lateral_recommender 0.0.6 → 0.0.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +1 -1
- data/bin/rspec +16 -0
- data/lateral_recommender.gemspec +4 -6
- data/lib/lateral_recommender.rb +18 -8
- data/lib/lateral_recommender/version.rb +1 -1
- data/spec/lateral_recommender_spec.rb +50 -74
- data/spec/spec_helper.rb +7 -7
- metadata +31 -120
- data/spec/fixtures/tapes/add.yml +0 -519
- data/spec/fixtures/tapes/invalid_key.yml +0 -40
- data/spec/fixtures/tapes/recommend_by_id.yml +0 -40
- data/spec/fixtures/tapes/recommend_by_id_arxiv.yml +0 -201
- data/spec/fixtures/tapes/recommend_by_id_news.yml +0 -379
- data/spec/fixtures/tapes/recommend_by_id_sec.yml +0 -12392
- data/spec/fixtures/tapes/recommend_by_id_wikipedia.yml +0 -125
- data/spec/fixtures/tapes/recommend_by_text.yml +0 -40
- data/spec/fixtures/tapes/recommend_by_text_arxiv.yml +0 -236
- data/spec/fixtures/tapes/recommend_by_text_news.yml +0 -294
- data/spec/fixtures/tapes/recommend_by_text_pubmed.yml +0 -251
- data/spec/fixtures/tapes/recommend_by_text_sec.yml +0 -11469
- data/spec/fixtures/tapes/recommend_by_text_wikipedia.yml +0 -118
@@ -1,40 +0,0 @@
|
|
1
|
-
---
|
2
|
-
http_interactions:
|
3
|
-
- request:
|
4
|
-
method: post
|
5
|
-
uri: https://recommender-api.lateral.io/recommend-by-text/?subscription-key=no
|
6
|
-
body:
|
7
|
-
encoding: UTF-8
|
8
|
-
string: text=test
|
9
|
-
headers:
|
10
|
-
Accept-Encoding:
|
11
|
-
- gzip;q=1.0,deflate;q=0.6,identity;q=0.3
|
12
|
-
Accept:
|
13
|
-
- '*/*'
|
14
|
-
User-Agent:
|
15
|
-
- Ruby
|
16
|
-
response:
|
17
|
-
status:
|
18
|
-
code: 403
|
19
|
-
message: Forbidden
|
20
|
-
headers:
|
21
|
-
Date:
|
22
|
-
- Thu, 14 May 2015 09:35:58 GMT
|
23
|
-
Content-Type:
|
24
|
-
- text/plain; charset=UTF-8
|
25
|
-
Transfer-Encoding:
|
26
|
-
- chunked
|
27
|
-
Connection:
|
28
|
-
- keep-alive
|
29
|
-
Access-Control-Allow-Origin:
|
30
|
-
- '*'
|
31
|
-
Server:
|
32
|
-
- kong/0.2.0-2
|
33
|
-
Via:
|
34
|
-
- kong/0.2.0-2
|
35
|
-
body:
|
36
|
-
encoding: UTF-8
|
37
|
-
string: '{"message":"Your authentication credentials are invalid"}'
|
38
|
-
http_version:
|
39
|
-
recorded_at: Thu, 14 May 2015 09:35:59 GMT
|
40
|
-
recorded_with: VCR 2.9.3
|
@@ -1,40 +0,0 @@
|
|
1
|
-
---
|
2
|
-
http_interactions:
|
3
|
-
- request:
|
4
|
-
method: post
|
5
|
-
uri: https://recommender-api.lateral.io/recommend-by-id/?subscription-key=<API_KEY>
|
6
|
-
body:
|
7
|
-
encoding: UTF-8
|
8
|
-
string: document_id=doc_id
|
9
|
-
headers:
|
10
|
-
Accept-Encoding:
|
11
|
-
- gzip;q=1.0,deflate;q=0.6,identity;q=0.3
|
12
|
-
Accept:
|
13
|
-
- '*/*'
|
14
|
-
User-Agent:
|
15
|
-
- Ruby
|
16
|
-
response:
|
17
|
-
status:
|
18
|
-
code: 200
|
19
|
-
message: OK
|
20
|
-
headers:
|
21
|
-
Date:
|
22
|
-
- Thu, 14 May 2015 09:37:02 GMT
|
23
|
-
Content-Type:
|
24
|
-
- application/json; charset=utf-8
|
25
|
-
Content-Length:
|
26
|
-
- '49'
|
27
|
-
Connection:
|
28
|
-
- keep-alive
|
29
|
-
Access-Control-Allow-Origin:
|
30
|
-
- '*'
|
31
|
-
Server:
|
32
|
-
- TornadoServer/4.0.2
|
33
|
-
Via:
|
34
|
-
- kong/0.2.0-2
|
35
|
-
body:
|
36
|
-
encoding: UTF-8
|
37
|
-
string: '[{"distance": 0.000248, "document_id": "doc_id"}]'
|
38
|
-
http_version:
|
39
|
-
recorded_at: Thu, 14 May 2015 09:37:03 GMT
|
40
|
-
recorded_with: VCR 2.9.3
|
@@ -1,201 +0,0 @@
|
|
1
|
-
---
|
2
|
-
http_interactions:
|
3
|
-
- request:
|
4
|
-
method: post
|
5
|
-
uri: https://arxiv-api.lateral.io/recommend-by-id/?subscription-key=<API_KEY>
|
6
|
-
body:
|
7
|
-
encoding: UTF-8
|
8
|
-
string: document_id=arxiv-http%3A%2F%2Farxiv.org%2Fabs%2F1403.2165
|
9
|
-
headers:
|
10
|
-
Accept-Encoding:
|
11
|
-
- gzip;q=1.0,deflate;q=0.6,identity;q=0.3
|
12
|
-
Accept:
|
13
|
-
- '*/*'
|
14
|
-
User-Agent:
|
15
|
-
- Ruby
|
16
|
-
response:
|
17
|
-
status:
|
18
|
-
code: 200
|
19
|
-
message: OK
|
20
|
-
headers:
|
21
|
-
Date:
|
22
|
-
- Thu, 14 May 2015 09:37:16 GMT
|
23
|
-
Content-Type:
|
24
|
-
- application/json; charset=utf-8
|
25
|
-
Content-Length:
|
26
|
-
- '12976'
|
27
|
-
Connection:
|
28
|
-
- keep-alive
|
29
|
-
Access-Control-Allow-Origin:
|
30
|
-
- '*'
|
31
|
-
Server:
|
32
|
-
- TornadoServer/4.0.2
|
33
|
-
Via:
|
34
|
-
- kong/0.2.0-2
|
35
|
-
body:
|
36
|
-
encoding: UTF-8
|
37
|
-
string: '[{"distance": 0.0, "title": "Set-valued sorting index and joint equidistributions",
|
38
|
-
"url": "http://arxiv.org/abs/1403.2165", "text": " Recently Petersen defined
|
39
|
-
a new Mahonian index sor over the symmetric group $\\mathfrak{S}_n$ and proved
|
40
|
-
that $(\\text{inv}, \\text{rlmin})$ and $(\\text{sor}, \\text{cyc})$ have
|
41
|
-
the same joint distribution. Foata and Han proved that the pairs of set-valued
|
42
|
-
statistics $(\\text{Cyc}, \\text{Rmil}), (\\text{Cyc}, \\text{Lmap}), (\\text{Rmil},
|
43
|
-
\\text{Lmap})$ have the same joint distribution over $\\mathfrak{S}_n$. In
|
44
|
-
this paper we introduce the set-valued statistics $\\text{Inv}, \\text{Lmil},
|
45
|
-
\\text{Sor}$ and $\\text{Lmicycl}_1$ and generalize simultaneously results
|
46
|
-
of Petersen and Foata-Han and find many equidistributed triples of set-valued
|
47
|
-
statistics and quadruples of statistics. ", "permalink_id": "2acf1a10e33c3a951374b3cd5d9d491c",
|
48
|
-
"authors": ["Eu, Sen-Pen", "Lo, Yuan-Hsun", "Wong, Tsai-Lien"], "date": "2014-03-10",
|
49
|
-
"document_id": "arxiv-http://arxiv.org/abs/1403.2165"}, {"distance": 0.158086,
|
50
|
-
"title": "The sorting index and set-valued joint equidistributions of $\\mathcal{B}_n$
|
51
|
-
and $\\mathcal{D}_n$", "url": "http://arxiv.org/abs/1403.2169", "text": " The
|
52
|
-
sorting indices $\\text{sor}_B$ and $\\text{sor}_D$ on the Coxeter groups
|
53
|
-
of type $B$ and $D$ respectively are defined by Petersen and it is proved
|
54
|
-
that $(\\text{inv}_B, \\text{rlmin})$ and $(\\text{sor}_B, \\ell''_B)$ have
|
55
|
-
the same joint distribution for type $B$ while $\\text{inv}_D$ and $\\text{sor}_D$
|
56
|
-
have the same distribution for type $D$. These results, including a set-valued
|
57
|
-
extension of type $B$ involving two equildistributed pairs of three statistics,
|
58
|
-
are proved combinatorially by Chen et al. via two mappings $\\varphi:=\\text{(B-code)}^{-1}\\circ
|
59
|
-
\\text{(A-code)}$ and $\\psi:=\\text{(D-code)}^{-1}\\circ \\text{(C-code)}$. In
|
60
|
-
this paper we further extend these results. In type $B$ we prove a set-valued
|
61
|
-
joint equildistribution between a pair of seven statistics, and find a five-variable
|
62
|
-
generating function. In type $D$ we define new set-valued statistics, among
|
63
|
-
them $\\text{Cyc}^+_D$ and $\\text{Cyc}^-_D$, and firstly find a set-valued
|
64
|
-
joint equidistribution between a pair of five statistics and find a four-variable
|
65
|
-
generating function. ", "permalink_id": "5972583bfc6d5fb5294f7297dcdaa4ae",
|
66
|
-
"authors": ["Eu, Sen-Peng", "Lo, Yuan-Hsun", "Wong, Tsai-Lien"], "date": "2014-03-10",
|
67
|
-
"document_id": "arxiv-http://arxiv.org/abs/1403.2169"}, {"distance": 0.400089,
|
68
|
-
"title": "On model-theoretic tree properties", "url": "http://arxiv.org/abs/1505.00454",
|
69
|
-
"text": " We study model theoretic tree properties ($\\text{TP}, \\text{TP}_1,
|
70
|
-
\\text{TP}_2$) and their associated cardinal invariants ($\\kappa_{\\text{cdt}},
|
71
|
-
\\kappa_{\\text{sct}}, \\kappa_{\\text{inp}}$, respectively). In particular,
|
72
|
-
we obtain a quantitative refinement of Shelah''s theorem ($\\text{TP} \\Rightarrow
|
73
|
-
\\text{TP}_1 \\lor \\text{TP}_2$) for countable theories, show that $\\text{TP}_1$
|
74
|
-
