miga-base 1.2.15.1 → 1.2.15.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/miga/cli/action/download/gtdb.rb +4 -1
- data/lib/miga/cli/action/gtdb_get.rb +4 -0
- data/lib/miga/remote_dataset/download.rb +3 -2
- data/lib/miga/remote_dataset.rb +44 -8
- data/lib/miga/taxonomy.rb +6 -0
- data/lib/miga/version.rb +2 -2
- data/test/remote_dataset_test.rb +3 -1
- metadata +6 -302
- data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Archaea_SCG.hmm +0 -41964
- data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Bacteria_SCG.hmm +0 -32439
- data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm +0 -62056
- data/utils/FastAAI/FastAAI +0 -3659
- data/utils/FastAAI/FastAAI-legacy/FastAAI +0 -1336
- data/utils/FastAAI/FastAAI-legacy/kAAI_v1.0_virus.py +0 -1296
- data/utils/FastAAI/README.md +0 -84
- data/utils/enveomics/Docs/recplot2.md +0 -244
- data/utils/enveomics/Examples/aai-matrix.bash +0 -66
- data/utils/enveomics/Examples/ani-matrix.bash +0 -66
- data/utils/enveomics/Examples/essential-phylogeny.bash +0 -105
- data/utils/enveomics/Examples/unus-genome-phylogeny.bash +0 -100
- data/utils/enveomics/LICENSE.txt +0 -73
- data/utils/enveomics/Makefile +0 -52
- data/utils/enveomics/Manifest/Tasks/aasubs.json +0 -103
- data/utils/enveomics/Manifest/Tasks/blasttab.json +0 -790
- data/utils/enveomics/Manifest/Tasks/distances.json +0 -161
- data/utils/enveomics/Manifest/Tasks/fasta.json +0 -802
- data/utils/enveomics/Manifest/Tasks/fastq.json +0 -291
- data/utils/enveomics/Manifest/Tasks/graphics.json +0 -126
- data/utils/enveomics/Manifest/Tasks/mapping.json +0 -137
- data/utils/enveomics/Manifest/Tasks/ogs.json +0 -382
- data/utils/enveomics/Manifest/Tasks/other.json +0 -906
- data/utils/enveomics/Manifest/Tasks/remote.json +0 -355
- data/utils/enveomics/Manifest/Tasks/sequence-identity.json +0 -650
- data/utils/enveomics/Manifest/Tasks/tables.json +0 -308
- data/utils/enveomics/Manifest/Tasks/trees.json +0 -68
- data/utils/enveomics/Manifest/Tasks/variants.json +0 -111
- data/utils/enveomics/Manifest/categories.json +0 -165
- data/utils/enveomics/Manifest/examples.json +0 -162
- data/utils/enveomics/Manifest/tasks.json +0 -4
- data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +0 -69
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/README.md +0 -189
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +0 -112
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +0 -23
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +0 -44
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +0 -50
- data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +0 -37
- data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +0 -68
- data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +0 -49
- data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +0 -80
- data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +0 -57
- data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +0 -63
- data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +0 -38
- data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +0 -73
- data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +0 -21
- data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +0 -72
- data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +0 -98
- data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +0 -1
- data/utils/enveomics/Pipelines/blast.pbs/README.md +0 -127
- data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +0 -109
- data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +0 -128
- data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +0 -16
- data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +0 -22
- data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +0 -26
- data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +0 -89
- data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +0 -29
- data/utils/enveomics/Pipelines/idba.pbs/README.md +0 -49
- data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +0 -95
- data/utils/enveomics/Pipelines/idba.pbs/run.pbs +0 -56
- data/utils/enveomics/Pipelines/trim.pbs/README.md +0 -54
- data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +0 -70
- data/utils/enveomics/Pipelines/trim.pbs/run.pbs +0 -130
- data/utils/enveomics/README.md +0 -42
- data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +0 -171
- data/utils/enveomics/Scripts/Aln.cat.rb +0 -221
- data/utils/enveomics/Scripts/Aln.convert.pl +0 -35
- data/utils/enveomics/Scripts/AlphaDiversity.pl +0 -152
- data/utils/enveomics/Scripts/BedGraph.tad.rb +0 -93
- data/utils/enveomics/Scripts/BedGraph.window.rb +0 -71
- data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +0 -102
- data/utils/enveomics/Scripts/BlastTab.addlen.rb +0 -63
- data/utils/enveomics/Scripts/BlastTab.advance.bash +0 -48
- data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +0 -55
- data/utils/enveomics/Scripts/BlastTab.catsbj.pl +0 -104
- data/utils/enveomics/Scripts/BlastTab.cogCat.rb +0 -76
- data/utils/enveomics/Scripts/BlastTab.filter.pl +0 -47
- data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +0 -194
- data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +0 -104
- data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +0 -157
- data/utils/enveomics/Scripts/BlastTab.recplot2.R +0 -48
- data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +0 -86
- data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +0 -119
- data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +0 -86
- data/utils/enveomics/Scripts/BlastTab.subsample.pl +0 -47
- data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +0 -114
- data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +0 -90
- data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +0 -123
- data/utils/enveomics/Scripts/Chao1.pl +0 -97
- data/utils/enveomics/Scripts/CharTable.classify.rb +0 -234
- data/utils/enveomics/Scripts/EBIseq2tax.rb +0 -83
- data/utils/enveomics/Scripts/FastA.N50.pl +0 -60
- data/utils/enveomics/Scripts/FastA.extract.rb +0 -152
- data/utils/enveomics/Scripts/FastA.filter.pl +0 -52
- data/utils/enveomics/Scripts/FastA.filterLen.pl +0 -28
- data/utils/enveomics/Scripts/FastA.filterN.pl +0 -60
- data/utils/enveomics/Scripts/FastA.fragment.rb +0 -100
- data/utils/enveomics/Scripts/FastA.gc.pl +0 -42
- data/utils/enveomics/Scripts/FastA.interpose.pl +0 -93
- data/utils/enveomics/Scripts/FastA.length.pl +0 -38
- data/utils/enveomics/Scripts/FastA.mask.rb +0 -89
- data/utils/enveomics/Scripts/FastA.per_file.pl +0 -36
- data/utils/enveomics/Scripts/FastA.qlen.pl +0 -57
- data/utils/enveomics/Scripts/FastA.rename.pl +0 -65
- data/utils/enveomics/Scripts/FastA.revcom.pl +0 -23
- data/utils/enveomics/Scripts/FastA.sample.rb +0 -98
- data/utils/enveomics/Scripts/FastA.slider.pl +0 -85
- data/utils/enveomics/Scripts/FastA.split.pl +0 -55
- data/utils/enveomics/Scripts/FastA.split.rb +0 -79
- data/utils/enveomics/Scripts/FastA.subsample.pl +0 -131
- data/utils/enveomics/Scripts/FastA.tag.rb +0 -65
- data/utils/enveomics/Scripts/FastA.toFastQ.rb +0 -69
- data/utils/enveomics/Scripts/FastA.wrap.rb +0 -48
- data/utils/enveomics/Scripts/FastQ.filter.pl +0 -54
- data/utils/enveomics/Scripts/FastQ.interpose.pl +0 -90
- data/utils/enveomics/Scripts/FastQ.maskQual.rb +0 -89
- data/utils/enveomics/Scripts/FastQ.offset.pl +0 -90
- data/utils/enveomics/Scripts/FastQ.split.pl +0 -53
- data/utils/enveomics/Scripts/FastQ.tag.rb +0 -70
- data/utils/enveomics/Scripts/FastQ.test-error.rb +0 -81
- data/utils/enveomics/Scripts/FastQ.toFastA.awk +0 -24
- data/utils/enveomics/Scripts/GFF.catsbj.pl +0 -127
- data/utils/enveomics/Scripts/GenBank.add_fields.rb +0 -84
- data/utils/enveomics/Scripts/HMM.essential.rb +0 -351
- data/utils/enveomics/Scripts/HMM.haai.rb +0 -168
- data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +0 -83
- data/utils/enveomics/Scripts/JPlace.distances.rb +0 -88
- data/utils/enveomics/Scripts/JPlace.to_iToL.rb +0 -320
- data/utils/enveomics/Scripts/M5nr.getSequences.rb +0 -81
- data/utils/enveomics/Scripts/MeTaxa.distribution.pl +0 -198
- data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +0 -35
- data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +0 -49
- data/utils/enveomics/Scripts/NCBIacc2tax.rb +0 -92
- data/utils/enveomics/Scripts/Newick.autoprune.R +0 -27
- data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +0 -228
- data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +0 -32
- data/utils/enveomics/Scripts/RefSeq.download.bash +0 -48
- data/utils/enveomics/Scripts/SRA.download.bash +0 -55
- data/utils/enveomics/Scripts/TRIBS.plot-test.R +0 -36
- data/utils/enveomics/Scripts/TRIBS.test.R +0 -39
- data/utils/enveomics/Scripts/Table.barplot.R +0 -31
- data/utils/enveomics/Scripts/Table.df2dist.R +0 -30
- data/utils/enveomics/Scripts/Table.filter.pl +0 -61
- data/utils/enveomics/Scripts/Table.merge.pl +0 -77
- data/utils/enveomics/Scripts/Table.prefScore.R +0 -60
- data/utils/enveomics/Scripts/Table.replace.rb +0 -69
- data/utils/enveomics/Scripts/Table.round.rb +0 -63
- data/utils/enveomics/Scripts/Table.split.pl +0 -57
- data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +0 -227
- data/utils/enveomics/Scripts/VCF.KaKs.rb +0 -147
- data/utils/enveomics/Scripts/VCF.SNPs.rb +0 -88
- data/utils/enveomics/Scripts/aai.rb +0 -421
- data/utils/enveomics/Scripts/ani.rb +0 -362
- data/utils/enveomics/Scripts/anir.rb +0 -137
- data/utils/enveomics/Scripts/clust.rand.rb +0 -102
- data/utils/enveomics/Scripts/gi2tax.rb +0 -103
- data/utils/enveomics/Scripts/in_silico_GA_GI.pl +0 -96
- data/utils/enveomics/Scripts/lib/data/dupont_2012_essential.hmm.gz +0 -0
- data/utils/enveomics/Scripts/lib/data/lee_2019_essential.hmm.gz +0 -0
- data/utils/enveomics/Scripts/lib/enveomics.R +0 -1
- data/utils/enveomics/Scripts/lib/enveomics_rb/anir.rb +0 -293
- data/utils/enveomics/Scripts/lib/enveomics_rb/bm_set.rb +0 -175
- data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +0 -24
- data/utils/enveomics/Scripts/lib/enveomics_rb/errors.rb +0 -17
- data/utils/enveomics/Scripts/lib/enveomics_rb/gmm_em.rb +0 -30
- data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +0 -253
- data/utils/enveomics/Scripts/lib/enveomics_rb/match.rb +0 -88
- data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +0 -182
- data/utils/enveomics/Scripts/lib/enveomics_rb/rbm.rb +0 -49
- data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +0 -74
- data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +0 -237
