lateral_recommender 0.0.6 → 0.0.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,40 +0,0 @@
1
- ---
2
- http_interactions:
3
- - request:
4
- method: post
5
- uri: https://recommender-api.lateral.io/recommend-by-text/?subscription-key=no
6
- body:
7
- encoding: UTF-8
8
- string: text=test
9
- headers:
10
- Accept-Encoding:
11
- - gzip;q=1.0,deflate;q=0.6,identity;q=0.3
12
- Accept:
13
- - '*/*'
14
- User-Agent:
15
- - Ruby
16
- response:
17
- status:
18
- code: 403
19
- message: Forbidden
20
- headers:
21
- Date:
22
- - Thu, 14 May 2015 09:35:58 GMT
23
- Content-Type:
24
- - text/plain; charset=UTF-8
25
- Transfer-Encoding:
26
- - chunked
27
- Connection:
28
- - keep-alive
29
- Access-Control-Allow-Origin:
30
- - '*'
31
- Server:
32
- - kong/0.2.0-2
33
- Via:
34
- - kong/0.2.0-2
35
- body:
36
- encoding: UTF-8
37
- string: '{"message":"Your authentication credentials are invalid"}'
38
- http_version:
39
- recorded_at: Thu, 14 May 2015 09:35:59 GMT
40
- recorded_with: VCR 2.9.3
@@ -1,40 +0,0 @@
1
- ---
2
- http_interactions:
3
- - request:
4
- method: post
5
- uri: https://recommender-api.lateral.io/recommend-by-id/?subscription-key=<API_KEY>
6
- body:
7
- encoding: UTF-8
8
- string: document_id=doc_id
9
- headers:
10
- Accept-Encoding:
11
- - gzip;q=1.0,deflate;q=0.6,identity;q=0.3
12
- Accept:
13
- - '*/*'
14
- User-Agent:
15
- - Ruby
16
- response:
17
- status:
18
- code: 200
19
- message: OK
20
- headers:
21
- Date:
22
- - Thu, 14 May 2015 09:37:02 GMT
23
- Content-Type:
24
- - application/json; charset=utf-8
25
- Content-Length:
26
- - '49'
27
- Connection:
28
- - keep-alive
29
- Access-Control-Allow-Origin:
30
- - '*'
31
- Server:
32
- - TornadoServer/4.0.2
33
- Via:
34
- - kong/0.2.0-2
35
- body:
36
- encoding: UTF-8
37
- string: '[{"distance": 0.000248, "document_id": "doc_id"}]'
38
- http_version:
39
- recorded_at: Thu, 14 May 2015 09:37:03 GMT
40
- recorded_with: VCR 2.9.3
@@ -1,201 +0,0 @@
1
- ---
2
- http_interactions:
3
- - request:
4
- method: post
5
- uri: https://arxiv-api.lateral.io/recommend-by-id/?subscription-key=<API_KEY>
6
- body:
7
- encoding: UTF-8
8
- string: document_id=arxiv-http%3A%2F%2Farxiv.org%2Fabs%2F1403.2165
9
- headers:
10
- Accept-Encoding:
11
- - gzip;q=1.0,deflate;q=0.6,identity;q=0.3
12
- Accept:
13
- - '*/*'
14
- User-Agent:
15
- - Ruby
16
- response:
17
- status:
18
- code: 200
19
- message: OK
20
- headers:
21
- Date:
22
- - Thu, 14 May 2015 09:37:16 GMT
23
- Content-Type:
24
- - application/json; charset=utf-8
25
- Content-Length:
26
- - '12976'
27
- Connection:
28
- - keep-alive
29
- Access-Control-Allow-Origin:
30
- - '*'
31
- Server:
32
- - TornadoServer/4.0.2
33
- Via:
34
- - kong/0.2.0-2
35
- body:
36
- encoding: UTF-8
37
- string: '[{"distance": 0.0, "title": "Set-valued sorting index and joint equidistributions",
38
- "url": "http://arxiv.org/abs/1403.2165", "text": " Recently Petersen defined
39
- a new Mahonian index sor over the symmetric group $\\mathfrak{S}_n$ and proved
40
- that $(\\text{inv}, \\text{rlmin})$ and $(\\text{sor}, \\text{cyc})$ have
41
- the same joint distribution. Foata and Han proved that the pairs of set-valued
42
- statistics $(\\text{Cyc}, \\text{Rmil}), (\\text{Cyc}, \\text{Lmap}), (\\text{Rmil},
43
- \\text{Lmap})$ have the same joint distribution over $\\mathfrak{S}_n$. In
44
- this paper we introduce the set-valued statistics $\\text{Inv}, \\text{Lmil},
45
- \\text{Sor}$ and $\\text{Lmicycl}_1$ and generalize simultaneously results
46
- of Petersen and Foata-Han and find many equidistributed triples of set-valued
47
- statistics and quadruples of statistics. ", "permalink_id": "2acf1a10e33c3a951374b3cd5d9d491c",
48
- "authors": ["Eu, Sen-Pen", "Lo, Yuan-Hsun", "Wong, Tsai-Lien"], "date": "2014-03-10",
49
- "document_id": "arxiv-http://arxiv.org/abs/1403.2165"}, {"distance": 0.158086,
50
- "title": "The sorting index and set-valued joint equidistributions of $\\mathcal{B}_n$
51
- and $\\mathcal{D}_n$", "url": "http://arxiv.org/abs/1403.2169", "text": " The
52
- sorting indices $\\text{sor}_B$ and $\\text{sor}_D$ on the Coxeter groups
53
- of type $B$ and $D$ respectively are defined by Petersen and it is proved
54
- that $(\\text{inv}_B, \\text{rlmin})$ and $(\\text{sor}_B, \\ell''_B)$ have
55
- the same joint distribution for type $B$ while $\\text{inv}_D$ and $\\text{sor}_D$
56
- have the same distribution for type $D$. These results, including a set-valued
57
- extension of type $B$ involving two equildistributed pairs of three statistics,
58
- are proved combinatorially by Chen et al. via two mappings $\\varphi:=\\text{(B-code)}^{-1}\\circ
59
- \\text{(A-code)}$ and $\\psi:=\\text{(D-code)}^{-1}\\circ \\text{(C-code)}$. In
60
- this paper we further extend these results. In type $B$ we prove a set-valued
61
- joint equildistribution between a pair of seven statistics, and find a five-variable
62
- generating function. In type $D$ we define new set-valued statistics, among
63
- them $\\text{Cyc}^+_D$ and $\\text{Cyc}^-_D$, and firstly find a set-valued
64
- joint equidistribution between a pair of five statistics and find a four-variable
65
- generating function. ", "permalink_id": "5972583bfc6d5fb5294f7297dcdaa4ae",
66
- "authors": ["Eu, Sen-Peng", "Lo, Yuan-Hsun", "Wong, Tsai-Lien"], "date": "2014-03-10",
67
- "document_id": "arxiv-http://arxiv.org/abs/1403.2169"}, {"distance": 0.400089,
68
- "title": "On model-theoretic tree properties", "url": "http://arxiv.org/abs/1505.00454",
69
- "text": " We study model theoretic tree properties ($\\text{TP}, \\text{TP}_1,
70
- \\text{TP}_2$) and their associated cardinal invariants ($\\kappa_{\\text{cdt}},
71
- \\kappa_{\\text{sct}}, \\kappa_{\\text{inp}}$, respectively). In particular,
72
- we obtain a quantitative refinement of Shelah''s theorem ($\\text{TP} \\Rightarrow
73
- \\text{TP}_1 \\lor \\text{TP}_2$) for countable theories, show that $\\text{TP}_1$
74
- is always witnessed by a formula in a single variable (partially answering
75
- a question of Shelah) and that weak $k-\\text{TP}_1$ is equivalent to $\\text{TP}_1$
76
- (answering a question of Kim and Kim). Besides, we give a characterization
77
- of $\\text{NSOP}_1$ via a version of independent amalgamation of types and
78
- apply this criterion to verify that some examples in the literature are indeed
79
- $\\text{NSOP}_1$. Comment: 34 pages, 1 figure", "permalink_id": "0fe640d509da7e9d04d64e93761e8ade",
80
- "authors": ["Chernikov, Artem", "Ramsey, Nicholas"], "date": "2015-05-03",
81
- "document_id": "arxiv-http://arxiv.org/abs/1505.00454"}, {"distance": 0.491576,
82
- "title": "Text Classification using Artificial Intelligence", "url": "http://arxiv.org/abs/1009.4964",
83
- "text": " Text classification is the process of classifying documents into
84
- predefined categories based on their content. It is the automated assignment
85
- of natural language texts to predefined categories. Text classification is
86
- the primary requirement of text retrieval systems, which retrieve texts in
87
- response to a user query, and text understanding systems, which transform
88
- text in some way such as producing summaries, answering questions or extracting
89
- data. Existing supervised learning algorithms for classifying text need sufficient
90
- documents to learn accurately. This paper presents a new algorithm for text
91
- classification using artificial intelligence technique that requires fewer
92
- documents for training. Instead of using words, word relation i.e. association
93
- rules from these words is used to derive feature set from pre-classified text
94
- documents. The concept of na\\\"ive Bayes classifier is then used on derived
95
- features and finally only a single concept of genetic algorithm has been added
96
- for final classification. A system based on the proposed algorithm has been
97
- implemented and tested. The experimental results show that the proposed system
98
- works as a successful text classifier. ", "permalink_id": "4d503db89cfa290e1e6a4228989fab9d",
99
- "authors": ["Kamruzzaman, S. M."], "date": "2010-09-24", "document_id": "arxiv-http://arxiv.org/abs/1009.4964"},
100
- {"distance": 0.497958, "title": "Text Classification using Data Mining", "url":
101
- "http://arxiv.org/abs/1009.4987", "text": " Text classification is the process
102
- of classifying documents into predefined categories based on their content.