is always witnessed by a formula in a single variable (partially answering
|
75
|
-
a question of Shelah) and that weak $k-\\text{TP}_1$ is equivalent to $\\text{TP}_1$
|
76
|
-
(answering a question of Kim and Kim). Besides, we give a characterization
|
77
|
-
of $\\text{NSOP}_1$ via a version of independent amalgamation of types and
|
78
|
-
apply this criterion to verify that some examples in the literature are indeed
|
79
|
-
$\\text{NSOP}_1$. Comment: 34 pages, 1 figure", "permalink_id": "0fe640d509da7e9d04d64e93761e8ade",
|
80
|
-
"authors": ["Chernikov, Artem", "Ramsey, Nicholas"], "date": "2015-05-03",
|
81
|
-
"document_id": "arxiv-http://arxiv.org/abs/1505.00454"}, {"distance": 0.491576,
|
82
|
-
"title": "Text Classification using Artificial Intelligence", "url": "http://arxiv.org/abs/1009.4964",
|
83
|
-
"text": " Text classification is the process of classifying documents into
|
84
|
-
predefined categories based on their content. It is the automated assignment
|
85
|
-
of natural language texts to predefined categories. Text classification is
|
86
|
-
the primary requirement of text retrieval systems, which retrieve texts in
|
87
|
-
response to a user query, and text understanding systems, which transform
|
88
|
-
text in some way such as producing summaries, answering questions or extracting
|
89
|
-
data. Existing supervised learning algorithms for classifying text need sufficient
|
90
|
-
documents to learn accurately. This paper presents a new algorithm for text
|
91
|
-
classification using artificial intelligence technique that requires fewer
|
92
|
-
documents for training. Instead of using words, word relation i.e. association
|
93
|
-
rules from these words is used to derive feature set from pre-classified text
|
94
|
-
documents. The concept of na\\\"ive Bayes classifier is then used on derived
|
95
|
-
features and finally only a single concept of genetic algorithm has been added
|
96
|
-
for final classification. A system based on the proposed algorithm has been
|
97
|
-
implemented and tested. The experimental results show that the proposed system
|
98
|
-
works as a successful text classifier. ", "permalink_id": "4d503db89cfa290e1e6a4228989fab9d",
|
99
|
-
"authors": ["Kamruzzaman, S. M."], "date": "2010-09-24", "document_id": "arxiv-http://arxiv.org/abs/1009.4964"},
|
100
|
-
{"distance": 0.497958, "title": "Text Classification using Data Mining", "url":
|
101
|
-
"http://arxiv.org/abs/1009.4987", "text": " Text classification is the process
|
102
|
-
of classifying documents into predefined categories based on their content.
|
103
|
-
It is the automated assignment of natural language texts to predefined categories.
|
104
|
-
Text classification is the primary requirement of text retrieval systems,
|
105
|
-
which retrieve texts in response to a user query, and text understanding systems,
|
106
|
-
which transform text in some way such as producing summaries, answering questions
|
107
|
-
or extracting data. Existing supervised learning algorithms to automatically
|
108
|
-
classify text need sufficient documents to learn accurately. This paper presents
|
109
|
-
a new algorithm for text classification using data mining that requires fewer
|
110
|
-
documents for training. Instead of using words, word relation i.e. association
|
111
|
-
rules from these words is used to derive feature set from pre-classified text
|
112
|
-
documents. The concept of Naive Bayes classifier is then used on derived features
|
113
|
-
and finally only a single concept of Genetic Algorithm has been added for
|
114
|
-
final classification. A system based on the proposed algorithm has been implemented
|
115
|
-
and tested. The experimental results show that the proposed system works as
|
116
|
-
a successful text classifier. ", "permalink_id": "68b496b597eca0854dec244784fd284b",
|
117
|
-
"authors": ["Hasan, Ahmed Ryadh", "Haider, Farhana", "Kamruzzaman, S. M."],
|
118
|
-
"date": "2010-09-25", "document_id": "arxiv-http://arxiv.org/abs/1009.4987"},
|
119
|
-
{"distance": 0.499156, "title": "Normalization of Non-Standard Words in Croatian
|
120
|
-
Texts", "url": "http://arxiv.org/abs/1503.08167", "text": " This paper presents
|
121
|
-
text normalization which is an integral part of any text-to-speech synthesis
|
122
|
-
system. Text normalization is a set of methods with a task to write non-standard
|
123
|
-
words, like numbers, dates, times, abbreviations, acronyms and the most common
|
124
|
-
symbols, in their full expanded form are presented. The whole taxonomy for
|
125
|
-
classification of non-standard words in Croatian language together with rule-based
|
126
|
-
normalization methods combined with a lookup dictionary are proposed. Achieved
|
127
|
-
token rate for normalization of Croatian texts is 95%, where 80% of expanded
|
128
|
-
words are in correct morphological form. Comment: 8 pages in Text, Speech
|
129
|
-
and Dialogue extension to Lecture Notes in Artificial Intelligence LNAI6836.
|
130
|
-
Hebernal, Ivan; Matou\\v{s}ek, V\\''aclav (ed). - Plzen: University of West
|
131
|
-
Bohemia , 2011. 1-8 (ISBN: 987-80-261-0069-0)", "permalink_id": "27a51106df0d22f90f33a40fad09a675",
|
132
|
-
"authors": ["Beliga, Slobodan", "Martin\u010di\u0107-Ip\u0161i\u0107, Sanda"],
|
133
|
-
"date": "2015-03-27", "document_id": "arxiv-http://arxiv.org/abs/1503.08167"},
|
134
|
-
{"distance": 0.508607, "title": "Text Classification using Association Rule
|
135
|
-
with a Hybrid Concept of Naive Bayes Classifier and Genetic Algorithm",
|
136
|
-
"url": "http://arxiv.org/abs/1009.4976", "text": " Text classification is
|
137
|
-
the automated assignment of natural language texts to predefined categories
|
138
|
-
based on their content. Text classification is the primary requirement of
|
139
|
-
text retrieval systems, which retrieve texts in response to a user query,
|
140
|
-
and text understanding systems, which transform text in some way such as producing
|
141
|
-
summaries, answering questions or extracting data. Now a day the demand of
|
142
|
-
text classification is increasing tremendously. Keeping this demand into consideration,
|
143
|
-
new and updated techniques are being developed for the purpose of automated
|
144
|
-
text classification. This paper presents a new algorithm for text classification.
|
145
|
-
Instead of using words, word relation i.e. association rules is used to derive
|
146
|
-
feature set from pre-classified text documents. The concept of Naive Bayes
|
147
|
-
Classifier is then used on derived features and finally a concept of Genetic
|
148
|
-
Algorithm has been added for final classification. A system based on the proposed
|
149
|
-
algorithm has been implemented and tested. The experimental results show that
|
150
|
-
the proposed system works as a successful text classifier. ", "permalink_id":
|
151
|
-
"c9fff0d00d19ce4c1e87e7b271bb1482", "authors": ["Hasan, Ahmed Ryadh", "Haider,
|
152
|
-
Farhana", "Kamruzzaman, S. M."], "date": "2010-09-25", "document_id": "arxiv-http://arxiv.org/abs/1009.4976"},
|
153
|
-
{"distance": 0.516115, "title": "Comparative Discourse Analysis of Parallel
|
154
|
-
Texts", "url": "http://arxiv.org/abs/cmp-lg/9407022", "text": " A quantitative
|
155
|
-
representation of discourse structure can be computed by measuring lexical
|
156
|
-
cohesion relations among adjacent blocks of text. These representations have
|
157
|
-
been proposed to deal with sub-topic text segmentation. In a parallel corpus,
|
158
|
-
similar representations can be derived for versions of a text in various languages.
