miga-base 0.3.0.0 → 0.3.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +21 -4
- data/actions/init.rb +258 -0
- data/actions/run_local.rb +1 -2
- data/actions/test_taxonomy.rb +4 -1
- data/bin/miga +8 -1
- data/lib/miga/dataset.rb +4 -4
- data/lib/miga/dataset_result.rb +7 -4
- data/lib/miga/version.rb +2 -2
- data/scripts/_distances_noref_nomulti.bash +3 -1
- data/scripts/clade_finding.bash +1 -1
- data/scripts/init.bash +1 -1
- data/scripts/miga.bash +1 -1
- data/scripts/mytaxa.bash +78 -72
- data/scripts/mytaxa_scan.bash +67 -62
- data/scripts/ogs.bash +1 -1
- data/scripts/trimmed_fasta.bash +4 -3
- data/utils/enveomics/Examples/aai-matrix.bash +66 -0
- data/utils/enveomics/Examples/ani-matrix.bash +66 -0
- data/utils/enveomics/Examples/essential-phylogeny.bash +105 -0
- data/utils/enveomics/Examples/unus-genome-phylogeny.bash +100 -0
- data/utils/enveomics/LICENSE.txt +73 -0
- data/utils/enveomics/Makefile +52 -0
- data/utils/enveomics/Manifest/Tasks/aasubs.json +103 -0
- data/utils/enveomics/Manifest/Tasks/blasttab.json +703 -0
- data/utils/enveomics/Manifest/Tasks/distances.json +161 -0
- data/utils/enveomics/Manifest/Tasks/fasta.json +571 -0
- data/utils/enveomics/Manifest/Tasks/fastq.json +208 -0
- data/utils/enveomics/Manifest/Tasks/graphics.json +126 -0
- data/utils/enveomics/Manifest/Tasks/ogs.json +339 -0
- data/utils/enveomics/Manifest/Tasks/other.json +746 -0
- data/utils/enveomics/Manifest/Tasks/remote.json +355 -0
- data/utils/enveomics/Manifest/Tasks/sequence-identity.json +454 -0
- data/utils/enveomics/Manifest/Tasks/tables.json +308 -0
- data/utils/enveomics/Manifest/Tasks/trees.json +68 -0
- data/utils/enveomics/Manifest/Tasks/variants.json +111 -0
- data/utils/enveomics/Manifest/categories.json +132 -0
- data/utils/enveomics/Manifest/examples.json +154 -0
- data/utils/enveomics/Manifest/tasks.json +4 -0
- data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +69 -0
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +56 -0
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +60 -0
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +38 -0
- data/utils/enveomics/Pipelines/assembly.pbs/README.md +189 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +112 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +23 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +44 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +50 -0
- data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +37 -0
- data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +68 -0
- data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +49 -0
- data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +80 -0
- data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +57 -0
- data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +63 -0
- data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +38 -0
- data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +73 -0
- data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +21 -0
- data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +72 -0
- data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +98 -0
- data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +55 -0
- data/utils/enveomics/Pipelines/blast.pbs/README.md +127 -0
- data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +109 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +128 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +16 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +22 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +26 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +89 -0
- data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +29 -0
- data/utils/enveomics/Pipelines/idba.pbs/README.md +49 -0
- data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +95 -0
- data/utils/enveomics/Pipelines/idba.pbs/run.pbs +56 -0
- data/utils/enveomics/Pipelines/trim.pbs/README.md +54 -0
- data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +70 -0
- data/utils/enveomics/Pipelines/trim.pbs/run.pbs +130 -0
- data/utils/enveomics/README.md +40 -0
- data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +171 -0
- data/utils/enveomics/Scripts/Aln.cat.rb +162 -0
- data/utils/enveomics/Scripts/Aln.convert.pl +35 -0
- data/utils/enveomics/Scripts/AlphaDiversity.pl +152 -0
- data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +102 -0
- data/utils/enveomics/Scripts/BlastTab.addlen.rb +61 -0
- data/utils/enveomics/Scripts/BlastTab.advance.bash +48 -0
- data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +55 -0
- data/utils/enveomics/Scripts/BlastTab.catsbj.pl +106 -0
- data/utils/enveomics/Scripts/BlastTab.cogCat.rb +76 -0
- data/utils/enveomics/Scripts/BlastTab.filter.pl +47 -0
- data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +194 -0
- data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +104 -0
- data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +157 -0
- data/utils/enveomics/Scripts/BlastTab.recplot2.R +40 -0
- data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +86 -0
- data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +119 -0
- data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +86 -0
- data/utils/enveomics/Scripts/BlastTab.subsample.pl +47 -0
- data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +114 -0
- data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +90 -0
- data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +101 -0
- data/utils/enveomics/Scripts/Chao1.pl +97 -0
- data/utils/enveomics/Scripts/CharTable.classify.rb +234 -0
