miga-base 0.3.0.0 → 0.3.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +21 -4
- data/actions/init.rb +258 -0
- data/actions/run_local.rb +1 -2
- data/actions/test_taxonomy.rb +4 -1
- data/bin/miga +8 -1
- data/lib/miga/dataset.rb +4 -4
- data/lib/miga/dataset_result.rb +7 -4
- data/lib/miga/version.rb +2 -2
- data/scripts/_distances_noref_nomulti.bash +3 -1
- data/scripts/clade_finding.bash +1 -1
- data/scripts/init.bash +1 -1
- data/scripts/miga.bash +1 -1
- data/scripts/mytaxa.bash +78 -72
- data/scripts/mytaxa_scan.bash +67 -62
- data/scripts/ogs.bash +1 -1
- data/scripts/trimmed_fasta.bash +4 -3
- data/utils/enveomics/Examples/aai-matrix.bash +66 -0
- data/utils/enveomics/Examples/ani-matrix.bash +66 -0
- data/utils/enveomics/Examples/essential-phylogeny.bash +105 -0
- data/utils/enveomics/Examples/unus-genome-phylogeny.bash +100 -0
- data/utils/enveomics/LICENSE.txt +73 -0
- data/utils/enveomics/Makefile +52 -0
- data/utils/enveomics/Manifest/Tasks/aasubs.json +103 -0
- data/utils/enveomics/Manifest/Tasks/blasttab.json +703 -0
- data/utils/enveomics/Manifest/Tasks/distances.json +161 -0
- data/utils/enveomics/Manifest/Tasks/fasta.json +571 -0
- data/utils/enveomics/Manifest/Tasks/fastq.json +208 -0
- data/utils/enveomics/Manifest/Tasks/graphics.json +126 -0
- data/utils/enveomics/Manifest/Tasks/ogs.json +339 -0
- data/utils/enveomics/Manifest/Tasks/other.json +746 -0
- data/utils/enveomics/Manifest/Tasks/remote.json +355 -0
- data/utils/enveomics/Manifest/Tasks/sequence-identity.json +454 -0
- data/utils/enveomics/Manifest/Tasks/tables.json +308 -0
- data/utils/enveomics/Manifest/Tasks/trees.json +68 -0
- data/utils/enveomics/Manifest/Tasks/variants.json +111 -0
- data/utils/enveomics/Manifest/categories.json +132 -0
- data/utils/enveomics/Manifest/examples.json +154 -0
- data/utils/enveomics/Manifest/tasks.json +4 -0
- data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +69 -0
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +56 -0
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +60 -0
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +38 -0
- data/utils/enveomics/Pipelines/assembly.pbs/README.md +189 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +112 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +23 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +44 -0
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +50 -0
- data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +37 -0
- data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +68 -0
- data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +49 -0
- data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +80 -0
- data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +57 -0
- data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +63 -0
- data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +38 -0
- data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +73 -0
- data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +21 -0
- data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +72 -0
- data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +98 -0
- data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +55 -0
- data/utils/enveomics/Pipelines/blast.pbs/README.md +127 -0
- data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +109 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +128 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +16 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +22 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +26 -0
- data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +89 -0
- data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +29 -0
- data/utils/enveomics/Pipelines/idba.pbs/README.md +49 -0
- data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +95 -0
- data/utils/enveomics/Pipelines/idba.pbs/run.pbs +56 -0
- data/utils/enveomics/Pipelines/trim.pbs/README.md +54 -0
- data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +70 -0
- data/utils/enveomics/Pipelines/trim.pbs/run.pbs +130 -0
- data/utils/enveomics/README.md +40 -0
- data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +171 -0
- data/utils/enveomics/Scripts/Aln.cat.rb +162 -0
- data/utils/enveomics/Scripts/Aln.convert.pl +35 -0
- data/utils/enveomics/Scripts/AlphaDiversity.pl +152 -0
- data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +102 -0
- data/utils/enveomics/Scripts/BlastTab.addlen.rb +61 -0
- data/utils/enveomics/Scripts/BlastTab.advance.bash +48 -0
- data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +55 -0
- data/utils/enveomics/Scripts/BlastTab.catsbj.pl +106 -0
- data/utils/enveomics/Scripts/BlastTab.cogCat.rb +76 -0
- data/utils/enveomics/Scripts/BlastTab.filter.pl +47 -0
- data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +194 -0
- data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +104 -0
- data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +157 -0
- data/utils/enveomics/Scripts/BlastTab.recplot2.R +40 -0
- data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +86 -0
- data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +119 -0
- data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +86 -0
- data/utils/enveomics/Scripts/BlastTab.subsample.pl +47 -0
- data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +114 -0
- data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +90 -0
- data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +101 -0
- data/utils/enveomics/Scripts/Chao1.pl +97 -0
- data/utils/enveomics/Scripts/CharTable.classify.rb +234 -0
- data/utils/enveomics/Scripts/EBIseq2tax.rb +83 -0
- data/utils/enveomics/Scripts/FastA.N50.pl +56 -0
- data/utils/enveomics/Scripts/FastA.filter.pl +52 -0
- data/utils/enveomics/Scripts/FastA.filterLen.pl +28 -0
- data/utils/enveomics/Scripts/FastA.filterN.pl +60 -0
- data/utils/enveomics/Scripts/FastA.fragment.rb +92 -0
- data/utils/enveomics/Scripts/FastA.gc.pl +42 -0
- data/utils/enveomics/Scripts/FastA.interpose.pl +87 -0
- data/utils/enveomics/Scripts/FastA.length.pl +38 -0
- data/utils/enveomics/Scripts/FastA.per_file.pl +36 -0
- data/utils/enveomics/Scripts/FastA.qlen.pl +57 -0
- data/utils/enveomics/Scripts/FastA.rename.pl +65 -0
- data/utils/enveomics/Scripts/FastA.revcom.pl +23 -0
- data/utils/enveomics/Scripts/FastA.slider.pl +85 -0
- data/utils/enveomics/Scripts/FastA.split.pl +55 -0
- data/utils/enveomics/Scripts/FastA.subsample.pl +131 -0
- data/utils/enveomics/Scripts/FastA.tag.rb +64 -0
- data/utils/enveomics/Scripts/FastA.wrap.rb +48 -0
- data/utils/enveomics/Scripts/FastQ.filter.pl +54 -0
- data/utils/enveomics/Scripts/FastQ.interpose.pl +90 -0
- data/utils/enveomics/Scripts/FastQ.offset.pl +90 -0
- data/utils/enveomics/Scripts/FastQ.split.pl +53 -0
- data/utils/enveomics/Scripts/FastQ.tag.rb +63 -0
- data/utils/enveomics/Scripts/FastQ.toFastA.awk +24 -0
- data/utils/enveomics/Scripts/GenBank.add_fields.rb +84 -0
- data/utils/enveomics/Scripts/HMM.essential.rb +254 -0