- data/utils/enveomics/Scripts/lib/enveomics_rb/stats/rand.rb +0 -31
- data/utils/enveomics/Scripts/lib/enveomics_rb/stats/sample.rb +0 -152
- data/utils/enveomics/Scripts/lib/enveomics_rb/stats.rb +0 -3
- data/utils/enveomics/Scripts/lib/enveomics_rb/utils.rb +0 -74
- data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +0 -135
- data/utils/enveomics/Scripts/ogs.annotate.rb +0 -88
- data/utils/enveomics/Scripts/ogs.core-pan.rb +0 -160
- data/utils/enveomics/Scripts/ogs.extract.rb +0 -125
- data/utils/enveomics/Scripts/ogs.mcl.rb +0 -186
- data/utils/enveomics/Scripts/ogs.rb +0 -104
- data/utils/enveomics/Scripts/ogs.stats.rb +0 -131
- data/utils/enveomics/Scripts/rbm-legacy.rb +0 -172
- data/utils/enveomics/Scripts/rbm.rb +0 -108
- data/utils/enveomics/Scripts/sam.filter.rb +0 -148
- data/utils/enveomics/Tests/Makefile +0 -10
- data/utils/enveomics/Tests/Mgen_M2288.faa +0 -3189
- data/utils/enveomics/Tests/Mgen_M2288.fna +0 -8282
- data/utils/enveomics/Tests/Mgen_M2321.fna +0 -8288
- data/utils/enveomics/Tests/Nequ_Kin4M.faa +0 -2970
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +0 -7
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +0 -17
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +0 -137
- data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +0 -123
- data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +0 -200
- data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +0 -55
- data/utils/enveomics/Tests/alkB.nwk +0 -1
- data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +0 -13
- data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +0 -17
- data/utils/enveomics/Tests/hiv1.faa +0 -59
- data/utils/enveomics/Tests/hiv1.fna +0 -134
- data/utils/enveomics/Tests/hiv2.faa +0 -70
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +0 -233
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +0 -1
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +0 -233
- data/utils/enveomics/Tests/phyla_counts.tsv +0 -10
- data/utils/enveomics/Tests/primate_lentivirus.ogs +0 -11
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +0 -9
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +0 -8
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +0 -6
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +0 -9
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +0 -6
- data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +0 -6
- data/utils/enveomics/build_enveomics_r.bash +0 -45
- data/utils/enveomics/enveomics.R/DESCRIPTION +0 -31
- data/utils/enveomics/enveomics.R/NAMESPACE +0 -39
- data/utils/enveomics/enveomics.R/R/autoprune.R +0 -155
- data/utils/enveomics/enveomics.R/R/barplot.R +0 -184
- data/utils/enveomics/enveomics.R/R/cliopts.R +0 -135
- data/utils/enveomics/enveomics.R/R/df2dist.R +0 -154
- data/utils/enveomics/enveomics.R/R/growthcurve.R +0 -331
- data/utils/enveomics/enveomics.R/R/prefscore.R +0 -79
- data/utils/enveomics/enveomics.R/R/recplot.R +0 -354
- data/utils/enveomics/enveomics.R/R/recplot2.R +0 -1631
- data/utils/enveomics/enveomics.R/R/tribs.R +0 -583
- data/utils/enveomics/enveomics.R/R/utils.R +0 -80
- data/utils/enveomics/enveomics.R/README.md +0 -81
- data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
- data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
- data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +0 -16
- data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +0 -16
- data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +0 -16
- data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +0 -25
- data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +0 -46
- data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +0 -47
- data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +0 -40
- data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +0 -103
- data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +0 -67
- data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +0 -24
- data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +0 -45
- data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +0 -44
- data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +0 -47
- data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +0 -75
- data/utils/enveomics/enveomics.R/man/enve.prefscore.Rd +0 -50
- data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +0 -44
- data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +0 -139
- data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +0 -45
- data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +0 -24
- data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +0 -77
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +0 -25
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +0 -21
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +0 -47
- data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +0 -29
- data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +0 -18
- data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +0 -45
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +0 -36
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +0 -27
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +0 -52
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +0 -17
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +0 -51
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +0 -43
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +0 -82
- data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +0 -59
- data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +0 -27
- data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +0 -36
- data/utils/enveomics/enveomics.R/man/enve.selvector.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +0 -68
- data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +0 -28
- data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +0 -27
- data/utils/enveomics/enveomics.R/man/growth.curves.Rd +0 -14
- data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +0 -13
- data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +0 -78
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +0 -46
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +0 -45
- data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +0 -125
- data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +0 -19
- data/utils/enveomics/globals.mk +0 -8
- data/utils/enveomics/manifest.json +0 -9
- data/utils/multitrim/Multitrim How-To.pdf +0 -0
- data/utils/multitrim/README.md +0 -67
- data/utils/multitrim/multitrim.py +0 -1555
- data/utils/multitrim/multitrim.yml +0 -13
@@ -1,1336 +0,0 @@
|
|
1
|
-
#!/usr/bin/env python3
|
2
|
-
|
3
|
-
"""
|
4
|
-
########################################################################
|
5
|
-
# Author: Carlos Ruiz
|
6
|
-
# Intitution: Georgia Institute of Technology
|
7
|
-
# Version: 1.0
|
8
|
-
# Date: Dec 10, 2020
|
9
|
-
|
10
|
-
# Description: Calculates the average amino acid identity using k-mers
|
11
|
-
from single copy genes. It is a faster version of the regular AAI (Blast
|
12
|
-
or Diamond) and the hAAI implemented in MiGA.
|
13
|
-
########################################################################
|
14
|
-
"""
|
15
|
-
|
16
|
-
################################################################################
|
17
|
-
"""---0.0 Import Modules---"""
|
18
|
-
import subprocess, argparse, multiprocessing, datetime, shutil
|
19
|
-
import textwrap, pickle, gzip
|
20
|
-
import numpy as np
|
21
|
-
from tempfile import TemporaryDirectory
|
22
|
-
from random import randint
|
23
|
-
from pathlib import Path
|
24
|
-
from sys import argv
|
25
|
-
from sys import exit
|
26
|
-
from functools import partial
|
27
|
-
import time
|
28
|
-
|
29
|
-
|
30
|
-
################################################################################
|
31
|
-
"""---1.0 Define Functions---"""
|
32
|
-
# --- Run prodigal ---
|
33
|
-
# ------------------------------------------------------
|
34
|
-
def run_prodigal(input_file):
|
35
|
-
"""
|
36
|
-
Runs prodigal, compares translation tables and stores faa files
|
37
|
-
|
38
|
-
Arguments:
|
39
|
-
input_file -- Path to genome FastA file
|
40
|
-
|
41
|
-
Returns:
|
42
|
-
output -- Path to amino acid fasta result
|
43
|
-
"""
|
44
|
-
# Predict proteins with translation tables 4 and 11
|
45
|
-
file_path = Path(input_file)
|
46
|
-
filename = file_path.name
|
47
|
-
folder = file_path.parent
|
48
|
-
protein_output = folder / (filename + '.faa')
|
49
|
-
output_11 = folder / (filename + '.faa.11')
|
50
|
-
temp_output = folder / (filename + '.temp')
|
51
|
-
subprocess.call(["prodigal", "-i", str(file_path), "-a", str(output_11),
|
52
|
-
"-p", "meta", "-q", "-o", str(temp_output)])
|
53
|
-
output_4 = folder / (filename + '.faa.4')
|
54
|
-
temp_output = folder / (filename + '.temp')
|
55
|
-
subprocess.call(["prodigal", "-i", str(file_path), "-a", str(output_4),
|
56
|
-
"-p", "meta", "-g", "4", "-q", "-o", str(temp_output)])
|
57
|
-
|
58
|
-
# Compare translation tables
|
59
|
-
length_4 = 0
|
60
|
-
length_11 = 0
|
61
|
-
with open(output_4, 'r') as table_4:
|
62
|
-
for line in table_4:
|
63
|
-
if line.startswith(">"):
|
64
|
-
continue
|
65
|
-
else:
|
66
|
-
length_4 += len(line.strip())
|
67
|
-
|
68
|
-
with open(output_11, 'r') as table_11:
|
69
|
-
for line in table_11:
|
70
|
-
if line.startswith(">"):
|
71
|
-
continue
|
72
|
-
else:
|
73
|
-
length_11 += len(line.strip())
|
74
|
-
|
75
|
-
if (length_4 / length_11) >= 1.1:
|
76
|
-
shutil.copy(output_4, protein_output)
|
77
|
-
else:
|
78
|
-
shutil.copy(str(output_11), str(protein_output))
|
79
|
-
|
80
|
-
# Remove intermediate files
|
81
|
-
output_4.unlink()
|
82
|
-
output_11.unlink()
|
83
|
-
temp_output.unlink()
|
84
|
-
|
85
|
-
# Remove stop '*' codons from protein sequences
|
86
|
-
with open(protein_output, 'r') as final_protein, open(temp_output, 'w') as temporal_file:
|
87
|
-
for line in final_protein:
|
88
|
-
if line.startswith(">"):
|
89
|
-
temporal_file.write("{}".format(line))
|
90
|
-
else:
|
91
|
-
line = line.replace('*', '')
|
92
|
-
temporal_file.write("{}".format(line))
|
93
|
-
shutil.copy(str(temp_output), str(protein_output))
|
94
|
-
temp_output.unlink()
|
95
|
-
|
96
|
-
return str(protein_output)
|
97
|
-
# ------------------------------------------------------
|
98
|
-
|
99
|
-
# --- Run prodigal for viruses ---
|
100
|
-
# ------------------------------------------------------
|
101
|
-