103
- It is the automated assignment of natural language texts to predefined categories.
104
- Text classification is the primary requirement of text retrieval systems,
105
- which retrieve texts in response to a user query, and text understanding systems,
106
- which transform text in some way such as producing summaries, answering questions
107
- or extracting data. Existing supervised learning algorithms to automatically
108
- classify text need sufficient documents to learn accurately. This paper presents
109
- a new algorithm for text classification using data mining that requires fewer
110
- documents for training. Instead of using words, word relation i.e. association
111
- rules from these words is used to derive feature set from pre-classified text
112
- documents. The concept of Naive Bayes classifier is then used on derived features
113
- and finally only a single concept of Genetic Algorithm has been added for
114
- final classification. A system based on the proposed algorithm has been implemented
115
- and tested. The experimental results show that the proposed system works as
116
- a successful text classifier. ", "permalink_id": "68b496b597eca0854dec244784fd284b",
117
- "authors": ["Hasan, Ahmed Ryadh", "Haider, Farhana", "Kamruzzaman, S. M."],
118
- "date": "2010-09-25", "document_id": "arxiv-http://arxiv.org/abs/1009.4987"},
119
- {"distance": 0.499156, "title": "Normalization of Non-Standard Words in Croatian
120
- Texts", "url": "http://arxiv.org/abs/1503.08167", "text": " This paper presents
121
- text normalization which is an integral part of any text-to-speech synthesis
122
- system. Text normalization is a set of methods with a task to write non-standard
123
- words, like numbers, dates, times, abbreviations, acronyms and the most common
124
- symbols, in their full expanded form are presented. The whole taxonomy for
125
- classification of non-standard words in Croatian language together with rule-based
126
- normalization methods combined with a lookup dictionary are proposed. Achieved
127
- token rate for normalization of Croatian texts is 95%, where 80% of expanded
128
- words are in correct morphological form. Comment: 8 pages in Text, Speech
129
- and Dialogue extension to Lecture Notes in Artificial Intelligence LNAI6836.
130
- Hebernal, Ivan; Matou\\v{s}ek, V\\''aclav (ed). - Plzen: University of West
131
- Bohemia , 2011. 1-8 (ISBN: 987-80-261-0069-0)", "permalink_id": "27a51106df0d22f90f33a40fad09a675",
132
- "authors": ["Beliga, Slobodan", "Martin\u010di\u0107-Ip\u0161i\u0107, Sanda"],
133
- "date": "2015-03-27", "document_id": "arxiv-http://arxiv.org/abs/1503.08167"},
134
- {"distance": 0.508607, "title": "Text Classification using Association Rule
135
- with a Hybrid Concept of Naive Bayes Classifier and Genetic Algorithm",
136
- "url": "http://arxiv.org/abs/1009.4976", "text": " Text classification is
137
- the automated assignment of natural language texts to predefined categories
138
- based on their content. Text classification is the primary requirement of
139
- text retrieval systems, which retrieve texts in response to a user query,
140
- and text understanding systems, which transform text in some way such as producing
141
- summaries, answering questions or extracting data. Now a day the demand of
142
- text classification is increasing tremendously. Keeping this demand into consideration,
143
- new and updated techniques are being developed for the purpose of automated
144
- text classification. This paper presents a new algorithm for text classification.
145
- Instead of using words, word relation i.e. association rules is used to derive
146
- feature set from pre-classified text documents. The concept of Naive Bayes
147
- Classifier is then used on derived features and finally a concept of Genetic
148
- Algorithm has been added for final classification. A system based on the proposed
149
- algorithm has been implemented and tested. The experimental results show that
150
- the proposed system works as a successful text classifier. ", "permalink_id":
151
- "c9fff0d00d19ce4c1e87e7b271bb1482", "authors": ["Hasan, Ahmed Ryadh", "Haider,
152
- Farhana", "Kamruzzaman, S. M."], "date": "2010-09-25", "document_id": "arxiv-http://arxiv.org/abs/1009.4976"},
153
- {"distance": 0.516115, "title": "Comparative Discourse Analysis of Parallel
154
- Texts", "url": "http://arxiv.org/abs/cmp-lg/9407022", "text": " A quantitative
155
- representation of discourse structure can be computed by measuring lexical
156
- cohesion relations among adjacent blocks of text. These representations have
157
- been proposed to deal with sub-topic text segmentation. In a parallel corpus,
158
- similar representations can be derived for versions of a text in various languages.
159
- These can be used for parallel segmentation and as an alternative measure
160
- of text-translation similarity. ", "permalink_id": "b33a24cc02b5da8609a9aac8a9c41f57",
161
- "authors": ["van der Eijk, Pim"], "date": "1994-07-26", "document_id": "arxiv-http://arxiv.org/abs/cmp-lg/9407022"},
162
- {"distance": 0.518237, "title": "Automatic Text Area Segmentation in Natural
163
- Images", "url": "http://arxiv.org/abs/0801.4807", "text": " We present a
164
- hierarchical method for segmenting text areas in natural images. The method
165
- assumes that the text is written with a contrasting color on a more or less
166
- uniform background. But no assumption is made regarding the language or character
167
- set used to write the text. In particular, the text can contain simple graphics
168
- or symbols. The key feature of our approach is that we first concentrate on
169
- finding the background of the text, before testing whether there is actually
170
- text on the background. Since uniform areas are easy to find in natural images,
171
- and since text backgrounds define areas which contain \"holes\" (where the
172
- text is written) we thus look for uniform areas containing \"holes\" and label
173
- them as text backgrounds candidates. Each candidate area is then further tested
174
- for the presence of text within its convex hull. We tested our method on a
175
- database of 65 images including English and Urdu text. The method correctly
176
- segmented all the text areas in 63 of these images, and in only 4 of these
177
- were areas that do not contain text also segmented. ", "permalink_id": "46d7d3364364c68d9429f5eee5c65ccb",
178
- "authors": ["Delp, Edward J.", "Boutin, Mireille", "Jafri, Syed Ali Raza"],
179
- "date": "2008-01-30", "document_id": "arxiv-http://arxiv.org/abs/0801.4807"},
180
- {"distance": 0.542315, "title": "Word Length Frequency and Distribution in
181
- English: Observations, Theory, and Implications for the Construction of
182
- Verse Lines", "url": "http://arxiv.org/abs/cmp-lg/9808004", "text": " Recent
183
- observations in the theory of verse and empirical metrics have suggested that
184
- constructing a verse line involves a pattern-matching search through a source
185
- text, and that the number of found elements (complete words totaling a specified
186
- number of syllables) is given by dividing the total number of words by the
187
- mean number of syllables per word in the source text. This paper makes this
188
- latter point explicit mathematically, and in the course of this demonstration
189
- shows that the word length frequency totals in English output are distributed
190
- geometrically (previous researchers reported an adjusted Poisson distribution),
191
- and that the sequential distribution is random at the global level, with significant
192
- non-randomness in the fine structure. Data from a corpus of just under two
193
- million words, and a syllable-count lexicon of 71,000 word-forms is reported.
