
805
- # Check user input
806
- # ------------------------------------------------------
807
- # Check if no query was provided
808
- if query_genomes == None and query_proteins == None and query_hmms == None and query_database == None:
809
- exit('Please prove a file with a list of queries, e.g., --qg, --qp, --qh, or --qd)')
810
- # Check query inputs
811
- query_input = None
812
- if query_hmms != None:
813
- if virus == True:
814
- exit("If you are comparing viruses, please start from the genome or protein files.")
815
- query_input = query_hmms
816
- if query_proteins != None:
817
- print("Starting from query hmmsearch results.")
818
- print("You also provided the list of protein files used for hmmsearch.")
819
- elif query_proteins == None:
820
- print("You chose to start from pre-computed hmmsearch results for your queries (--qh).")
821
- print("However, I also need the location of the query proteins used for hmmsearch.")
822
- exit("Please provide them with --qp.")
823
- elif query_proteins != None:
824
- query_input = query_proteins
825
- print("Starting from query proteins.")
826
- elif query_genomes != None:
827
- query_input = query_genomes
828
- print("Starting from query genomes.")
829
- elif query_database != None:
830
- query_input = query_database
831
- print("Starting from the pre-indexed query database.")
832
- # Check if no reference was provided
833
- if reference_genomes == None and reference_proteins == None and reference_hmms == None and reference_database == None:
834
- exit('Please prove a file with a list of references, e.g., --rg, --rp, --rh, or --rd)')
835
- # Check reference inputs
836
- reference_input = None
837
- if reference_hmms != None:
838
- if virus == True:
839
- exit("If you are comparing viruses, please start from the genome or protein files.")
840
- reference_input = reference_hmms
841
- if reference_proteins != None:
842
- print("Starting from reference hmmsearch results.")
843
- print("You also provided the list of protein files used for hmmsearch.")
844
- elif reference_proteins == None:
845
- print("You chose to start from pre-computed hmmsearch results for your references (--rh).")
846
- print("However, I also need the location of the query proteins used for hmmsearch.")
847
- exit("Please provide them with --rp.")
848
- elif reference_proteins != None:
849
- reference_input = reference_proteins
850
- print("Starting from reference proteins.")
851
- elif reference_genomes != None:
852
- reference_input = reference_genomes
853
- print("Starting from reference genomes.")
854
- elif reference_database != None:
855
- reference_input = reference_database
856
- print("Starting from the pre-indexed reference database.")
857
- # ------------------------------------------------------
858
-
859
- # Check if queries are the same as references (an all-vs-all comparison)
860
- # ------------------------------------------------------
861
- same_inputs = False
862
- if query_input == reference_input:
863
- same_inputs = True
864
- if same_inputs == True:
865
- print('You specified the same query and reference files.')
866
- print('I will perform an all vs all comparison :)')
867
- # ------------------------------------------------------
868
-
869
- #* Database Parsing is the same regardless of bacterial or viral genomes
870
- # If using pre-indexed databases, check if they are valid files.
871
- # ------------------------------------------------------
872
- # If any of the starting points is from database, then store the
873
- # kmer structures in the corresponding dictionaries.
874
- # Otherwise read the file list and get the filenames
875
- query_kmer_dict = None
876
- query_kmer_dict_list = []
877
- reference_kmer_dict = None
878
- reference_kmer_dict_list = []
879
- # If starting from database and query == reference
880
- if same_inputs == True:
881
- if query_database != None:
882
- with open(query_database) as query_database_files:
883
- for db_location in query_database_files:
884
- if Path(db_location.strip()).is_file():
885
- with gzip.open(db_location.strip(), 'rb') as database_handle:
886
- temp_dict = pickle.load(database_handle)
887
- if isinstance(temp_dict,dict):
888
- query_kmer_dict_list.append(temp_dict)
889
- #Carlos, this line serves no purpose but does take a bunch of time and mem.
890
- #print(query_kmer_dict_list)
891
- else:
892
- exit("One of the database files appear to have the wrong format. Please provide a correctly formated databases.")