|
159
|
-
These can be used for parallel segmentation and as an alternative measure
|
160
|
-
of text-translation similarity. ", "permalink_id": "b33a24cc02b5da8609a9aac8a9c41f57",
|
161
|
-
"authors": ["van der Eijk, Pim"], "date": "1994-07-26", "document_id": "arxiv-http://arxiv.org/abs/cmp-lg/9407022"},
|
162
|
-
{"distance": 0.518237, "title": "Automatic Text Area Segmentation in Natural
|
163
|
-
Images", "url": "http://arxiv.org/abs/0801.4807", "text": " We present a
|
164
|
-
hierarchical method for segmenting text areas in natural images. The method
|
165
|
-
assumes that the text is written with a contrasting color on a more or less
|
166
|
-
uniform background. But no assumption is made regarding the language or character
|
167
|
-
set used to write the text. In particular, the text can contain simple graphics
|
168
|
-
or symbols. The key feature of our approach is that we first concentrate on
|
169
|
-
finding the background of the text, before testing whether there is actually
|
170
|
-
text on the background. Since uniform areas are easy to find in natural images,
|
171
|
-
and since text backgrounds define areas which contain \"holes\" (where the
|
172
|
-
text is written) we thus look for uniform areas containing \"holes\" and label
|
173
|
-
them as text backgrounds candidates. Each candidate area is then further tested
|
174
|
-
for the presence of text within its convex hull. We tested our method on a
|
175
|
-
database of 65 images including English and Urdu text. The method correctly
|
176
|
-
segmented all the text areas in 63 of these images, and in only 4 of these
|
177
|
-
were areas that do not contain text also segmented. ", "permalink_id": "46d7d3364364c68d9429f5eee5c65ccb",
|
178
|
-
"authors": ["Delp, Edward J.", "Boutin, Mireille", "Jafri, Syed Ali Raza"],
|
179
|
-
"date": "2008-01-30", "document_id": "arxiv-http://arxiv.org/abs/0801.4807"},
|
180
|
-
{"distance": 0.542315, "title": "Word Length Frequency and Distribution in
|
181
|
-
English: Observations, Theory, and Implications for the Construction of
|
182
|
-
Verse Lines", "url": "http://arxiv.org/abs/cmp-lg/9808004", "text": " Recent
|
183
|
-
observations in the theory of verse and empirical metrics have suggested that
|
184
|
-
constructing a verse line involves a pattern-matching search through a source
|
185
|
-
text, and that the number of found elements (complete words totaling a specified
|
186
|
-
number of syllables) is given by dividing the total number of words by the
|
187
|
-
mean number of syllables per word in the source text. This paper makes this
|
188
|
-
latter point explicit mathematically, and in the course of this demonstration
|
189
|
-
shows that the word length frequency totals in English output are distributed
|
190
|
-
geometrically (previous researchers reported an adjusted Poisson distribution),
|
191
|
-
and that the sequential distribution is random at the global level, with significant
|
192
|
-
non-randomness in the fine structure. Data from a corpus of just under two
|
193
|
-
million words, and a syllable-count lexicon of 71,000 word-forms is reported.
|
194
|
-
The pattern-matching theory is shown to be internally coherent, and it is
|
195
|
-
observed that some of the analytic techniques described here form a satisfactory
|
196
|
-
test for regular (isometric) lineation in a text. ", "permalink_id": "5184b07b101d681c7072a07e47ce3b22",
|
197
|
-
"authors": ["Aoyama, Hideaki", "Constable, John"], "date": "1998-08-12", "document_id":
|
198
|
-
"arxiv-http://arxiv.org/abs/cmp-lg/9808004"}]'
|
199
|
-
http_version:
|
200
|
-
recorded_at: Thu, 14 May 2015 09:37:16 GMT
|
201
|
-
recorded_with: VCR 2.9.3
|
@@ -1,379 +0,0 @@
|
|
1
|
-
---
|
2
|
-
http_interactions:
|
3
|
-
- request:
|
4
|
-
method: post
|
5
|
-
uri: https://news-api.lateral.io/recommend-by-id/?subscription-key=<API_KEY>
|
6
|
-
body:
|
7
|
-
encoding: UTF-8
|
8
|
-
string: document_id=3076491
|
9
|
-
headers:
|
10
|
-
Accept-Encoding:
|
11
|
-
- gzip;q=1.0,deflate;q=0.6,identity;q=0.3
|
12
|
-
Accept:
|
13
|
-
- '*/*'
|
14
|
-
User-Agent:
|
15
|
-
- Ruby
|
16
|
-
response:
|
17
|
-
status:
|
18
|
-
code: 201
|
19
|
-
message: Created
|
20
|
-
headers:
|
21
|
-
Date:
|
22
|
-
- Thu, 14 May 2015 09:37:13 GMT
|
23
|
-
Content-Type:
|
24
|
-
- application/json
|
25
|
-
Transfer-Encoding:
|
26
|
-
- chunked
|
27
|
-
Connection:
|
28
|
-
- keep-alive
|
29
|
-
Access-Control-Allow-Origin:
|
30
|
-
- '*'
|
31
|
-
- '*'
|
32
|
-
Access-Control-Request-Method:
|
33
|
-
- '*'
|
34
|
-
Cache-Control:
|
35
|
-
- max-age=0, private, must-revalidate
|
36
|
-
Etag:
|
37
|
-
- W/"bc0cca1537f34b652701a6bc7077238e"
|
38
|
-