- data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +83 -0
- data/utils/enveomics/Scripts/JPlace.distances.rb +88 -0
- data/utils/enveomics/Scripts/JPlace.to_iToL.rb +306 -0
- data/utils/enveomics/Scripts/M5nr.getSequences.rb +81 -0
- data/utils/enveomics/Scripts/MeTaxa.distribution.pl +198 -0
- data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +35 -0
- data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +49 -0
- data/utils/enveomics/Scripts/NCBIacc2tax.rb +92 -0
- data/utils/enveomics/Scripts/Newick.autoprune.R +27 -0
- data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +228 -0
- data/utils/enveomics/Scripts/RefSeq.download.bash +48 -0
- data/utils/enveomics/Scripts/SRA.download.bash +50 -0
- data/utils/enveomics/Scripts/TRIBS.plot-test.R +36 -0
- data/utils/enveomics/Scripts/TRIBS.test.R +39 -0
- data/utils/enveomics/Scripts/Table.barplot.R +30 -0
- data/utils/enveomics/Scripts/Table.df2dist.R +30 -0
- data/utils/enveomics/Scripts/Table.filter.pl +61 -0
- data/utils/enveomics/Scripts/Table.merge.pl +77 -0
- data/utils/enveomics/Scripts/Table.replace.rb +69 -0
- data/utils/enveomics/Scripts/Table.round.rb +63 -0
- data/utils/enveomics/Scripts/Table.split.pl +57 -0
- data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +227 -0
- data/utils/enveomics/Scripts/VCF.KaKs.rb +147 -0
- data/utils/enveomics/Scripts/VCF.SNPs.rb +88 -0
- data/utils/enveomics/Scripts/aai.rb +373 -0
- data/utils/enveomics/Scripts/ani.rb +362 -0
- data/utils/enveomics/Scripts/gi2tax.rb +103 -0
- data/utils/enveomics/Scripts/in_silico_GA_GI.pl +96 -0
- data/utils/enveomics/Scripts/lib/data/essential.hmm.gz +0 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +26 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +253 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +182 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +74 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +237 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/stat.rb +30 -0
- data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +135 -0
- data/utils/enveomics/Scripts/ogs.annotate.rb +88 -0
- data/utils/enveomics/Scripts/ogs.core-pan.rb +160 -0
- data/utils/enveomics/Scripts/ogs.extract.rb +125 -0
- data/utils/enveomics/Scripts/ogs.mcl.rb +186 -0
- data/utils/enveomics/Scripts/ogs.rb +104 -0
- data/utils/enveomics/Scripts/ogs.stats.rb +131 -0
- data/utils/enveomics/Scripts/rbm.rb +137 -0
- data/utils/enveomics/Tests/Makefile +10 -0
- data/utils/enveomics/Tests/Mgen_M2288.faa +3189 -0
- data/utils/enveomics/Tests/Mgen_M2288.fna +8282 -0
- data/utils/enveomics/Tests/Mgen_M2321.fna +8288 -0
- data/utils/enveomics/Tests/Nequ_Kin4M.faa +2970 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +7 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +17 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +137 -0
- data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +123 -0
- data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +200 -0
- data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +55 -0
- data/utils/enveomics/Tests/alkB.nwk +1 -0
- data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +13 -0
- data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +17 -0
- data/utils/enveomics/Tests/hiv1.faa +59 -0
- data/utils/enveomics/Tests/hiv1.fna +134 -0
- data/utils/enveomics/Tests/hiv2.faa +70 -0
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +233 -0
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +1 -0
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +233 -0
- data/utils/enveomics/Tests/phyla_counts.tsv +10 -0
- data/utils/enveomics/Tests/primate_lentivirus.ogs +11 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +9 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +8 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +6 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +9 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +6 -0
- data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +6 -0
- data/utils/enveomics/build_enveomics_r.bash +44 -0
- data/utils/enveomics/enveomics.R/DESCRIPTION +31 -0
- data/utils/enveomics/enveomics.R/NAMESPACE +35 -0
- data/utils/enveomics/enveomics.R/R/autoprune.R +121 -0
- data/utils/enveomics/enveomics.R/R/barplot.R +165 -0
- data/utils/enveomics/enveomics.R/R/cliopts.R +119 -0
- data/utils/enveomics/enveomics.R/R/df2dist.R +117 -0
- data/utils/enveomics/enveomics.R/R/growthcurve.R +263 -0
- data/utils/enveomics/enveomics.R/R/recplot.R +320 -0
- data/utils/enveomics/enveomics.R/R/recplot2.R +745 -0
- data/utils/enveomics/enveomics.R/R/tribs.R +423 -0
- data/utils/enveomics/enveomics.R/R/utils.R +16 -0
- data/utils/enveomics/enveomics.R/README.md +52 -0
- data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
- data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
- data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +30 -0
- data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +43 -0
- data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +37 -0
- data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +24 -0
- data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +24 -0
- data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +33 -0
- data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +64 -0
- data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +37 -0
- data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +19 -0
- data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +26 -0
- data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +25 -0
- data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +26 -0
- data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +49 -0
- data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +28 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +97 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +40 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +40 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +24 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__findPeak.Rd +40 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__findPeaks.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +22 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +20 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +27 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +53 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +44 -0
- data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +44 -0
- data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +21 -0
- data/utils/enveomics/enveomics.R/man/enveomics.R-package.Rd +15 -0
- data/utils/enveomics/enveomics.R/man/growth.curves.Rd +14 -0
- data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +13 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +43 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +29 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +30 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +71 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/z$-methods.Rd +27 -0