893
- query_kmer_dict = merge_dicts(query_kmer_dict_list)
894
- else:
895
- # If the inputs are not the same:
896
- # If query and ref are provided
897
- if query_database != None and reference_database != None:
898
- with open(query_database, 'r') as query_database_files:
899
- for db_location in query_database_files:
900
- if Path(db_location.strip()).is_file():
901
- with gzip.open(db_location.strip(), 'rb') as database_handle:
902
- temp_dict = pickle.load(database_handle)
903
- if isinstance(temp_dict,dict):
904
- query_kmer_dict_list.append(temp_dict)
905
- else:
906
- exit("One of the query database files appear to have the wrong format. Please provide a correctly formated databases.")
907
- query_kmer_dict = merge_dicts(query_kmer_dict_list)
908
- with open(reference_database) as reference_database_files:
909
- for db_location in reference_database_files:
910
- if Path(db_location.strip()).is_file():
911
- with gzip.open(db_location.strip(), 'rb') as database_handle:
912
- temp_dict = pickle.load(database_handle)
913
- if isinstance(temp_dict,dict):
914
- reference_kmer_dict_list.append(temp_dict)
915
- else:
916
- exit("One of the reference database files appear to have the wrong format. Please provide a correctly formated databases.")
917
- reference_kmer_dict = merge_dicts(reference_kmer_dict_list)
918
- # If only the query has a db
919
- elif query_database != None and reference_database == None:
920
- with open(query_database) as query_database_files:
921
- for db_location in query_database_files:
922
- if Path(db_location.strip()).is_file():
923
- with gzip.open(db_location.strip(), 'rb') as database_handle:
924
- temp_dict = pickle.load(database_handle)
925
- if isinstance(temp_dict,dict):
926
- query_kmer_dict_list.append(temp_dict)
927
- else:
928
- exit("One of the query database files appear to have the wrong format. Please provide a correctly formated databases.")
929
- query_kmer_dict = merge_dicts(query_kmer_dict_list)
930
- # If only the reference has a db
931
- elif query_database == None and reference_database != None:
932
- with open(reference_database) as reference_database_files:
933
- for db_location in reference_database_files:
934
- if Path(db_location.strip()).is_file():
935
- with gzip.open(db_location.strip(), 'rb') as database_handle:
936
- temp_dict = pickle.load(database_handle)
937
- if isinstance(temp_dict,dict):
938
- reference_kmer_dict_list.append(temp_dict)
939
- else:
940
- exit("One of the reference database files appear to have the wrong format. Please provide a correctly formated databases.")
941
- reference_kmer_dict = merge_dicts(reference_kmer_dict_list)
942
- # ------------------------------------------------------
943
-
944
- # Get files from the query and reference lists and then
945
- # create a dictionary with resulting filenames and a list with dictionary keys
946
- # The structure of the dictionary is:
947
- # original_query, proteins, hmms, filtered_hmms
948
- # ------------------------------------------------------
949
- # First parse the query:
950
- query_list = []
951
- query_file_names = {}
952
- # For bacterial genomes
953
- if virus == False:
954
- if query_database != None:
955
- pass
956
- else:
957
- with open(query_input, 'r') as query_input_fh:
958
- for line in query_input_fh:
959
- query_list.append(line.strip())
960
- for index, query in enumerate(query_list):
961
- query_name = str(Path(query).name)
962
- if extension != None:
963
- query_name = query_name.replace(extension, "")
964
- if query_hmms != None:
965
- query_protein_list = []
966
- with open(query_proteins, 'r') as query_protein_fh:
967
- for line in query_protein_fh:
968
- query_protein_list.append(line.strip())
969
- query_file_names[query_name] = [None, query_protein_list[index], query, query + '.filt']
970
- elif query_proteins != None:
971
- query_file_names[query_name] = [None, query, query + '.hmm', query + '.hmm.filt']
972
- elif query_genomes != None:
973
- query_file_names[query_name] = [query, query + '.faa', query + '.faa.hmm', query + '.faa.hmm.filt']
974
- # For viral genomes
975
- else:
976
- if query_database != None:
977
- pass
978
- else:
979
- with open(query_input, 'r') as query_input_fh:
980
- for line in query_input_fh:
981
- query_list.append(line.strip())
982
- for index, query in enumerate(query_list):
983
- query_name = str(Path(query).name)
984
