kreuzberg 4.0.0.pre.rc.13 → 4.0.0.pre.rc.15
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +14 -14
- data/.rspec +3 -3
- data/.rubocop.yaml +1 -1
- data/.rubocop.yml +538 -538
- data/Gemfile +8 -8
- data/Gemfile.lock +104 -2
- data/README.md +454 -454
- data/Rakefile +33 -25
- data/Steepfile +47 -47
- data/examples/async_patterns.rb +341 -341
- data/ext/kreuzberg_rb/extconf.rb +45 -45
- data/ext/kreuzberg_rb/native/.cargo/config.toml +2 -2
- data/ext/kreuzberg_rb/native/Cargo.lock +6750 -6941
- data/ext/kreuzberg_rb/native/Cargo.toml +53 -54
- data/ext/kreuzberg_rb/native/README.md +425 -425
- data/ext/kreuzberg_rb/native/build.rs +52 -15
- data/ext/kreuzberg_rb/native/include/ieeefp.h +11 -11
- data/ext/kreuzberg_rb/native/include/msvc_compat/strings.h +14 -14
- data/ext/kreuzberg_rb/native/include/strings.h +20 -20
- data/ext/kreuzberg_rb/native/include/unistd.h +47 -47
- data/ext/kreuzberg_rb/native/src/lib.rs +3158 -3158
- data/extconf.rb +28 -28
- data/kreuzberg.gemspec +214 -214
- data/lib/kreuzberg/api_proxy.rb +142 -142
- data/lib/kreuzberg/cache_api.rb +81 -81
- data/lib/kreuzberg/cli.rb +55 -55
- data/lib/kreuzberg/cli_proxy.rb +127 -127
- data/lib/kreuzberg/config.rb +724 -724
- data/lib/kreuzberg/error_context.rb +80 -80
- data/lib/kreuzberg/errors.rb +118 -118
- data/lib/kreuzberg/extraction_api.rb +340 -340
- data/lib/kreuzberg/mcp_proxy.rb +186 -186
- data/lib/kreuzberg/ocr_backend_protocol.rb +113 -113
- data/lib/kreuzberg/post_processor_protocol.rb +86 -86
- data/lib/kreuzberg/result.rb +279 -279
- data/lib/kreuzberg/setup_lib_path.rb +80 -80
- data/lib/kreuzberg/validator_protocol.rb +89 -89
- data/lib/kreuzberg/version.rb +5 -5
- data/lib/kreuzberg.rb +109 -109
- data/lib/{pdfium.dll → libpdfium.so} +0 -0
- data/sig/kreuzberg/internal.rbs +184 -184
- data/sig/kreuzberg.rbs +546 -546
- data/spec/binding/cache_spec.rb +227 -227
- data/spec/binding/cli_proxy_spec.rb +85 -85
- data/spec/binding/cli_spec.rb +55 -55
- data/spec/binding/config_spec.rb +345 -345
- data/spec/binding/config_validation_spec.rb +283 -283
- data/spec/binding/error_handling_spec.rb +213 -213
- data/spec/binding/errors_spec.rb +66 -66
- data/spec/binding/plugins/ocr_backend_spec.rb +307 -307
- data/spec/binding/plugins/postprocessor_spec.rb +269 -269
- data/spec/binding/plugins/validator_spec.rb +274 -274
- data/spec/fixtures/config.toml +39 -39
- data/spec/fixtures/config.yaml +41 -41
- data/spec/fixtures/invalid_config.toml +4 -4
- data/spec/smoke/package_spec.rb +178 -178
- data/spec/spec_helper.rb +42 -42
- data/vendor/Cargo.toml +2 -2
- data/vendor/kreuzberg/Cargo.toml +5 -5
- data/vendor/kreuzberg/README.md +230 -230
- data/vendor/kreuzberg/benches/otel_overhead.rs +48 -48
- data/vendor/kreuzberg/build.rs +887 -843
- data/vendor/kreuzberg/src/api/error.rs +81 -81
- data/vendor/kreuzberg/src/api/handlers.rs +199 -199
- data/vendor/kreuzberg/src/api/mod.rs +87 -79
- data/vendor/kreuzberg/src/api/server.rs +353 -353
- data/vendor/kreuzberg/src/api/types.rs +170 -170
- data/vendor/kreuzberg/src/cache/mod.rs +1167 -1167