- data/utils/enveomics/Scripts/EBIseq2tax.rb +83 -0
- data/utils/enveomics/Scripts/FastA.N50.pl +56 -0
- data/utils/enveomics/Scripts/FastA.filter.pl +52 -0
- data/utils/enveomics/Scripts/FastA.filterLen.pl +28 -0
- data/utils/enveomics/Scripts/FastA.filterN.pl +60 -0
- data/utils/enveomics/Scripts/FastA.fragment.rb +92 -0
- data/utils/enveomics/Scripts/FastA.gc.pl +42 -0
- data/utils/enveomics/Scripts/FastA.interpose.pl +87 -0
- data/utils/enveomics/Scripts/FastA.length.pl +38 -0
- data/utils/enveomics/Scripts/FastA.per_file.pl +36 -0
- data/utils/enveomics/Scripts/FastA.qlen.pl +57 -0
- data/utils/enveomics/Scripts/FastA.rename.pl +65 -0
- data/utils/enveomics/Scripts/FastA.revcom.pl +23 -0
- data/utils/enveomics/Scripts/FastA.slider.pl +85 -0
- data/utils/enveomics/Scripts/FastA.split.pl +55 -0
- data/utils/enveomics/Scripts/FastA.subsample.pl +131 -0
- data/utils/enveomics/Scripts/FastA.tag.rb +64 -0
- data/utils/enveomics/Scripts/FastA.wrap.rb +48 -0
- data/utils/enveomics/Scripts/FastQ.filter.pl +54 -0
- data/utils/enveomics/Scripts/FastQ.interpose.pl +90 -0
- data/utils/enveomics/Scripts/FastQ.offset.pl +90 -0
- data/utils/enveomics/Scripts/FastQ.split.pl +53 -0
- data/utils/enveomics/Scripts/FastQ.tag.rb +63 -0
- data/utils/enveomics/Scripts/FastQ.toFastA.awk +24 -0
- data/utils/enveomics/Scripts/GenBank.add_fields.rb +84 -0
- data/utils/enveomics/Scripts/HMM.essential.rb +254 -0
- data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +83 -0
- data/utils/enveomics/Scripts/JPlace.distances.rb +88 -0
- data/utils/enveomics/Scripts/JPlace.to_iToL.rb +306 -0
- data/utils/enveomics/Scripts/M5nr.getSequences.rb +81 -0
- data/utils/enveomics/Scripts/MeTaxa.distribution.pl +198 -0
- data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +35 -0
- data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +49 -0
- data/utils/enveomics/Scripts/NCBIacc2tax.rb +92 -0
- data/utils/enveomics/Scripts/Newick.autoprune.R +27 -0
- data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +228 -0
- data/utils/enveomics/Scripts/RefSeq.download.bash +48 -0
- data/utils/enveomics/Scripts/SRA.download.bash +50 -0
- data/utils/enveomics/Scripts/TRIBS.plot-test.R +36 -0
- data/utils/enveomics/Scripts/TRIBS.test.R +39 -0
- data/utils/enveomics/Scripts/Table.barplot.R +30 -0
- data/utils/enveomics/Scripts/Table.df2dist.R +30 -0
- data/utils/enveomics/Scripts/Table.filter.pl +61 -0
- data/utils/enveomics/Scripts/Table.merge.pl +77 -0
- data/utils/enveomics/Scripts/Table.replace.rb +69 -0
- data/utils/enveomics/Scripts/Table.round.rb +63 -0
- data/utils/enveomics/Scripts/Table.split.pl +57 -0
- data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +227 -0
- data/utils/enveomics/Scripts/VCF.KaKs.rb +147 -0
- data/utils/enveomics/Scripts/VCF.SNPs.rb +88 -0
- data/utils/enveomics/Scripts/aai.rb +373 -0
- data/utils/enveomics/Scripts/ani.rb +362 -0
- data/utils/enveomics/Scripts/gi2tax.rb +103 -0
- data/utils/enveomics/Scripts/in_silico_GA_GI.pl +96 -0
- data/utils/enveomics/Scripts/lib/data/essential.hmm.gz +0 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +26 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +253 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +182 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +74 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +237 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/stat.rb +30 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +135 -0
- data/utils/enveomics/Scripts/ogs.annotate.rb +88 -0
- data/utils/enveomics/Scripts/ogs.core-pan.rb +160 -0
- data/utils/enveomics/Scripts/ogs.extract.rb +125 -0
- data/utils/enveomics/Scripts/ogs.mcl.rb +186 -0
- data/utils/enveomics/Scripts/ogs.rb +104 -0
- data/utils/enveomics/Scripts/ogs.stats.rb +131 -0
- data/utils/enveomics/Scripts/rbm.rb +137 -0
- data/utils/enveomics/Tests/Makefile +10 -0
- data/utils/enveomics/Tests/Mgen_M2288.faa +3189 -0
- data/utils/enveomics/Tests/Mgen_M2288.fna +8282 -0
- data/utils/enveomics/Tests/Mgen_M2321.fna +8288 -0
- data/utils/enveomics/Tests/Nequ_Kin4M.faa +2970 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +7 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +17 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +137 -0
- data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +123 -0
- data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +200 -0
- data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +55 -0
- data/utils/enveomics/Tests/alkB.nwk +1 -0
- data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +13 -0
- data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +17 -0
- data/utils/enveomics/Tests/hiv1.faa +59 -0
- data/utils/enveomics/Tests/hiv1.fna +134 -0
- data/utils/enveomics/Tests/hiv2.faa +70 -0
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +233 -0
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +1 -0
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +233 -0
- data/utils/enveomics/Tests/phyla_counts.tsv +10 -0
- data/utils/enveomics/Tests/primate_lentivirus.ogs +11 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +9 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +8 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +6 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +9 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +6 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +6 -0
- data/utils/enveomics/build_enveomics_r.bash +44 -0
- data/utils/enveomics/enveomics.R/DESCRIPTION +31 -0
- data/utils/enveomics/enveomics.R/NAMESPACE +35 -0