- data/utils/enveomics/globals.mk +8 -0
- data/utils/enveomics/manifest.json +9 -0
- data/utils/index_metadata.rb +0 -0
- data/utils/plot-taxdist.R +0 -0
- data/utils/requirements.txt +19 -19
- metadata +242 -2
@@ -0,0 +1,165 @@
|
|
1
|
+
|
2
|
+
enve.barplot <- structure(function(
|
3
|
+
### Creates nice barplots from tab-delimited tables
|
4
|
+
x,
|
5
|
+
### Can be either the input data or the path to the file containing the
|
6
|
+
### table. If it contains the data, it must be a data frame or an object
|
7
|
+
### coercible to data frame. If it is a path, it must point to a
|
8
|
+
### tab-delimited file containing header (first row) and row names (first
|
9
|
+
### column).
|
10
|
+
sizes,
|
11
|
+
### A numeric vector containing the real size of the samples (columns) in
|
12
|
+
### the same order of the input table. If set, the values are assumed to be
|
13
|
+
### 100%, otherwise the sum of the columns is used.
|
14
|
+
top=25,
|
15
|
+
### Maximum number of categories to display. Any additional categories will
|
16
|
+
### be listed as "Others".
|
17
|
+
colors.per.group=9,
|
18
|
+
### Number of categories in the first two saturation groups of colors. The
|
19
|
+
### third group contains the remaining categories if needed.
|
20
|
+
bars.width=4,
|
21
|
+
### Width of the barplot with respect to the legend.
|
22
|
+
legend.ncol=1,
|
23
|
+
### Number of columns in the legend.
|
24
|
+
other.col='#000000',
|
25
|
+
### Color of the "Others" category.
|
26
|
+
add.trend=FALSE,
|
27
|
+
### Controls if semi-transparent areas are to be plotted between the bars to
|
28
|
+
### connect the regions (trend regions).
|
29
|
+
organic.trend=FALSE,
|
30
|
+
### Controls if the trend regions are to be smoothed (curves). By default,
|
31
|
+
### trend regions have straight edges. If TRUE, forces add.trend=TRUE.
|
32
|
+
sort.by=median,
|
33
|
+
### Any function that takes a numeric vector and returns a numeric scalar.
|
34
|
+
### This function is applied to each row, and the resulting values are used
|
35
|
+
### to sort the rows (decreasingly). Good options include: sd, min, max,
|
36
|
+
### mean, median.
|
37
|
+
min.report=101,
|
38
|
+
### Minimum percentage to report the value in the plot. Any value above 100
|
39
|
+
### indicates that no values are to be reported.
|
40
|
+
order=NULL,
|
41
|
+
### Controls how the rows should be ordered. If NULL (default), sort.by is
|
42
|
+
### applied per row and the results are sorted decreasingly. If NA, no
|
43
|
+
### sorting is performed, i.e., the original order is respected. If a vector
|
44
|
+
### is provided, it is assumed to be the custom order to be used (either by
|
45
|
+
### numeric index or by row names).
|
46
|
+
col,
|
47
|
+
### Colors to use. If provided, overrides the variables `top` and
|
48
|
+
### `colors.per.group`, but `other.col` is still used if the vector is
|
49
|
+
### insufficient for all the rows. An additional palette is available with
|
50
|
+
### col='coto' (contributed by Luis (Coto) Orellana).
|
51
|
+
...
|
52
|
+
### Any additional parameters to be passed to `barplot`.
|
53
|
+
){
|
54
|
+
|
55
|
+
# Read input
|
56
|
+
if(is.character(x)){
|
57
|
+
c <- read.table(x, sep='\t', header=TRUE, row.names=1, quote='',
|
58
|
+
comment.char='')
|
59
|
+
}else{
|
60
|
+
c <- as.data.frame(x)
|
61
|
+
}
|
62
|
+
if(missing(sizes)) sizes = colSums(c)
|
63
|
+
p <- c
|
64
|
+
for (i in 1:ncol(c)) p[, i] <- c[, i]*100/sizes[i]
|
65
|
+
if(top > nrow(p)) top = nrow(p)
|
66
|
+
|
67
|
+
# Sort
|
68
|
+
if(is.null(order[1])){
|
69
|
+
p <- p[order(apply(p, 1, sort.by)), ]
|
70
|
+
}else if(is.na(order[1])){
|
71
|
+
|
72
|
+
}else{
|
73
|
+
p <- p[order, ]
|
74
|
+
}
|
75
|
+
if(organic.trend) add.trend=TRUE
|
76
|
+
|
77
|
+
# Colors
|
78
|
+
if(is.null(top)) top <- nrow(p)
|
79
|
+
if(missing(col)){
|
80
|
+
color.col <- rainbow(min(colors.per.group, top), s=1, v=4/5)
|
81
|
+
if(top > colors.per.group) color.col <- c(color.col,
|
82
|
+
rainbow(min(colors.per.group*2, top)-colors.per.group, s=3/4, v=3/5))
|
83
|
+
if(top > colors.per.group*2) color.col <- c(color.col,
|
84
|
+
rainbow(top-colors.per.group*2, s=1, v=1.25/4))
|
85
|
+
}else if(length(col)==1 & col=='coto'){
|
86
|
+
color.col <- c("#5BC0EB","#FDE74C","#9BC53D","#E55934","#FA7921","#EF476F",
|
87
|
+
"#FFD166","#06D6A0","#118AB2","#073B4C","#264653","#2A9D8F",
|
88
|
+
"#E9C46A","#F4A261","#E76F51")
|
89
|
+
color.col <- head(color.col, n=nrow(p))
|
90
|
+
top <- length(color.col)
|
91
|
+
}else{
|
92
|
+
color.col <- col
|
93
|
+
color.col <- tail(color.col, n=nrow(p))
|
94
|
+
top <- length(color.col)
|
95
|
+
}
|
96
|
+
|
97
|
+
# Plot
|
98
|
+
layout(matrix(1:2, nrow=1), widths=c(bars.width,1))
|
99
|
+
mar <- par('mar')
|
100
|
+
par(mar=c(5,4,4,0)+0.1)
|
101
|
+
mp <- barplot(as.matrix(p),
|
102
|
+
col=rev(c(color.col, rep(other.col, nrow(p)-length(color.col)))),
|
103
|
+
border=NA,space=ifelse(add.trend,ifelse(organic.trend,0.75,0.5),0.2), ...)