def run_prodigal_virus(input_file):
|
102
|
-
"""
|
103
|
-
Runs prodigal, compares translation tables and stores faa files
|
104
|
-
|
105
|
-
Arguments:
|
106
|
-
input_file -- Path to genome FastA file
|
107
|
-
|
108
|
-
Returns:
|
109
|
-
output -- Path to amino acid fasta result
|
110
|
-
"""
|
111
|
-
# Predict proteins with translation tables 4 and 11
|
112
|
-
file_path = Path(input_file)
|
113
|
-
filename = file_path.name
|
114
|
-
folder = file_path.parent
|
115
|
-
protein_output = folder / (filename + '.faa')
|
116
|
-
temp_output = folder / (filename + '.temp')
|
117
|
-
subprocess.call(["prodigal", "-i", str(file_path), "-a", str(protein_output),
|
118
|
-
"-p", "meta", "-q", "-o", str(temp_output)])
|
119
|
-
|
120
|
-
# Remove intermediate files
|
121
|
-
temp_output.unlink()
|
122
|
-
|
123
|
-
# Remove stop '*' codons from protein sequences
|
124
|
-
with open(protein_output, 'r') as final_protein, open(temp_output, 'w') as temporal_file:
|
125
|
-
for line in final_protein:
|
126
|
-
if line.startswith(">"):
|
127
|
-
temporal_file.write("{}".format(line))
|
128
|
-
else:
|
129
|
-
line = line.replace('*', '')
|
130
|
-
temporal_file.write("{}".format(line))
|
131
|
-
shutil.copy(str(temp_output), str(protein_output))
|
132
|
-
temp_output.unlink()
|
133
|
-
|
134
|
-
return str(protein_output)
|
135
|
-
# ------------------------------------------------------
|
136
|
-
|
137
|
-
# --- Run hmmsearch ---
|
138
|
-
# ------------------------------------------------------
|
139
|
-
def run_hmmsearch(input_file):
|
140
|
-
"""
|
141
|
-
Runs hmmsearch on the set of SCGs and select the
|
142
|
-
best Archaea or Bacterial model
|
143
|
-
|
144
|
-
Arguments:
|
145
|
-
input_file -- Path to protein FastA file
|
146
|
-
|
147
|
-
Returns:
|
148
|
-
output -- Path to hmmsearch hits table
|
149
|
-
"""
|
150
|
-
file_path = Path(input_file)
|
151
|
-
folder = file_path.parent
|
152
|
-
name = file_path.name
|
153
|
-
hmm_output = folder / (name + '.hmm')
|
154
|
-
temp_output = folder / (name + '.temp')
|
155
|
-
script_path = Path(__file__)
|
156
|
-
script_dir = script_path.parent
|
157
|
-
hmm_complete_model = script_dir / "../00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm"
|
158
|
-
subprocess.call(["hmmsearch", "--tblout", str(hmm_output), "-o", str(temp_output), "--cut_tc", "--cpu", "1",
|
159
|
-
str(hmm_complete_model), str(file_path)])
|
160
|
-
temp_output.unlink()
|
161
|
-
return str(hmm_output)
|
162
|
-
# ------------------------------------------------------
|
163
|
-
|
164
|
-
# --- Filter HMM results for best matches ---
|
165
|
-
# ------------------------------------------------------
|
166
|
-
def hmm_filter(scg_hmm_file, keep):
|
167
|
-
"""
|
168
|
-
Filters HMM results for best hits per protein
|
169
|
-
|
170
|
-
Arguments:
|
171
|
-
SCG_HMM_file {file path} -- Path to HMM results file
|
172
|
-
keep {bool} -- Keep HMM files
|
173
|
-
|
174
|
-
Returns:
|
175
|
-
outfile -- Path to filtered files
|
176
|
-
"""
|
177
|
-
hmm_path = Path(scg_hmm_file)
|
178
|
-
name = hmm_path.name
|
179
|
-
folder = hmm_path.parent
|
180
|
-
outfile = folder / (name + '.filt')
|
181
|
-
hmm_hit_dict = {}
|
182
|
-
with open(scg_hmm_file, 'r') as hit_file:
|
183
|
-
for line in hit_file:
|
184
|
-
if line.startswith("#"):
|
185
|
-
continue
|
186
|
-
else:
|
187
|
-
hit = line.strip().split()
|
188
|
-
protein_name = hit[0]
|
189
|
-
score = float(hit[8])
|
190
|
-
if protein_name in hmm_hit_dict:
|
191
|
-
if score > hmm_hit_dict[protein_name][0]:
|
192
|
-
hmm_hit_dict[protein_name] = [score, line]
|
193
|
-
elif score < hmm_hit_dict[protein_name][0]:
|
194
|
-
continue
|
195
|
-
else:
|
196
|
-
if randint(2) > 0:
|
197
|
-
hmm_hit_dict[protein_name] = [score, line]
|
198
|
-
else:
|
199
|
-
hmm_hit_dict[protein_name] = [score, line]
|
200
|
-
with open(outfile, 'w') as output:
|
201
|
-
for hits in hmm_hit_dict.values():
|
202
|
-
output.write("{}".format(hits[1]))
|
203
|
-
return str(outfile)
|
204
|
-
# ------------------------------------------------------
|
205
|
-
|
206
|
-
# --- Find Kmers from HMM results ---
|
207
|
-
# ------------------------------------------------------
|
208
|
-
def kmer_extract(input_files):
|
209
|
-
"""
|
210
|
-
Extract kmers from protein files that have hits
|
211
|
-
in the HMM searches.
|
212
|
-
|
213
|
-
Arguments:
|
214
|
-
SCG_HMM_file {file path} -- Path to filtered HMM results.
|
215
|
-
|
216
|
-
Returns:
|
217
|
-
[genome_kmers] -- Dictionary of kmers per gene.
|
218
|
-
"""
|
219
|
-
final_filename = input_files[0]
|
220
|
-
protein_file = input_files[1]
|
221
|
-
scg_hmm_file = input_files[2]
|
222
|
-
positive_matches = {}
|
223
|
-
positive_proteins = []
|
224
|
-
with open(scg_hmm_file, 'r') as hmm_input:
|
225
|
-
for line in hmm_input:
|
226
|
-
line = line.strip().split()
|
227
|
-
protein_name = line[0]
|
228
|
-
model_name = line[3]
|
229
|
-
score = float(line[8])
|
230
|
-
if model_name in positive_matches:
|
231
|
-
if score > positive_matches[model_name][1]:
|
232
|
-
positive_matches[model_name] = [protein_name, score]
|
233
|
-
else:
|
234
|
-
continue
|
235
|
-
else:
|
236
|
-
positive_matches[model_name] = [protein_name, score]
|
237
|
-
for proteins in positive_matches.values():
|
238
|
-
positive_proteins.append(proteins[0])
|
239
|
-
scg_kmers = read_kmers_from_file(protein_file, positive_proteins, 4)
|
240
|
-
for accession, protein in positive_matches.items():
|
241
|
-
scg_kmers[accession] = scg_kmers.pop(protein[0])
|
242
|
-
genome_kmers = {final_filename : scg_kmers}
|
243
|
-
return genome_kmers
|
244
|
-
# ------------------------------------------------------
|
245
|
-
|
246
|
-
# --- Extract kmers from protein sequences ---
|
247
|
-
# ------------------------------------------------------
|
248
|
-
def read_kmers_from_file(filename, positive_hits, ksize):
|
249
|
-
scg_kmers = {}
|
250
|
-
store_sequence = False
|
251
|
-
protein_name = ""
|
252
|
-
protein_sequence = ""
|
253
|
-
with open(filename) as fasta_in:
|
254
|
-
for line in fasta_in:
|
255
|
-
if line.startswith(">"):
|
256
|
-
if store_sequence == True:
|
257
|
-
kmers = build_kmers(protein_sequence, ksize)
|
258
|
-
scg_kmers[protein_name] = kmers
|
259
|
-
protein_sequence = ""
|
260
|
-
store_sequence = False
|
261
|
-
line = line.replace(">", "")
|
262
|
-
protein_name = line.strip().split()[0]
|
263
|
-
if protein_name in positive_hits:
|
264
|
-
store_sequence = True
|
265
|
-
else:
|
266
|
-
if store_sequence == True:
|
267
|
-
protein_sequence += line.strip()
|
268
|
-
else:
|
269
|
-
continue
|
270
|
-
if store_sequence == True:
|
271
|
-
kmers = build_kmers(protein_sequence, ksize)
|
272
|
-
scg_kmers[protein_name] = kmers
|
273
|
-
return scg_kmers
|
274
|
-
# ------------------------------------------------------
|
275
|
-
|
276
|
-
# --- Extract kmers from viral protein sequences ---
|
277
|
-
# ------------------------------------------------------
|
278
|
-
def read_viral_kmers_from_file(input_information):
|
279
|
-
final_filename = input_information[0]
|
280
|
-
protein_file = input_information[1]
|
281
|
-
kmer_size = input_information[2]
|
282
|
-
|
283
|
-
scg_kmers = set()
|
284
|
-
protein_sequence = ""
|
285
|
-
store_sequence = False
|
286
|
-
number_of_proteins = 0
|
287
|
-
with open(protein_file) as fasta_in:
|
288
|
-
for line in fasta_in:
|
289
|
-
if line.startswith(">"):
|
290
|
-
number_of_proteins += 1
|
291
|
-
if store_sequence == True:
|
292
|
-
kmers = build_viral_kmers(protein_sequence, kmer_size)
|
293
|
-
scg_kmers.update(kmers)
|
294
|
-
protein_sequence = ""
|
295
|
-
else:
|
296
|
-
protein_sequence = ""
|
297
|
-
store_sequence = True
|
298
|
-
else:
|
299
|
-
protein_sequence += line.strip()
|
300
|
-
if store_sequence == True:
|
301
|
-
kmers = build_viral_kmers(protein_sequence, kmer_size)
|
302
|
-
scg_kmers.update(kmers)
|
303
|
-
genome_kmers = {final_filename : [number_of_proteins, ','.join(list(scg_kmers))]}
|
304
|
-
return genome_kmers
|
305
|
-
# ------------------------------------------------------
|
306
|
-
|
307
|
-
# --- Build Kmers ---
|
308
|
-
# ------------------------------------------------------
|
309
|
-
def build_kmers(sequence, ksize):
|
310
|
-
kmers = []
|
311
|
-
n_kmers = len(sequence) - ksize + 1
|
312
|
-
|
313
|
-
for i in range(n_kmers):
|
314
|
-
kmer = sequence[i:i + ksize]
|
315
|
-
kmers.append(kmer)
|
316
|
-
kmers_set = ','.join(set(kmers))
|
317
|
-
return kmers_set
|
318
|
-
# ------------------------------------------------------
|
319
|
-
|
320
|
-
# --- Build Viral Kmers ---
|
321
|
-
# ------------------------------------------------------
|
322
|
-
def build_viral_kmers(sequence, ksize):
|
323
|
-
kmers = []
|
324
|
-
n_kmers = len(sequence) - ksize + 1
|
325
|
-
|
326
|
-
for i in range(n_kmers):
|
327
|
-
kmer = sequence[i:i + ksize]
|
328
|
-
kmers.append(kmer)
|
329
|
-
kmers_set = set(kmers)
|
330
|
-
return kmers_set
|
331
|
-
# ------------------------------------------------------
|
332
|
-
|
333
|
-
# --- Create global dictionary with unique kmers and indices for each one ---
|
334
|
-
# ------------------------------------------------------
|
335
|
-
def global_unique_kmers(kmer_dictionaries):
|
336
|
-
"""
|
337
|
-
Extract every kmer in the whole dataset
|
338
|
-
Create global dictionary with unique kmers and indices for each one
|
339
|
-
|
340
|
-
Arguments:
|
341
|
-
kmer_dict {dict} -- Dictionary with kmers for each marker protein per input file
|
342
|
-
|
343
|
-
Returns:
|
344
|
-
[global_kmer_index_dictionary] -- Dictionary with a unique index per kmer
|
345
|
-
"""
|
346
|
-
# Make this dictionary global regardless of quer == reference or not
|
347
|
-
print("Indexing unique kmers")
|
348
|
-
global global_kmer_index_dictionary
|
349
|
-
global_kmer_index_dictionary = {}
|
350
|
-
counter = 0
|
351
|
-
for kmer_dict in kmer_dictionaries:
|
352
|
-
for marker_protein_id in kmer_dict.values():
|
353
|
-
for kmer_list in marker_protein_id.values():
|
354
|
-
kmer_list = kmer_list.split(',')
|
355
|
-
for kmer in kmer_list:
|
356
|
-
try:
|
357
|
-
global_kmer_index_dictionary[kmer]
|
358
|
-
except:
|
359
|
-
global_kmer_index_dictionary[kmer] = counter
|
360
|
-
counter += 1
|
361
|
-
# ------------------------------------------------------
|
362
|
-
|
363
|
-
# --- Create global viral dictionary with unique kmers and indices for each one ---
|
364
|
-
# ------------------------------------------------------
|