- data/utils/enveomics/enveomics.R/R/autoprune.R +121 -0
- data/utils/enveomics/enveomics.R/R/barplot.R +165 -0
- data/utils/enveomics/enveomics.R/R/cliopts.R +119 -0
- data/utils/enveomics/enveomics.R/R/df2dist.R +117 -0
- data/utils/enveomics/enveomics.R/R/growthcurve.R +263 -0
- data/utils/enveomics/enveomics.R/R/recplot.R +320 -0
- data/utils/enveomics/enveomics.R/R/recplot2.R +745 -0
- data/utils/enveomics/enveomics.R/R/tribs.R +423 -0
- data/utils/enveomics/enveomics.R/R/utils.R +16 -0
- data/utils/enveomics/enveomics.R/README.md +52 -0
- data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
- data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
- data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +30 -0
- data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +43 -0
- data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +37 -0
- data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +24 -0
- data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +24 -0
- data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +33 -0
- data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +64 -0
- data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +37 -0
- data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +26 -0
- data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +25 -0
- data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +26 -0
- data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +49 -0
- data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +28 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +97 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +40 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +40 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +24 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__findPeak.Rd +40 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__findPeaks.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +22 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +20 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +27 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +53 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +44 -0
- data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +44 -0
- data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +21 -0
- data/utils/enveomics/enveomics.R/man/enveomics.R-package.Rd +15 -0
- data/utils/enveomics/enveomics.R/man/growth.curves.Rd +14 -0
- data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +13 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +43 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +29 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +30 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +71 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/z$-methods.Rd +27 -0
- data/utils/enveomics/globals.mk +8 -0
- data/utils/enveomics/manifest.json +9 -0
- data/utils/index_metadata.rb +0 -0
- data/utils/plot-taxdist.R +0 -0
- data/utils/requirements.txt +19 -19
- metadata +242 -2
@@ -0,0 +1,423 @@
|
|
1
|
+
|
2
|
+
# Use as:
|
3
|
+
# > # Estimate reference (null) model:
|
4
|
+
# > tab <- read.table('Ecoli-ML-dmatrix.txt', sep='\t', h=T, row.names=1)
|
5
|
+
# > dist <- as.dist(tab);
|
6
|
+
# > all.dist <- enve.tribs(dist);
|
7
|
+
# >
|
8
|
+
# > # Estimate subset (test) model:
|
9
|
+
# > lee <- read.table('LEE-strains.txt', as.is=T)$V1
|
10
|
+
# > lee.dist <- enve.tribs(dist, lee, subsamples=seq(0,1,by=0.05), threads=12,
|
11
|
+
# + verbosity=2, pre.tribs=all.dist.merge);
|
12
|
+
# ...
|
13
|
+
# >
|
14
|
+
# > # Plot reference and selection at different subsampling levels:
|
15
|
+
# > plot(all.dist, t='boxplot');
|
16
|
+
# > plot(lee, new=FALSE, col='darkred');
|
17
|
+
# ...
|
18
|
+
# >
|
19
|
+
# > # Test significance of overclustering (or overdispersion):
|
20
|
+
# > lee.test <- enve.tribs.test(dist, lee, pre.tribs=all.dist.merge,
|
21
|
+
# + verbosity=2, threads=12);
|
22
|
+
# > summary(lee.test);
|
23
|
+
# > plot(lee.test);
|
24
|
+
# ...
|
25
|
+
|
26
|
+
|
27
|
+
#==============> Define S4 classes
|
28
|
+
setClass("enve.TRIBS",
|
29
|
+
### Enve-omics representation of "Transformed-space Resampling In Biased Sets
|
30
|
+
### (TRIBS)". This object represents sets of distances between objects,
|
31
|
+
### sampled nearly-uniformly at random in "distance space". Subsampling
|
32
|
+
### without selection is trivial, since both the distances space and the
|
33
|
+
### selection occur in the same transformed space. However, it's useful to
|
34
|
+
### compare randomly subsampled sets against a selected set of objects. This
|
35
|
+
### is intended to identify overdispersion or overclustering (see
|
36
|
+
### `enve.TRIBStest`) of a subset against the entire collection of objects
|
37
|
+
### with minimum impact of sampling biases. This object can be produced by
|
38
|
+
### `enve.tribs` and supports S4 methods `plot` and `summary`.
|
39
|
+
representation(
|
40
|
+
distance='numeric', ##<< Centrality measurement of the distances between the
|
41
|
+
##<< selected objects (without subsampling).
|
42
|
+
points='matrix', ##<< Position of the different objects in distance
|
43
|
+
##<< space.
|
44
|
+
distances='matrix', ##<< Subsampled distances, where the rows are replicates
|
45
|
+
##<< and the columns are subsampling levels.
|
46
|
+
spaceSize='numeric', ##<< Number of objects.
|
47
|
+
selSize='numeric', ##<< Number of selected objects.
|
48
|
+
dimensions='numeric',##<< Number of dimensions in the distance space.