|
104
|
+
if(add.trend || min.report < max(p)){
|
105
|
+
color.alpha <- paste(c(substr(color.col, 1, 7), other.col), '40', sep='')
|
106
|
+
if(top < nrow(p)){
|
107
|
+
cf <- colSums(p[1:(nrow(p)-top), ])
|
108
|
+
}else{
|
109
|
+
cf <- rep(0, ncol(p))
|
110
|
+
}
|
111
|
+
for(i in (nrow(p)-top+1):nrow(p)){
|
112
|
+
f <- as.numeric(p[i, ])
|
113
|
+
cf <- as.numeric(cf + f)
|
114
|
+
if(nrow(p)-i < top){
|
115
|
+
if(organic.trend){
|
116
|
+
spc <- 0.5
|
117
|
+
x <- c(mp[1]-spc)
|
118
|
+
y1 <- c(cf[1]-f[1])
|
119
|
+
y2 <- c(cf[1])
|
120
|
+
for(j in 2:ncol(p)){
|
121
|
+
x <- c(x, seq(mp[j-1]+spc, mp[j]-spc, length.out=22))
|
122
|
+
y1 <- c(y1, cf[j-1]-f[j-1],
|
123
|
+
(tanh(seq(-2.5,2.5,length.out=20))/2+.5)*
|
124
|
+
((cf[j]-f[j])-(cf[j-1]-f[j-1]))+(cf[j-1]-f[j-1]), cf[j]-f[j])
|
125
|
+
y2 <- c(y2, cf[j-1],
|
126
|
+
(tanh(seq(-2.5,2.5,length.out=20))/2+.5)*
|
127
|
+
(cf[j]-cf[j-1])+(cf[j-1]), cf[j])
|
128
|
+
}
|
129
|
+
x <- c(x, mp[length(mp)]+spc)
|
130
|
+
y1 <- c(y1, cf[length(cf)]-f[length(f)])
|
131
|
+
y2 <- c(y2, cf[length(cf)])
|
132
|
+
polygon(c(x, rev(x)), c(y1, rev(y2)), col=color.alpha[nrow(p)-i+1],
|
133
|
+
border=NA)
|
134
|
+
}else if(add.trend){
|
135
|
+
x <- rep(mp, each=2)+c(-0.5,0.5)
|
136
|
+
if(add.trend) polygon(c(x, rev(x)),
|
137
|
+
c(rep(cf-f, each=2), rev(rep(cf, each=2))),
|
138
|
+
col=color.alpha[nrow(p)-i+1], border=NA)
|
139
|
+
}
|
140
|
+
text(mp, cf-f/2, ifelse(f>min.report, signif(f, 3), ''), col='white')
|
141
|
+
}
|
142
|
+
}
|
143
|
+
}
|
144
|
+
|
145
|
+
# Legend
|
146
|
+
par(mar=rep(0,4)+0.1)
|
147
|
+
plot(1, t='n', bty='n', xlab='', ylab='', xaxt='n', yaxt='n')
|
148
|
+
nam <- rownames(p[nrow(p):(nrow(p)-top+1), ])
|
149
|
+
if(top < nrow(p)) nam <- c(nam,
|
150
|
+
paste('Other (',nrow(p)-length(color.col),')', sep=''))
|
151
|
+
legend('center', col=c(color.col, other.col), legend=nam, pch=15, bty='n',
|
152
|
+
pt.cex=2, ncol=legend.ncol)
|
153
|
+
par(mar=mar)
|
154
|
+
}, ex=function(){
|
155
|
+
# Load data
|
156
|
+
data("phyla.counts", package="enveomics.R", envir=environment())
|
157
|
+
# Create a barplot sorted by variance with organic trends
|
158
|
+
enve.barplot(phyla.counts, # Counts of phyla in four sites
|
159
|
+
sizes=c(250,100,75,200), # Total sizes of the datasets of each site
|
160
|
+
bars.width=2, # Decrease from default, so the names are fully displayed
|
161
|
+
organic.trend=TRUE, # Nice curvy background
|
162
|
+
sort.by=var # Sort by variance across sites
|
163
|
+
)
|
164
|
+
})
|
165
|
+
|
@@ -0,0 +1,119 @@
|
|
1
|
+
enve.cliopts <- function(
|
2
|
+
### Generates nicely formatted command-line interfaces for
|
3
|
+
### functions (_closures_ only).
|
4
|
+
fx,
|
5
|
+
### Function for which the interface should be generated.
|
6
|
+
rd_file,
|
7
|
+
### (Optional) .Rd file with the standard documentation of the function.
|
8
|
+
positional_arguments,
|
9
|
+
### (Optional) Number of _positional_ arguments passed to parse_args
|
10
|
+
### (package:optparse).
|
11
|
+
usage,
|
12
|
+
### (Optional) Usage passed to OptionParser (package:optparse).
|
13
|
+
mandatory=c(),
|
14
|
+
### Mandatory arguments.
|
15
|
+
vectorize=c(),
|
16
|
+
### Arguments of the function to vectorize (comma-delimited). If numeric,
|
17
|
+
### use also `number`.
|
18
|
+
ignore=c(),
|
19
|
+
### Arguments of the function to ignore.
|
20
|
+
number=c(),
|
21
|
+
### Force these arguments as numerics. Useful for numeric
|
22
|
+
### vectors (see `vectorize`) or arguments with no defaults.
|
23
|
+
defaults=list(),
|
24
|
+
### Defaults to use instead of the ones provided by the formals.
|
25
|
+
o_desc=list(),
|
26
|
+
### Descriptions of the options. Help from `rd` is ignored for arguments
|
27
|
+
### present in this list.
|
28
|
+
p_desc=""
|
29
|
+
### Description of the function. Help from `rd` is ignored for the
|
30
|
+
### function description unless this value is an empty string.
|
31
|
+
){
|
32
|
+
|
33
|
+
#= Load stuff
|
34
|
+
if(!suppressPackageStartupMessages(
|
35
|
+
requireNamespace("optparse", quietly=TRUE)))
|
36
|
+
stop("Package 'optparse' is required.")