194
- The pattern-matching theory is shown to be internally coherent, and it is
195
- observed that some of the analytic techniques described here form a satisfactory
196
- test for regular (isometric) lineation in a text. ", "permalink_id": "5184b07b101d681c7072a07e47ce3b22",
197
- "authors": ["Aoyama, Hideaki", "Constable, John"], "date": "1998-08-12", "document_id":
198
- "arxiv-http://arxiv.org/abs/cmp-lg/9808004"}]'
199
- http_version:
200
- recorded_at: Thu, 14 May 2015 09:37:16 GMT
201
- recorded_with: VCR 2.9.3
@@ -1,379 +0,0 @@
1
- ---
2
- http_interactions:
3
- - request:
4
- method: post
5
- uri: https://news-api.lateral.io/recommend-by-id/?subscription-key=<API_KEY>
6
- body:
7
- encoding: UTF-8
8
- string: document_id=3076491
9
- headers:
10
- Accept-Encoding:
11
- - gzip;q=1.0,deflate;q=0.6,identity;q=0.3
12
- Accept:
13
- - '*/*'
14
- User-Agent:
15
- - Ruby
16
- response:
17
- status:
18
- code: 201
19
- message: Created
20
- headers:
21
- Date:
22
- - Thu, 14 May 2015 09:37:13 GMT
23
- Content-Type:
24
- - application/json
25
- Transfer-Encoding:
26
- - chunked
27
- Connection:
28
- - keep-alive
29
- Access-Control-Allow-Origin:
30
- - '*'
31
- - '*'
32
- Access-Control-Request-Method:
33
- - '*'
34
- Cache-Control:
35
- - max-age=0, private, must-revalidate
36
- Etag:
37
- - W/"bc0cca1537f34b652701a6bc7077238e"
38
- Server:
39
- - nginx/1.6.2
40
- Strict-Transport-Security:
41
- - max-age=31536000
42
- Vary:
43
- - Accept-Encoding
44
- X-Request-Id:
45
- - b312b821-a466-430d-9a18-079e46b0aead
46
- X-Runtime:
47
- - '4.087556'
48
- Via:
49
- - kong/0.2.0-2
50
- body:
51
- encoding: ASCII-8BIT
52
- string: !binary |-
53
- W3siZG9jdW1lbnRfaWQiOiIyMTI4ODU3IiwiZGlzdGFuY2UiOjAuMDM2MjI4
54
- LCJ0aXRsZSI6Ikdvb2RieWUgTW9uZ29EQiwgSGVsbG8gUG9zdGdyZVNRTCAo
55
- b2xlcnkuY29tKSIsInVybCI6Imh0dHA6Ly9kZXZlbG9wZXIub2xlcnkuY29t
56
- L2Jsb2cvZ29vZGJ5ZS1tb25nb2RiLWhlbGxvLXBvc3RncmVzcWwvIiwicHVi
57
- bGlzaGVkIjoiMjAxNS0wMy0xMFQxMDowMDowMS4wMDBaIiwiYXV0aG9yIjpu
58
- dWxsLCJpbWFnZSI6bnVsbCwidGh1bWJuYWlsIjpmYWxzZSwic3VtbWFyeSI6
59
- Ik1pZ3JhdGluZyBmcm9tIE1vbmdvREIgdG8gUG9zdGdyZVNRTCIsInNvdXJj
60
- ZV9uYW1lIjoiSGFja2VyIE5ld3MiLCJzb3VyY2Vfc2x1ZyI6ImhhY2tlci1u
61
- ZXdzIn0seyJkb2N1bWVudF9pZCI6IjE5Mjk5NjQiLCJkaXN0YW5jZSI6MC4w
62
- MzY0NDIsInRpdGxlIjoiVHJlZSBzdHJ1Y3R1cmUgcXVlcnkgd2l0aCBQb3N0
63
- Z3JlU1FMICh0cnVvbmd0eC5tZSkiLCJ1cmwiOiJodHRwOi8vdHJ1b25ndHgu
64
- bWUvMjAxNC8wMi8yOC90cmVlLXN0cnVjdHVyZS1xdWVyeS13aXRoLXBvc3Rn
65
- cmVzcWwvIiwicHVibGlzaGVkIjoiMjAxNS0wMi0yNVQyMjo0MDowMi4wMDBa
66
- IiwiYXV0aG9yIjoiVHIgTmcgVHgiLCJpbWFnZSI6Imh0dHA6Ly90cnVvbmd0
67
- eC5tZSIsInRodW1ibmFpbCI6ZmFsc2UsInN1bW1hcnkiOiJMdWNraWx5LCBQ
68
- b3N0Z3JlU1FMIHN1cHBvcnRzIHJlY3Vyc2l2ZSBxdWVyeSB1c2luZyB0aGUg
69
- V0lUSCBSRUNVUlNJVkUga2V5d29yZC5cbldJVEggcmVnaW9uYWxfc2FsZXMg
70
- QVMgKCBTRUxFQ1QgcmVnaW9uICwgU1VNICggYW1vdW50ICkgQVMgdG90YWxf
71
- c2FsZXMgRlJPTSBvcmRlcnMgR1JPVVAgQlkgcmVnaW9uICksIHRvcF9yZWdp
72
- b25zIEFTICggU0VMRUNUIHJlZ2lvbiBGUk9NIHJlZ2lvbmFsX3NhbGVzIFdI
73
- RVJFIHRvdGFsX3NhbGVzID4gKCBTRUxFQ1QgU1VNICggdG90YWxfc2FsZXMg
74
- KSAvIDEwIEZST00gcmVnaW9uYWxfc2FsZXMgKSApIFNFTEVDVCByZWdpb24g
75
- LCBwcm9kdWN0ICwgU1VNICggcXVhbnRpdHkgKSBBUyBwcm9kdWN0X3VuaXRz
76
- ICwgU1VNICggYW1vdW50ICkgQVMgcHJvZHVjdF9zYWxlcyBGUk9NIG9yZGVy
77
- cyBXSEVSRSByZWdpb24gSU4gKCBTRUxFQ1QgcmVnaW9uIEZST00gdG9wX3Jl
78
- Z2lvbnMgKSBHUk9VUCBCWSByZWdpb24gLCBwcm9kdWN0IDtJbiB0aGUgYWJv
79
- dmUgZXhhbXBsZSwgdGhlIFdJVEggY2xhdXNlIGNyZWF0ZXMgMiB0ZW1wb3Jh
80
- cnkgdGFibGVzIHJlZ2lvbmFsX3NhbGVzIGFuZCB0b3BfcmVnaW9uIHRoYXQg
81
- ZXhpc3Qgb25seSBmb3IgdGhlIGxhc3QgU0VMRUNUIGNvbW1hbmQuXG5XSVRI
82
- IFJFQ1VSU0lWRSB0KG4pIGNyZWF0ZXMgYSB0ZW1wb3JhcnkgdGFibGVzIG5h
83
- bWVkIHQgd2l0aCBvbmUgY29sdW1uIG4uIEEgV0lUSCBSRUNVUlNJVkUgcXVl
84
- cnkgdXN1YWxseSBpbmNsdWRlcyAyIHBhcnRzOiBub24tcmVjdXJzaXZlIHRl
85
- cm0gYW5kIHJlY3Vyc2l2ZSB0ZXJtLlxuQWxsIHRoZSB0d28gU0VMRUNUIHF1
86
- ZXJ5IHNob3VsZCBoYXZlIGV4YWN0bHkgdGhlIHNhbWUgY29sdW1uIGFzIHRo