|
49
|
+
subsamples='numeric',##<< Subsampling levels (as fractions, from 0 to 1).
|
50
|
+
call='call') ##<< Call producing this object.
|
51
|
+
,package='enveomics.R'
|
52
|
+
);
|
53
|
+
setClass("enve.TRIBStest",
|
54
|
+
### Test of significance of overclustering or overdispersion in a selected
|
55
|
+
### set of objects with respect to the entire set (see `enve.TRIBS`). This
|
56
|
+
### object can be produced by `enve.tribs.test` and supports S4 methods
|
57
|
+
### `plot` and `summary`.
|
58
|
+
representation(
|
59
|
+
pval.gt='numeric',
|
60
|
+
### P-value for the overdispersion test.
|
61
|
+
pval.lt='numeric',
|
62
|
+
### P-value for the overclustering test.
|
63
|
+
all.dist='numeric',
|
64
|
+
### Empiric PDF of distances for the entire dataset (subsampled at selection
|
65
|
+
### size).
|
66
|
+
sel.dist='numeric',
|
67
|
+
### Empiric PDF of distances for the selected objects (without subsampling).
|
68
|
+
diff.dist='numeric',
|
69
|
+
### Empiric PDF of the difference between `all.dist` and `sel.dist`. The
|
70
|
+
### p-values are estimating by comparing areas in this PDF greater than and
|
71
|
+
### lesser than zero.
|
72
|
+
dist.mids='numeric',
|
73
|
+
### Midpoints of the empiric PDFs of distances.
|
74
|
+
diff.mids='numeric',
|
75
|
+
### Midpoints of the empiric PDF of difference of distances.
|
76
|
+
call='call')
|
77
|
+
### Call producing this object.
|
78
|
+
,package='enveomics.R'
|
79
|
+
);
|
80
|
+
|
81
|
+
#==============> Define S4 methods
|
82
|
+
summary.enve.TRIBS <- function
|
83
|
+
### Summary of an `enve.TRIBS` object.
|
84
|
+
(object,
|
85
|
+
### `enve.TRIBS` object.
|
86
|
+
...
|
87
|
+
### No additional parameters are currently supported.
|
88
|
+
){
|
89
|
+
cat('===[ enve.TRIBS ]-------------------------\n');
|
90
|
+
cat('Selected',attr(object,'selSize'),'of',
|
91
|
+
attr(object,'spaceSize'),'objects in',
|
92
|
+
attr(object,'dimensions'),'dimensions.\n');
|
93
|
+
cat('Collected',length(attr(object,'subsamples')),'subsamples with',
|
94
|
+
nrow(attr(object,'distances')),'replicates each.\n');
|
95
|
+
cat('------------------------------------------\n');
|
96
|
+
cat('call:',as.character(attr(object,'call')),'\n');
|
97
|
+
cat('------------------------------------------\n');
|
98
|
+
}
|
99
|
+
|
100
|
+
plot.enve.TRIBS <- function
|
101
|
+
### Plot an `enve.TRIBS` object.
|
102
|
+
(x,
|
103
|
+
### `enve.TRIBS` object to plot.
|
104
|
+
new=TRUE,
|
105
|
+
### Should a new canvas be drawn?
|
106
|
+
type=c('boxplot', 'points'),
|
107
|
+
### Type of plot. The 'points' plot shows all the replicates, the 'boxplot'
|
108
|
+
### plot represents the values found by `boxplot.stats` as areas, and plots
|
109
|
+
### the outliers as points.
|
110
|
+
col='#00000044',
|
111
|
+
### Color of the areas and/or the points.
|
112
|
+
pt.cex=1/2,
|
113
|
+
### Size of the points.
|
114
|
+
pt.pch=19,
|
115
|
+
### Points character.
|
116
|
+
pt.col=col,
|
117
|
+
### Color of the points.
|
118
|
+
ln.col=col,
|
119
|
+
### Color of the lines.
|
120
|
+
...
|
121
|
+
### Any additional parameters supported by `plot`.
|
122
|
+
){
|
123
|
+
type <- match.arg(type);
|
124
|
+
plot.opts <- list(xlim=range(attr(x,'subsamples'))*attr(x,'selSize'),
|
125
|
+
ylim=range(attr(x,'distances')), ..., t='n', x=1);
|
126
|
+
if(new) do.call(plot, plot.opts);
|
127
|
+
abline(h=attr(x,'distance'), lty=3, col=ln.col);
|
128
|
+
replicates <- nrow(attr(x,'distances'));
|
129
|
+
if(type=='points'){
|
130
|
+
for(i in 1:ncol(attr(x,'distances')))
|
131
|
+
points(rep(round(attr(x,'subsamples')[i]*attr(x,'selSize')),
|
132
|
+
replicates), attr(x,'distances')[,i], cex=pt.cex, pch=pt.pch,
|
133
|
+
col=pt.col);
|
134
|
+
}else{
|
135
|
+
stats <- matrix(NA, nrow=7, ncol=ncol(attr(x,'distances')));
|
136
|
+
for(i in 1:ncol(attr(x,'distances'))){
|
137
|
+
b <- boxplot.stats(attr(x,'distances')[,i]);
|
138
|
+
points(rep(round(attr(x,'subsamples')[i]*attr(x,'selSize')),
|
139
|
+
length(b$out)), b$out, cex=pt.cex, pch=pt.pch, col=pt.col);
|
140
|
+
stats[, i] <- c(b$conf, b$stats[c(1,5,2,4,3)]);
|
141
|
+
}
|
142
|
+
x <- round(attr(x,'subsamples')*attr(x,'selSize'))
|
143
|
+
for(i in c(1,3,5))
|
144
|
+
polygon(c(x, rev(x)), c(stats[i,], rev(stats[i+1,])), border=NA,
|
145
|
+
col=col);
|
146
|
+
lines(x, stats[7,], col=ln.col, lwd=2);