365
|
-
def global_unique_viral_kmers(kmer_dictionaries):
|
366
|
-
"""
|
367
|
-
Extract every kmer in the whole dataset
|
368
|
-
Create global dictionary with unique kmers and indices for each one
|
369
|
-
|
370
|
-
Arguments:
|
371
|
-
kmer_dict {dict} -- Dictionary with kmers for each marker protein per input file
|
372
|
-
|
373
|
-
Returns:
|
374
|
-
[global_kmer_index_dictionary] -- Dictionary with a unique index per kmer
|
375
|
-
"""
|
376
|
-
# Make this dictionary global regardless of quer == reference or not
|
377
|
-
print("Indexing unique kmers")
|
378
|
-
global global_kmer_index_dictionary
|
379
|
-
global_kmer_index_dictionary = {}
|
380
|
-
counter = 0
|
381
|
-
for kmer_dict in kmer_dictionaries:
|
382
|
-
for kmer_list in kmer_dict.values():
|
383
|
-
for kmer in kmer_list[1].split(','):
|
384
|
-
try:
|
385
|
-
global_kmer_index_dictionary[kmer]
|
386
|
-
except:
|
387
|
-
global_kmer_index_dictionary[kmer] = counter
|
388
|
-
counter += 1
|
389
|
-
# ------------------------------------------------------
|
390
|
-
|
391
|
-
# --- Convert kmers to indices ---
|
392
|
-
# ------------------------------------------------------
|
393
|
-
def convert_kmers_to_indices(kmer_dict):
|
394
|
-
print("Converting kmers to indices")
|
395
|
-
for genome in kmer_dict:
|
396
|
-
for protein_marker in kmer_dict[genome]:
|
397
|
-
kmer_index = []
|
398
|
-
for kmer in kmer_dict[genome][protein_marker].split(','):
|
399
|
-
kmer_index.append(global_kmer_index_dictionary[kmer])
|
400
|
-
kmer_index = np.sort(np.unique(np.array(kmer_index, dtype=np.int32)))
|
401
|
-
kmer_dict[genome][protein_marker] = kmer_index
|
402
|
-
|
403
|
-
return kmer_dict
|
404
|
-
# ------------------------------------------------------
|
405
|
-
|
406
|
-
# --- Convert viral kmers to indices ---
|
407
|
-
# ------------------------------------------------------
|
408
|
-
def convert_viral_kmers_to_indices(kmer_dict):
|
409
|
-
print("Converting kmers to indices")
|
410
|
-
for genome in kmer_dict:
|
411
|
-
kmer_index = []
|
412
|
-
for kmer in kmer_dict[genome][1].split(','):
|
413
|
-
kmer_index.append(global_kmer_index_dictionary[kmer])
|
414
|
-
kmer_index = np.sort(np.unique(np.array(kmer_index, dtype=np.int32)))
|
415
|
-
kmer_dict[genome][1] = kmer_index
|
416
|
-
|
417
|
-
return kmer_dict
|
418
|
-
# ------------------------------------------------------
|
419
|
-
|
420
|
-
# --- Transform kmer dictionaries to index dictionaries ---
|
421
|
-
# ------------------------------------------------------
|
422
|
-
def transform_kmer_dicts_to_arrays(kmer_dict, temporal_working_directory, single_dataset):
|
423
|
-
kmer_dict = convert_kmers_to_indices(kmer_dict)
|
424
|
-
#Get skip indices
|
425
|
-
smartargs = []
|
426
|
-
genome_ids = list(kmer_dict.keys())
|
427
|
-
for i in range(0, len(genome_ids)):
|
428
|
-
if single_dataset == True:
|
429
|
-
smartargs.append((temporal_working_directory, genome_ids[i], i))
|
430
|
-
else:
|
431
|
-
smartargs.append((temporal_working_directory, genome_ids[i]))
|
432
|
-
|
433
|
-
return kmer_dict, smartargs
|
434
|
-
# ------------------------------------------------------
|
435
|
-
|
436
|
-
# --- Transform viral kmer dictionaries to index dictionaries ---
|
437
|
-
# ------------------------------------------------------
|
438
|
-
def transform_viral_kmer_dicts_to_arrays(kmer_dict, temporal_working_directory, single_dataset):
|
439
|
-
kmer_dict = convert_viral_kmers_to_indices(kmer_dict)
|
440
|
-
#Get skip indices
|
441
|
-
smartargs = []
|
442
|
-
genome_ids = list(kmer_dict.keys())
|
443
|
-
for i in range(0, len(genome_ids)):
|
444
|
-
if single_dataset == True:
|
445
|
-
smartargs.append((temporal_working_directory, genome_ids[i], i))
|
446
|
-
else:
|
447
|
-
smartargs.append((temporal_working_directory, genome_ids[i]))
|
448
|
-
|
449
|
-
return kmer_dict, smartargs
|
450
|
-
# ------------------------------------------------------
|
451
|
-
|
452
|
-
# --- Parse kAAI when query == reference ---
|
453
|
-
# ------------------------------------------------------
|
454
|
-
def single_kaai_parser(arguments):
|
455
|
-
"""
|
456
|
-
Calculates the Jaccard distances using single protein markers shared by two genomes
|
457
|
-
|
458
|
-
Arguments:
|
459
|
-
arguments {tuple} -- Tuple with the temporal folder, the query id and the index of said query_id
|
460
|
-
|
461
|
-
Returns:
|
462
|
-
[Path to output] -- Path to output file
|
463
|
-
"""
|
464
|
-
temporal_folder = arguments[0]
|
465
|
-
query_id = arguments[1]
|
466
|
-
skip_first_n = arguments[2]
|
467
|
-
|
468
|
-
temporal_folder = Path(str(temporal_folder.name))
|
469
|
-
temporal_file = Path(query_id).name + '.faai.temp'
|
470
|
-
temporal_output = temporal_folder / temporal_file
|
471
|
-
|
472
|
-
query_scg_list = np.array(list(query_kmer_dictionary[query_id].keys()))
|
473
|
-
with open(temporal_output, 'w') as out_file:
|
474
|
-
#for target_genome, scg_ids in query_kmer_dictionary.items():
|
475
|
-
for target_genome in list(query_kmer_dictionary.keys())[skip_first_n:]:
|
476
|
-
# Get number and list of SCG detected in reference
|
477
|
-
target_scg_list = np.array(list(query_kmer_dictionary[target_genome].keys()))
|
478
|
-
shorter_genome = min(len(query_scg_list), len(target_scg_list))
|
479
|
-
#If self, 1.0 similarity.
|
480
|
-
if query_id == target_genome:
|
481
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
482
|
-
1.0, 0.0, len(query_scg_list), len(target_scg_list), 100))
|
483
|
-
continue
|
484
|
-
|
485
|
-
jaccard_similarities = []
|
486
|
-
# Get shared proteins (scgs)
|
487
|
-
final_scg_list = np.intersect1d(query_scg_list, target_scg_list)
|
488
|
-
# Extract a list of kmers for each SCG in the list
|
489
|
-
query_kmer_list = list(map(query_kmer_dictionary[query_id].get, final_scg_list))
|
490
|
-
reference_kmer_list = list(map(query_kmer_dictionary[target_genome].get, final_scg_list))
|
491
|
-
# Calculate the jaccard index
|
492
|
-
for accession in range(len(query_kmer_list)):
|
493
|
-
union = len(np.union1d(query_kmer_list[accession], reference_kmer_list[accession]))
|
494
|
-
intersection = len(query_kmer_list[accession]) + len(reference_kmer_list[accession]) - union
|
495
|
-
jaccard_similarities.append(intersection / union)
|
496
|
-
|
497
|
-
# Allow for numpy in-builts; they're a little faster.
|
498
|
-
if len(jaccard_similarities) > 0:
|
499
|
-
jaccard_similarities = np.array(jaccard_similarities, dtype=np.float_)
|
500
|
-
try:
|
501
|
-
mean = np.mean(jaccard_similarities)
|
502
|
-
var = np.std(jaccard_similarities)
|
503
|
-
if mean >= 0.9:
|
504
|
-
aai_est = ">90%"
|
505
|
-
elif mean == 0:
|
506
|
-
aai_est = "<30%"
|
507
|
-
else:
|
508
|
-
aai_est = kaai_to_aai(mean)
|
509
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
510
|
-
round(mean, 4), round(var, 4),
|
511
|
-
len(jaccard_similarities), shorter_genome, aai_est))
|
512
|
-
except:
|
513
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
514
|
-
"NA", "NA", "NA", "NA", "NA"))
|
515
|
-
else:
|
516
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
517
|
-
"NA", "NA", "NA", "NA", "NA"))
|
518
|
-
return temporal_output
|
519
|
-
# ------------------------------------------------------
|
520
|
-
|
521
|
-
# --- Parse viral kAAI when query == reference ---
|
522
|
-
# ------------------------------------------------------
|
523
|
-
def single_virus_kaai_parser(arguments):
|
524
|
-
"""
|
525
|
-
Calculates Jaccard distances on kmers from viral proteins
|
526
|
-
|
527
|
-
Arguments:
|
528
|
-
query_id {str} -- Id of the query genome
|
529
|
-
|
530
|
-
Returns:
|
531
|
-
[Path to output] -- Path to output file
|
532
|
-
"""
|
533
|
-
|
534
|
-
temporal_folder = arguments[0]
|
535
|
-
query_id = arguments[1]
|
536
|
-
skip_first_n = arguments[2]
|
537
|
-
|
538
|
-
temporal_folder = Path(str(temporal_folder.name))
|
539
|
-
temporal_file = Path(query_id).name + '.faai.temp'
|
540
|
-
temporal_output = temporal_folder / temporal_file
|
541
|
-
# Get query kmers
|
542
|
-
proteins_query = query_kmer_dictionary[query_id][0]
|
543
|
-
kmers_query = query_kmer_dictionary[query_id][1]
|
544
|
-
|
545
|
-
# Start comparison with all genomes in the query dictionary
|
546
|
-
with open(temporal_output, 'w') as out_file:
|
547
|
-
for target_genome in list(query_kmer_dictionary.keys())[skip_first_n:]:
|
548
|
-
# If self, 1.0 similarity
|
549
|
-
if query_id == target_genome:
|
550
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
551
|
-
1.0, proteins_query, proteins_query))
|
552
|
-
continue
|
553
|
-
|
554
|
-
jaccard_index = None
|
555
|
-
proteins_reference = query_kmer_dictionary[target_genome][0]
|
556
|
-
kmers_reference = query_kmer_dictionary[target_genome][1]
|
557
|
-
# Calculate the Jaccard Index
|
558
|
-
union = len(np.union1d(kmers_query, kmers_reference))
|
559
|
-
intersection = len(kmers_query) + len(kmers_reference) - union
|
560
|
-
jaccard_index = intersection/union
|
561
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
562
|
-
jaccard_index, proteins_query, proteins_reference))
|
563
|
-
return temporal_output
|
564
|
-
# ------------------------------------------------------
|
565
|
-
|
566
|
-
# --- Parse kAAI when query != reference ---
|
567
|
-
# ------------------------------------------------------
|
568
|
-
def double_kaai_parser(arguments):
|
569
|
-
"""
|
570
|
-
Calculates the Jaccard distances using single protein markers shared by two genomes
|
571
|
-
|
572
|
-
Arguments:
|
573
|
-
arguments {tuple} -- Tuple with the temporal folder, the query id and the index of said query_id
|
574
|
-
|
575
|
-
Returns:
|
576
|
-
[Path to output] -- Path to output file
|
577
|
-
"""
|
578
|
-
temporal_folder = arguments[0]
|
579
|
-
query_id = arguments[1]
|
580
|
-
|
581
|
-
temporal_folder = Path(str(temporal_folder.name))
|
582
|
-
temporal_file = Path(query_id).name + '.faai.temp'
|
583
|
-
temporal_output = temporal_folder / temporal_file
|
584
|
-
|
585
|
-
query_scg_list = np.array(list(query_kmer_dictionary[query_id].keys()))
|
586
|
-
|
587
|
-
with open(temporal_output, 'w') as out_file:
|
588
|
-
for target_genome in list(reference_kmer_dictionary.keys()):
|
589
|
-
# Get number and list of SCG detected in reference
|
590
|
-
target_scg_list = np.array(list(reference_kmer_dictionary[target_genome].keys()))
|
591
|
-
shorter_genome = min(len(query_scg_list), len(target_scg_list))
|
592
|
-
#If self, 1.0 similarity.