- if extension != None:
985
- query_name = query_name.replace(extension, "")
986
- if query_proteins != None:
987
- query_file_names[query_name] = [None, query]
988
- elif query_genomes != None:
989
- query_file_names[query_name] = [query, query + '.faa']
990
-
991
- # Then parse the references:
992
- reference_list = []
993
- reference_file_names = {}
994
- if same_inputs == True:
995
- pass
996
- else:
997
- # For bacterial genomes
998
- if virus == False:
999
- if reference_database != None:
1000
- pass
1001
- else:
1002
- with open(reference_input, 'r') as reference_input_fh:
1003
- for line in reference_input_fh:
1004
- reference_list.append(line.strip())
1005
- for index, reference in enumerate(reference_list):
1006
- reference_name = str(Path(reference).name)
1007
- if extension != None:
1008
- reference_name = reference_name.replace(extension, "")
1009
- if reference_hmms != None:
1010
- reference_protein_list = []
1011
- with open(reference_proteins, 'r') as reference_protein_fh:
1012
- for line in reference_protein_fh:
1013
- reference_protein_list.append(line.strip())
1014
- reference_file_names[reference_name] = [None, reference_protein_list[index], reference, reference + '.filt']
1015
- elif reference_proteins != None:
1016
- reference_file_names[reference_name] = [None, reference, reference + '.hmm', reference + '.hmm.filt']
1017
- elif query_genomes != None:
1018
- reference_file_names[reference_name] = [reference, reference + '.faa', reference + '.faa.hmm', reference + '.faa.hmm.filt']
1019
- # For viral genomes
1020
- else:
1021
- if reference_database != None:
1022
- pass
1023
- else:
1024
- with open(reference_input, 'r') as reference_input_fh:
1025
- for line in reference_input_fh:
1026
- reference_list.append(line.strip())
1027
- for index, reference in enumerate(reference_list):
1028
- reference_name = str(Path(reference).name)
1029
- if extension != None:
1030
- reference_name = reference_name.replace(extension, "")
1031
- if reference_proteins != None:
1032
- reference_file_names[reference_name] = [None, reference]
1033
- elif query_genomes != None:
1034
- reference_file_names[reference_name] = [reference, reference + '.faa']
1035
- # ------------------------------------------------------
1036
-
1037
- # Pre-index and store databases
1038
- # ------------------------------------------------------
1039
- # Pre-index queries
1040
- if query_kmer_dict == None:
1041
- print("Processing queries...")
1042
- # If using bacterial genomes
1043
- if virus == False:
1044
- if query_hmms != None:
1045
- query_hmm_results = query_list
1046
- elif query_proteins != None:
1047
- query_protein_files = query_list
1048
- print("Searching against HMM models...")
1049
- try:
1050
- pool = multiprocessing.Pool(threads)
1051
- query_hmm_results = pool.map(run_hmmsearch, query_protein_files)
1052
- finally:
1053
- pool.close()
1054
- pool.join()
1055
- elif query_genomes != None:
1056
- print("Predicting proteins...")
1057
- # Predict query proteins
1058
- try:
1059
- pool = multiprocessing.Pool(threads)
1060
- query_protein_files = pool.map(run_prodigal, query_list)
1061
- finally:
1062
- pool.close()
1063
- pool.join()
1064
- print("Done!")
1065
- print("Searching against HMM models...")
1066
- # Run hmmsearch against proteins predicted
1067
- try:
1068
- pool = multiprocessing.Pool(threads)
1069
- query_hmm_results = pool.map(run_hmmsearch, query_protein_files)
1070
- finally:
1071
- pool.close()
1072
- pool.join()
1073
- print("Done!")
1074
- print("Filtering query hmmsearch results...")
1075
- # Filter query HMM search results
1076
- try:
1077
- pool = multiprocessing.Pool(threads)
1078
- pool.map(partial(hmm_filter, keep=keep), query_hmm_results)
1079
- finally:
1080
- pool.close()
1081
- pool.join()
1082
- print("Extracting kmers from query proteins...")
1083
- # Finding kmers for all queries
1084
- query_information = []
1085
- for name, values in query_file_names.items():
1086
- query_information.append((name, values[1], values[3]))
1087
- try:
1088
- pool = multiprocessing.Pool(threads)
1089
- kmer_results = pool.map(kmer_extract, query_information)
1090
- finally:
1091
- pool.close()
1092
- pool.join()
1093
- query_kmer_dict = merge_dicts(kmer_results)
1094
- del kmer_results
1095
- # If using viral genomes
1096
- else:
1097
- if query_genomes != None:
1098
- print("Predicting proteins...")