|
147
|
+
}
|
148
|
+
}
|
149
|
+
|
150
|
+
summary.enve.TRIBStest <- function
|
151
|
+
### Summary of an `enve.TRIBStest` object.
|
152
|
+
(object,
|
153
|
+
### `enve.TRIBStest` object.
|
154
|
+
...
|
155
|
+
### No additional parameters are currently supported.
|
156
|
+
){
|
157
|
+
cat('===[ enve.TRIBStest ]---------------------\n');
|
158
|
+
cat('Alternative hypothesis:\n');
|
159
|
+
cat(' The distances in the selection are\n');
|
160
|
+
if(attr(object, 'pval.gt') > attr(object, 'pval.lt')){
|
161
|
+
cat(' smaller than in the entire dataset\n (overclustering)\n');
|
162
|
+
}else{
|
163
|
+
cat(' larger than in the entire dataset\n (overdispersion)\n');
|
164
|
+
}
|
165
|
+
p.val <- min(attr(object, 'pval.gt'), attr(object, 'pval.lt'));
|
166
|
+
if(p.val==0){
|
167
|
+
diff.dist <- attr(object, 'diff.dist');
|
168
|
+
p.val.lim <- min(diff.dist[diff.dist>0]);
|
169
|
+
cat('\n P-value <= ', signif(p.val.lim, 4), sep='');
|
170
|
+
}else{
|
171
|
+
p.val.lim <- p.val;
|
172
|
+
cat('\n P-value: ', signif(p.val, 4), sep='');
|
173
|
+
}
|
174
|
+
cat(' ', ifelse(p.val.lim<=0.01, "**", ifelse(p.val.lim<=0.05, "*", "")),
|
175
|
+
'\n', sep='');
|
176
|
+
cat('------------------------------------------\n');
|
177
|
+
cat('call:',as.character(attr(object,'call')),'\n');
|
178
|
+
cat('------------------------------------------\n');
|
179
|
+
}
|
180
|
+
|
181
|
+
plot.enve.TRIBStest <- function
|
182
|
+
### Plots an `enve.TRIBStest` object.
|
183
|
+
(x,
|
184
|
+
### `enve.TRIBStest` object to plot.
|
185
|
+
type=c('overlap', 'difference'),
|
186
|
+
### What to plot. 'overlap' generates a plot of the two contrasting empirical
|
187
|
+
### PDFs (to compare against each other), 'difference' produces a plot of the
|
188
|
+
### differences between the empirical PDFs (to compare against zero).
|
189
|
+
col='#00000044',
|
190
|
+
### Main color of the plot if type='difference'.
|
191
|
+
col1=col,
|
192
|
+
### First color of the plot if type='overlap'.
|
193
|
+
col2='#44001144',
|
194
|
+
### Second color of the plot if type='overlap'.
|
195
|
+
ylab='Probability',
|
196
|
+
### Y-axis label.
|
197
|
+
xlim=range(attr(x, 'dist.mids')),
|
198
|
+
### X-axis limits.
|
199
|
+
ylim=c(0,max(c(attr(x, 'all.dist'), attr(x, 'sel.dist')))),
|
200
|
+
### Y-axis limits.
|
201
|
+
...
|
202
|
+
### Any other graphical arguments.
|
203
|
+
){
|
204
|
+
type <- match.arg(type);
|
205
|
+
if(type=='overlap'){
|
206
|
+
plot.opts <- list(xlim=xlim, ylim=ylim, ylab=ylab, ..., t='n', x=1);
|
207
|
+
do.call(plot, plot.opts);
|
208
|
+
bins <- length(attr(x, 'dist.mids'))
|
209
|
+
polygon(attr(x, 'dist.mids')[c(1, 1:bins, bins)],
|
210
|
+
c(0,attr(x, 'all.dist'),0), col=col1,
|
211
|
+
border=do.call(rgb, as.list(c(col2rgb(col1)/256, 0.5))));
|
212
|
+
polygon(attr(x, 'dist.mids')[c(1, 1:bins, bins)],
|
213
|
+
c(0,attr(x, 'sel.dist'),0), col=col2,
|
214
|
+
border=do.call(rgb, as.list(c(col2rgb(col2)/256, 0.5))));
|
215
|
+
}else{
|
216
|
+
plot.opts <- list(xlim=range(attr(x, 'diff.mids')),
|
217
|
+
ylim=c(0,max(attr(x, 'diff.dist'))), ylab=ylab, ..., t='n', x=1);
|
218
|
+
do.call(plot, plot.opts);
|
219
|
+
bins <- length(attr(x, 'diff.mids'));
|
220
|
+
polygon(attr(x, 'diff.mids')[c(1, 1:bins, bins)],
|
221
|
+
c(0,attr(x, 'diff.dist'),0), col=col,
|
222
|
+
border=do.call(rgb, as.list(c(col2rgb(col)/256, 0.5))));