Server:
|
39
|
-
- nginx/1.6.2
|
40
|
-
Strict-Transport-Security:
|
41
|
-
- max-age=31536000
|
42
|
-
Vary:
|
43
|
-
- Accept-Encoding
|
44
|
-
X-Request-Id:
|
45
|
-
- b312b821-a466-430d-9a18-079e46b0aead
|
46
|
-
X-Runtime:
|
47
|
-
- '4.087556'
|
48
|
-
Via:
|
49
|
-
- kong/0.2.0-2
|
50
|
-
body:
|
51
|
-
encoding: ASCII-8BIT
|
52
|
-
string: !binary |-
|
53
|
-
W3siZG9jdW1lbnRfaWQiOiIyMTI4ODU3IiwiZGlzdGFuY2UiOjAuMDM2MjI4
|
54
|
-
LCJ0aXRsZSI6Ikdvb2RieWUgTW9uZ29EQiwgSGVsbG8gUG9zdGdyZVNRTCAo
|
55
|
-
b2xlcnkuY29tKSIsInVybCI6Imh0dHA6Ly9kZXZlbG9wZXIub2xlcnkuY29t
|
56
|
-
L2Jsb2cvZ29vZGJ5ZS1tb25nb2RiLWhlbGxvLXBvc3RncmVzcWwvIiwicHVi
|
57
|
-
bGlzaGVkIjoiMjAxNS0wMy0xMFQxMDowMDowMS4wMDBaIiwiYXV0aG9yIjpu
|
58
|
-
dWxsLCJpbWFnZSI6bnVsbCwidGh1bWJuYWlsIjpmYWxzZSwic3VtbWFyeSI6
|
59
|
-
Ik1pZ3JhdGluZyBmcm9tIE1vbmdvREIgdG8gUG9zdGdyZVNRTCIsInNvdXJj
|
60
|
-
ZV9uYW1lIjoiSGFja2VyIE5ld3MiLCJzb3VyY2Vfc2x1ZyI6ImhhY2tlci1u
|
61
|
-
ZXdzIn0seyJkb2N1bWVudF9pZCI6IjE5Mjk5NjQiLCJkaXN0YW5jZSI6MC4w
|
62
|
-
MzY0NDIsInRpdGxlIjoiVHJlZSBzdHJ1Y3R1cmUgcXVlcnkgd2l0aCBQb3N0
|
63
|
-
Z3JlU1FMICh0cnVvbmd0eC5tZSkiLCJ1cmwiOiJodHRwOi8vdHJ1b25ndHgu
|
64
|
-
bWUvMjAxNC8wMi8yOC90cmVlLXN0cnVjdHVyZS1xdWVyeS13aXRoLXBvc3Rn
|
65
|
-
cmVzcWwvIiwicHVibGlzaGVkIjoiMjAxNS0wMi0yNVQyMjo0MDowMi4wMDBa
|
66
|
-
IiwiYXV0aG9yIjoiVHIgTmcgVHgiLCJpbWFnZSI6Imh0dHA6Ly90cnVvbmd0
|
67
|
-
eC5tZSIsInRodW1ibmFpbCI6ZmFsc2UsInN1bW1hcnkiOiJMdWNraWx5LCBQ
|
68
|
-
b3N0Z3JlU1FMIHN1cHBvcnRzIHJlY3Vyc2l2ZSBxdWVyeSB1c2luZyB0aGUg
|
69
|
-
V0lUSCBSRUNVUlNJVkUga2V5d29yZC5cbldJVEggcmVnaW9uYWxfc2FsZXMg
|
70
|
-
QVMgKCBTRUxFQ1QgcmVnaW9uICwgU1VNICggYW1vdW50ICkgQVMgdG90YWxf
|
71
|
-
c2FsZXMgRlJPTSBvcmRlcnMgR1JPVVAgQlkgcmVnaW9uICksIHRvcF9yZWdp
|
72
|
-
b25zIEFTICggU0VMRUNUIHJlZ2lvbiBGUk9NIHJlZ2lvbmFsX3NhbGVzIFdI
|
73
|
-
RVJFIHRvdGFsX3NhbGVzID4gKCBTRUxFQ1QgU1VNICggdG90YWxfc2FsZXMg
|
74
|
-
KSAvIDEwIEZST00gcmVnaW9uYWxfc2FsZXMgKSApIFNFTEVDVCByZWdpb24g
|
75
|
-
LCBwcm9kdWN0ICwgU1VNICggcXVhbnRpdHkgKSBBUyBwcm9kdWN0X3VuaXRz
|
76
|
-
ICwgU1VNICggYW1vdW50ICkgQVMgcHJvZHVjdF9zYWxlcyBGUk9NIG9yZGVy
|
77
|
-
cyBXSEVSRSByZWdpb24gSU4gKCBTRUxFQ1QgcmVnaW9uIEZST00gdG9wX3Jl
|
78
|
-
Z2lvbnMgKSBHUk9VUCBCWSByZWdpb24gLCBwcm9kdWN0IDtJbiB0aGUgYWJv
|
79
|
-
dmUgZXhhbXBsZSwgdGhlIFdJVEggY2xhdXNlIGNyZWF0ZXMgMiB0ZW1wb3Jh
|
80
|
-
cnkgdGFibGVzIHJlZ2lvbmFsX3NhbGVzIGFuZCB0b3BfcmVnaW9uIHRoYXQg
|
81
|
-
ZXhpc3Qgb25seSBmb3IgdGhlIGxhc3QgU0VMRUNUIGNvbW1hbmQuXG5XSVRI
|
82
|
-
IFJFQ1VSU0lWRSB0KG4pIGNyZWF0ZXMgYSB0ZW1wb3JhcnkgdGFibGVzIG5h
|
83
|
-
bWVkIHQgd2l0aCBvbmUgY29sdW1uIG4uIEEgV0lUSCBSRUNVUlNJVkUgcXVl
|
84
|
-
cnkgdXN1YWxseSBpbmNsdWRlcyAyIHBhcnRzOiBub24tcmVjdXJzaXZlIHRl
|
85
|
-
cm0gYW5kIHJlY3Vyc2l2ZSB0ZXJtLlxuQWxsIHRoZSB0d28gU0VMRUNUIHF1
|
86
|
-
ZXJ5IHNob3VsZCBoYXZlIGV4YWN0bHkgdGhlIHNhbWUgY29sdW1uIGFzIHRo
|
87
|
-
ZSB0IHRhYmxlLlxuSGVyZSBpcyBob3cgdGhlIHF1ZXJ5IGxvb2sgbGlrZVdJ
|
88
|
-
VEggUkVDVVJTSVZFIG5vZGVzICggcGFyZW50SWQgLCBwYXJlbnROYW1lICwg
|
89
|
-
Y2hpbGRJZCAsIGNoaWxkTmFtZSAsIHBhdGggLCBkZXB0aCApIEFTICggU0VM
|
90
|
-
RUNUIHIgLiIsInNvdXJjZV9uYW1lIjoiSGFja2VyIE5ld3MiLCJzb3VyY2Vf
|
91
|
-
c2x1ZyI6ImhhY2tlci1uZXdzIn0seyJkb2N1bWVudF9pZCI6IjIxODYyOTYi
|
92
|
-
LCJkaXN0YW5jZSI6MC4wMzY3OTEsInRpdGxlIjoiTHVjZW5lOiBUaGUgR29v
|
93
|
-
ZCBQYXJ0cyAocGFyc2VseS5jb20pIiwidXJsIjoiaHR0cDovL2Jsb2cucGFy
|
94
|
-
c2VseS5jb20vcG9zdC8xNjkxL2x1Y2VuZS8iLCJwdWJsaXNoZWQiOiIyMDE1
|
95
|
-
LTAzLTEzVDEwOjAwOjAyLjAwMFoiLCJhdXRob3IiOm51bGwsImltYWdlIjoi
|
96
|
-
aHR0cDovL2Jsb2cucGFyc2VseS5jb20vd3AtY29udGVudC91cGxvYWRzLzIw
|
97
|
-
MTUvMDMvbHVjZW5lX2luX2FjdGlvbi5wbmciLCJ0aHVtYm5haWwiOiJodHRw
|
98
|
-
czovL2ltYWdlcy5nZXRuZXdzYm90LmNvbS8yMTg2Mjk2LmpwZyIsInN1bW1h
|
99
|
-
cnkiOiJTbywgbXkgb3JpZ2luYWwgY29ycHVzIGhhZCB0aGUgZmllbGQgdmFs
|
100
|
-
dWVzIFtcImJpZyBkYXRhXCIsIFwic21hbGwgZGF0YVwiXSAsIGJ1dCBteSBn
|
101
|
-
ZW5lcmF0ZWQgdGVybXMgYXJlIFtcImJpZ1wiLCBcInNtYWxsXCIsIFwiZGF0
|
102
|
-
YVwiXSAuXG5Tb2xyIHRha2VzIGFkdmFudGFnZSBvZiBMdWNlbmXigJlzIGJ1
|
103
|
-
aWx0LWluIOKAnGZpZWxkIHN0b3JhZ2XigJ0gZm9yIHRoaXMsIHdoaWxlIEVs
|
104
|
-
YXN0aWNzZWFyY2ggc3RvcmVzIEpTT04gYmxvYnMgaW5zaWRlIGEgTHVjZW5l
|
105
|
-
IGZpZWxkLCBjYWxsZWQg4oCcX3NvdXJjZeKAnS5cblRvIGJvb3QsIHRoZSBw
|
106
|
-
cmltYXJ5IHVzZSBjYXNlIG9mIHRoZSBhcHBsaWNhdGlvbiBJIHdhcyB3b3Jr
|
107
|
-
aW5nIG9uIHdhcyBhY3R1YWxseSBkb2N1bWVudCBzZWFyY2guXG5iaWc9W2Rv
|
108
|
-
YzEsZG9jMl0gZGF0YT1bZG9jMSxkb2MyLGRvYzNdIHNtYWxsPVtkb2MzXUFo
|
109
|
-
LCBzbyBpdOKAmXMgbm90IGFuIGluZGV4IG9mIGRvY3VtZW50cyB0byB0ZXJt
|
110
|
-
cywgaXTigJlzIGFuIGluZGV4IG9mIHRlcm1zIHRvIGRvY3VtZW50cy5cblRo
|
111
|
-
ZW4sIHF1ZXJ5IHlvdXIgTHVjZW5lIGluZGV4IHdpdGggcHJpZGUg4oCUIGEg
|
112
|
-
ZGVjYWRlLW9sZCB0ZWNobm9sb2d5LCBidWlsdCBvbiBhIGNlbnR1cnkgb2Yg
|
113
|
-
Y29tcHV0ZXIgc2NpZW5jZSByZXNlYXJjaCwgYW5kIGEgbWlsbGVubml1bSBv
|
114
|
-