|
37
|
+
requireNamespace("tools", quietly=TRUE)
|
38
|
+
if(missing(positional_arguments)) positional_arguments <- FALSE
|
39
|
+
if(missing(usage)) usage <- "usage: %prog [options]"
|
40
|
+
|
41
|
+
#= Get help (if any)
|
42
|
+
if(!missing(rd_file)){
|
43
|
+
rd <- tools::parse_Rd(rd_file)
|
44
|
+
for(i in 1:length(rd)){
|
45
|
+
tag <- attr(rd[[i]],'Rd_tag')
|
46
|
+
if(tag=="\\description" && p_desc==""){
|
47
|
+
p_desc <- paste("\n\t",as.character(rd[[i]]),sep='')
|
48
|
+
}else if(tag=="\\arguments"){
|
49
|
+
for(j in 1:length(rd[[i]])){
|
50
|
+
if(length(rd[[i]][[j]])==2){
|
51
|
+
name <- as.character(rd[[i]][[j]][[1]])
|
52
|
+
if(length(o_desc[[name]])==1) next
|
53
|
+
desc <- as.character(rd[[i]][[j]][[2]])
|
54
|
+
o_desc[[name]] <- paste(gsub("\n","\n\t\t",desc), collapse='')
|
55
|
+
}
|
56
|
+
}
|
57
|
+
}
|
58
|
+
}
|
59
|
+
}
|
60
|
+
|
61
|
+
#= Set options
|
62
|
+
o_i <- 0
|
63
|
+
opts <- list()
|
64
|
+
f <- formals(fx)
|
65
|
+
if(length(defaults)>0){
|
66
|
+
for(i in 1:length(defaults)) f[[names(defaults)[i]]] <- defaults[[i]]
|
67
|
+
}
|
68
|
+
for(i in names(f)){
|
69
|
+
if(i=="..." || i %in% ignore) next
|
70
|
+
o_i <- o_i + 1
|
71
|
+
flag <- gsub("\\.","-",i)
|
72
|
+
|
73
|
+
optopt <- list(help="")
|
74
|
+
if(length(o_desc[[i]])==1) optopt$help <- o_desc[[i]]
|
75
|
+
if(!is.null(f[[i]]) && !suppressWarnings(is.na(f[[i]])) && is.logical(f[[i]])){
|
76
|
+
optopt$opt_str <- paste(ifelse(f[[i]], "--no-", "--"), flag, sep='')
|
77
|
+
optopt$action <- ifelse(f[[i]], "store_false", "store_true")
|
78
|
+
}else{
|
79
|
+
optopt$opt_str <- paste("--", flag, sep='')
|
80
|
+
optopt$action <- "store"
|
81
|
+
optopt$help <- paste(optopt$help, "\n\t\t[",
|
82
|
+
ifelse(i %in% mandatory, "** MANDATORY", "default %default"),
|
83
|
+
ifelse(i %in% vectorize, ", separate values by commas", ""),
|
84
|
+
"].", sep="")
|
85
|
+
}
|
86
|
+
if(!is.name(f[[i]])){
|
87
|
+
optopt$default <- f[[i]]
|
88
|
+
optopt$metavar <- class(f[[i]])
|
89
|
+
}
|
90
|
+
if(i %in% number) optopt$metavar <- "NUMERIC"
|
91
|
+
optopt$dest <- i
|
92
|
+
|
93
|
+
opts[[o_i]] <- do.call(optparse::make_option, optopt)
|
94
|
+
}
|
95
|
+
opt <- optparse::parse_args(
|
96
|
+
optparse::OptionParser(option_list=opts, description=p_desc, usage=usage),
|
97
|
+
positional_arguments=positional_arguments)
|
98
|
+
|
99
|
+
#= Post-hoc checks
|
100
|
+
if(length(opt[['options']])==0) opt <- list(options=opt, args=c())
|
101
|
+
for(i in mandatory){
|
102
|
+
if(length(opt$options[[i]])==0) stop('Missing mandatory argument: ',i)
|
103
|
+
}
|
104
|
+
for(i in vectorize){
|
105
|
+
if(length(opt$options[[i]])==1)
|
106
|
+
opt$options[[i]] <- strsplit(opt$options[[i]],",")[[1]]
|
107
|
+
}
|
108
|
+
for(i in number){
|
109
|
+
if(length(opt$options[[i]])>0)
|
110
|
+
opt$options[[i]] <- as.numeric(opt$options[[i]])
|
111
|
+
}
|
112
|
+
opt$options$help <- NULL
|
113
|
+
|
114
|
+
return(opt)
|
115
|
+
### Returns a `list` with keys: `options`, a named list with the values for
|
116
|
+
### the function's arguments; and `args`, a vector with zero or more strings
|
117
|
+
### containing the positional arguments.
|
118
|
+
}
|
119
|
+
|
@@ -0,0 +1,117 @@
|
|
1
|
+
|
2
|
+
enve.df2dist <- function(
|
3
|
+
### Transform a dataframe (or coercible object, like a table) into a `dist` object.
|
4
|
+
x,
|
5
|
+
### A table (or coercible object) with at least three columns: (1) ID of the object 1,
|
6
|
+
### (2) ID of the object 2, and (3) distance between the two objects.
|
7
|
+
obj1.index=1,
|
8
|
+
### Index of the column containing the ID of the object 1.
|
9
|
+
obj2.index=2,
|
10
|
+
### Index of the column containing the ID of the object 2.
|
11
|
+
dist.index=3,
|
12
|
+
### Index of the column containing the distance.
|
13
|
+
default.d=NA,
|
14
|
+
### Default value (for missing values)
|
15
|
+
max.sim=0
|
16
|
+
### If not-zero, assumes that the values are similarity (not distance)
|
17
|
+
### and this is the maximum similarity (corresponding to distance 0).
|
18
|
+
### Applies transformation: distance = (max.sim - values)/max.sim.
|
19
|
+
){
|
20
|
+
x <- as.data.frame(x);
|
21
|
+
a <- as.character(x[, obj1.index]);
|
22
|
+
b <- as.character(x[, obj2.index]);
|
23
|
+
d <- as.double(x[, dist.index]);
|
24
|
+
if(max.sim!=0) d <- (max.sim - d)/max.sim
|
25
|
+
ids <- unique(c(a,b));
|
26
|
+
m <- matrix(default.d, nrow=length(ids), ncol=length(ids), dimnames=list(ids, ids));
|
27
|
+
diag(m) <- 0.0
|
28
|
+
for(i in 1:nrow(x)){
|
29
|
+
m[a[i], b[i]] <- d[i];
|
30
|
+
}
|
31
|
+
m <- pmin(m, t(m), na.rm=TRUE)
|
32
|
+
return(as.dist(m));