|
223
|
+
}
|
224
|
+
}
|
225
|
+
|
226
|
+
enve.TRIBS.merge <- function
|
227
|
+
### Merges two `enve.TRIBS` objects generated from the same objects at
|
228
|
+
### different subsampling levels.
|
229
|
+
(x,
|
230
|
+
### First `enve.TRIBS` object.
|
231
|
+
y
|
232
|
+
### Second `enve.TRIBS` object.
|
233
|
+
){
|
234
|
+
# Check consistency
|
235
|
+
if(attr(x,'distance') != attr(y,'distance'))
|
236
|
+
stop('Total distances in objects are different.');
|
237
|
+
if(any(attr(x,'points') != attr(y,'points')))
|
238
|
+
stop('Points in objects are different.');
|
239
|
+
if(attr(x,'spaceSize') != attr(y,'spaceSize'))
|
240
|
+
stop('Space size in objects are different.');
|
241
|
+
if(attr(x,'selSize') != attr(y,'selSize'))
|
242
|
+
stop('Selection size in objects are different.');
|
243
|
+
if(attr(x,'dimensions') != attr(y,'dimensions'))
|
244
|
+
stop('Dimensions in objects are different.');
|
245
|
+
if(nrow(attr(x,'distances')) != nrow(attr(y,'distances')))
|
246
|
+
stop('Replicates in objects are different.');
|
247
|
+
# Merge
|
248
|
+
a <- attr(x,'subsamples');
|
249
|
+
b <- attr(y,'subsamples');
|
250
|
+
o <- order(c(a,b));
|
251
|
+
o <- o[!duplicated(c(a,b)[o])] ;
|
252
|
+
d <- cbind(attr(x,'distances'), attr(y,'distances'))[, o] ;
|
253
|
+
z <- new('enve.TRIBS',
|
254
|
+
distance=attr(x,'distance'), points=attr(x,'points'),
|
255
|
+
distances=d, spaceSize=attr(x,'spaceSize'),
|
256
|
+
selSize=attr(x,'selSize'), dimensions=attr(x,'dimensions'),
|
257
|
+
subsamples=c(a,b)[o], call=match.call());
|
258
|
+
return(z) ;
|
259
|
+
### Returns an `enve.TRIBS` object.
|
260
|
+
}
|
261
|
+
|
262
|
+
#==============> Define core functions
|
263
|
+
enve.tribs.test <- function
|
264
|
+
### Estimates the empirical difference between all the distances in a set of
|
265
|
+
### objects and a subset, together with its statistical significance.
|
266
|
+
(dist,
|
267
|
+
### Distances as `dist` object.
|
268
|
+
selection,
|
269
|
+
### Selection defining the subset.
|
270
|
+
bins=50,
|
271
|
+
### Number of bins to evaluate in the range of distances.
|
272
|
+
...
|
273
|
+
### Any other parameters supported by `enve.tribs`, except `subsamples`.
|
274
|
+
){
|
275
|
+
s.tribs <- enve.tribs(dist, selection, subsamples=c(0,1), ...);
|
276
|
+
a.tribs <- enve.tribs(dist,
|
277
|
+
subsamples=c(0,attr(s.tribs, 'selSize')/attr(s.tribs, 'spaceSize')), ...);
|
278
|
+
s.dist <- attr(s.tribs, 'distances')[, 2];
|
279
|
+
a.dist <- attr(a.tribs, 'distances')[, 2];
|
280
|
+
range <- range(c(s.dist, a.dist));
|
281
|
+
a.f <- hist(a.dist, breaks=seq(range[1], range[2], length.out=bins),
|
282
|
+
plot=FALSE);
|
283
|
+
s.f <- hist(s.dist, breaks=seq(range[1], range[2], length.out=bins),
|
284
|
+
plot=FALSE);
|
285
|
+
zp.f <- c(); zz.f <- 0; zn.f <- c();
|
286
|
+
p.x <- a.f$counts/sum(a.f$counts);
|
287
|
+
p.y <- s.f$counts/sum(s.f$counts);
|
288
|
+
for(z in 1:length(a.f$mids)){
|
289
|
+
zn.f[z] <- 0;
|
290
|
+
zz.f <- 0;
|
291
|
+
zp.f[z] <- 0;
|
292
|
+
for(k in 1:length(a.f$mids)){
|
293
|
+
if(z < k){
|
294
|
+
zp.f[z] <- zp.f[z] + p.x[k]*p.y[k-z];
|
295
|
+
zn.f[z] <- zn.f[z] + p.x[k-z]*p.y[k];
|
296
|
+
}
|
297
|
+
zz.f <- zz.f + p.x[k]*p.y[k];
|
298
|
+
}
|
299
|
+
}
|
300
|
+
return(new('enve.TRIBStest',
|
301
|
+
pval.gt=sum(c(zz.f, zp.f)), pval.lt=sum(c(zz.f, zn.f)),
|
302
|
+
all.dist=p.x, sel.dist=p.y, diff.dist=c(rev(zn.f), zz.f, zp.f),
|
303
|
+
dist.mids=a.f$mids,
|
304
|
+
diff.mids=seq(diff(range(a.f$mids)), -diff(range(a.f$mids)),
|
305
|
+
length.out=1+2*length(a.f$mids)),
|
306
|
+
call=match.call()));