ZiBtb25rLWxpa2Ugd2lzZG9tLiIsInNvdXJjZV9uYW1lIjoiSGFja2VyIE5l
|
115
|
-
d3MiLCJzb3VyY2Vfc2x1ZyI6ImhhY2tlci1uZXdzIn0seyJkb2N1bWVudF9p
|
116
|
-
ZCI6Ijc5NTAyMSIsImRpc3RhbmNlIjowLjAzNzI2MSwidGl0bGUiOiJTUUws
|
117
|
-
IFNjYWxpbmcsIGFuZCBXaGF0J3MgVW5pcXVlIEFib3V0IFBvc3RncmVzIChj
|
118
|
-
aXR1c2RhdGEuY29tKSIsInVybCI6Imh0dHA6Ly9jaXR1c2RhdGEuY29tL2Js
|
119
|
-
b2cvOTAtc3FsLXNjYWxpbmctYW5kLXdoYXRzLXVuaXF1ZS1hYm91dC1wb3N0
|
120
|
-
Z3JlcyIsInB1Ymxpc2hlZCI6IjIwMTUtMDEtMTJUMTA6MDA6MDIuMDAwWiIs
|
121
|
-
ImF1dGhvciI6IldyaXR0ZW4gT3pndW4gRXJkb2dhbiwgT3pndW4gRXJkb2dh
|
122
|
-
biIsImltYWdlIjoiaHR0cHM6Ly9jaXR1c2RhdGEuY29tL2ltYWdlcy9sb2dv
|
123
|
-
L2NpdHVzLWxvZ28uanBnIiwidGh1bWJuYWlsIjoiaHR0cHM6Ly9pbWFnZXMu
|
124
|
-
Z2V0bmV3c2JvdC5jb20vNzk1MDIxLmpwZyIsInN1bW1hcnkiOiJCdWlsZGlu
|
125
|
-
ZyBhIFNRTCBkYXRhYmFzZSB0YWtlcyBhIGxvbmcgdGltZSwgYW5kIGNyZWF0
|
126
|
-
aW5nIGEgY29tbXVuaXR5IGFyb3VuZCBpdCB0YWtlcyBldmVuIGxvbmdlci5c
|
127
|
-
bklmIHlvdSdyZSBsb29raW5nIHRvIHNjYWxlIG91dCBhIFNRTCBkYXRhYmFz
|
128
|
-
ZSwgeW91IG5lZWQgbW9yZSB0aGFuIG5ldyBmdW5jdGlvbmFsaXR5LlxuTm93
|
129
|
-
LCBpZiB5b3UgYXJlIGxvb2tpbmcgdG8gc2NhbGUgb3V0IHRoaXMgU1FMIHF1
|
130
|
-
ZXJ5LCB5b3VyIFwicXVlcnkgZGlzdHJpYnV0aW9uXCIgbG9naWMgbmVlZHMg
|
131
|
-
dG8gd29yayB0b2dldGhlciB3aXRoIHRoZSBwYXJ0IHRoYXQgZG9lcyB0aGUg
|
132
|
-
dW5kZXJzdGFuZGluZy5cbkluIHN1bW1hcnksIHdoZW4gdGhlIHVzZXIgdHlw
|
133
|
-
ZXMgdXAgYSBTUUwgcXVlcnksIHRoZXJlJ3MgYSBmYWlyIGJpdCBvZiBtYWNo
|
134
|
-
aW5lcnkgYXNzb2NpYXRlZCB3aXRoIGp1c3QgdW5kZXJzdGFuZGluZyB3aGF0
|
135
|
-
IHRoYXQgcGxhaW4gdGV4dCBxdWVyeSBtZWFucy5cbkl0IGNvdWxkIGp1c3Qg
|
136
|
-
YmUgdGhhdCB0aGUgbW9ub2xpdGhpYyBTUUwgZGF0YWJhc2UgaXMgZHlpbmcu
|
137
|
-
Iiwic291cmNlX25hbWUiOiJIYWNrZXIgTmV3cyIsInNvdXJjZV9zbHVnIjoi
|
138
|
-
aGFja2VyLW5ld3MifSx7ImRvY3VtZW50X2lkIjoiMTQ0NDk0OCIsImRpc3Rh
|
139
|
-
bmNlIjowLjAzNzMxOCwidGl0bGUiOiJSZXRoaW5rREIgMS4xNjogY2x1c3Rl
|
140
|
-
ciBtYW5hZ2VtZW50IEFQSSwgcmVhbHRpbWUgcHVzaCAocmV0aGlua2RiLmNv
|
141
|
-
bSkiLCJ1cmwiOiJodHRwOi8vcmV0aGlua2RiLmNvbS9ibG9nLzEuMTYtcmVs
|
142
|
-
ZWFzZS8iLCJwdWJsaXNoZWQiOiIyMDE1LTAxLTMwVDEwOjIwOjAxLjAwMFoi
|
143
|
-
LCJhdXRob3IiOm51bGwsImltYWdlIjoiaHR0cDovL3JldGhpbmtkYi5jb20v
|
144
|
-
YXNzZXRzL2ltYWdlcy92aWRlb3MvcmVsZWFzZXMvcmV0aGlua2RiLTEuMTYu
|
145
|
-
cG5nIiwidGh1bWJuYWlsIjoiaHR0cHM6Ly9pbWFnZXMuZ2V0bmV3c2JvdC5j
|
146
|
-
b20vMTQ0NDk0OC5qcGciLCJzdW1tYXJ5IjoiTm90ZTogSW4gUmV0aGlua0RC
|
147
|
-
IDEuMTYgdGhlIHJldGhpbmtkYiBhZG1pbiBjb21tYW5kIGhhcyBiZWVuIHJl
|
148
|
-
bW92ZWQgYW5kIHJlcGxhY2VkIHdpdGggdGhlIG5ldyBSZVFMIG1hbmFnZW1l
|
149
|
-
bnQgQVBJLlxuVGhlIDEuMTYgcmVsZWFzZSBpcyBhIHByZWN1cnNvciB0byB0
|
150
|
-
aGUgdXBjb21pbmcgMi4wIHJlbGVhc2UsIGFuZCBpcyB0aGUgYmlnZ2VzdCBS
|
151
|
-
ZXRoaW5rREIgcmVsZWFzZSB0byBkYXRlIHdpdGggb3ZlciAzMDAgZW5oYW5j
|
152
|
-
ZW1lbnRzLlxuUmV0aGlua0RCIDEuMTYgdW5pZmllcyBhbGwgb2YgdGhlIGNs
|
153
|
-
dXN0ZXIgbWFuYWdlbWVudCBjYXBhYmlsaXRpZXMgc3VwcG9ydGVkIGJ5IHRo
|
154
|
-
ZSBkYXRhYmFzZSBhbmQgZXhwb3NlcyB0aGVtIHZpYSBhIHNpbXBsZSBSZVFM
|
155
|
-
IEFQSS5cblRoaXMgcmVsZWFzZSBpbmNsdWRlcyB0d28gZXhjaXRpbmcgbmV3
|
156
|
-
IGZlYXR1cmVzOiBhIGNvbXByZWhlbnNpdmUgQVBJIGZvciBsYXJnZSBjbHVz
|
157
|
-
dGVyIG1hbmFnZW1lbnQsIGFuZCByZWFsdGltZSBwdXNoIGZ1bmN0aW9uYWxp
|
158
|
-
dHkgdGhhdCBkcmFtYXRpY2FsbHkgc2ltcGxpZmllcyB0aGUgZGV2ZWxvcG1l
|
159
|
-
bnQgb2YgcmVhbHRpbWUgd2ViIGFwcHMuXG5FYWNoIGRvY3VtZW50IGluIHRh
|
160
|
-
YmxlX2NvbmZpZyByZXByZXNlbnRzIGEgZGlmZmVyZW50IHRhYmxlIGluIHlv
|
161
|
-
dXIgZGF0YWJhc2UgY2x1c3RlciwgYW5kIGluY2x1ZGVzIGRldGFpbHMgb24g
|
162
|
-
c2hhcmRpbmcgYW5kIHJlcGxpY2F0aW9uIHNldHRpbmdzLiIsInNvdXJjZV9u
|
163
|
-
YW1lIjoiSGFja2VyIE5ld3MiLCJzb3VyY2Vfc2x1ZyI6ImhhY2tlci1uZXdz
|
164
|
-
In0seyJkb2N1bWVudF9pZCI6IjIwMzMxNjIiLCJkaXN0YW5jZSI6MC4wMzc4
|
165
|
-
MDIsInRpdGxlIjoiVHVybmluZyB0aGUgZGF0YWJhc2UgaW5zaWRlLW91dCB3
|
166
|
-
aXRoIEFwYWNoZSBTYW16YSAoY29uZmx1ZW50LmlvKSIsInVybCI6Imh0dHA6
|
167
|
-
Ly9ibG9nLmNvbmZsdWVudC5pby8yMDE1LzAzLzA0L3R1cm5pbmctdGhlLWRh
|
168
|
-
dGFiYXNlLWluc2lkZS1vdXQtd2l0aC1hcGFjaGUtc2FtemEvIiwicHVibGlz
|
169
|
-
aGVkIjoiMjAxNS0wMy0wNFQwODo0MDowMS4wMDBaIiwiYXV0aG9yIjpudWxs
|
170
|
-
LCJpbWFnZSI6Imh0dHBzOi8vY29uZmx1ZW50aW5jLmZpbGVzLndvcmRwcmVz
|
171
|
-
cy5jb20vMjAxNS8wMy9zbGlkZS00My5wbmciLCJ0aHVtYm5haWwiOiJodHRw
|
172
|
-
czovL2ltYWdlcy5nZXRuZXdzYm90LmNvbS8yMDMzMTYyLmpwZyIsInN1bW1h
|
173
|
-
cnkiOiJUaGlzIGlzIGFuIGVkaXRlZCBhbmQgZXhwYW5kZWQgdHJhbnNjcmlw
|
174
|
-
dCBvZiBhIHRhbGsgSSBnYXZlIGF0IFN0cmFuZ2UgTG9vcCAyMDE0LiBUaGUg
|
175
|
-
dmlkZW8gcmVjb3JkaW5nIChlbWJlZGRlZCBiZWxvdykgaGFzIGJlZW4gd2F0
|
176
|
-
Y2hlZCBvdmVyIDgsMDAwIHRpbWVzLiBGb3IgdGhvc2Ugb2YgeW91IHdobyBw
|
177
|
-
cmVmZXIgcmVhZGluZywgSSB0aG91Z2h0IGl0IHdvdWxkIGJlIHdvcnRoIHdy
|
178
|
-
aXRpbmcgZG93biB0aGUgdGFsay4gRGF0YWJhc2VzIGFyZSBnbG9iYWwsIHNo
|
179
|
-
YXJlZCwgbXV0YWJsZSBzdGF0ZS4gVGhhdOKAmXMgdGhlIHdheSBpdCBoYXPi
|
180
|
-