|
593
|
-
if query_id == target_genome:
|
594
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
595
|
-
1.0, 0.0, len(query_scg_list), len(target_scg_list), 100))
|
596
|
-
continue
|
597
|
-
|
598
|
-
jaccard_similarities = []
|
599
|
-
# Get shared proteins (scgs)
|
600
|
-
final_scg_list = np.intersect1d(query_scg_list, target_scg_list)
|
601
|
-
# Extract a list of kmers for each SCG in the list
|
602
|
-
query_kmer_list = list(map(query_kmer_dictionary[query_id].get, final_scg_list))
|
603
|
-
reference_kmer_list = list(map(reference_kmer_dictionary[target_genome].get, final_scg_list))
|
604
|
-
# Calculate the jaccard index
|
605
|
-
for accession in range(len(query_kmer_list)):
|
606
|
-
union = len(np.union1d(query_kmer_list[accession], reference_kmer_list[accession]))
|
607
|
-
intersection = len(query_kmer_list[accession]) + len(reference_kmer_list[accession]) - union
|
608
|
-
jaccard_similarities.append(intersection / union)
|
609
|
-
|
610
|
-
# Allow for numpy in-builts; they're a little faster.
|
611
|
-
if len(jaccard_similarities) > 0:
|
612
|
-
jaccard_similarities = np.array(jaccard_similarities, dtype=np.float_)
|
613
|
-
try:
|
614
|
-
mean = np.mean(jaccard_similarities)
|
615
|
-
var = np.std(jaccard_similarities)
|
616
|
-
if mean >= 0.9:
|
617
|
-
aai_est = ">90%"
|
618
|
-
elif mean == 0:
|
619
|
-
aai_est = "<30%"
|
620
|
-
else:
|
621
|
-
aai_est = kaai_to_aai(mean)
|
622
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
623
|
-
round(mean, 4), round(var, 4),
|
624
|
-
len(jaccard_similarities), shorter_genome, aai_est))
|
625
|
-
except:
|
626
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
627
|
-
"NA", "NA", "NA", "NA", "NA"))
|
628
|
-
else:
|
629
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
630
|
-
"NA", "NA", "NA", "NA", "NA"))
|
631
|
-
return temporal_output
|
632
|
-
# ------------------------------------------------------
|
633
|
-
|
634
|
-
# --- Parse viral kAAI when query != reference ---
|
635
|
-
# ------------------------------------------------------
|
636
|
-
def double_viral_kaai_parser(arguments):
|
637
|
-
"""
|
638
|
-
Calculates Jaccard distances on kmers from viral proteins
|
639
|
-
|
640
|
-
Arguments:
|
641
|
-
query_id {str} -- Id of the query genome
|
642
|
-
|
643
|
-
Returns:
|
644
|
-
[Path to output] -- Path to output file
|
645
|
-
"""
|
646
|
-
temporal_folder = arguments[0]
|
647
|
-
query_id = arguments[1]
|
648
|
-
|
649
|
-
temporal_folder = Path(str(temporal_folder.name))
|
650
|
-
temporal_file = Path(query_id).name + '.faai.temp'
|
651
|
-
temporal_output = temporal_folder / temporal_file
|
652
|
-
# Get query kmers
|
653
|
-
proteins_query = query_kmer_dictionary[query_id][0]
|
654
|
-
kmers_query = query_kmer_dictionary[query_id][1]
|
655
|
-
|
656
|
-
# Start comparison with all genomes in the query dictionary
|
657
|
-
with open(temporal_output, 'w') as out_file:
|
658
|
-
for target_genome in reference_kmer_dictionary.keys():
|
659
|
-
# If self, 1.0 similarity
|
660
|
-
if query_id == target_genome:
|
661
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
662
|
-
1.0, proteins_query, proteins_query))
|
663
|
-
continue
|
664
|
-
|
665
|
-
jaccard_index = None
|
666
|
-
proteins_reference = reference_kmer_dictionary[target_genome][0]
|
667
|
-
kmers_reference = reference_kmer_dictionary[target_genome][1]
|
668
|
-
# Calculate the Jaccard Index
|
669
|
-
union = len(np.union1d(kmers_query, kmers_reference))
|
670
|
-
intersection = len(kmers_query) + len(kmers_reference) - union
|
671
|
-
jaccard_index = intersection/union
|
672
|
-
out_file.write("{}\t{}\t{}\t{}\t{}\n".format(query_id, target_genome,
|
673
|
-
jaccard_index, proteins_query, proteins_reference))
|
674
|
-
return temporal_output
|
675
|
-
# ------------------------------------------------------
|
676
|
-
|
677
|
-
# --- Query == Reference initializer function ---
|
678
|
-
# ------------------------------------------------------
|
679
|
-
def single_dictionary_initializer(_dictionary):
|
680
|
-
"""
|
681
|
-
Make dictionary available for multiprocessing
|
682
|
-
"""
|
683
|
-
global query_kmer_dictionary
|
684
|
-
query_kmer_dictionary = _dictionary
|
685
|
-
# ------------------------------------------------------
|
686
|
-
|
687
|
-
# --- Query != Reference initializer function ---
|
688
|
-
# ------------------------------------------------------
|
689
|
-
def two_dictionary_initializer(_query_dictionary, _reference_dictionary):
|
690
|
-
"""
|
691
|
-
Make dictionary available for multiprocessing
|
692
|
-
"""
|
693
|
-
global query_kmer_dictionary
|
694
|
-
global reference_kmer_dictionary
|
695
|
-
query_kmer_dictionary = _query_dictionary
|
696
|
-
reference_kmer_dictionary = _reference_dictionary
|
697
|
-
# ------------------------------------------------------
|
698
|
-
|
699
|
-
# --- Merge kmer dictionaries ---
|
700
|
-
# ------------------------------------------------------
|
701
|
-
def merge_dicts(dictionaries):
|
702
|
-
"""
|
703
|
-
Given any number of dicts, shallow copy and merge into a new dict,
|
704
|
-
precedence goes to key value pairs in latter dicts.
|
705
|
-
"""
|
706
|
-
result = {}
|
707
|
-
for kmer_dictionary in dictionaries:
|
708
|
-
result.update(kmer_dictionary)
|
709
|
-
return result
|
710
|
-
# ------------------------------------------------------
|
711
|
-
|
712
|
-
# --- Merge kmer dictionaries ---
|
713
|
-
# ------------------------------------------------------
|
714
|
-
def kaai_to_aai(kaai):
|
715
|
-
# Transform the kAAI into estimated AAI values
|
716
|
-
aai_hat = (-0.3087057 + 1.810741 * (np.exp(-(-0.2607023 * np.log(kaai))**(1/3.435))))*100
|
717
|
-
return aai_hat
|
718
|
-
# ------------------------------------------------------
|
719
|
-
|
720
|
-
|
721
|
-
################################################################################
|
722
|
-
"""---2.0 Main Function---"""
|
723
|
-
|
724
|
-
def main():
|
725
|
-
# Setup parser for arguments.
|
726
|
-
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
727
|
-
description='''This script calculates the average amino acid identity using k-mers\n'''
|
728
|
-
'''from single copy genes. It is a faster version of the regular AAI '''
|
729
|
-
'''(Blast or Diamond) and the hAAI implemented in MiGA.'''
|
730
|
-
'''Usage: ''' + argv[0] + ''' -p [Protein Files] -t [Threads] -o [Output]\n'''
|
731
|
-
'''Global mandatory parameters: -g [Genome Files] OR -p [Protein Files] OR -s [SCG HMM Results] -o [AAI Table Output]\n'''
|
732
|
-
'''Optional Database Parameters: See ''' + argv[0] + ' -h')
|
733
|
-
mandatory_options = parser.add_argument_group('Mandatory i/o options. You must select an option for the queries and one for the references.')
|
734
|
-
mandatory_options.add_argument('--qg', dest='query_genomes', action='store', required=False,
|
735
|
-
help='File with list of query genomes.')
|
736
|
-
mandatory_options.add_argument('--qp', dest='query_proteins', action='store', required=False,
|
737
|
-
help='File with list of query proteins.')
|
738
|
-
mandatory_options.add_argument('--qh', dest='query_hmms', action='store', required=False,
|
739
|
-
help=textwrap.dedent('''
|
740
|
-
File with list of pre-computed query hmmsearch results.
|
741
|
-
If you select this option you must also provide a file with
|
742
|
-
a list of protein files for the queries (with --qp).
|
743
|
-
'''))
|
744
|
-
mandatory_options.add_argument('--qd', dest='query_database', action='store', required=False,
|
745
|
-
help='File with list of pre-indexed query databases.')
|
746
|
-
mandatory_options.add_argument('--rg', dest='reference_genomes', action='store', required=False,
|
747
|
-
help='File with list of reference genomes.')
|
748
|
-
mandatory_options.add_argument('--rp', dest='reference_proteins', action='store', required=False,
|
749
|
-
help='File with list of reference proteins.')
|
750
|
-
mandatory_options.add_argument('--rh', dest='reference_hmms', action='store', required=False,
|
751
|
-
help=textwrap.dedent('''
|
752
|
-
File with list of pre-computed reference hmmsearch results.