|
33
|
+
### Returns a `dist` object.
|
34
|
+
}
|
35
|
+
|
36
|
+
|
37
|
+
|
38
|
+
enve.df2dist.group <- function(
|
39
|
+
### Transform a dataframe (or coercible object, like a table) into a `dist` object, where
|
40
|
+
### there are 1 or more distances between each pair of objects.
|
41
|
+
x,
|
42
|
+
### A dataframe (or coercible object) with at least three columns: (1) ID of the object 1,
|
43
|
+
### (2) ID of the object 2, and (3) distance between the two objects.
|
44
|
+
obj1.index=1,
|
45
|
+
### Index of the column containing the ID of the object 1.
|
46
|
+
obj2.index=2,
|
47
|
+
### Index of the column containing the ID of the object 2.
|
48
|
+
dist.index=3,
|
49
|
+
### Index of the column containing the distance.
|
50
|
+
summary=median,
|
51
|
+
### Function summarizing the different distances between the two objects.
|
52
|
+
empty.rm=TRUE
|
53
|
+
### Remove rows with empty or NA groups
|
54
|
+
){
|
55
|
+
x <- as.data.frame(x);
|
56
|
+
if(empty.rm) x <- x[ !(is.na(x[,obj1.index]) | is.na(x[,obj2.index]) | x[,obj1.index]=='' | x[,obj2.index]==''), ]
|
57
|
+
a <- as.character(x[, obj1.index]);
|
58
|
+
b <- as.character(x[, obj2.index]);
|
59
|
+
d <- as.double(x[, dist.index]);
|
60
|
+
ids <- unique(c(a,b));
|
61
|
+
if(length(ids)<2) return(NA);
|
62
|
+
m <- matrix(NA, nrow=length(ids), ncol=length(ids), dimnames=list(ids, ids));
|
63
|
+
diag(m) <- 0
|
64
|
+
for(i in 2:length(ids)){
|
65
|
+
id.i <- ids[i];
|
66
|
+
for(j in 1:(i-1)){
|
67
|
+
id.j <- ids[j];
|
68
|
+
d.ij <- summary(c( d[ a==id.i & b==id.j], d[ b==id.i & a==id.j] ));
|
69
|
+
m[id.i, id.j] <- d.ij;
|
70
|
+
m[id.j, id.i] <- d.ij;
|
71
|
+
}
|
72
|
+
}
|
73
|
+
return(as.dist(m));
|
74
|
+
### Returns a `dist` object.
|
75
|
+
}
|
76
|
+
|
77
|
+
enve.df2dist.list <- function(
|
78
|
+
### Transform a dataframe (or coercible object, like a table) into a `dist` object.
|
79
|
+
x,
|
80
|
+
### A dataframe (or coercible object) with at least three columns: (1) ID of the object 1,
|
81
|
+
### (2) ID of the object 2, and (3) distance between the two objects.
|
82
|
+
groups,
|
83
|
+
### Named array where the IDs correspond to the object IDs, and the values correspond to
|
84
|
+
### the group.
|
85
|
+
obj1.index=1,
|
86
|
+
### Index of the column containing the ID of the object 1.
|
87
|
+
obj2.index=2,
|
88
|
+
### Index of the column containing the ID of the object 2.
|
89
|
+
dist.index=3,
|
90
|
+
### Index of the column containing the distance.
|
91
|
+
empty.rm=TRUE,
|
92
|
+
### Remove incomplete matrices
|
93
|
+
...
|
94
|
+
### Any other parameters supported by `enve.df2dist.group`.
|
95
|
+
){
|
96
|
+
x <- as.data.frame(x);
|
97
|
+
a <- as.character(x[, obj1.index]);
|
98
|
+
b <- as.character(x[, obj2.index]);
|
99
|
+
d <- as.numeric(x[, dist.index]);
|
100
|
+
ids.all <- unique(c(a,b));
|
101
|
+
l <- list();
|
102
|
+
same_group <- groups[a]==groups[b];
|
103
|
+
same_group <- ifelse(is.na(same_group), FALSE, TRUE);
|
104
|
+
for(group in unique(groups)){
|
105
|
+
ids <- ids.all[ groups[ids.all]==group ];
|
106
|
+
if(length(ids)>1 & group!=""){
|
107
|
+
x.sub <- x[ same_group & (groups[a]==group) & (groups[b]==group), ]
|
108
|
+
if(nrow(x.sub)>0){
|
109
|
+
d.g <- enve.df2dist(x.sub, obj1.index, obj2.index, dist.index, ...);
|
110
|
+
if(!empty.rm | !any(is.na(d.g))) l[[ group ]] <- d.g;
|
111
|
+
}
|
112
|
+
}
|
113
|
+
}
|
114
|
+
return(l);
|
115
|
+
### Returns a `list` of `dist` object.
|
116
|
+
}
|
117
|
+
|
@@ -0,0 +1,263 @@
|
|
1
|
+
#==============> Define S4 classes
|
2
|
+
setClass("enve.GrowthCurve",
|
3
|
+
### Enve-omics representation of fitted growth curves.
|
4
|
+
representation(
|
5
|
+
design = "array", ##<< Experimental design of the experiment.
|
6
|
+
models = "list", ##<< Fitted growth curve models.
|
7
|
+
predict = "list", ##<< Fitted growth curve values.
|
8
|
+
call='call') ##<< Call producing this object.
|
9
|
+
,package='enveomics.R');
|
10
|
+
setMethod("$", "enve.GrowthCurve", function(x, name) attr(x, name))