gKYiLCJzb3VyY2VfbmFtZSI6IkhhY2tlciBOZXdzIiwic291cmNlX3NsdWci
|
181
|
-
OiJoYWNrZXItbmV3cyJ9LHsiZG9jdW1lbnRfaWQiOiIxMTE1MTkwIiwiZGlz
|
182
|
-
dGFuY2UiOjAuMDM5NTAzLCJ0aXRsZSI6IlBnbG9hZGVyOiBBIEhpZ2gtc3Bl
|
183
|
-
ZWQgUG9zdGdyZVNRTCBTd2lzcyBBcm15IEtuaWZlLCBXcml0dGVuIGluIExp
|
184
|
-
c3AgKHBnbG9hZGVyLmlvKSIsInVybCI6Imh0dHA6Ly9wZ2xvYWRlci5pby8i
|
185
|
-
LCJwdWJsaXNoZWQiOiIyMDE1LTAxLTIxVDEwOjAwOjAyLjAwMFoiLCJhdXRo
|
186
|
-
b3IiOm51bGwsImltYWdlIjoiaHR0cDovL3BnbG9hZGVyLmlvL2ltZy9jc3Zf
|
187
|
-
dGV4dC5wbmciLCJ0aHVtYm5haWwiOiJodHRwczovL2ltYWdlcy5nZXRuZXdz
|
188
|
-
Ym90LmNvbS8xMTE1MTkwLmpwZyIsInN1bW1hcnkiOiJHaXZlbiBhIE15U1FM
|
189
|
-
IGNvbm5lY3Rpb24gc3RyaW5nLCBwZ2xvYWRlciBxdWVyeSB0aGUgY2F0YWxv
|
190
|
-
Z3MgdG8gbGlzdCB5b3VyIHRhYmxlcywgY29uc3RyYWludHMgYW5kIGluZGV4
|
191
|
-
ZXMgYW5kIGtub3cgaG93IHRvIHRyYW5zZm9ybSB0aGlzIHNjaGVtYSBpbnRv
|
192
|
-
IGEgUG9zdGdyZVNRTCBlcXVpdmFsZW50LCBhcHBseWluZyBhZHZhbmNlZCBj
|
193
|
-
YXN0aW5nIHJ1bGVzIHRoYXQgeW91IGNhbiBlZGl0IGluIHRoZSBjb21tYW5k
|
194
|
-
LlxuTWlncmF0ZSBmcm9tIE15U1FMIHRvIFBvc3RncmVTUUwuXG5NaWdyYXRl
|
195
|
-
IHNvbWUgdGlueWludCB0byBib29sZWFuIGFuZCBzb21lIG90aGVycyB0byBz
|
196
|
-
bWFsbGludCBhbGwgZnJvbSB0aGUgc2FtZSB0b29sIVxuVmlldyBkZXRhaWxz
|
197
|
-
IMK7XG5JbiBvbmUgY29tbWFuZC4iLCJzb3VyY2VfbmFtZSI6IkhhY2tlciBO
|
198
|
-
ZXdzIiwic291cmNlX3NsdWciOiJoYWNrZXItbmV3cyJ9LHsiZG9jdW1lbnRf
|
199
|
-
aWQiOiIxNzg3NDYwIiwiZGlzdGFuY2UiOjAuMDQxODkxLCJ0aXRsZSI6Iklu
|
200
|
-
dHJvZHVjaW5nIERhdGFGcmFtZXMgaW4gU3BhcmsgZm9yIExhcmdlIFNjYWxl
|
201
|
-
IERhdGEgU2NpZW5jZSAoZGF0YWJyaWNrcy5jb20pIiwidXJsIjoiaHR0cDov
|
202
|
-
L2RhdGFicmlja3MuY29tL2Jsb2cvMjAxNS8wMi8xNy9pbnRyb2R1Y2luZy1k
|
203
|
-
YXRhZnJhbWVzLWluLXNwYXJrLWZvci1sYXJnZS1zY2FsZS1kYXRhLXNjaWVu
|
204
|
-
Y2UuaHRtbCIsInB1Ymxpc2hlZCI6IjIwMTUtMDItMTdUMTA6MjA6MDIuMDAw
|
205
|
-
WiIsImF1dGhvciI6Ik1pY2hhZWwgQXJtYnJ1c3QsIERhdmllcyBMaXUsIFJl
|
206
|
-
eW5vbGQgWGluIiwiaW1hZ2UiOiJodHRwczovL2RhdGFicmlja3MuY29tL3dw
|
207
|
-
LWNvbnRlbnQvdXBsb2Fkcy8yMDE1LzAyL1J4aW4uanBnIiwidGh1bWJuYWls
|
208
|
-
IjoiaHR0cHM6Ly9pbWFnZXMuZ2V0bmV3c2JvdC5jb20vMTc4NzQ2MC5qcGci
|
209
|
-
LCJzdW1tYXJ5IjoiU3BhcmsgZW5hYmxlZCBkaXN0cmlidXRlZCBkYXRhIHBy
|
210
|
-
b2Nlc3NpbmcgdGhyb3VnaCBmdW5jdGlvbmFsIHRyYW5zZm9ybWF0aW9ucyBv
|
211
|
-
biBkaXN0cmlidXRlZCBjb2xsZWN0aW9ucyBvZiBkYXRhIChSRERzKS5cbklu
|
212
|
-
IGFkZGl0aW9uLCB0aHJvdWdoIFNwYXJrIFNRTOKAmXMgZXh0ZXJuYWwgZGF0
|
213
|
-
YSBzb3VyY2VzIEFQSSwgRGF0YUZyYW1lcyBjYW4gYmUgZXh0ZW5kZWQgdG8g
|
214
|
-
c3VwcG9ydCBhbnkgdGhpcmQtcGFydHkgZGF0YSBmb3JtYXRzIG9yIHNvdXJj
|
215
|
-
ZXMuXG5zcWwoIFwiU0VMRUNUIGNvdW50KCopIEZST00geW91bmdcIiApSW4g
|
216
|
-
UHl0aG9uLCB5b3UgY2FuIGFsc28gY29udmVydCBmcmVlbHkgYmV0d2VlbiBQ
|
217
|
-
YW5kYXMgRGF0YUZyYW1lIGFuZCBTcGFyayBEYXRhRnJhbWU6IyBDb252ZXJ0
|
218
|
-
IFNwYXJrIERhdGFGcmFtZSB0byBQYW5kYXMgcGFuZGFzX2RmID0geW91bmcg
|
219
|
-
LlxuT3VyIGRhdGEgc2NpZW5jZSB0ZWFtIGF0IERhdGFicmlja3MgaGFzIGJl
|
220
|
-
ZW4gdXNpbmcgdGhpcyBuZXcgRGF0YUZyYW1lIEFQSSBvbiBvdXIgaW50ZXJu
|
221
|
-
YWwgZGF0YSBwaXBlbGluZXMuXG5IZXJlIGlzIGFuIGV4YW1wbGUgb2YgdXNp
|
222
|
-
bmcgRGF0YUZyYW1lcyB0byBtYW5pcHVsYXRlIHRoZSBkZW1vZ3JhcGhpYyBk
|
223
|
-
YXRhIG9mIGEgbGFyZ2UgcG9wdWxhdGlvbiBvZiB1c2VyczojIENyZWF0ZSBh
|
224
|
-
IG5ldyBEYXRhRnJhbWUgdGhhdCBjb250YWlucyDigJx5b3VuZyB1c2Vyc+KA
|
225
|
-
nSBvbmx5IHlvdW5nID0gdXNlcnMgLiIsInNvdXJjZV9uYW1lIjoiSGFja2Vy
|
226
|
-
IE5ld3MiLCJzb3VyY2Vfc2x1ZyI6ImhhY2tlci1uZXdzIn0seyJkb2N1bWVu
|
227
|
-
dF9pZCI6IjE5MzA3NzciLCJkaXN0YW5jZSI6MC4wNDIzNTksInRpdGxlIjoi
|
228
|
-
RW1icmFjaW5nIFNRTCBpbiBQb3N0Z3JlcyAoY29uZXJ5LmlvKSIsInVybCI6
|
229
|
-
Imh0dHA6Ly9yb2IuY29uZXJ5LmlvLzIwMTUvMDIvMjQvZW1icmFjaW5nLXNx
|
230
|
-
bC1pbi1wb3N0Z3Jlcy8iLCJwdWJsaXNoZWQiOiIyMDE1LTAyLTI2VDAyOjQw
|
231
|
-
OjAyLjAwMFoiLCJhdXRob3IiOiJSb2IgQ29uZXJ5IiwiaW1hZ2UiOiJodHRw
|
232
|
-
Oi8vcm9iLmNvbmVyeS5pby93cC1jb250ZW50L3VwbG9hZHMvMjAxNS8wMi9q
|
233
|
-
b3JkYW5fc3FsLmpwZyIsInRodW1ibmFpbCI6Imh0dHBzOi8vaW1hZ2VzLmdl
|
234
|
-
dG5ld3Nib3QuY29tLzE5MzA3NzcuanBnIiwic3VtbWFyeSI6IkhhdmluZyB0
|
235
|
-
aGUgYWJpbGl0eSB0byB3b3JrIFNRTCBpbiB5b3VyIGZhdm9yaXRlIGRhdGFi
|
236
|
-
YXNlIGVuZ2luZSBpcyBhIGxpZmUtbG9uZywgZ29vZCBza2lsbCB0byBoYXZl
|
237
|
-
LiIsInNvdXJjZV9uYW1lIjoiSGFja2VyIE5ld3MiLCJzb3VyY2Vfc2x1ZyI6
|
238
|
-
ImhhY2tlci1uZXdzIn0seyJkb2N1bWVudF9pZCI6IjE4MjE1ODUiLCJkaXN0
|
239
|
-
YW5jZSI6MC4wNDIzNjksInRpdGxlIjoiUG9zdGljbyDigJMgQSBtb2Rlcm4g
|
240
|
-
UG9zdGdyZVNRTCBjbGllbnQgZm9yIE9TIFggKGVnZ2VyYXBwcy5hdCkiLCJ1
|
241
|
-
cmwiOiJodHRwczovL2VnZ2VyYXBwcy5hdC9wb3N0aWNvIiwicHVibGlzaGVk
|
242
|
-
IjoiMjAxNS0wMi0xOVQxMDo0MDowMS4wMDBaIiwiYXV0aG9yIjpudWxsLCJp
|
243
|
-
bWFnZSI6bnVsbCwidGh1bWJuYWlsIjpmYWxzZSwic3VtbWFyeSI6IlBvc3Rp
|
244
|
-
Y28gQSBNb2Rlcm4gUG9zdGdyZVNRTCBDbGllbnQgZm9yIE9TIFhSZXF1aXJl
|
245
|
-
cyBPUyBYIDEwLjggb3IgbGF0ZXIuXG5XaGlsZSB3b3JraW5nIG9uIHZlcnNp
|
246
|
-