|
753
|
-
If you select this option you must also provide a file with
|
754
|
-
a list of protein files for the references (with --qp).
|
755
|
-
'''))
|
756
|
-
mandatory_options.add_argument('--rd', dest='reference_database', action='store', required=False,
|
757
|
-
help='File with list of pre-indexed reference databases.')
|
758
|
-
mandatory_options.add_argument('-o', '--output', dest='output', action='store', required=False, help='Output file. By default kaai_comparisons.txt')
|
759
|
-
additional_input_options = parser.add_argument_group('Behavior modification options.')
|
760
|
-
additional_input_options.add_argument('-e', '--ext', dest='extension', action='store', required=False,
|
761
|
-
help='Extension to remove from original filename, e.g. ".fasta"')
|
762
|
-
additional_input_options.add_argument('-i', '--index', dest='index_db', action='store_true', required=False,
|
763
|
-
help='Only index and store databases, i.e., do not perform comparisons.')
|
764
|
-
additional_input_options.add_argument('-a', '--all-vs-all', dest='all_vs_all',
|
765
|
-
action='store_true', required=False,
|
766
|
-
help='Perform all-vs-all comparison, using only query input.')
|
767
|
-
additional_input_options.add_argument('--input-paths', dest='input_paths',
|
768
|
-
action='store_true', required=False,
|
769
|
-
help='The input files are direct paths to the data, not lists of files.')
|
770
|
-
misc_options = parser.add_argument_group('Miscellaneous options')
|
771
|
-
misc_options.add_argument('--virus', dest='virus', action='store_true', required=False,
|
772
|
-
help='Toggle virus-virus comparisons. Use only with viral genomes or proteins.')
|
773
|
-
misc_options.add_argument('-t', '--threads', dest='threads', action='store', default=1, type=int, required=False,
|
774
|
-
help='Number of threads to use, by default 1')
|
775
|
-
misc_options.add_argument('-k', '--keep', dest='keep', action='store_false', required=False,
|
776
|
-
help='Keep intermediate files, by default true')
|
777
|
-
|
778
|
-
args = parser.parse_args()
|
779
|
-
|
780
|
-
query_genomes = args.query_genomes
|
781
|
-
query_proteins = args.query_proteins
|
782
|
-
query_hmms = args.query_hmms
|
783
|
-
query_database = args.query_database
|
784
|
-
if args.all_vs_all:
|
785
|
-
reference_genomes = query_genomes
|
786
|
-
reference_proteins = query_proteins
|
787
|
-
reference_hmms = query_hmms
|
788
|
-
reference_database = query_database
|
789
|
-
else:
|
790
|
-
reference_genomes = args.reference_genomes
|
791
|
-
reference_proteins = args.reference_proteins
|
792
|
-
reference_hmms = args.reference_hmms
|
793
|
-
reference_database = args.reference_database
|
794
|
-
output = args.output
|
795
|
-
if output == None:
|
796
|
-
output == "kaai_comparisons.txt"
|
797
|
-
extension = args.extension
|
798
|
-
index_db = args.index_db
|
799
|
-
threads = args.threads
|
800
|
-
keep = args.keep
|
801
|
-
virus = args.virus
|
802
|
-
input_paths = args.input_paths
|
803
|
-
|
804
|
-
print("FastAAI started on {}".format(datetime.datetime.now()))
|
805
|
-
# Check user input
|
806
|
-
# ------------------------------------------------------
|
807
|
-
# Check if no query was provided
|
808
|
-
if query_genomes == None and query_proteins == None and query_hmms == None and query_database == None:
|
809
|
-
exit('Please prove a file with a list of queries, e.g., --qg, --qp, --qh, or --qd)')
|
810
|
-
# Check query inputs
|
811
|
-
query_input = None
|
812
|
-
if query_hmms != None:
|
813
|
-
if virus == True:
|
814
|
-
exit("If you are comparing viruses, please start from the genome or protein files.")
|
815
|
-
query_input = query_hmms
|
816
|
-
if query_proteins != None:
|
817
|
-
print("Starting from query hmmsearch results.")
|
818
|
-
print("You also provided the list of protein files used for hmmsearch.")
|
819
|
-
elif query_proteins == None:
|
820
|
-
print("You chose to start from pre-computed hmmsearch results for your queries (--qh).")
|
821
|
-
print("However, I also need the location of the query proteins used for hmmsearch.")
|
822
|
-
exit("Please provide them with --qp.")
|
823
|
-
elif query_proteins != None:
|
824
|
-
query_input = query_proteins
|
825
|
-
print("Starting from query proteins.")
|
826
|
-
elif query_genomes != None:
|
827
|
-
query_input = query_genomes
|
828
|
-
print("Starting from query genomes.")
|
829
|
-
elif query_database != None:
|
830
|
-
query_input = query_database
|
831
|
-
print("Starting from the pre-indexed query database.")
|
832
|
-
# Check if no reference was provided
|
833
|
-
if reference_genomes == None and reference_proteins == None and reference_hmms == None and reference_database == None:
|
834
|
-
exit('Please prove a file with a list of references, e.g., --rg, --rp, --rh, or --rd)')
|
835
|
-
# Check reference inputs
|
836
|
-
reference_input = None
|
837
|
-
if reference_hmms != None:
|
838
|
-
if virus == True:
|
839
|
-
exit("If you are comparing viruses, please start from the genome or protein files.")
|
840
|
-
reference_input = reference_hmms
|
841
|
-
if reference_proteins != None:
|
842
|
-
print("Starting from reference hmmsearch results.")
|
843
|
-
print("You also provided the list of protein files used for hmmsearch.")
|
844
|
-
elif reference_proteins == None:
|
845
|
-
print("You chose to start from pre-computed hmmsearch results for your references (--rh).")
|
846
|
-
print("However, I also need the location of the query proteins used for hmmsearch.")
|
847
|
-
exit("Please provide them with --rp.")
|
848
|
-
elif reference_proteins != None:
|
849
|
-
reference_input = reference_proteins
|
850
|
-
print("Starting from reference proteins.")
|
851
|
-
elif reference_genomes != None:
|
852
|
-
reference_input = reference_genomes
|
853
|
-
print("Starting from reference genomes.")
|
854
|
-
elif reference_database != None:
|
855
|
-
reference_input = reference_database
|
856
|
-
print("Starting from the pre-indexed reference database.")
|
857
|
-
# ------------------------------------------------------
|
858
|
-
|
859
|
-
# Create temporal working directory
|
860
|
-
temporal_working_directory = TemporaryDirectory()
|
861
|
-
# ------------------------------------------------------
|
862
|
-
|
863
|
-
# Check if queries are the same as references (an all-vs-all comparison)
|
864
|
-
# ------------------------------------------------------
|
865
|
-
same_inputs = False
|
866
|
-
if query_input == reference_input:
|
867
|
-
same_inputs = True
|
868
|
-
if same_inputs == True:
|
869
|
-
print('You specified the same query and reference files.')
|
870
|
-
print('I will perform an all vs all comparison :)')
|
871
|
-
# ------------------------------------------------------
|
872
|
-
|
873
|
-
#* Database Parsing is the same regardless of bacterial or viral genomes
|
874
|
-
# If using pre-indexed databases, check if they are valid files.
|
875
|
-
# ------------------------------------------------------
|
876
|
-
# If any of the starting points is from database, then store the
|
877
|
-
# kmer structures in the corresponding dictionaries.
|
878
|
-
# Otherwise read the file list and get the filenames
|
879
|
-
query_kmer_dict = None
|
880
|
-
query_kmer_dict_list = []
|
881
|
-
reference_kmer_dict = None
|
882
|
-
reference_kmer_dict_list = []
|
883
|
-
query_database_files = []
|
884
|
-
reference_database_files = []
|
885
|
-
if query_database != None:
|
886
|
-
if input_paths == True:
|
887
|
-
query_database_files.append(query_database)
|
888
|
-
else:
|
889
|
-
with open(query_database) as database_files:
|
890
|
-
for db_location in database_files:
|
891
|
-
query_database_files.append(db_location)
|
892
|
-
if reference_database != None:
|
893
|
-
if input_paths == True:
|
894
|
-
reference_database_files.append(reference_database)
|
895
|
-
else:
|
896
|
-
with open(reference_database) as database_files:
|
897
|
-
for db_location in database_files:
|
898
|
-
reference_database_files.append(db_location)
|
899
|
-
|
900
|
-
# If starting from database and query == reference
|
901
|
-
if same_inputs == True:
|
902
|
-
if query_database != None:
|
903
|
-
for db_location in query_database_files:
|
904
|
-
if Path(db_location.strip()).is_file():
|
905
|
-
with gzip.open(db_location.strip(), 'rb') as database_handle:
|
906
|
-
temp_dict = pickle.load(database_handle)
|
907
|
-
if isinstance(temp_dict,dict):
|
908
|
-
query_kmer_dict_list.append(temp_dict)
|
909
|
-
#Carlos, this line serves no purpose but does take a bunch of time and mem.
|
910
|
-
#print(query_kmer_dict_list)
|
911
|
-
else:
|
912
|
-
exit("One of the database files appear to have the wrong format. Please provide a correctly formated database.")
|
913
|
-
query_kmer_dict = merge_dicts(query_kmer_dict_list)
|
914
|
-
else:
|
915
|
-
# If the inputs are not the same:
|
916
|
-
# If query and ref are provided
|
917
|
-
if query_database != None and reference_database != None:
|
918
|
-
for db_location in query_database_files:
|
919
|
-
if Path(db_location.strip()).is_file():
|
920
|
-
with gzip.open(db_location.strip(), 'rb') as database_handle:
|
921
|
-
temp_dict = pickle.load(database_handle)
|
922
|
-
if isinstance(temp_dict,dict):
|
923
|
-
query_kmer_dict_list.append(temp_dict)
|
924
|
-
else:
|
925
|
-
exit("One of the query database files appear to have the wrong format. Please provide a correctly formated database.")
|
926
|
-
query_kmer_dict = merge_dicts(query_kmer_dict_list)
|
927
|
-
for db_location in reference_database_files:
|
928
|
-
if Path(db_location.strip()).is_file():
|
929
|
-
with gzip.open(db_location.strip(), 'rb') as database_handle:
|
930
|
-
temp_dict = pickle.load(database_handle)
|
931
|
-
if isinstance(temp_dict,dict):
|
932
|
-
reference_kmer_dict_list.append(temp_dict)
|
933
|
-
else:
|
934
|
-
exit("One of the reference database files appear to have the wrong format. Please provide a correctly formated database.")
|
935
|
-
reference_kmer_dict = merge_dicts(reference_kmer_dict_list)
|
936
|
-
# If only the query has a db
|
937
|
-
elif query_database != None and reference_database == None:
|
938
|
-
for db_location in query_database_files:
|
939
|
-
if Path(db_location.strip()).is_file():
|
940
|
-
with gzip.open(db_location.strip(), 'rb') as database_handle:
|
941
|
-
temp_dict = pickle.load(database_handle)
|
942
|
-
if isinstance(temp_dict,dict):
|
943
|
-
query_kmer_dict_list.append(temp_dict)
|
944
|
-
else:
|
945
|
-
exit("One of the query database files appear to have the wrong format. Please provide a correctly formated database.")