1099
- # Predict query proteins
1100
- try:
1101
- pool = multiprocessing.Pool(threads)
1102
- query_protein_files = pool.map(run_prodigal_virus, query_list)
1103
- finally:
1104
- pool.close()
1105
- pool.join()
1106
- print("Done!")
1107
- elif query_proteins != None:
1108
- query_protein_files = query_list
1109
- print("Extracting kmers from query proteins...")
1110
- query_information = []
1111
- for name, values in query_file_names.items():
1112
- query_information.append((name, values[1], 4))
1113
- try:
1114
- pool = multiprocessing.Pool(threads)
1115
- kmer_results = pool.map(read_viral_kmers_from_file, query_information)
1116
- finally:
1117
- pool.close()
1118
- pool.join()
1119
- query_kmer_dict = merge_dicts(kmer_results)
1120
- del kmer_results
1121
-
1122
- # Pre-index references (if different from queries)
1123
- if same_inputs == False and reference_kmer_dict == None:
1124
- print("Processing references...")
1125
- # If using bacterial genomes
1126
- if virus == False:
1127
- if reference_hmms != None:
1128
- reference_hmm_results = reference_list
1129
- elif reference_proteins != None:
1130
- reference_protein_files = reference_list
1131
- print("Searching against HMM models... ")
1132
- try:
1133
- pool = multiprocessing.Pool(threads)
1134
- reference_hmm_results = pool.map(run_hmmsearch, reference_protein_files)
1135
- finally:
1136
- pool.close()
1137
- pool.join()
1138
- if reference_genomes != None:
1139
- print("Predicting proteins...")
1140
- # Predict reference proteins
1141
- try:
1142
- pool = multiprocessing.Pool(threads)
1143
- reference_protein_files = pool.map(run_prodigal, reference_list)
1144
- finally:
1145
- pool.close()
1146
- pool.join()
1147
- print("Done!")
1148
- print("Searching against HMM models...")
1149
- # Run hmmsearch against proteins predicted
1150
- try:
1151
- pool = multiprocessing.Pool(threads)
1152
- reference_hmm_results = pool.map(run_hmmsearch, reference_protein_files)
1153
- finally:
1154
- pool.close()
1155
- pool.join()
1156
- print("Done!")
1157
- print("Filtering reference hmmsearch results...")
1158
- # Filter reference HMM search results
1159
- try:
1160
- pool = multiprocessing.Pool(threads)
1161
- pool.map(partial(hmm_filter, keep=keep), reference_hmm_results)
1162
- finally:
1163
- pool.close()
1164
- pool.join()
1165
- print("Extracting kmers from reference proteins...")
1166
- # Finding kmers for all queries
1167
- reference_information = []
1168
- for name, values in reference_file_names.items():
1169
- reference_information.append((name, values[1], values[3]))
1170
- try:
1171
- pool = multiprocessing.Pool(threads)
1172
- kmer_results = pool.map(kmer_extract, reference_information)
1173
- finally:
1174
- pool.close()
1175
- pool.join()
1176
- reference_kmer_dict = merge_dicts(kmer_results)
1177
- del kmer_results
1178
- # If using viral genomes
1179
- else:
1180
- if query_genomes != None:
1181
- print("Predicting proteins...")
1182
- # Predict query proteins
1183
- try:
1184
- pool = multiprocessing.Pool(threads)
1185
- query_protein_files = pool.map(run_prodigal, query_list)
1186
- finally:
1187
- pool.close()
1188
- pool.join()
1189
- print("Done!")
1190
- elif query_proteins != None:
1191
- query_protein_files = query_list
1192
- print("Extracting kmers from query proteins...")
1193
- reference_information = []
1194
- for name, values in reference_file_names.items():
1195
- reference_information.append((name, values[1], 4))
1196
- try:
1197
- pool = multiprocessing.Pool(threads)
1198
- kmer_results = pool.map(read_viral_kmers_from_file, reference_information)
1199
- finally:
1200
- pool.close()
1201
- pool.join()
1202
- query_kmer_dict = merge_dicts(kmer_results)
1203
- del kmer_results
1204
- # ------------------------------------------------------
1205
-
1206
- # Create or database(s) and compress it(them)
1207
- # ------------------------------------------------------
1208
- if same_inputs == True and query_database == None:
1209
- print("Saving pre-indexed database...")