|
307
|
+
### Returns an `enve.TRIBStest` object.
|
308
|
+
}
|
309
|
+
|
310
|
+
enve.tribs <- function
|
311
|
+
### Subsample any objects in "distance space" to reduce the effect of
|
312
|
+
### sample-clustering. This function was originally designed to subsample
|
313
|
+
### genomes in "phylogenetic distance space", a clear case of strong
|
314
|
+
### clustering bias in sampling, by Luis M. Rodriguez-R and Michael R
|
315
|
+
### Weigand.
|
316
|
+
(dist,
|
317
|
+
### Distances as a `dist` object.
|
318
|
+
selection=labels(dist),
|
319
|
+
### Objects to include in the subsample. By default, all objects are
|
320
|
+
### selected.
|
321
|
+
replicates=1000,
|
322
|
+
### Number of replications per point
|
323
|
+
summary.fx=median,
|
324
|
+
### Function to summarize the distance distributions in a given replicate. By
|
325
|
+
### default, the median distance is estimated.
|
326
|
+
dist.method='euclidean',
|
327
|
+
### Distance method between random points and samples in the transformed
|
328
|
+
### space. See `dist`.
|
329
|
+
subsamples=seq(0,1,by=0.01),
|
330
|
+
### Subsampling fractions
|
331
|
+
dimensions=ceiling(length(selection)*0.05),
|
332
|
+
### Dimensions to use in the NMDS. By default, 5% of the selection length.
|
333
|
+
metaMDS.opts=list(),
|
334
|
+
### Any additional options to pass to metaMDS, as `list`.
|
335
|
+
threads=2,
|
336
|
+
### Number of threads to use.
|
337
|
+
verbosity=1,
|
338
|
+
### Verbosity. Use 0 to run quietly, increase for additional information.
|
339
|
+
points,
|
340
|
+
### Optional. If passed, the MDS step is skipped and this object is used
|
341
|
+
### instead. It can be the `$points` slot of class `metaMDS` (from `vegan`).
|
342
|
+
### It must be a matrix or matrix-coercible object, with samples as rows and
|
343
|
+
### dimensions as columns.
|
344
|
+
pre.tribs
|
345
|
+
### Optional. If passed, the points are recovered from this object (except if
|
346
|
+
### `points` is also passed. This should be an `enve.TRIBS` object estimated
|
347
|
+
### on the same objects (the selection is unimportant).
|
348
|
+
){
|
349
|
+
if(!is(dist, 'dist'))
|
350
|
+
stop('`dist` parameter must be a `dist` object.');
|
351
|
+
# 1. NMDS
|
352
|
+
if(missing(points)){
|
353
|
+
if(missing(pre.tribs)){
|
354
|
+
if(verbosity > 0)
|
355
|
+
cat('===[ Estimating NMDS ]\n');
|
356
|
+
if(!suppressPackageStartupMessages(
|
357
|
+
requireNamespace("vegan", quietly=TRUE)))
|
358
|
+
stop('Unavailable required package: `vegan`.');
|
359
|
+
mds.args <- c(metaMDS.opts, list(comm=dist, k=dimensions,
|
360
|
+
trace=verbosity));
|
361
|
+
points <- do.call(vegan::metaMDS, mds.args)$points;
|
362
|
+
}else{
|
363
|
+
points <- attr(pre.tribs, 'points');
|
364
|
+
dimensions <- ncol(points);
|
365
|
+
}
|
366
|
+
}else{
|
367
|
+
points <- as.matrix(points);
|
368
|
+
dimensions <- ncol(points);
|
369
|
+
}
|
370
|
+
# 2. Pad ranges
|
371
|
+
if(verbosity > 0) cat('===[ Padding ranges ]\n');
|
372
|
+
dots <- matrix(NA, nrow=nrow(points), ncol=dimensions,
|
373
|
+
dimnames=list(rownames(points), 1:dimensions));
|
374
|
+
selection <- selection[!is.na(match(selection, rownames(dots)))];
|
375
|
+
for(dim in 1:dimensions){
|
376
|
+
dimRange <- range(points[,dim]) +
|
377
|
+
c(-1,1)*diff(range(points[,1]))/length(selection);
|
378
|
+
dots[, dim] <- (points[,dim]-dimRange[1])/diff(dimRange);
|
379
|
+
}
|
380
|
+
# 3. Select points and summarize distances
|
381
|
+
if(verbosity > 0) cat('===[ Sub-sampling ]\n');
|
382
|
+
distances <- matrix(NA, nrow=replicates, ncol=length(subsamples),
|
383
|
+
dimnames=list(1:replicates, as.character(subsamples)));
|
384
|
+
cl <- makeCluster(threads);
|
385
|
+
for(frx in subsamples){
|
386
|
+
if(verbosity > 1) cat('Sub-sampling at ',(frx*100),'%\n',sep='');
|
387
|
+
distances[, as.character(frx)] = parSapply(cl, 1:replicates, enve.__tribs,
|
388
|
+
frx, match(selection, rownames(dots)), dimensions, dots, dist.method,
|
389
|
+
summary.fx, dist);
|
390
|
+
}
|
391
|
+
stopCluster(cl);
|
392
|
+
# 4. Build object and return
|
393
|
+
return(new('enve.TRIBS',
|
394
|
+
distance=do.call(summary.fx, list(as.matrix(dist)[selection, selection])),
|
395
|
+
points=points, distances=distances, spaceSize=nrow(points),
|
396
|
+
selSize=length(selection), dimensions=dimensions, subsamples=subsamples,
|
397
|
+
call=match.call()));