|
946
|
-
query_kmer_dict = merge_dicts(query_kmer_dict_list)
|
947
|
-
# If only the reference has a db
|
948
|
-
elif query_database == None and reference_database != None:
|
949
|
-
for db_location in reference_database_files:
|
950
|
-
if Path(db_location.strip()).is_file():
|
951
|
-
with gzip.open(db_location.strip(), 'rb') as database_handle:
|
952
|
-
temp_dict = pickle.load(database_handle)
|
953
|
-
if isinstance(temp_dict,dict):
|
954
|
-
reference_kmer_dict_list.append(temp_dict)
|
955
|
-
else:
|
956
|
-
exit("One of the reference database files appear to have the wrong format. Please provide a correctly formated database.")
|
957
|
-
reference_kmer_dict = merge_dicts(reference_kmer_dict_list)
|
958
|
-
# ------------------------------------------------------
|
959
|
-
|
960
|
-
# Get files from the query and reference lists and then
|
961
|
-
# create a dictionary with resulting filenames and a list with dictionary keys
|
962
|
-
# The structure of the dictionary is:
|
963
|
-
# original_query, proteins, hmms, filtered_hmms
|
964
|
-
# ------------------------------------------------------
|
965
|
-
# First parse the query:
|
966
|
-
query_list = []
|
967
|
-
query_file_names = {}
|
968
|
-
# For bacterial genomes
|
969
|
-
if virus == False:
|
970
|
-
if query_database != None:
|
971
|
-
pass
|
972
|
-
else:
|
973
|
-
if input_paths == True:
|
974
|
-
query_list.append(query_input)
|
975
|
-
else:
|
976
|
-
with open(query_input, 'r') as query_input_fh:
|
977
|
-
for line in query_input_fh:
|
978
|
-
query_list.append(line.strip())
|
979
|
-
for index, query in enumerate(query_list):
|
980
|
-
query_name = str(Path(query).name)
|
981
|
-
if extension != None:
|
982
|
-
query_name = query_name.replace(extension, "")
|
983
|
-
if query_hmms != None:
|
984
|
-
query_protein_list = []
|
985
|
-
with open(query_proteins, 'r') as query_protein_fh:
|
986
|
-
for line in query_protein_fh:
|
987
|
-
query_protein_list.append(line.strip())
|
988
|
-
query_file_names[query_name] = [None, query_protein_list[index], query, query + '.filt']
|
989
|
-
elif query_proteins != None:
|
990
|
-
query_file_names[query_name] = [None, query, query + '.hmm', query + '.hmm.filt']
|
991
|
-
elif query_genomes != None:
|
992
|
-
query_file_names[query_name] = [query, query + '.faa', query + '.faa.hmm', query + '.faa.hmm.filt']
|
993
|
-
# For viral genomes
|
994
|
-
else:
|
995
|
-
if query_database != None:
|
996
|
-
pass
|
997
|
-
else:
|
998
|
-
if input_paths == True:
|
999
|
-
query_list.append(query_input)
|
1000
|
-
else:
|
1001
|
-
with open(query_input, 'r') as query_input_fh:
|
1002
|
-
for line in query_input_fh:
|
1003
|
-
query_list.append(line.strip())
|
1004
|
-
for index, query in enumerate(query_list):
|
1005
|
-
query_name = str(Path(query).name)
|
1006
|
-
if extension != None:
|
1007
|
-
query_name = query_name.replace(extension, "")
|
1008
|
-
if query_proteins != None:
|
1009
|
-
query_file_names[query_name] = [None, query]
|
1010
|
-
elif query_genomes != None:
|
1011
|
-
query_file_names[query_name] = [query, query + '.faa']
|
1012
|
-
|
1013
|
-
# Then parse the references:
|
1014
|
-
reference_list = []
|
1015
|
-
reference_file_names = {}
|
1016
|
-
if same_inputs == True:
|
1017
|
-
pass
|
1018
|
-
else:
|
1019
|
-
# For bacterial genomes
|
1020
|
-
if virus == False:
|
1021
|
-
if reference_database != None:
|
1022
|
-
pass
|
1023
|
-
else:
|
1024
|
-
if input_paths == True:
|
1025
|
-
reference_list.append(reference_input)
|
1026
|
-
else:
|
1027
|
-
with open(reference_input, 'r') as reference_input_fh:
|
1028
|
-
for line in reference_input_fh:
|
1029
|
-
reference_list.append(line.strip())
|
1030
|
-
for index, reference in enumerate(reference_list):
|
1031
|
-
reference_name = str(Path(reference).name)
|
1032
|
-
if extension != None:
|
1033
|
-
reference_name = reference_name.replace(extension, "")
|
1034
|
-
if reference_hmms != None:
|
1035
|
-
reference_protein_list = []
|
1036
|
-
with open(reference_proteins, 'r') as reference_protein_fh:
|
1037
|
-
for line in reference_protein_fh:
|
1038
|
-
reference_protein_list.append(line.strip())
|
1039
|
-
reference_file_names[reference_name] = [None, reference_protein_list[index], reference, reference + '.filt']
|
1040
|
-
elif reference_proteins != None:
|
1041
|
-
reference_file_names[reference_name] = [None, reference, reference + '.hmm', reference + '.hmm.filt']
|
1042
|
-
elif query_genomes != None:
|
1043
|
-
reference_file_names[reference_name] = [reference, reference + '.faa', reference + '.faa.hmm', reference + '.faa.hmm.filt']
|
1044
|
-
# For viral genomes
|
1045
|
-
else:
|
1046
|
-
if reference_database != None:
|
1047
|
-
pass
|
1048
|
-
else:
|
1049
|
-
if input_paths == True:
|
1050
|
-
reference_list.append(reference_input)
|
1051
|
-
else:
|
1052
|
-
with open(reference_input, 'r') as reference_input_fh:
|
1053
|
-
for line in reference_input_fh:
|
1054
|
-
reference_list.append(line.strip())
|
1055
|
-
for index, reference in enumerate(reference_list):
|
1056
|
-
reference_name = str(Path(reference).name)
|
1057
|
-
if extension != None:
|
1058
|
-
reference_name = reference_name.replace(extension, "")
|
1059
|
-
if reference_proteins != None:
|
1060
|
-
reference_file_names[reference_name] = [None, reference]
|
1061
|
-
elif query_genomes != None:
|
1062
|
-
reference_file_names[reference_name] = [reference, reference + '.faa']
|
1063
|
-
# ------------------------------------------------------
|
1064
|
-
|
1065
|
-
# Pre-index and store databases
|
1066
|
-
# ------------------------------------------------------
|
1067
|
-
# Pre-index queries
|
1068
|
-
if query_kmer_dict == None:
|
1069
|
-
print("Processing queries...")
|
1070
|
-
# If using bacterial genomes
|
1071
|
-
if virus == False:
|
1072
|
-
if query_hmms != None:
|
1073
|
-
query_hmm_results = query_list
|
1074
|
-
elif query_proteins != None:
|
1075
|
-
query_protein_files = query_list
|
1076
|
-
print("Searching against HMM models...")
|
1077
|
-
try:
|
1078
|
-
pool = multiprocessing.Pool(threads)
|
1079
|
-
query_hmm_results = pool.map(run_hmmsearch, query_protein_files)
|
1080
|
-
finally:
|
1081
|
-
pool.close()
|
1082
|
-
pool.join()
|
1083
|
-
elif query_genomes != None:
|
1084
|
-
print("Predicting proteins...")
|
1085
|
-
# Predict query proteins
|
1086
|
-
try:
|
1087
|
-
pool = multiprocessing.Pool(threads)
|
1088
|
-
query_protein_files = pool.map(run_prodigal, query_list)
|
1089
|
-
finally:
|
1090
|
-
pool.close()
|
1091
|
-
pool.join()
|
1092
|
-
print("Done!")
|
1093
|
-
print("Searching against HMM models...")
|
1094
|
-
# Run hmmsearch against proteins predicted
|
1095
|
-
try:
|
1096
|
-
pool = multiprocessing.Pool(threads)
|
1097
|
-
query_hmm_results = pool.map(run_hmmsearch, query_protein_files)
|
1098
|
-
finally:
|
1099
|
-
pool.close()
|
1100
|
-
pool.join()
|
1101
|
-
print("Done!")
|
1102
|
-
print("Filtering query hmmsearch results...")
|
1103
|
-
# Filter query HMM search results
|
1104
|
-
try:
|
1105
|
-
pool = multiprocessing.Pool(threads)
|
1106
|
-
pool.map(partial(hmm_filter, keep=keep), query_hmm_results)
|
1107
|
-
finally:
|
1108
|
-
pool.close()
|
1109
|
-
pool.join()
|
1110
|
-
print("Extracting kmers from query proteins...")
|
1111
|
-
# Finding kmers for all queries
|
1112
|
-
query_information = []
|
1113
|
-
for name, values in query_file_names.items():
|
1114
|
-
query_information.append((name, values[1], values[3]))
|
1115
|
-
try:
|
1116
|
-
pool = multiprocessing.Pool(threads)
|
1117
|
-
kmer_results = pool.map(kmer_extract, query_information)
|
1118
|
-
finally:
|
1119
|
-
pool.close()
|
1120
|
-
pool.join()
|
1121
|
-
query_kmer_dict = merge_dicts(kmer_results)
|
1122
|
-
del kmer_results
|
1123
|
-
# If using viral genomes
|
1124
|
-
else:
|
1125
|
-
if query_genomes != None:
|
1126
|
-
print("Predicting proteins...")
|
1127
|
-
# Predict query proteins
|
1128
|
-
try:
|
1129
|
-
pool = multiprocessing.Pool(threads)
|
1130
|
-
query_protein_files = pool.map(run_prodigal_virus, query_list)
|
1131
|
-
finally:
|
1132
|
-
pool.close()
|
1133
|
-
pool.join()
|
1134
|
-
print("Done!")
|
1135
|
-
elif query_proteins != None:
|
1136
|
-
query_protein_files = query_list
|
1137
|
-
print("Extracting kmers from query proteins...")
|
1138
|
-
query_information = []
|
1139
|
-
for name, values in query_file_names.items():
|
1140
|
-
query_information.append((name, values[1], 4))
|
1141
|
-
try:
|
1142
|
-
pool = multiprocessing.Pool(threads)
|
1143
|
-
kmer_results = pool.map(read_viral_kmers_from_file, query_information)
|
1144
|
-
finally:
|
1145
|
-
pool.close()
|
1146
|
-
pool.join()
|
1147
|
-
query_kmer_dict = merge_dicts(kmer_results)
|
1148
|
-
del kmer_results
|
1149
|
-
|
1150
|
-
# Pre-index references (if different from queries)
|
1151
|
-
if same_inputs == False and reference_kmer_dict == None:
|
1152
|
-
print("Processing references...")