b24gUEcgQ29tbWFuZGVyIDIuMCwgSSBncmV3IHRpcmVkIG9mIGl0cyBuYW1l
|
247
|
-
IGFuZCBkZWNpZGVkIHRvIHRyeSBzb21ldGhpbmcgbGVzcyBnZW5lcmljLlxu
|
248
|
-
SWYgeW91IHB1cmNoYXNlZCBQRyBDb21tYW5kZXIgb24gdGhlIEVnZ2VyIEFw
|
249
|
-
cHMgU3RvcmUgYWZ0ZXIgU2VwdGVtYmVyIDFzdCwgMjAxNCwgeW91ciBsaWNl
|
250
|
-
bnNlIGZpbGUgd2lsbCBiZSB2YWxpZCBmb3IgUG9zdGljby5cbk9wZW4gUEcg
|
251
|
-
Q29tbWFuZGVyLCByaWdodCBjbGljayBvbiB0aGUgZmF2b3JpdGVzIGFuZCBz
|
252
|
-
ZWxlY3Qg4oCcRXhwb3J0IEFsbCBGYXZvcml0ZXPigKbigJ0uXG5JIGJvdWdo
|
253
|
-
dCBQRyBDb21tYW5kZXIuIiwic291cmNlX25hbWUiOiJIYWNrZXIgTmV3cyIs
|
254
|
-
InNvdXJjZV9zbHVnIjoiaGFja2VyLW5ld3MifSx7ImRvY3VtZW50X2lkIjoi
|
255
|
-
NTcwMTM3IiwiZGlzdGFuY2UiOjAuMDQzMzE1LCJ0aXRsZSI6IkRlc2lnbiBv
|
256
|
-
ZiBhIFZpbS1saWtlIHRleHQgZWRpdG9yIChzdWNrbGVzcy5vcmcpIiwidXJs
|
257
|
-
IjoiaHR0cDovL2xpc3RzLnN1Y2tsZXNzLm9yZy9kZXYvMTQwOS8yMzQ5Ny5o
|
258
|
-
dG1sIiwicHVibGlzaGVkIjoiMjAxNS0wMS0wMlQwNjoyMDowMS4wMDBaIiwi
|
259
|
-
YXV0aG9yIjoiVGFubmVyIE1hdF9hdF9icmFpbi1kdW1wIE9yZywgTWFyYyBB
|
260
|
-
bmRyIiwiaW1hZ2UiOm51bGwsInRodW1ibmFpbCI6ZmFsc2UsInN1bW1hcnki
|
261
|
-
OiJbZGV2XSBbUkZDXSBEZXNpZ24gb2YgYSB2aW0gbGlrZSB0ZXh0IGVkaXRv
|
262
|
-
ckZyb20gOiBNYXJjIEFuZHLDqSBUYW5uZXIgIiwic291cmNlX25hbWUiOiJI
|
263
|
-
YWNrZXIgTmV3cyIsInNvdXJjZV9zbHVnIjoiaGFja2VyLW5ld3MifSx7ImRv
|
264
|
-
Y3VtZW50X2lkIjoiNTg5Mjg5IiwiZGlzdGFuY2UiOjAuMDQzNzc3LCJ0aXRs
|
265
|
-
ZSI6IkF1dG9tYXRpYyBSRVNUIEFQSSBmb3IgQW55IFBvc3RncmVzIERhdGFi
|
266
|
-
YXNlIChnaXRodWIuY29tKSIsInVybCI6Imh0dHBzOi8vZ2l0aHViLmNvbS9i
|
267
|
-
ZWdyaWZmcy9wb3N0Z3Jlc3Q/aG49dHJ1ZSIsInB1Ymxpc2hlZCI6IjIwMTUt
|
268
|
-
MDEtMDNUMTM6MDA6MDEuMDAwWiIsImF1dGhvciI6bnVsbCwiaW1hZ2UiOiJo
|
269
|
-
dHRwczovL2F2YXRhcnMxLmdpdGh1YnVzZXJjb250ZW50LmNvbS91LzkxMTkx
|
270
|
-
MT92PTMmcz00MDAiLCJ0aHVtYm5haWwiOiJodHRwczovL2ltYWdlcy5nZXRu
|
271
|
-
ZXdzYm90LmNvbS81ODkyODkuanBnIiwic3VtbWFyeSI6InBvc3RncmVzdCAt
|
272
|
-
IFJFU1QgQVBJIGZvciBhbnkgUG9zdGdyZXMgZGF0YWJhc2UiLCJzb3VyY2Vf
|
273
|
-
bmFtZSI6IkhhY2tlciBOZXdzIiwic291cmNlX3NsdWciOiJoYWNrZXItbmV3
|
274
|
-
cyJ9LHsiZG9jdW1lbnRfaWQiOiIyMTg4NzY1IiwiZGlzdGFuY2UiOjAuMDQ0
|
275
|
-
NDIsInRpdGxlIjoiU2hvdyBITjogR3JhcGhRTCBmb3IgUG9zdGdyZXMgKGdp
|
276
|
-
dGh1Yi5jb20pIiwidXJsIjoiaHR0cHM6Ly9naXRodWIuY29tL3NvbGlkc25h
|
277
|
-
Y2svR3JhcGhwb3N0Z3Jlc1FMIiwicHVibGlzaGVkIjoiMjAxNS0wMy0xM1Qx
|
278
|
-
Njo1MDowMi4wMDBaIiwiYXV0aG9yIjpudWxsLCJpbWFnZSI6Imh0dHBzOi8v
|
279
|
-
YXZhdGFyczIuZ2l0aHVidXNlcmNvbnRlbnQuY29tL3UvMTUzMDA4P3Y9MyZz
|
280
|
-
PTQwMCIsInRodW1ibmFpbCI6Imh0dHBzOi8vaW1hZ2VzLmdldG5ld3Nib3Qu
|
281
|
-
Y29tLzIxODg3NjUuanBnIiwic3VtbWFyeSI6IkdyYXBocG9zdGdyZXNRTCAt
|
282
|
-
IEdyYXBoUUwgZm9yIFBvc3RncmVzIiwic291cmNlX25hbWUiOiJIYWNrZXIg
|
283
|
-
TmV3cyIsInNvdXJjZV9zbHVnIjoiaGFja2VyLW5ld3MifSx7ImRvY3VtZW50
|
284
|
-
X2lkIjoiMzg2OTcyIiwiZGlzdGFuY2UiOjAuMDQ0NjQ0LCJ0aXRsZSI6IlBv
|
285
|
-
c3RncmVTUUwgOS40IFJlbGVhc2VkIChwb3N0Z3Jlc3FsLm9yZykiLCJ1cmwi
|
286
|
-
OiJodHRwOi8vd3d3LnBvc3RncmVzcWwub3JnL2Fib3V0L25ld3MvMTU1Ny8i
|
287
|
-
LCJwdWJsaXNoZWQiOiIyMDE0LTEyLTE4VDA3OjMwOjAyLjAwMFoiLCJhdXRo
|
288
|
-
b3IiOm51bGwsImltYWdlIjpudWxsLCJ0aHVtYm5haWwiOmZhbHNlLCJzdW1t
|
289
|
-
YXJ5IjoiUG9zdGdyZVNRTCA5LjQgSW5jcmVhc2VzIEZsZXhpYmlsaXR5LCBT
|
290
|
-
Y2FsYWJpbGl0eSBhbmQgUGVyZm9ybWFuY2UxOCBERUNFTUJFUiAyMDE0OiBU
|
291
|
-
aGUgUG9zdGdyZVNRTCBHbG9iYWwgRGV2ZWxvcG1lbnQgR3JvdXAgYW5ub3Vu
|
292
|
-
Y2VzIHRoZSByZWxlYXNlIG9mIFBvc3RncmVTUUwgOS40LCB0aGUgbGF0ZXN0
|
293
|
-
IHZlcnNpb24gb2YgdGhlIHdvcmxkJ3MgbGVhZGluZyBvcGVuIHNvdXJjZSBk
|
294
|
-
YXRhYmFzZSBzeXN0ZW0uXG5cIlBlcmZvcm1hbmNlVmVyc2lvbiA5LjQgYWxz
|
295
|
-
byBpbnRyb2R1Y2VzIG11bHRpcGxlIHBlcmZvcm1hbmNlIGltcHJvdmVtZW50
|
296
|
-
cyB3aGljaCB3aWxsIGFsbG93IHVzZXJzIHRvIGdldCBldmVuIG1vcmUgb3V0
|
297
|
-
IG9mIGVhY2ggUG9zdGdyZVNRTCBzZXJ2ZXIuXG5UaGlzIHJlbGVhc2UgYWRk
|
298
|
-
cyBtYW55IG5ldyBmZWF0dXJlcyB3aGljaCBlbmhhbmNlIFBvc3RncmVTUUwn
|
299
|
-
cyBmbGV4aWJpbGl0eSwgc2NhbGFiaWxpdHkgYW5kIHBlcmZvcm1hbmNlIGZv
|
300
|
-
ciBtYW55IGRpZmZlcmVudCB0eXBlcyBvZiBkYXRhYmFzZSB1c2VycywgaW5j
|
301
|
-
bHVkaW5nIGltcHJvdmVtZW50cyB0byBKU09OIHN1cHBvcnQsIHJlcGxpY2F0
|
302
|
-
aW9uIGFuZCBpbmRleCBwZXJmb3JtYW5jZS5cblwiVGhlIG1haW4gcmVhc29u
|
303
|
-
IGJlaGluZCBvdXIgaW1tZWRpYXRlIGFkb3B0aW9uIG9mIFBvc3RncmVTUUwg
|
304
|
-
OS40IGluIHByb2R1Y3Rpb24gaXMgdGhlIG5ldyBMb2dpY2FsIERlY29kaW5n
|
305
|
-
IGZlYXR1cmUsXCIgc2FpZCBNYXJjbyBGYXZhbGUsIENhcnRvZ3JhcGhpYyBQ
|
306
|
-
cm9kdWN0aW9uIE1hbmFnZXIgb2YgTmF2aW9uaWNzLlxuU2NhbGFiaWxpdHlJ
|
307
|
-
biA5LjQsIExvZ2ljYWwgRGVjb2Rpbmcgc3VwcGxpZXMgYSBuZXcgQVBJIGZv
|
308
|
-
ciByZWFkaW5nLCBmaWx0ZXJpbmcgYW5kIG1hbmlwdWxhdGluZyB0aGUgUG9z
|
309
|
-
dGdyZVNRTCByZXBsaWNhdGlvbiBzdHJlYW0uIiwic291cmNlX25hbWUiOiJI
|
310
|
-
YWNrZXIgTmV3cyIsInNvdXJjZV9zbHVnIjoiaGFja2VyLW5ld3MifSx7ImRv
|
311
|
-
Y3VtZW50X2lkIjoiMjE5MzMwNiIsImRpc3RhbmNlIjowLjA0NDY5NSwidGl0
|
312
|
-