87
- ZSB0IHRhYmxlLlxuSGVyZSBpcyBob3cgdGhlIHF1ZXJ5IGxvb2sgbGlrZVdJ
88
- VEggUkVDVVJTSVZFIG5vZGVzICggcGFyZW50SWQgLCBwYXJlbnROYW1lICwg
89
- Y2hpbGRJZCAsIGNoaWxkTmFtZSAsIHBhdGggLCBkZXB0aCApIEFTICggU0VM
90
- RUNUIHIgLiIsInNvdXJjZV9uYW1lIjoiSGFja2VyIE5ld3MiLCJzb3VyY2Vf
91
- c2x1ZyI6ImhhY2tlci1uZXdzIn0seyJkb2N1bWVudF9pZCI6IjIxODYyOTYi
92
- LCJkaXN0YW5jZSI6MC4wMzY3OTEsInRpdGxlIjoiTHVjZW5lOiBUaGUgR29v
93
- ZCBQYXJ0cyAocGFyc2VseS5jb20pIiwidXJsIjoiaHR0cDovL2Jsb2cucGFy
94
- c2VseS5jb20vcG9zdC8xNjkxL2x1Y2VuZS8iLCJwdWJsaXNoZWQiOiIyMDE1
95
- LTAzLTEzVDEwOjAwOjAyLjAwMFoiLCJhdXRob3IiOm51bGwsImltYWdlIjoi
96
- aHR0cDovL2Jsb2cucGFyc2VseS5jb20vd3AtY29udGVudC91cGxvYWRzLzIw
97
- MTUvMDMvbHVjZW5lX2luX2FjdGlvbi5wbmciLCJ0aHVtYm5haWwiOiJodHRw
98
- czovL2ltYWdlcy5nZXRuZXdzYm90LmNvbS8yMTg2Mjk2LmpwZyIsInN1bW1h
99
- cnkiOiJTbywgbXkgb3JpZ2luYWwgY29ycHVzIGhhZCB0aGUgZmllbGQgdmFs
100
- dWVzIFtcImJpZyBkYXRhXCIsIFwic21hbGwgZGF0YVwiXSAsIGJ1dCBteSBn
101
- ZW5lcmF0ZWQgdGVybXMgYXJlIFtcImJpZ1wiLCBcInNtYWxsXCIsIFwiZGF0
102
- YVwiXSAuXG5Tb2xyIHRha2VzIGFkdmFudGFnZSBvZiBMdWNlbmXigJlzIGJ1
103
- aWx0LWluIOKAnGZpZWxkIHN0b3JhZ2XigJ0gZm9yIHRoaXMsIHdoaWxlIEVs
104
- YXN0aWNzZWFyY2ggc3RvcmVzIEpTT04gYmxvYnMgaW5zaWRlIGEgTHVjZW5l
105
- IGZpZWxkLCBjYWxsZWQg4oCcX3NvdXJjZeKAnS5cblRvIGJvb3QsIHRoZSBw
106
- cmltYXJ5IHVzZSBjYXNlIG9mIHRoZSBhcHBsaWNhdGlvbiBJIHdhcyB3b3Jr
107
- aW5nIG9uIHdhcyBhY3R1YWxseSBkb2N1bWVudCBzZWFyY2guXG5iaWc9W2Rv
108
- YzEsZG9jMl0gZGF0YT1bZG9jMSxkb2MyLGRvYzNdIHNtYWxsPVtkb2MzXUFo
109
- LCBzbyBpdOKAmXMgbm90IGFuIGluZGV4IG9mIGRvY3VtZW50cyB0byB0ZXJt
110
- cywgaXTigJlzIGFuIGluZGV4IG9mIHRlcm1zIHRvIGRvY3VtZW50cy5cblRo
111
- ZW4sIHF1ZXJ5IHlvdXIgTHVjZW5lIGluZGV4IHdpdGggcHJpZGUg4oCUIGEg
112
- ZGVjYWRlLW9sZCB0ZWNobm9sb2d5LCBidWlsdCBvbiBhIGNlbnR1cnkgb2Yg
113
- Y29tcHV0ZXIgc2NpZW5jZSByZXNlYXJjaCwgYW5kIGEgbWlsbGVubml1bSBv
114
- ZiBtb25rLWxpa2Ugd2lzZG9tLiIsInNvdXJjZV9uYW1lIjoiSGFja2VyIE5l
115
- d3MiLCJzb3VyY2Vfc2x1ZyI6ImhhY2tlci1uZXdzIn0seyJkb2N1bWVudF9p
116
- ZCI6Ijc5NTAyMSIsImRpc3RhbmNlIjowLjAzNzI2MSwidGl0bGUiOiJTUUws
117
- IFNjYWxpbmcsIGFuZCBXaGF0J3MgVW5pcXVlIEFib3V0IFBvc3RncmVzIChj
118
- aXR1c2RhdGEuY29tKSIsInVybCI6Imh0dHA6Ly9jaXR1c2RhdGEuY29tL2Js
119
- b2cvOTAtc3FsLXNjYWxpbmctYW5kLXdoYXRzLXVuaXF1ZS1hYm91dC1wb3N0
120
- Z3JlcyIsInB1Ymxpc2hlZCI6IjIwMTUtMDEtMTJUMTA6MDA6MDIuMDAwWiIs
121
- ImF1dGhvciI6IldyaXR0ZW4gT3pndW4gRXJkb2dhbiwgT3pndW4gRXJkb2dh
122
- biIsImltYWdlIjoiaHR0cHM6Ly9jaXR1c2RhdGEuY29tL2ltYWdlcy9sb2dv
123
- L2NpdHVzLWxvZ28uanBnIiwidGh1bWJuYWlsIjoiaHR0cHM6Ly9pbWFnZXMu
124
- Z2V0bmV3c2JvdC5jb20vNzk1MDIxLmpwZyIsInN1bW1hcnkiOiJCdWlsZGlu
125
- ZyBhIFNRTCBkYXRhYmFzZSB0YWtlcyBhIGxvbmcgdGltZSwgYW5kIGNyZWF0
126
- aW5nIGEgY29tbXVuaXR5IGFyb3VuZCBpdCB0YWtlcyBldmVuIGxvbmdlci5c
127
- bklmIHlvdSdyZSBsb29raW5nIHRvIHNjYWxlIG91dCBhIFNRTCBkYXRhYmFz
128
- ZSwgeW91IG5lZWQgbW9yZSB0aGFuIG5ldyBmdW5jdGlvbmFsaXR5LlxuTm93
129
- LCBpZiB5b3UgYXJlIGxvb2tpbmcgdG8gc2NhbGUgb3V0IHRoaXMgU1FMIHF1
130
- ZXJ5LCB5b3VyIFwicXVlcnkgZGlzdHJpYnV0aW9uXCIgbG9naWMgbmVlZHMg
131
- dG8gd29yayB0b2dldGhlciB3aXRoIHRoZSBwYXJ0IHRoYXQgZG9lcyB0aGUg
132
- dW5kZXJzdGFuZGluZy5cbkluIHN1bW1hcnksIHdoZW4gdGhlIHVzZXIgdHlw
133
- ZXMgdXAgYSBTUUwgcXVlcnksIHRoZXJlJ3MgYSBmYWlyIGJpdCBvZiBtYWNo
134
- aW5lcnkgYXNzb2NpYXRlZCB3aXRoIGp1c3QgdW5kZXJzdGFuZGluZyB3aGF0
135
- IHRoYXQgcGxhaW4gdGV4dCBxdWVyeSBtZWFucy5cbkl0IGNvdWxkIGp1c3Qg
136
- YmUgdGhhdCB0aGUgbW9ub2xpdGhpYyBTUUwgZGF0YWJhc2UgaXMgZHlpbmcu
137
- Iiwic291cmNlX25hbWUiOiJIYWNrZXIgTmV3cyIsInNvdXJjZV9zbHVnIjoi
138
- aGFja2VyLW5ld3MifSx7ImRvY3VtZW50X2lkIjoiMTQ0NDk0OCIsImRpc3Rh
139
- bmNlIjowLjAzNzMxOCwidGl0bGUiOiJSZXRoaW5rREIgMS4xNjogY2x1c3Rl
140
- ciBtYW5hZ2VtZW50IEFQSSwgcmVhbHRpbWUgcHVzaCAocmV0aGlua2RiLmNv
141
- bSkiLCJ1cmwiOiJodHRwOi8vcmV0aGlua2RiLmNvbS9ibG9nLzEuMTYtcmVs
142
- ZWFzZS8iLCJwdWJsaXNoZWQiOiIyMDE1LTAxLTMwVDEwOjIwOjAxLjAwMFoi
143
- LCJhdXRob3IiOm51bGwsImltYWdlIjoiaHR0cDovL3JldGhpbmtkYi5jb20v
144
- YXNzZXRzL2ltYWdlcy92aWRlb3MvcmVsZWFzZXMvcmV0aGlua2RiLTEuMTYu
145