|
1153
|
-
# If using bacterial genomes
|
1154
|
-
if virus == False:
|
1155
|
-
if reference_hmms != None:
|
1156
|
-
reference_hmm_results = reference_list
|
1157
|
-
elif reference_proteins != None:
|
1158
|
-
reference_protein_files = reference_list
|
1159
|
-
print("Searching against HMM models... ")
|
1160
|
-
try:
|
1161
|
-
pool = multiprocessing.Pool(threads)
|
1162
|
-
reference_hmm_results = pool.map(run_hmmsearch, reference_protein_files)
|
1163
|
-
finally:
|
1164
|
-
pool.close()
|
1165
|
-
pool.join()
|
1166
|
-
if reference_genomes != None:
|
1167
|
-
print("Predicting proteins...")
|
1168
|
-
# Predict reference proteins
|
1169
|
-
try:
|
1170
|
-
pool = multiprocessing.Pool(threads)
|
1171
|
-
reference_protein_files = pool.map(run_prodigal, reference_list)
|
1172
|
-
finally:
|
1173
|
-
pool.close()
|
1174
|
-
pool.join()
|
1175
|
-
print("Done!")
|
1176
|
-
print("Searching against HMM models...")
|
1177
|
-
# Run hmmsearch against proteins predicted
|
1178
|
-
try:
|
1179
|
-
pool = multiprocessing.Pool(threads)
|
1180
|
-
reference_hmm_results = pool.map(run_hmmsearch, reference_protein_files)
|
1181
|
-
finally:
|
1182
|
-
pool.close()
|
1183
|
-
pool.join()
|
1184
|
-
print("Done!")
|
1185
|
-
print("Filtering reference hmmsearch results...")
|
1186
|
-
# Filter reference HMM search results
|
1187
|
-
try:
|
1188
|
-
pool = multiprocessing.Pool(threads)
|
1189
|
-
pool.map(partial(hmm_filter, keep=keep), reference_hmm_results)
|
1190
|
-
finally:
|
1191
|
-
pool.close()
|
1192
|
-
pool.join()
|
1193
|
-
print("Extracting kmers from reference proteins...")
|
1194
|
-
# Finding kmers for all queries
|
1195
|
-
reference_information = []
|
1196
|
-
for name, values in reference_file_names.items():
|
1197
|
-
reference_information.append((name, values[1], values[3]))
|
1198
|
-
try:
|
1199
|
-
pool = multiprocessing.Pool(threads)
|
1200
|
-
kmer_results = pool.map(kmer_extract, reference_information)
|
1201
|
-
finally:
|
1202
|
-
pool.close()
|
1203
|
-
pool.join()
|
1204
|
-
reference_kmer_dict = merge_dicts(kmer_results)
|
1205
|
-
del kmer_results
|
1206
|
-
# If using viral genomes
|
1207
|
-
else:
|
1208
|
-
if query_genomes != None:
|
1209
|
-
print("Predicting proteins...")
|
1210
|
-
# Predict query proteins
|
1211
|
-
try:
|
1212
|
-
pool = multiprocessing.Pool(threads)
|
1213
|
-
query_protein_files = pool.map(run_prodigal, query_list)
|
1214
|
-
finally:
|
1215
|
-
pool.close()
|
1216
|
-
pool.join()
|
1217
|
-
print("Done!")
|
1218
|
-
elif query_proteins != None:
|
1219
|
-
query_protein_files = query_list
|
1220
|
-
print("Extracting kmers from query proteins...")
|
1221
|
-
reference_information = []
|
1222
|
-
for name, values in reference_file_names.items():
|
1223
|
-
reference_information.append((name, values[1], 4))
|
1224
|
-
try:
|
1225
|
-
pool = multiprocessing.Pool(threads)
|
1226
|
-
kmer_results = pool.map(read_viral_kmers_from_file, reference_information)
|
1227
|
-
finally:
|
1228
|
-
pool.close()
|
1229
|
-
pool.join()
|
1230
|
-
reference_kmer_dict = merge_dicts(kmer_results)
|
1231
|
-
del kmer_results
|
1232
|
-
# ------------------------------------------------------
|
1233
|
-
|
1234
|
-
# Create or database(s) and compress it(them)
|
1235
|
-
# ------------------------------------------------------
|
1236
|
-
if same_inputs == True and query_database == None:
|
1237
|
-
print("Saving pre-indexed database...")
|
1238
|
-
query_database_name = query_input + '.db.gz'
|
1239
|
-
with gzip.open(query_database_name, 'wb') as database_handle:
|
1240
|
-
pickle.dump(query_kmer_dict, database_handle, protocol=4)
|
1241
|
-
if same_inputs == False and query_database == None and reference_database == None:
|
1242
|
-
print("Saving pre-indexed databases...")
|
1243
|
-
query_database_name = query_input + '.db.gz'
|
1244
|
-
reference_database_name = reference_input + '.db.gz'
|
1245
|
-
with gzip.open(query_database_name, 'wb') as database_handle:
|
1246
|
-
pickle.dump(query_kmer_dict, database_handle, protocol=4)
|
1247
|
-
with gzip.open(reference_database_name, 'wb') as database_handle:
|
1248
|
-
pickle.dump(reference_kmer_dict, database_handle, protocol=4)
|
1249
|
-
elif same_inputs == False and query_database == None:
|
1250
|
-
print("Saving pre-indexed query database...")
|
1251
|
-
query_database_name = query_input + '.db.gz'
|
1252
|
-
with gzip.open(query_database_name, 'wb') as database_handle:
|
1253
|
-
pickle.dump(query_kmer_dict, database_handle, protocol=4)
|
1254
|
-
elif same_inputs == False and reference_database == None:
|
1255
|
-
print("Saving pre-indexed reference database...")
|
1256
|
-
reference_database_name = reference_input + '.db.gz'
|
1257
|
-
with gzip.open(reference_database_name, 'wb') as database_handle:
|
1258
|
-
pickle.dump(reference_kmer_dict, database_handle, protocol=4)
|
1259
|
-
# ------------------------------------------------------
|
1260
|
-
# Calculate Jaccard distances
|
1261
|
-
# ------------------------------------------------------
|
1262
|
-
if index_db == True:
|
1263
|
-
print("Finished pre-indexing databases.")
|
1264
|
-
print("Next time you can run the program using only these files with --qd and(or) --rd.")
|
1265
|
-
else:
|
1266
|
-
print("Calculating shared kmer fraction...")
|
1267
|
-
if virus == False:
|
1268
|
-
if same_inputs == True:
|
1269
|
-
# Create global kmer index dictionary "global_kmer_index_dictionary"
|
1270
|
-
print(temporal_working_directory)
|
1271
|
-
global_unique_kmers([query_kmer_dict])
|
1272
|
-
query_kmer_dict, query_smart_args_tempdir = transform_kmer_dicts_to_arrays(query_kmer_dict, temporal_working_directory, single_dataset=True)
|
1273
|
-
print("Beginning FastAAI pairwise calculations now.")
|
1274
|
-
try:
|
1275
|
-
pool = multiprocessing.Pool(threads, initializer = single_dictionary_initializer, initargs = (query_kmer_dict,))
|
1276
|
-
Fraction_Results = pool.map(single_kaai_parser, query_smart_args_tempdir)
|
1277
|
-
finally:
|
1278
|
-
pool.close()
|
1279
|
-
pool.join()
|
1280
|
-
else:
|
1281
|
-
print(temporal_working_directory)
|
1282
|
-
global_unique_kmers([query_kmer_dict, reference_kmer_dict])
|
1283
|
-
query_kmer_dict, query_smart_args_tempdir = transform_kmer_dicts_to_arrays(query_kmer_dict, temporal_working_directory, single_dataset=False)
|
1284
|
-
reference_kmer_dict, _ref_smart_args_tempdir = transform_kmer_dicts_to_arrays(reference_kmer_dict, temporal_working_directory, single_dataset=False)
|
1285
|
-
print("Beginning FastAAI pairwise calculations now.")
|
1286
|
-
try:
|
1287
|
-
pool = multiprocessing.Pool(threads, initializer = two_dictionary_initializer, initargs = (query_kmer_dict, reference_kmer_dict))
|
1288
|
-
Fraction_Results = pool.map(double_kaai_parser, query_smart_args_tempdir)
|
1289
|
-
finally:
|
1290
|
-
pool.close()
|
1291
|
-
pool.join()
|
1292
|
-
else:
|
1293
|
-
if same_inputs == True:
|
1294
|
-
print(temporal_working_directory)
|
1295
|
-
global_unique_viral_kmers([query_kmer_dict])
|
1296
|
-
query_kmer_dict, query_smart_args_tempdir = transform_viral_kmer_dicts_to_arrays(query_kmer_dict, temporal_working_directory, single_dataset=True)
|
1297
|
-
print("Beginning FastAAI pairwise calculations now.")
|
1298
|
-
try:
|
1299
|
-
pool = multiprocessing.Pool(threads, initializer = single_dictionary_initializer, initargs = (query_kmer_dict,))
|
1300
|
-
Fraction_Results = pool.map(single_virus_kaai_parser, query_smart_args_tempdir)
|
1301
|
-
finally:
|
1302
|
-
pool.close()
|
1303
|
-
pool.join()
|
1304
|
-
else:
|
1305
|
-
print(temporal_working_directory)
|
1306
|
-
global_unique_viral_kmers([query_kmer_dict, reference_kmer_dict])
|
1307
|
-
query_kmer_dict, query_smart_args_tempdir = transform_viral_kmer_dicts_to_arrays(query_kmer_dict, temporal_working_directory, single_dataset=False)
|
1308
|
-
reference_kmer_dict, _ref_smart_args_tempdir = transform_viral_kmer_dicts_to_arrays(reference_kmer_dict, temporal_working_directory, single_dataset=False)
|
1309
|
-
print("Beginning FastAAI pairwise calculations now.")
|
1310
|
-
try:
|
1311
|
-
pool = multiprocessing.Pool(threads, initializer = two_dictionary_initializer, initargs = (query_kmer_dict, reference_kmer_dict))
|
1312
|
-
Fraction_Results = pool.map(double_viral_kaai_parser, query_smart_args_tempdir)
|
1313
|
-
finally:
|
1314
|
-
pool.close()
|
1315
|
-
pool.join()
|
1316
|
-
# ------------------------------------------------------
|
1317
|
-
|
1318
|
-
# Merge results into a single output
|
1319
|
-
# ------------------------------------------------------
|
1320
|
-
print("Merging results...")
|
1321
|
-
print(temporal_working_directory)
|
1322
|
-
with open(output, 'w') as outfile:
|
1323
|
-
for file in Fraction_Results:
|
1324
|
-
with open(file) as Temp:
|
1325
|
-
shutil.copyfileobj(Temp, outfile)
|
1326
|
-
file.unlink()
|
1327
|
-
print("FastAAI finishied correctly on {}".format(datetime.datetime.now()))
|
1328
|
-
# ------------------------------------------------------
|
1329
|
-
# If comparing viral genomes
|
1330
|
-
|
1331
|
-
|
1332
|
-
|
1333
|
-
|
1334
|
-
|
1335
|
-
if __name__ == "__main__":
|
1336
|
-
main()
|