bGUiOiJBbm5vdW5jaW5nIFNwYXJrIDEuMyAoZGF0YWJyaWNrcy5jb20pIiwi
|
313
|
-
dXJsIjoiaHR0cHM6Ly9kYXRhYnJpY2tzLmNvbS9ibG9nLzIwMTUvMDMvMTMv
|
314
|
-
YW5ub3VuY2luZy1zcGFyay0xLTMuaHRtbCIsInB1Ymxpc2hlZCI6IjIwMTUt
|
315
|
-
MDMtMTNUMTU6MTA6MDEuMDAwWiIsImF1dGhvciI6IlBhdHJpY2sgV2VuZGVs
|
316
|
-
bCIsImltYWdlIjoiaHR0cHM6Ly9kYXRhYnJpY2tzLmNvbS93cC1jb250ZW50
|
317
|
-
L3VwbG9hZHMvMjAxNS8wMi9wYXRyaWNrLmpwZyIsInRodW1ibmFpbCI6Imh0
|
318
|
-
dHBzOi8vaW1hZ2VzLmdldG5ld3Nib3QuY29tLzIxOTMzMDYuanBnIiwic3Vt
|
319
|
-
bWFyeSI6Ik92ZXJ2aWV3IG9mIEFwYWNoZSBTcGFyayAxLjMgZmVhdHVyZXMs
|
320
|
-
IGluY2x1ZGluZyBEYXRhRnJhbWVzLCBNTGxpYiwgcGFja2FnZXMsIGFuZCBt
|
321
|
-
dWNoIG1vcmUiLCJzb3VyY2VfbmFtZSI6IkhhY2tlciBOZXdzIiwic291cmNl
|
322
|
-
X3NsdWciOiJoYWNrZXItbmV3cyJ9LHsiZG9jdW1lbnRfaWQiOiIyMzc4NDQi
|
323
|
-
LCJkaXN0YW5jZSI6MC4wNDQ3NzQsInRpdGxlIjoiQm9sdDogQSBsb3ctbGV2
|
324
|
-
ZWwga2V5L3ZhbHVlIGRhdGFiYXNlIGZvciBHbyAoZ2l0aHViLmNvbSkiLCJ1
|
325
|
-
cmwiOiJodHRwczovL2dpdGh1Yi5jb20vYm9sdGRiL2JvbHQiLCJwdWJsaXNo
|
326
|
-
ZWQiOiIyMDE0LTEyLTExVDA5OjQwOjAxLjAwMFoiLCJhdXRob3IiOm51bGws
|
327
|
-
ImltYWdlIjoiaHR0cHM6Ly9hdmF0YXJzMy5naXRodWJ1c2VyY29udGVudC5j
|
328
|
-
b20vdS82NTM5NzM3P3Y9MyZzPTQwMCIsInRodW1ibmFpbCI6Imh0dHBzOi8v
|
329
|
-
aW1hZ2VzLmdldG5ld3Nib3QuY29tLzIzNzg0NC5qcGciLCJzdW1tYXJ5Ijoi
|
330
|
-
Ym9sdCAtIEEgbG93LWxldmVsIGtleS92YWx1ZSBkYXRhYmFzZSBmb3IgR28u
|
331
|
-
Iiwic291cmNlX25hbWUiOiJIYWNrZXIgTmV3cyIsInNvdXJjZV9zbHVnIjoi
|
332
|
-
aGFja2VyLW5ld3MifSx7ImRvY3VtZW50X2lkIjoiMjU3ODI0IiwiZGlzdGFu
|
333
|
-
Y2UiOjAuMDQ0ODYsInRpdGxlIjoiSW50cm9kdWNpbmcgQXRsYXM6IE5ldGZs
|
334
|
-
aXgncyBQcmltYXJ5IFRlbGVtZXRyeSBQbGF0Zm9ybSAobmV0ZmxpeC5jb20p
|
335
|
-
IiwidXJsIjoiaHR0cDovL3RlY2hibG9nLm5ldGZsaXguY29tLzIwMTQvMTIv
|
336
|
-
aW50cm9kdWNpbmctYXRsYXMtbmV0ZmxpeHMtcHJpbWFyeS5odG1sIiwicHVi
|
337
|
-
bGlzaGVkIjoiMjAxNC0xMi0xMlQwOToyMDowMS4wMDBaIiwiYXV0aG9yIjoi
|
338
|
-
Um95IFJhcG9wb3J0IiwiaW1hZ2UiOiJodHRwczovL2xoNS5nb29nbGV1c2Vy
|
339
|
-
Y29udGVudC5jb20vZWdpelo5Vk1wZ0VqelVwT0dWR3FzVW5SQVJjc1RIM19J
|
340
|
-
VXhEcjM3dXRaUVJfdmF1blJYdXFONXNOVHdEQl9sQ3UyZjQ2MWZuZXk2TTBP
|
341
|
-
Tm5LOXZxVjJNSUtpQnJFUzJzc1VKaTM2N09XdHFkakRyY2dFRXR3Mk1ucXlf
|
342
|
-
Z00yV0YiLCJ0aHVtYm5haWwiOiJodHRwczovL2ltYWdlcy5nZXRuZXdzYm90
|
343
|
-
LmNvbS8yNTc4MjQuanBnIiwic3VtbWFyeSI6IkFib3V0IHRoZSBOZXRmbGl4
|
344
|
-
IFRlY2ggQmxvZ1RoaXMgaXMgYSBOZXRmbGl4IGJsb2cgZm9jdXNlZCBvbiB0
|
345
|
-
ZWNobm9sb2d5IGFuZCB0ZWNobm9sb2d5IGlzc3Vlcy5cbldlJ2xsIHNoYXJl
|
346
|
-
IG91ciBwZXJzcGVjdGl2ZXMsIGRlY2lzaW9ucyBhbmQgY2hhbGxlbmdlcyBy
|
347
|
-
ZWdhcmRpbmcgdGhlIHNvZnR3YXJlIHdlIGJ1aWxkIGFuZCB1c2UgdG8gY3Jl
|
348
|
-
YXRlIHRoZSBOZXRmbGl4IHNlcnZpY2UuIiwic291cmNlX25hbWUiOiJIYWNr
|
349
|
-
ZXIgTmV3cyIsInNvdXJjZV9zbHVnIjoiaGFja2VyLW5ld3MifSx7ImRvY3Vt
|
350
|
-
ZW50X2lkIjoiMTAzNjYyMyIsImRpc3RhbmNlIjowLjA0NDg5MSwidGl0bGUi
|
351
|
-
OiJQeXRob24gVGlwcyBhbmQgVHJhcHMgKGFpcnBhaXIuY29tKSIsInVybCI6
|
352
|
-
Imh0dHBzOi8vd3d3LmFpcnBhaXIuY29tL3B5dGhvbi9wb3N0cy9weXRob24t
|
353
|
-
dGlwcy1hbmQtdHJhcHMiLCJwdWJsaXNoZWQiOiIyMDE1LTAxLTE5VDA4OjQz
|
354
|
-
OjA0LjAwMFoiLCJhdXRob3IiOiJSeWFuIEJyb3duLCBLYXJvbGluYSBBbGV4
|
355
|
-
aW91LCBHcmFoYW0gSmVuc29uIiwiaW1hZ2UiOiJodHRwczovL2kuaW1ndXIu
|
356
|
-
Y29tL3J1cXZQVWYuanBnIiwidGh1bWJuYWlsIjoiaHR0cHM6Ly9pbWFnZXMu
|
357
|
-
Z2V0bmV3c2JvdC5jb20vMTAzNjYyMy5qcGciLCJzdW1tYXJ5IjoiUnlhbiB0
|
358
|
-
YWxrcyBzdGFuZGFyZCBkYXRhIHR5cGVzLCBjb250cm9sIGZsb3csIGNvbnRl
|
359
|
-
eHQgYW5kIGdlbmVyYXRvcnMgdG8gZ2l2ZSB5b3UgYSBiZXR0ZXIgZ3Jhc3Ag
|
360
|
-
b24gdGhlIGlkaW9tcywgbGlicmFyaWVzIGFuZCBjYXBhYmlsaXRpZXMgb2Yg
|
361
|
-
UHl0aG9uIiwic291cmNlX25hbWUiOiJIYWNrZXIgTmV3cyIsInNvdXJjZV9z
|
362
|
-
bHVnIjoiaGFja2VyLW5ld3MifSx7ImRvY3VtZW50X2lkIjoiMjMxNjAxIiwi
|
363
|
-
ZGlzdGFuY2UiOjAuMDQ1MDE5LCJ0aXRsZSI6Ik1EQk0g4oCTIEhpZ2gtc3Bl
|
364
|
-
ZWQgZGF0YWJhc2UgKHR1bWJsci5jb20pIiwidXJsIjoiaHR0cDovL3lhaG9v
|
365
|
-
ZW5nLnR1bWJsci5jb20vcG9zdC8xMDQ4NjExMDg5MzEvbWRibS1oaWdoLXNw
|
366
|
-
ZWVkLWRhdGFiYXNlIiwicHVibGlzaGVkIjoiMjAxNC0xMi0xMFQxOTozMDow
|
367
|
-
Mi4wMDBaIiwiYXV0aG9yIjoiU2l0ZSBBdXRob3JzIiwiaW1hZ2UiOiJodHRw
|
368
|
-
Oi8vMzgubWVkaWEudHVtYmxyLmNvbS9hdmF0YXJfNzM2ZDQ4ZGFkYjg2XzEy
|
369
|
-
OC5wbmciLCJ0aHVtYm5haWwiOiJodHRwczovL2ltYWdlcy5nZXRuZXdzYm90
|
370
|
-
LmNvbS8yMzE2MDEuanBnIiwic3VtbWFyeSI6Ik1EQk0gLSBIaWdoLXNwZWVk
|
371
|
-
IGRhdGFiYXNlIEludHJvZHVjdGlvbiBCYWNrIGluIDE5NzksIEFUJlQgcmVs
|
372
|
-
ZWFzZWQgYSBsaWdodHdlaWdodCBkYXRhYmFzZSBlbmdpbmUgd3JpdHRlbiBi
|
373
|
-
eSBLZW4gVGhvbXBzb24sIGNhbGxlZCBEQk0gKGh0dHA6Ly9lbi53aWtpcGVk
|
374
|
-
aWEub3JnL3dpa2kvRGJtKS4gSW4gMTk4NyBPemFuIFlpZ2l0IGNyZWF0ZWQg
|
375
|
-
YS4uLiIsInNvdXJjZV9uYW1lIjoiSGFja2VyIE5ld3MiLCJzb3VyY2Vfc2x1
|
376
|
-
ZyI6ImhhY2tlci1uZXdzIn1d
|
377
|
-
http_version:
|
378
|
-
recorded_at: Thu, 14 May 2015 09:37:14 GMT
|
379
|
-
recorded_with: VCR 2.9.3
|