- cG5nIiwidGh1bWJuYWlsIjoiaHR0cHM6Ly9pbWFnZXMuZ2V0bmV3c2JvdC5j
146
- b20vMTQ0NDk0OC5qcGciLCJzdW1tYXJ5IjoiTm90ZTogSW4gUmV0aGlua0RC
147
- IDEuMTYgdGhlIHJldGhpbmtkYiBhZG1pbiBjb21tYW5kIGhhcyBiZWVuIHJl
148
- bW92ZWQgYW5kIHJlcGxhY2VkIHdpdGggdGhlIG5ldyBSZVFMIG1hbmFnZW1l
149
- bnQgQVBJLlxuVGhlIDEuMTYgcmVsZWFzZSBpcyBhIHByZWN1cnNvciB0byB0
150
- aGUgdXBjb21pbmcgMi4wIHJlbGVhc2UsIGFuZCBpcyB0aGUgYmlnZ2VzdCBS
151
- ZXRoaW5rREIgcmVsZWFzZSB0byBkYXRlIHdpdGggb3ZlciAzMDAgZW5oYW5j
152
- ZW1lbnRzLlxuUmV0aGlua0RCIDEuMTYgdW5pZmllcyBhbGwgb2YgdGhlIGNs
153
- dXN0ZXIgbWFuYWdlbWVudCBjYXBhYmlsaXRpZXMgc3VwcG9ydGVkIGJ5IHRo
154
- ZSBkYXRhYmFzZSBhbmQgZXhwb3NlcyB0aGVtIHZpYSBhIHNpbXBsZSBSZVFM
155
- IEFQSS5cblRoaXMgcmVsZWFzZSBpbmNsdWRlcyB0d28gZXhjaXRpbmcgbmV3
156
- IGZlYXR1cmVzOiBhIGNvbXByZWhlbnNpdmUgQVBJIGZvciBsYXJnZSBjbHVz
157
- dGVyIG1hbmFnZW1lbnQsIGFuZCByZWFsdGltZSBwdXNoIGZ1bmN0aW9uYWxp
158
- dHkgdGhhdCBkcmFtYXRpY2FsbHkgc2ltcGxpZmllcyB0aGUgZGV2ZWxvcG1l
159
- bnQgb2YgcmVhbHRpbWUgd2ViIGFwcHMuXG5FYWNoIGRvY3VtZW50IGluIHRh
160
- YmxlX2NvbmZpZyByZXByZXNlbnRzIGEgZGlmZmVyZW50IHRhYmxlIGluIHlv
161
- dXIgZGF0YWJhc2UgY2x1c3RlciwgYW5kIGluY2x1ZGVzIGRldGFpbHMgb24g
162
- c2hhcmRpbmcgYW5kIHJlcGxpY2F0aW9uIHNldHRpbmdzLiIsInNvdXJjZV9u
163
- YW1lIjoiSGFja2VyIE5ld3MiLCJzb3VyY2Vfc2x1ZyI6ImhhY2tlci1uZXdz
164
- In0seyJkb2N1bWVudF9pZCI6IjIwMzMxNjIiLCJkaXN0YW5jZSI6MC4wMzc4
165
- MDIsInRpdGxlIjoiVHVybmluZyB0aGUgZGF0YWJhc2UgaW5zaWRlLW91dCB3
166
- aXRoIEFwYWNoZSBTYW16YSAoY29uZmx1ZW50LmlvKSIsInVybCI6Imh0dHA6
167
- Ly9ibG9nLmNvbmZsdWVudC5pby8yMDE1LzAzLzA0L3R1cm5pbmctdGhlLWRh
168
- dGFiYXNlLWluc2lkZS1vdXQtd2l0aC1hcGFjaGUtc2FtemEvIiwicHVibGlz
169
- aGVkIjoiMjAxNS0wMy0wNFQwODo0MDowMS4wMDBaIiwiYXV0aG9yIjpudWxs
170
- LCJpbWFnZSI6Imh0dHBzOi8vY29uZmx1ZW50aW5jLmZpbGVzLndvcmRwcmVz
171
- cy5jb20vMjAxNS8wMy9zbGlkZS00My5wbmciLCJ0aHVtYm5haWwiOiJodHRw
172
- czovL2ltYWdlcy5nZXRuZXdzYm90LmNvbS8yMDMzMTYyLmpwZyIsInN1bW1h
173
- cnkiOiJUaGlzIGlzIGFuIGVkaXRlZCBhbmQgZXhwYW5kZWQgdHJhbnNjcmlw
174
- dCBvZiBhIHRhbGsgSSBnYXZlIGF0IFN0cmFuZ2UgTG9vcCAyMDE0LiBUaGUg
175
- dmlkZW8gcmVjb3JkaW5nIChlbWJlZGRlZCBiZWxvdykgaGFzIGJlZW4gd2F0
176
- Y2hlZCBvdmVyIDgsMDAwIHRpbWVzLiBGb3IgdGhvc2Ugb2YgeW91IHdobyBw
177
- cmVmZXIgcmVhZGluZywgSSB0aG91Z2h0IGl0IHdvdWxkIGJlIHdvcnRoIHdy
178
- aXRpbmcgZG93biB0aGUgdGFsay4gRGF0YWJhc2VzIGFyZSBnbG9iYWwsIHNo
179
- YXJlZCwgbXV0YWJsZSBzdGF0ZS4gVGhhdOKAmXMgdGhlIHdheSBpdCBoYXPi
180
- gKYiLCJzb3VyY2VfbmFtZSI6IkhhY2tlciBOZXdzIiwic291cmNlX3NsdWci
181
- OiJoYWNrZXItbmV3cyJ9LHsiZG9jdW1lbnRfaWQiOiIxMTE1MTkwIiwiZGlz
182
- dGFuY2UiOjAuMDM5NTAzLCJ0aXRsZSI6IlBnbG9hZGVyOiBBIEhpZ2gtc3Bl
183
- ZWQgUG9zdGdyZVNRTCBTd2lzcyBBcm15IEtuaWZlLCBXcml0dGVuIGluIExp
184
- c3AgKHBnbG9hZGVyLmlvKSIsInVybCI6Imh0dHA6Ly9wZ2xvYWRlci5pby8i
185
- LCJwdWJsaXNoZWQiOiIyMDE1LTAxLTIxVDEwOjAwOjAyLjAwMFoiLCJhdXRo
186
- b3IiOm51bGwsImltYWdlIjoiaHR0cDovL3BnbG9hZGVyLmlvL2ltZy9jc3Zf
187
- dGV4dC5wbmciLCJ0aHVtYm5haWwiOiJodHRwczovL2ltYWdlcy5nZXRuZXdz
188
- Ym90LmNvbS8xMTE1MTkwLmpwZyIsInN1bW1hcnkiOiJHaXZlbiBhIE15U1FM
189
- IGNvbm5lY3Rpb24gc3RyaW5nLCBwZ2xvYWRlciBxdWVyeSB0aGUgY2F0YWxv
190
- Z3MgdG8gbGlzdCB5b3VyIHRhYmxlcywgY29uc3RyYWludHMgYW5kIGluZGV4
191
- ZXMgYW5kIGtub3cgaG93IHRvIHRyYW5zZm9ybSB0aGlzIHNjaGVtYSBpbnRv
192
- IGEgUG9zdGdyZVNRTCBlcXVpdmFsZW50LCBhcHBseWluZyBhZHZhbmNlZCBj
193
- YXN0aW5nIHJ1bGVzIHRoYXQgeW91IGNhbiBlZGl0IGluIHRoZSBjb21tYW5k
194
- LlxuTWlncmF0ZSBmcm9tIE15U1FMIHRvIFBvc3RncmVTUUwuXG5NaWdyYXRl
195
- IHNvbWUgdGlueWludCB0byBib29sZWFuIGFuZCBzb21lIG90aGVycyB0byBz
196
- bWFsbGludCBhbGwgZnJvbSB0aGUgc2FtZSB0b29sIVxuVmlldyBkZXRhaWxz
197
- IMK7XG5JbiBvbmUgY29tbWFuZC4iLCJzb3VyY2VfbmFtZSI6IkhhY2tlciBO
198
- ZXdzIiwic291cmNlX3NsdWciOiJoYWNrZXItbmV3cyJ9LHsiZG9jdW1lbnRf
199
- aWQiOiIxNzg3NDYwIiwiZGlzdGFuY2UiOjAuMDQxODkxLCJ0aXRsZSI6Iklu
200
- dHJvZHVjaW5nIERhdGFGcmFtZXMgaW4gU3BhcmsgZm9yIExhcmdlIFNjYWxl
201
- IERhdGEgU2NpZW5jZSAoZGF0YWJyaWNrcy5jb20pIiwidXJsIjoiaHR0cDov
202
- L2RhdGFicmlja3MuY29tL2Jsb2cvMjAxNS8wMi8xNy9pbnRyb2R1Y2luZy1k
203