|
398
|
+
### Returns an `enve.TRIBS` object.
|
399
|
+
}
|
400
|
+
|
401
|
+
enve.__tribs <- function
|
402
|
+
### Internal ancilliary function (see `enve.tribs`).
|
403
|
+
(rep, frx, selection, dimensions, dots, dist.method, summary.fx, dist){
|
404
|
+
sample <- c();
|
405
|
+
if(frx==0) return(0);
|
406
|
+
for(point in 1:round(frx*length(selection))){
|
407
|
+
rand.point <- runif(dimensions);
|
408
|
+
closest.dot <- '';
|
409
|
+
closest.dist <- Inf;
|
410
|
+
for(dot in selection){
|
411
|
+
dot.dist <- as.numeric(dist(matrix(c(rand.point, dots[dot,]), nrow=2,
|
412
|
+
byrow=TRUE), method=dist.method));
|
413
|
+
if(dot.dist < closest.dist){
|
414
|
+
closest.dot <- dot;
|
415
|
+
closest.dist <- dot.dist;
|
416
|
+
}
|
417
|
+
}
|
418
|
+
sample <- c(sample, closest.dot);
|
419
|
+
}
|
420
|
+
return( do.call(summary.fx, list(as.matrix(dist)[sample, sample])) );
|
421
|
+
}
|
422
|
+
|
423
|
+
|
@@ -0,0 +1,16 @@
|
|
1
|
+
|
2
|
+
|
3
|
+
enve.col.alpha <- function
|
4
|
+
### Modify alpha in a color (or vector of colors).
|
5
|
+
(col,
|
6
|
+
### Color or vector of colors. It can be any value supported by `col2rgb`,
|
7
|
+
### such as 'darkred' or '#009988'.
|
8
|
+
alpha=1/2
|
9
|
+
### Alpha value to add to the color, from 0 to 1.
|
10
|
+
){
|
11
|
+
return(
|
12
|
+
apply(col2rgb(col), 2,
|
13
|
+
function(x) do.call(rgb, as.list(c(x[1:3]/256, alpha))) ) )
|
14
|
+
### Returns a color or a vector of colors in hex notation including alpha.
|
15
|
+
}
|
16
|
+
|
@@ -0,0 +1,52 @@
|
|
1
|
+
# enveomics.R
|
2
|
+
|
3
|
+
## Installing `enveomics.R`
|
4
|
+
To install the latest version of `enveomics.R` uploaded to CRAN, execute in R:
|
5
|
+
|
6
|
+
```R
|
7
|
+
install.packages('enveomics.R')
|
8
|
+
```
|
9
|
+
|
10
|
+
To install the current developer version of `enveomics.R`, execute in R:
|
11
|
+
|
12
|
+
```R
|
13
|
+
install.packages('devtools')
|
14
|
+
library('devtools')
|
15
|
+
install_github('lmrodriguezr/enveomics', subdir='enveomics.R')
|
16
|
+
```
|
17
|
+
|
18
|
+
## Using `enveomics.R`
|
19
|
+
To load enveomics.R, simply execute:
|
20
|
+
|
21
|
+
```R
|
22
|
+
library(enveomics.R);
|
23
|
+
```
|
24
|
+
|
25
|
+
And open help messages using any of the following commands:
|
26
|
+
|
27
|
+
```R
|
28
|
+
?enveomics.R
|
29
|
+
?enve.barplot
|
30
|
+
?enve.recplot2
|
31
|
+
?enve.recplot2.changeCutoff
|
32
|
+
?enve.recplot2.findPeaks
|
33
|
+
?enve.recplot2.corePeak
|
34
|
+
?enve.recplot2.extractWindows
|
35
|
+
?enve.prune.dist
|
36
|
+
?enve.tribs
|
37
|
+
?enve.tribs.test
|
38
|
+
?enve.growthcurve
|
39
|
+
?enve.col.alpha
|
40
|
+
```
|
41
|
+
|
42
|
+
You can run some examples using these libraries in the
|
43
|
+
[enveomics-GUI](https://github.com/lmrodriguezr/enveomics-gui).
|
44
|
+
|
45
|
+
## Changelog
|
46
|
+
* 1.1.0: New function enve.growthcurve and related class enve.GrowthCurve
|
47
|
+
with S3 methods plot and summary.
|
48
|
+
* 1.0.2: Fine-tuned default parameters in enve.recplot2.findPeaks and
|
49
|
+
solved a minor bug in enve.recplot2 that caused failures in low-coverage
|
50
|
+
datasets when using too many threads.
|
51
|
+
* 1.0.1: enve.recplot2 now supports pos.breaks=0 to define a
|
52
|
+
bin per subject sequence.
|