|
11
|
+
|
12
|
+
#==============> Define S4 methods
|
13
|
+
plot.enve.GrowthCurve <- function
|
14
|
+
### Plots an `enve.GrowthCurve` object.
|
15
|
+
(x,
|
16
|
+
### `enve.GrowthCurve` object to plot.
|
17
|
+
col,
|
18
|
+
### Base colors to use for the different samples. Can be recycled. By
|
19
|
+
### default, grey for one sample or rainbow colors for more than one.
|
20
|
+
pt.alpha=0.9,
|
21
|
+
### Color alpha for the observed data points, using `col` as a base.
|
22
|
+
ln.alpha=1.0,
|
23
|
+
### Color alpha for the fitted growth curve, using `col` as a base.
|
24
|
+
ln.lwd=1,
|
25
|
+
### Line width for the fitted curve.
|
26
|
+
ln.lty=1,
|
27
|
+
### Line type for the fitted curve.
|
28
|
+
band.alpha=0.4,
|
29
|
+
### Color alpha for the confidence interval band of the fitted growth curve,
|
30
|
+
### using `col` as a base.
|
31
|
+
band.density=NULL,
|
32
|
+
### Density of the filling pattern in the interval band. If NULL, a solid
|
33
|
+
### color is used.
|
34
|
+
band.angle=45,
|
35
|
+
### Angle of the density filling pattern in the interval band. Ignored if
|
36
|
+
### `band.density` is NULL.
|
37
|
+
xp.alpha=0.5,
|
38
|
+
### Color alpha for the line connecting individual experiments, using `col`
|
39
|
+
### as a base.
|
40
|
+
xp.lwd=1,
|
41
|
+
### Width of line for the experiments.
|
42
|
+
xp.lty=1,
|
43
|
+
### Type of line for the experiments.
|
44
|
+
pch=19,
|
45
|
+
### Point character for observed data points.
|
46
|
+
new=TRUE,
|
47
|
+
### Should a new plot be generated? If FALSE, the existing canvas is used.
|
48
|
+
legend=new,
|
49
|
+
### Should the plot include a legend? If FALSE, no legend is added. If TRUE,
|
50
|
+
### a legend is added in the bottom-right corner. Otherwise, a legend is
|
51
|
+
### added in the position specified as `xy.coords`.
|
52
|
+
add.params=FALSE,
|
53
|
+
### Should the legend include the parameters of the fitted model?
|
54
|
+
...
|
55
|
+
### Any other graphic parameters.
|
56
|
+
){
|
57
|
+
|
58
|
+
# Arguments
|
59
|
+
if(missing(col)){
|
60
|
+
col <-
|
61
|
+
if(length(x$design)==0) grey(0.2)
|
62
|
+
else rainbow(length(x$design), v=3/5, s=3/5)
|
63
|
+
}
|
64
|
+
|
65
|
+
if(new){
|
66
|
+
# Initiate canvas
|
67
|
+
od.fit.max <- max(sapply(x$predict, function(x) max(x[,"upr"])))
|
68
|
+
od.obs.max <- max(sapply(x$models, function(x) max(x$data[,"od"])))
|
69
|
+
opts <- list(...)
|
70
|
+
plot.defaults <- list(xlab="Time", ylab="Density",
|
71
|
+
xlim=range(x$predict[[1]][,"t"]), ylim=c(0, max(od.fit.max, od.obs.max)))
|
72
|
+
for(i in names(plot.defaults)){
|
73
|
+
if(is.null(opts[[i]])) opts[[i]] <- plot.defaults[[i]]
|
74
|
+
}
|
75
|
+
opts[["x"]] <- 1
|
76
|
+
opts[["type"]] <- "n"
|
77
|
+
do.call(plot, opts)
|
78
|
+
}
|
79
|
+
|
80
|
+
# Graphic default
|
81
|
+
pch <- rep(pch, length.out=length(x$design))
|
82
|
+
col <- rep(col, length.out=length(x$design))
|
83
|
+
pt.col <- enve.col2alpha(col, pt.alpha)
|
84
|
+
ln.col <- enve.col2alpha(col, ln.alpha)
|
85
|
+
band.col <- enve.col2alpha(col, band.alpha)
|
86
|
+
xp.col <- enve.col2alpha(col, xp.alpha)
|
87
|
+
band.angle <- rep(band.angle, length.out=length(x$design))
|
88
|
+
if(!all(is.null(band.density))){
|
89
|
+
band.density <- rep(band.density, length.out=length(x$design))
|
90
|
+
}
|
91
|
+
|
92
|
+
for(i in 1:length(x$design)){
|
93
|
+
# Observed data
|
94
|
+
d <- x$models[[i]]$data
|
95
|
+
points(d[,"t"], d[,"od"], pch=pch[i], col=pt.col[i])
|
96
|
+
for(j in unique(d[,"replicate"])){
|
97
|
+
sel <- d[,"replicate"]==j
|
98
|
+
lines(d[sel,"t"], d[sel,"od"], col=xp.col[i], lwd=xp.lwd, lty=xp.lty)
|
99
|
+
}
|
100
|
+
# Fitted growth curves
|
101
|
+
if(x$models[[i]]$convInfo$isConv){
|
102
|
+
d <- x$predict[[i]]
|
103
|
+
lines(d[,"t"], d[,"fit"], col=ln.col[i], lwd=ln.lwd, lty=ln.lty)
|
104
|
+
polygon(c(d[,"t"], rev(d[,"t"])), c(d[,"lwr"], rev(d[,"upr"])),
|
105
|
+
border=NA, col=band.col[i], density=band.density[i],
|
106
|
+
angle=band.angle[i])
|
107
|
+
}
|
108
|
+
}
|
109
|
+
|
110
|
+
if(!all(is.logical(legend)) || legend){
|
111
|
+
if(all(is.logical(legend))) legend <- "bottomright"
|
112
|
+
legend.txt <- names(x$design)
|
113
|
+
if(add.params){
|
114
|
+
for(p in names(coef(x$models[[1]]))){
|
115
|
+
legend.txt <- paste(legend.txt, ", ", p, "=",
|
116
|
+
sapply(x$models, function(x) signif(coef(x)[p],2)) , sep="")
|
117
|
+
}
|
118
|
+
}
|
119
|
+
legend(legend, legend=legend.txt, pch=pch, col=ln.col)
|
120
|
+
}
|
121
|
+
}
|
122
|
+
|
123
|
+
summary.enve.GrowthCurve <- function(
|
124
|
+
### Summary of an `enve.GrowthCurve` object.
|
125
|
+
object,
|
126
|
+
### `enve.GrowthCurve` object.
|
127
|
+
...
|
128
|
+
### No additional parameters are currently supported.
|
129
|
+
){
|
130
|
+
|
131
|
+
x <- object
|
132
|
+
cat('===[ enve.GrowthCurves ]------------------\n')
|
133
|
+
for(i in names(x$design)){
|
134
|
+
cat(i, ':\n', sep='')
|
135
|
+
if(x$models[[i]]$convInfo$isConv){
|
136
|
+
for(j in names(coef(x$models[[i]]))){
|
137
|
+
cat(' - ', j, ' = ', coef(x$models[[i]])[j], '\n', sep='')
|
138
|
+
}
|
139
|
+
}else{
|
140
|
+
cat(' Model didn\'t converge:\n ',
|
141
|
+
x$models[[i]]$convInfo$stopMessage, '\n', sep='')
|
142
|
+
}
|
143
|
+
cat(' ', nrow(x$models[[i]]$data), ' observations, ',
|
144
|
+
length(unique(x$models[[i]]$data[,"replicate"])), ' replicates.\n',
|
145
|
+
sep='')
|
146
|
+
}
|
147
|
+
cat('------------------------------------------\n')
|
148
|
+
cat('call:',as.character(attr(x,'call')),'\n')
|
149
|
+
cat('------------------------------------------\n')