- YXRhZnJhbWVzLWluLXNwYXJrLWZvci1sYXJnZS1zY2FsZS1kYXRhLXNjaWVu
204
- Y2UuaHRtbCIsInB1Ymxpc2hlZCI6IjIwMTUtMDItMTdUMTA6MjA6MDIuMDAw
205
- WiIsImF1dGhvciI6Ik1pY2hhZWwgQXJtYnJ1c3QsIERhdmllcyBMaXUsIFJl
206
- eW5vbGQgWGluIiwiaW1hZ2UiOiJodHRwczovL2RhdGFicmlja3MuY29tL3dw
207
- LWNvbnRlbnQvdXBsb2Fkcy8yMDE1LzAyL1J4aW4uanBnIiwidGh1bWJuYWls
208
- IjoiaHR0cHM6Ly9pbWFnZXMuZ2V0bmV3c2JvdC5jb20vMTc4NzQ2MC5qcGci
209
- LCJzdW1tYXJ5IjoiU3BhcmsgZW5hYmxlZCBkaXN0cmlidXRlZCBkYXRhIHBy
210
- b2Nlc3NpbmcgdGhyb3VnaCBmdW5jdGlvbmFsIHRyYW5zZm9ybWF0aW9ucyBv
211
- biBkaXN0cmlidXRlZCBjb2xsZWN0aW9ucyBvZiBkYXRhIChSRERzKS5cbklu
212
- IGFkZGl0aW9uLCB0aHJvdWdoIFNwYXJrIFNRTOKAmXMgZXh0ZXJuYWwgZGF0
213
- YSBzb3VyY2VzIEFQSSwgRGF0YUZyYW1lcyBjYW4gYmUgZXh0ZW5kZWQgdG8g
214
- c3VwcG9ydCBhbnkgdGhpcmQtcGFydHkgZGF0YSBmb3JtYXRzIG9yIHNvdXJj
215
- ZXMuXG5zcWwoIFwiU0VMRUNUIGNvdW50KCopIEZST00geW91bmdcIiApSW4g
216
- UHl0aG9uLCB5b3UgY2FuIGFsc28gY29udmVydCBmcmVlbHkgYmV0d2VlbiBQ
217
- YW5kYXMgRGF0YUZyYW1lIGFuZCBTcGFyayBEYXRhRnJhbWU6IyBDb252ZXJ0
218
- IFNwYXJrIERhdGFGcmFtZSB0byBQYW5kYXMgcGFuZGFzX2RmID0geW91bmcg
219
- LlxuT3VyIGRhdGEgc2NpZW5jZSB0ZWFtIGF0IERhdGFicmlja3MgaGFzIGJl
220
- ZW4gdXNpbmcgdGhpcyBuZXcgRGF0YUZyYW1lIEFQSSBvbiBvdXIgaW50ZXJu
221
- YWwgZGF0YSBwaXBlbGluZXMuXG5IZXJlIGlzIGFuIGV4YW1wbGUgb2YgdXNp
222
- bmcgRGF0YUZyYW1lcyB0byBtYW5pcHVsYXRlIHRoZSBkZW1vZ3JhcGhpYyBk
223
- YXRhIG9mIGEgbGFyZ2UgcG9wdWxhdGlvbiBvZiB1c2VyczojIENyZWF0ZSBh
224
- IG5ldyBEYXRhRnJhbWUgdGhhdCBjb250YWlucyDigJx5b3VuZyB1c2Vyc+KA
225
- nSBvbmx5IHlvdW5nID0gdXNlcnMgLiIsInNvdXJjZV9uYW1lIjoiSGFja2Vy
226
- IE5ld3MiLCJzb3VyY2Vfc2x1ZyI6ImhhY2tlci1uZXdzIn0seyJkb2N1bWVu
227
- dF9pZCI6IjE5MzA3NzciLCJkaXN0YW5jZSI6MC4wNDIzNTksInRpdGxlIjoi
228
- RW1icmFjaW5nIFNRTCBpbiBQb3N0Z3JlcyAoY29uZXJ5LmlvKSIsInVybCI6
229
- Imh0dHA6Ly9yb2IuY29uZXJ5LmlvLzIwMTUvMDIvMjQvZW1icmFjaW5nLXNx
230
- bC1pbi1wb3N0Z3Jlcy8iLCJwdWJsaXNoZWQiOiIyMDE1LTAyLTI2VDAyOjQw
231
- OjAyLjAwMFoiLCJhdXRob3IiOiJSb2IgQ29uZXJ5IiwiaW1hZ2UiOiJodHRw
232
- Oi8vcm9iLmNvbmVyeS5pby93cC1jb250ZW50L3VwbG9hZHMvMjAxNS8wMi9q
233
- b3JkYW5fc3FsLmpwZyIsInRodW1ibmFpbCI6Imh0dHBzOi8vaW1hZ2VzLmdl
234
- dG5ld3Nib3QuY29tLzE5MzA3NzcuanBnIiwic3VtbWFyeSI6IkhhdmluZyB0
235
- aGUgYWJpbGl0eSB0byB3b3JrIFNRTCBpbiB5b3VyIGZhdm9yaXRlIGRhdGFi
236
- YXNlIGVuZ2luZSBpcyBhIGxpZmUtbG9uZywgZ29vZCBza2lsbCB0byBoYXZl
237
- LiIsInNvdXJjZV9uYW1lIjoiSGFja2VyIE5ld3MiLCJzb3VyY2Vfc2x1ZyI6
238
- ImhhY2tlci1uZXdzIn0seyJkb2N1bWVudF9pZCI6IjE4MjE1ODUiLCJkaXN0
239
- YW5jZSI6MC4wNDIzNjksInRpdGxlIjoiUG9zdGljbyDigJMgQSBtb2Rlcm4g
240
- UG9zdGdyZVNRTCBjbGllbnQgZm9yIE9TIFggKGVnZ2VyYXBwcy5hdCkiLCJ1
241
- cmwiOiJodHRwczovL2VnZ2VyYXBwcy5hdC9wb3N0aWNvIiwicHVibGlzaGVk
242
- IjoiMjAxNS0wMi0xOVQxMDo0MDowMS4wMDBaIiwiYXV0aG9yIjpudWxsLCJp
243
- bWFnZSI6bnVsbCwidGh1bWJuYWlsIjpmYWxzZSwic3VtbWFyeSI6IlBvc3Rp
244
- Y28gQSBNb2Rlcm4gUG9zdGdyZVNRTCBDbGllbnQgZm9yIE9TIFhSZXF1aXJl
245
- cyBPUyBYIDEwLjggb3IgbGF0ZXIuXG5XaGlsZSB3b3JraW5nIG9uIHZlcnNp
246
- b24gUEcgQ29tbWFuZGVyIDIuMCwgSSBncmV3IHRpcmVkIG9mIGl0cyBuYW1l
247
- IGFuZCBkZWNpZGVkIHRvIHRyeSBzb21ldGhpbmcgbGVzcyBnZW5lcmljLlxu
248
- SWYgeW91IHB1cmNoYXNlZCBQRyBDb21tYW5kZXIgb24gdGhlIEVnZ2VyIEFw
249
- cHMgU3RvcmUgYWZ0ZXIgU2VwdGVtYmVyIDFzdCwgMjAxNCwgeW91ciBsaWNl
250
- bnNlIGZpbGUgd2lsbCBiZSB2YWxpZCBmb3IgUG9zdGljby5cbk9wZW4gUEcg
251
- Q29tbWFuZGVyLCByaWdodCBjbGljayBvbiB0aGUgZmF2b3JpdGVzIGFuZCBz
252
- ZWxlY3Qg4oCcRXhwb3J0IEFsbCBGYXZvcml0ZXPigKbigJ0uXG5JIGJvdWdo
253
- dCBQRyBDb21tYW5kZXIuIiwic291cmNlX25hbWUiOiJIYWNrZXIgTmV3cyIs
254
- InNvdXJjZV9zbHVnIjoiaGFja2VyLW5ld3MifSx7ImRvY3VtZW50X2lkIjoi
255
- NTcwMTM3IiwiZGlzdGFuY2UiOjAuMDQzMzE1LCJ0aXRsZSI6IkRlc2lnbiBv
256
- ZiBhIFZpbS1saWtlIHRleHQgZWRpdG9yIChzdWNrbGVzcy5vcmcpIiwidXJs
257
- IjoiaHR0cDovL2xpc3RzLnN1Y2tsZXNzLm9yZy9kZXYvMTQwOS8yMzQ5Ny5o
258
- dG1sIiwicHVibGlzaGVkIjoiMjAxNS0wMS0wMlQwNjoyMDowMS4wMDBaIiwi
259
- YXV0aG9yIjoiVGFubmVyIE1hdF9hdF9icmFpbi1kdW1wIE9yZywgTWFyYyBB
260
- bmRyIiwiaW1hZ2UiOm51bGwsInRodW1ibmFpbCI6ZmFsc2UsInN1bW1hcnki
261
- OiJbZGV2XSBbUkZDXSBEZXNpZ24gb2YgYSB2aW0gbGlrZSB0ZXh0IGVkaXRv