1210
- query_database_name = query_input + '.db.gz'
1211
- with gzip.open(query_database_name, 'wb') as database_handle:
1212
- pickle.dump(query_kmer_dict, database_handle, protocol=4)
1213
- if same_inputs == False and query_database == None and reference_database == None:
1214
- print("Saving pre-indexed databases...")
1215
- query_database_name = query_input + '.db.gz'
1216
- reference_database_name = reference_input + '.db.gz'
1217
- with gzip.open(query_database_name, 'wb') as database_handle:
1218
- pickle.dump(query_kmer_dict, database_handle, protocol=4)
1219
- with gzip.open(reference_database_name, 'wb') as database_handle:
1220
- pickle.dump(reference_kmer_dict, database_handle, protocol=4)
1221
- elif same_inputs == False and query_database == None:
1222
- print("Saving pre-indexed query database...")
1223
- query_database_name = query_input + '.db.gz'
1224
- with gzip.open(query_database_name, 'wb') as database_handle:
1225
- pickle.dump(query_kmer_dict, database_handle, protocol=4)
1226
- elif same_inputs == False and reference_database == None:
1227
- print("Saving pre-indexed reference database...")
1228
- reference_database_name = reference_input + '.db.gz'
1229
- with gzip.open(reference_database_name, 'wb') as database_handle:
1230
- pickle.dump(reference_kmer_dict, database_handle, protocol=4)
1231
- # ------------------------------------------------------
1232
- # Calculate Jaccard distances
1233
- # ------------------------------------------------------
1234
- if index_db == True:
1235
- print("Finished pre-indexing databases.")
1236
- print("Next time you can run the program using only these files with --qd and(or) --rd.")
1237
- else:
1238
- print("Calculating shared Kmer fraction...")
1239
- if virus == False:
1240
- if same_inputs == True:
1241
- query_id_list = query_kmer_dict.keys()
1242
- try:
1243
-
1244
- fixed_dict, smart_args = numpyize_kmers(query_kmer_dict)
1245
- #single_dictionary_initializer(fixed_dict)
1246
-
1247
- pool = multiprocessing.Pool(threads, initializer = single_dictionary_initializer, initargs = (fixed_dict,))
1248
- Fraction_Results = pool.map(single_kaai_parser_all_v_all, smart_args)
1249
- finally:
1250
- pool.close()
1251
- pool.join()
1252
- else:
1253
- query_id_list = query_kmer_dict.keys()
1254
- try:
1255
- pool = multiprocessing.Pool(threads, initializer = two_dictionary_initializer, initargs = (query_kmer_dict, reference_kmer_dict))
1256
- Fraction_Results = pool.map(double_kaai_parser, query_id_list)
1257
- finally:
1258
- pool.close()
1259
- pool.join()
1260
- else:
1261
- if same_inputs == True:
1262
- query_id_list = query_kmer_dict.keys()
1263
- try:
1264
- pool = multiprocessing.Pool(threads, initializer = single_dictionary_initializer, initargs = (query_kmer_dict,))
1265
- Fraction_Results = pool.map(single_virus_kaai_parser, query_id_list)
1266
- finally:
1267
- pool.close()
1268
- pool.join()
1269
- else:
1270
- query_id_list = query_kmer_dict.keys()
1271
- try:
1272
- pool = multiprocessing.Pool(threads, initializer = two_dictionary_initializer, initargs = (query_kmer_dict, reference_kmer_dict))
1273
- Fraction_Results = pool.map(double_viral_kaai_parser, query_id_list)
1274
- finally:
1275
- pool.close()
1276
- pool.join()
1277
- # ------------------------------------------------------
1278
-
1279
- # Merge results into a single output
1280
- # ------------------------------------------------------
1281
- print("Merging results...")
1282
- with open(output, 'w') as outfile:
1283
- for file in Fraction_Results:
1284
- with open(file) as Temp:
1285
- shutil.copyfileobj(Temp, outfile)
1286
- file.unlink()
1287
- print("kAAI finishied correctly on {}".format(datetime.datetime.now()))
1288
- # ------------------------------------------------------
1289
- # If comparing viral genomes
1290
-
1291
-
1292
-
1293
-
1294
-
1295
- if __name__ == "__main__":
1296
- main()