|
150
|
+
}
|
151
|
+
|
152
|
+
#==============> Core functions
|
153
|
+
enve.growthcurve <- structure(function(
|
154
|
+
### Calculates growth curves using the logistic growth function.
|
155
|
+
x,
|
156
|
+
### Data frame (or coercible) containing the observed growth data (e.g.,
|
157
|
+
### O.D. values). Each column is an independent growth curve and each
|
158
|
+
### row is a time point. NA's are allowed.
|
159
|
+
times=1:nrow(x),
|
160
|
+
### Vector with the times at which each row was taken. By default, all
|
161
|
+
### rows are assumed to be part of constantly periodic measurements.
|
162
|
+
triplicates=FALSE,
|
163
|
+
### If TRUE, the columns are assumed to be sorted by sample with three
|
164
|
+
### replicates by sample. It requires a number of columns multiple of 3.
|
165
|
+
design,
|
166
|
+
### Experimental design of the data. An `array` of mode list with sample
|
167
|
+
### names as index and the list of column names in each sample as the
|
168
|
+
### values. By default, each column is assumed to be an independent sample
|
169
|
+
### if `triplicates` is FALSE, or every three columns are assumed to be a
|
170
|
+
### sample if `triplicates` is TRUE. In the latter case, samples are
|
171
|
+
### simply numbered.
|
172
|
+
new.times=seq(min(times), max(times), length.out=length(times)*10),
|
173
|
+
### Values of time for the fitted curve.
|
174
|
+
level=0.95,
|
175
|
+
### Confidence (or prediction) interval in the fitted curve.
|
176
|
+
interval=c("confidence","prediction"),
|
177
|
+
### Type of interval to be calculated for the fitted curve.
|
178
|
+
plot=TRUE,
|
179
|
+
### Should the growth curve be plotted?
|
180
|
+
FUN=function(t,K,r,P0) K*P0*exp(r*t)/(K+P0*(exp(r*t)-1)),
|
181
|
+
### Function to fit. By default: logistic growth with paramenters `K`:
|
182
|
+
### carrying capacity, `r`: intrinsic growth rate, and `P0`: Initial
|
183
|
+
### population.
|
184
|
+
nls.opt=list(),
|
185
|
+
### Any additional options passed to `nls`.
|
186
|
+
...
|
187
|
+
### Any additional parameters to be passed to `plot.enve.GrowthCurve`.
|
188
|
+
){
|
189
|
+
|
190
|
+
# Arguments
|
191
|
+
if(missing(design)){
|
192
|
+
design <-
|
193
|
+
if(triplicates)
|
194
|
+
tapply(colnames(x), colnames(x)[rep(1:(ncol(x)/3)*3-2, each=3)], c,
|
195
|
+
simplify=FALSE)
|
196
|
+
else tapply(colnames(x), colnames(x), c, simplify=FALSE)
|
197
|
+
}
|
198
|
+
mod <- list()
|
199
|
+
fit <- list()
|
200
|
+
interval <- match.arg(interval)
|
201
|
+
enve._growth.fx <- NULL
|
202
|
+
enve._growth.fx <<- FUN
|
203
|
+
|
204
|
+
for(sample in names(design)){
|
205
|
+
od <- c()
|
206
|
+
for(col in design[[sample]]){
|
207
|
+
od <- c(od, x[,col])
|
208
|
+
}
|
209
|
+
data <- data.frame(t=rep(times, length(design[[sample]])), od=od,
|
210
|
+
replicate=rep(1:length(design[[sample]]), each=length(times)))
|
211
|
+
data <- data[!is.na(data$od),]
|
212
|
+
opts <- nls.opt
|
213
|
+
opts[["data"]] <- data
|
214
|
+
opt.defaults <- list(formula = od ~ enve._growth.fx(t, K, r, P0),
|
215
|
+
algorithm="port", lower=list(P0=1e-16),
|
216
|
+
control=nls.control(warnOnly=TRUE),
|
217
|
+
start=list(
|
218
|
+
K = 2*max(data$od),
|
219
|
+
r = length(times)/max(data$t),
|
220
|
+
P0 = min(data$od[data$od>0])
|
221
|
+
))
|
222
|
+
for(i in names(opt.defaults)){
|
223
|
+
if(is.null(opts[[i]])){
|
224
|
+
opts[[i]] <- opt.defaults[[i]]
|
225
|
+
}
|
226
|
+
}
|
227
|
+
mod[[sample]] <- do.call(nls, opts)
|
228
|
+
fit[[sample]] <- cbind(t=new.times,
|
229
|
+
predFit(mod[[sample]], level=level, interval=interval,
|
230
|
+
newdata=data.frame(t=new.times)))
|
231
|
+
}
|
232
|
+
enve._growth.fx <<- NULL
|
233
|
+
gc <- new("enve.GrowthCurve",
|
234
|
+
design=design, models=mod, predict=fit,
|
235
|
+
call=match.call());
|
236
|
+
if(plot) plot(gc, ...);
|
237
|
+
return(gc)
|
238
|
+
### Returns an `enve.GrowthCurve` object.
|
239
|
+
}, ex=function(){
|
240
|
+
# Load data
|
241
|
+
data("growth.curves", package="enveomics.R", envir=environment())
|
242
|
+
# Generate growth curves with different colors
|
243
|
+
g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
|
244
|
+
# Generate black-and-white growth curves with different symbols
|
245
|
+
plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
|
246
|
+
});
|
247
|
+
|
248
|
+
enve.col2alpha <- function(
|
249
|
+
### Takes a vector of colors and sets the alpha.
|
250
|
+
x,
|
251
|
+
### A vector of any value base colors.
|
252
|
+
alpha
|
253
|
+
### Alpha level to set (in the 0-1 range).
|
254
|
+
){
|
255
|
+
out <- c()
|
256
|
+
for(i in x){
|
257
|
+
opt <- as.list(col2rgb(i)[,1]/256)
|
258
|
+
opt[["alpha"]] = alpha
|
259
|
+
out <- c(out, do.call(rgb, opt))
|
260
|
+
}
|
261
|
+
names(out) <- names(x)
|
262
|
+
return(out)
|
263
|
+
}
|