262
- ckZyb20gOiBNYXJjIEFuZHLDqSBUYW5uZXIgIiwic291cmNlX25hbWUiOiJI
263
- YWNrZXIgTmV3cyIsInNvdXJjZV9zbHVnIjoiaGFja2VyLW5ld3MifSx7ImRv
264
- Y3VtZW50X2lkIjoiNTg5Mjg5IiwiZGlzdGFuY2UiOjAuMDQzNzc3LCJ0aXRs
265
- ZSI6IkF1dG9tYXRpYyBSRVNUIEFQSSBmb3IgQW55IFBvc3RncmVzIERhdGFi
266
- YXNlIChnaXRodWIuY29tKSIsInVybCI6Imh0dHBzOi8vZ2l0aHViLmNvbS9i
267
- ZWdyaWZmcy9wb3N0Z3Jlc3Q/aG49dHJ1ZSIsInB1Ymxpc2hlZCI6IjIwMTUt
268
- MDEtMDNUMTM6MDA6MDEuMDAwWiIsImF1dGhvciI6bnVsbCwiaW1hZ2UiOiJo
269
- dHRwczovL2F2YXRhcnMxLmdpdGh1YnVzZXJjb250ZW50LmNvbS91LzkxMTkx
270
- MT92PTMmcz00MDAiLCJ0aHVtYm5haWwiOiJodHRwczovL2ltYWdlcy5nZXRu
271
- ZXdzYm90LmNvbS81ODkyODkuanBnIiwic3VtbWFyeSI6InBvc3RncmVzdCAt
272
- IFJFU1QgQVBJIGZvciBhbnkgUG9zdGdyZXMgZGF0YWJhc2UiLCJzb3VyY2Vf
273
- bmFtZSI6IkhhY2tlciBOZXdzIiwic291cmNlX3NsdWciOiJoYWNrZXItbmV3
274
- cyJ9LHsiZG9jdW1lbnRfaWQiOiIyMTg4NzY1IiwiZGlzdGFuY2UiOjAuMDQ0
275
- NDIsInRpdGxlIjoiU2hvdyBITjogR3JhcGhRTCBmb3IgUG9zdGdyZXMgKGdp
276
- dGh1Yi5jb20pIiwidXJsIjoiaHR0cHM6Ly9naXRodWIuY29tL3NvbGlkc25h
277
- Y2svR3JhcGhwb3N0Z3Jlc1FMIiwicHVibGlzaGVkIjoiMjAxNS0wMy0xM1Qx
278
- Njo1MDowMi4wMDBaIiwiYXV0aG9yIjpudWxsLCJpbWFnZSI6Imh0dHBzOi8v
279
- YXZhdGFyczIuZ2l0aHVidXNlcmNvbnRlbnQuY29tL3UvMTUzMDA4P3Y9MyZz
280
- PTQwMCIsInRodW1ibmFpbCI6Imh0dHBzOi8vaW1hZ2VzLmdldG5ld3Nib3Qu
281
- Y29tLzIxODg3NjUuanBnIiwic3VtbWFyeSI6IkdyYXBocG9zdGdyZXNRTCAt
282
- IEdyYXBoUUwgZm9yIFBvc3RncmVzIiwic291cmNlX25hbWUiOiJIYWNrZXIg
283
- TmV3cyIsInNvdXJjZV9zbHVnIjoiaGFja2VyLW5ld3MifSx7ImRvY3VtZW50
284
- X2lkIjoiMzg2OTcyIiwiZGlzdGFuY2UiOjAuMDQ0NjQ0LCJ0aXRsZSI6IlBv
285
- c3RncmVTUUwgOS40IFJlbGVhc2VkIChwb3N0Z3Jlc3FsLm9yZykiLCJ1cmwi
286
- OiJodHRwOi8vd3d3LnBvc3RncmVzcWwub3JnL2Fib3V0L25ld3MvMTU1Ny8i
287
- LCJwdWJsaXNoZWQiOiIyMDE0LTEyLTE4VDA3OjMwOjAyLjAwMFoiLCJhdXRo
288
- b3IiOm51bGwsImltYWdlIjpudWxsLCJ0aHVtYm5haWwiOmZhbHNlLCJzdW1t
289
- YXJ5IjoiUG9zdGdyZVNRTCA5LjQgSW5jcmVhc2VzIEZsZXhpYmlsaXR5LCBT
290
- Y2FsYWJpbGl0eSBhbmQgUGVyZm9ybWFuY2UxOCBERUNFTUJFUiAyMDE0OiBU
291
- aGUgUG9zdGdyZVNRTCBHbG9iYWwgRGV2ZWxvcG1lbnQgR3JvdXAgYW5ub3Vu
292
- Y2VzIHRoZSByZWxlYXNlIG9mIFBvc3RncmVTUUwgOS40LCB0aGUgbGF0ZXN0
293
- IHZlcnNpb24gb2YgdGhlIHdvcmxkJ3MgbGVhZGluZyBvcGVuIHNvdXJjZSBk
294
- YXRhYmFzZSBzeXN0ZW0uXG5cIlBlcmZvcm1hbmNlVmVyc2lvbiA5LjQgYWxz
295
- byBpbnRyb2R1Y2VzIG11bHRpcGxlIHBlcmZvcm1hbmNlIGltcHJvdmVtZW50
296
- cyB3aGljaCB3aWxsIGFsbG93IHVzZXJzIHRvIGdldCBldmVuIG1vcmUgb3V0
297
- IG9mIGVhY2ggUG9zdGdyZVNRTCBzZXJ2ZXIuXG5UaGlzIHJlbGVhc2UgYWRk
298
- cyBtYW55IG5ldyBmZWF0dXJlcyB3aGljaCBlbmhhbmNlIFBvc3RncmVTUUwn
299
- cyBmbGV4aWJpbGl0eSwgc2NhbGFiaWxpdHkgYW5kIHBlcmZvcm1hbmNlIGZv
300
- ciBtYW55IGRpZmZlcmVudCB0eXBlcyBvZiBkYXRhYmFzZSB1c2VycywgaW5j
301
- bHVkaW5nIGltcHJvdmVtZW50cyB0byBKU09OIHN1cHBvcnQsIHJlcGxpY2F0
302
- aW9uIGFuZCBpbmRleCBwZXJmb3JtYW5jZS5cblwiVGhlIG1haW4gcmVhc29u
303
- IGJlaGluZCBvdXIgaW1tZWRpYXRlIGFkb3B0aW9uIG9mIFBvc3RncmVTUUwg
304
- OS40IGluIHByb2R1Y3Rpb24gaXMgdGhlIG5ldyBMb2dpY2FsIERlY29kaW5n
305
- IGZlYXR1cmUsXCIgc2FpZCBNYXJjbyBGYXZhbGUsIENhcnRvZ3JhcGhpYyBQ
306
- cm9kdWN0aW9uIE1hbmFnZXIgb2YgTmF2aW9uaWNzLlxuU2NhbGFiaWxpdHlJ
307
- biA5LjQsIExvZ2ljYWwgRGVjb2Rpbmcgc3VwcGxpZXMgYSBuZXcgQVBJIGZv
308
- ciByZWFkaW5nLCBmaWx0ZXJpbmcgYW5kIG1hbmlwdWxhdGluZyB0aGUgUG9z
309
- dGdyZVNRTCByZXBsaWNhdGlvbiBzdHJlYW0uIiwic291cmNlX25hbWUiOiJI
310
- YWNrZXIgTmV3cyIsInNvdXJjZV9zbHVnIjoiaGFja2VyLW5ld3MifSx7ImRv
311
- Y3VtZW50X2lkIjoiMjE5MzMwNiIsImRpc3RhbmNlIjowLjA0NDY5NSwidGl0
312
- bGUiOiJBbm5vdW5jaW5nIFNwYXJrIDEuMyAoZGF0YWJyaWNrcy5jb20pIiwi
313
- dXJsIjoiaHR0cHM6Ly9kYXRhYnJpY2tzLmNvbS9ibG9nLzIwMTUvMDMvMTMv
314
- YW5ub3VuY2luZy1zcGFyay0xLTMuaHRtbCIsInB1Ymxpc2hlZCI6IjIwMTUt
315
- MDMtMTNUMTU6MTA6MDEuMDAwWiIsImF1dGhvciI6IlBhdHJpY2sgV2VuZGVs
316
- bCIsImltYWdlIjoiaHR0cHM6Ly9kYXRhYnJpY2tzLmNvbS93cC1jb250ZW50
317
- L3VwbG9hZHMvMjAxNS8wMi9wYXRyaWNrLmpwZyIsInRodW1ibmFpbCI6Imh0
318
- dHBzOi8vaW1hZ2VzLmdldG5ld3Nib3QuY29tLzIxOTMzMDYuanBnIiwic3Vt
319
- bWFyeSI6Ik92ZXJ2aWV3IG9mIEFwYWNoZSBTcGFyayAxLjMgZmVhdHVyZXMs
320
- IGluY2x1ZGluZyBEYXRhRnJhbWVzLCBNTGxpYiwgcGFja2FnZXMsIGFuZCBt
321
- dWNoIG1vcmUiLCJzb3VyY2VfbmFtZSI6IkhhY2tlciBOZXdzIiwic291cmNl
322
- X3NsdWciOiJoYWNrZXItbmV3cyJ9LHsiZG9jdW1lbnRfaWQiOiIyMzc4NDQi
323
- LCJkaXN0YW5jZSI6MC4wNDQ3NzQsInRpdGxlIjoiQm9sdDogQSBsb3ctbGV2
324
- ZWwga2V5L3ZhbHVlIGRhdGFiYXNlIGZvciBHbyAoZ2l0aHViLmNvbSkiLCJ1
325
- cmwiOiJodHRwczovL2dpdGh1Yi5jb20vYm9sdGRiL2JvbHQiLCJwdWJsaXNo
326
- ZWQiOiIyMDE0LTEyLTExVDA5OjQwOjAxLjAwMFoiLCJhdXRob3IiOm51bGws
327
- ImltYWdlIjoiaHR0cHM6Ly9hdmF0YXJzMy5naXRodWJ1c2VyY29udGVudC5j
328
- b20vdS82NTM5NzM3P3Y9MyZzPTQwMCIsInRodW1ibmFpbCI6Imh0dHBzOi8v
329
- aW1hZ2VzLmdldG5ld3Nib3QuY29tLzIzNzg0NC5qcGciLCJzdW1tYXJ5Ijoi
330
- Ym9sdCAtIEEgbG93LWxldmVsIGtleS92YWx1ZSBkYXRhYmFzZSBmb3IgR28u
331
- Iiwic291cmNlX25hbWUiOiJIYWNrZXIgTmV3cyIsInNvdXJjZV9zbHVnIjoi
332
- aGFja2VyLW5ld3MifSx7ImRvY3VtZW50X2lkIjoiMjU3ODI0IiwiZGlzdGFu
333
- Y2UiOjAuMDQ0ODYsInRpdGxlIjoiSW50cm9kdWNpbmcgQXRsYXM6IE5ldGZs
334
- aXgncyBQcmltYXJ5IFRlbGVtZXRyeSBQbGF0Zm9ybSAobmV0ZmxpeC5jb20p
335
- IiwidXJsIjoiaHR0cDovL3RlY2hibG9nLm5ldGZsaXguY29tLzIwMTQvMTIv
336
- aW50cm9kdWNpbmctYXRsYXMtbmV0ZmxpeHMtcHJpbWFyeS5odG1sIiwicHVi
337
- bGlzaGVkIjoiMjAxNC0xMi0xMlQwOToyMDowMS4wMDBaIiwiYXV0aG9yIjoi
338
- Um95IFJhcG9wb3J0IiwiaW1hZ2UiOiJodHRwczovL2xoNS5nb29nbGV1c2Vy
339
- Y29udGVudC5jb20vZWdpelo5Vk1wZ0VqelVwT0dWR3FzVW5SQVJjc1RIM19J
340
- VXhEcjM3dXRaUVJfdmF1blJYdXFONXNOVHdEQl9sQ3UyZjQ2MWZuZXk2TTBP
341
- Tm5LOXZxVjJNSUtpQnJFUzJzc1VKaTM2N09XdHFkakRyY2dFRXR3Mk1ucXlf
342
- Z00yV0YiLCJ0aHVtYm5haWwiOiJodHRwczovL2ltYWdlcy5nZXRuZXdzYm90
343
- LmNvbS8yNTc4MjQuanBnIiwic3VtbWFyeSI6IkFib3V0IHRoZSBOZXRmbGl4
344
- IFRlY2ggQmxvZ1RoaXMgaXMgYSBOZXRmbGl4IGJsb2cgZm9jdXNlZCBvbiB0
345
- ZWNobm9sb2d5IGFuZCB0ZWNobm9sb2d5IGlzc3Vlcy5cbldlJ2xsIHNoYXJl
346
- IG91ciBwZXJzcGVjdGl2ZXMsIGRlY2lzaW9ucyBhbmQgY2hhbGxlbmdlcyBy
347
- ZWdhcmRpbmcgdGhlIHNvZnR3YXJlIHdlIGJ1aWxkIGFuZCB1c2UgdG8gY3Jl
348
- YXRlIHRoZSBOZXRmbGl4IHNlcnZpY2UuIiwic291cmNlX25hbWUiOiJIYWNr
349
- ZXIgTmV3cyIsInNvdXJjZV9zbHVnIjoiaGFja2VyLW5ld3MifSx7ImRvY3Vt
350
- ZW50X2lkIjoiMTAzNjYyMyIsImRpc3RhbmNlIjowLjA0NDg5MSwidGl0bGUi
351
- OiJQeXRob24gVGlwcyBhbmQgVHJhcHMgKGFpcnBhaXIuY29tKSIsInVybCI6
352
- Imh0dHBzOi8vd3d3LmFpcnBhaXIuY29tL3B5dGhvbi9wb3N0cy9weXRob24t
353
- dGlwcy1hbmQtdHJhcHMiLCJwdWJsaXNoZWQiOiIyMDE1LTAxLTE5VDA4OjQz
354
- OjA0LjAwMFoiLCJhdXRob3IiOiJSeWFuIEJyb3duLCBLYXJvbGluYSBBbGV4
355
- aW91LCBHcmFoYW0gSmVuc29uIiwiaW1hZ2UiOiJodHRwczovL2kuaW1ndXIu
356
- Y29tL3J1cXZQVWYuanBnIiwidGh1bWJuYWlsIjoiaHR0cHM6Ly9pbWFnZXMu
357
- Z2V0bmV3c2JvdC5jb20vMTAzNjYyMy5qcGciLCJzdW1tYXJ5IjoiUnlhbiB0
358
- YWxrcyBzdGFuZGFyZCBkYXRhIHR5cGVzLCBjb250cm9sIGZsb3csIGNvbnRl
359
- eHQgYW5kIGdlbmVyYXRvcnMgdG8gZ2l2ZSB5b3UgYSBiZXR0ZXIgZ3Jhc3Ag
360
- b24gdGhlIGlkaW9tcywgbGlicmFyaWVzIGFuZCBjYXBhYmlsaXRpZXMgb2Yg
361
- UHl0aG9uIiwic291cmNlX25hbWUiOiJIYWNrZXIgTmV3cyIsInNvdXJjZV9z
362
- bHVnIjoiaGFja2VyLW5ld3MifSx7ImRvY3VtZW50X2lkIjoiMjMxNjAxIiwi
363
- ZGlzdGFuY2UiOjAuMDQ1MDE5LCJ0aXRsZSI6Ik1EQk0g4oCTIEhpZ2gtc3Bl
364
- ZWQgZGF0YWJhc2UgKHR1bWJsci5jb20pIiwidXJsIjoiaHR0cDovL3lhaG9v
365
- ZW5nLnR1bWJsci5jb20vcG9zdC8xMDQ4NjExMDg5MzEvbWRibS1oaWdoLXNw
366
- ZWVkLWRhdGFiYXNlIiwicHVibGlzaGVkIjoiMjAxNC0xMi0xMFQxOTozMDow
367
- Mi4wMDBaIiwiYXV0aG9yIjoiU2l0ZSBBdXRob3JzIiwiaW1hZ2UiOiJodHRw
368
- Oi8vMzgubWVkaWEudHVtYmxyLmNvbS9hdmF0YXJfNzM2ZDQ4ZGFkYjg2XzEy
369
- OC5wbmciLCJ0aHVtYm5haWwiOiJodHRwczovL2ltYWdlcy5nZXRuZXdzYm90
370
- LmNvbS8yMzE2MDEuanBnIiwic3VtbWFyeSI6Ik1EQk0gLSBIaWdoLXNwZWVk
371
- IGRhdGFiYXNlIEludHJvZHVjdGlvbiBCYWNrIGluIDE5NzksIEFUJlQgcmVs
372
- ZWFzZWQgYSBsaWdodHdlaWdodCBkYXRhYmFzZSBlbmdpbmUgd3JpdHRlbiBi
373
- eSBLZW4gVGhvbXBzb24sIGNhbGxlZCBEQk0gKGh0dHA6Ly9lbi53aWtpcGVk
374
- aWEub3JnL3dpa2kvRGJtKS4gSW4gMTk4NyBPemFuIFlpZ2l0IGNyZWF0ZWQg
375
- YS4uLiIsInNvdXJjZV9uYW1lIjoiSGFja2VyIE5ld3MiLCJzb3VyY2Vfc2x1
376
- ZyI6ImhhY2tlci1uZXdzIn1d
377
- http_version:
378
- recorded_at: Thu, 14 May 2015 09:37:14 GMT
379
- recorded_with: VCR 2.9.3