- data/vendor/kreuzberg/src/chunking/mod.rs +1877 -1877
- data/vendor/kreuzberg/src/chunking/processor.rs +220 -220
- data/vendor/kreuzberg/src/core/batch_mode.rs +95 -95
- data/vendor/kreuzberg/src/core/config.rs +1080 -1080
- data/vendor/kreuzberg/src/core/extractor.rs +1156 -1156
- data/vendor/kreuzberg/src/core/io.rs +329 -329
- data/vendor/kreuzberg/src/core/mime.rs +605 -605
- data/vendor/kreuzberg/src/core/mod.rs +47 -47
- data/vendor/kreuzberg/src/core/pipeline.rs +1184 -1184
- data/vendor/kreuzberg/src/embeddings.rs +500 -500
- data/vendor/kreuzberg/src/error.rs +431 -431
- data/vendor/kreuzberg/src/extraction/archive.rs +954 -954
- data/vendor/kreuzberg/src/extraction/docx.rs +398 -398
- data/vendor/kreuzberg/src/extraction/email.rs +854 -854
- data/vendor/kreuzberg/src/extraction/excel.rs +688 -688
- data/vendor/kreuzberg/src/extraction/html.rs +634 -601
- data/vendor/kreuzberg/src/extraction/image.rs +491 -491
- data/vendor/kreuzberg/src/extraction/libreoffice.rs +574 -574
- data/vendor/kreuzberg/src/extraction/markdown.rs +213 -213
- data/vendor/kreuzberg/src/extraction/mod.rs +81 -81
- data/vendor/kreuzberg/src/extraction/office_metadata/app_properties.rs +398 -398
- data/vendor/kreuzberg/src/extraction/office_metadata/core_properties.rs +247 -247
- data/vendor/kreuzberg/src/extraction/office_metadata/custom_properties.rs +240 -240
- data/vendor/kreuzberg/src/extraction/office_metadata/mod.rs +130 -130
- data/vendor/kreuzberg/src/extraction/office_metadata/odt_properties.rs +284 -284
- data/vendor/kreuzberg/src/extraction/pptx.rs +3100 -3100
- data/vendor/kreuzberg/src/extraction/structured.rs +490 -490
- data/vendor/kreuzberg/src/extraction/table.rs +328 -328
- data/vendor/kreuzberg/src/extraction/text.rs +269 -269
- data/vendor/kreuzberg/src/extraction/xml.rs +333 -333
- data/vendor/kreuzberg/src/extractors/archive.rs +447 -447
- data/vendor/kreuzberg/src/extractors/bibtex.rs +470 -470
- data/vendor/kreuzberg/src/extractors/docbook.rs +504 -504
- data/vendor/kreuzberg/src/extractors/docx.rs +400 -400
- data/vendor/kreuzberg/src/extractors/email.rs +157 -157
- data/vendor/kreuzberg/src/extractors/epub.rs +708 -708
- data/vendor/kreuzberg/src/extractors/excel.rs +345 -345
- data/vendor/kreuzberg/src/extractors/fictionbook.rs +492 -492
- data/vendor/kreuzberg/src/extractors/html.rs +407 -407
- data/vendor/kreuzberg/src/extractors/image.rs +219 -219
- data/vendor/kreuzberg/src/extractors/jats.rs +1054 -1054
- data/vendor/kreuzberg/src/extractors/jupyter.rs +368 -368
- data/vendor/kreuzberg/src/extractors/latex.rs +653 -653
- data/vendor/kreuzberg/src/extractors/markdown.rs +701 -701
- data/vendor/kreuzberg/src/extractors/mod.rs +429 -429
- data/vendor/kreuzberg/src/extractors/odt.rs +628 -628
- data/vendor/kreuzberg/src/extractors/opml.rs +635 -635
- data/vendor/kreuzberg/src/extractors/orgmode.rs +529 -529
- data/vendor/kreuzberg/src/extractors/pdf.rs +749 -749
- data/vendor/kreuzberg/src/extractors/pptx.rs +267 -267
- data/vendor/kreuzberg/src/extractors/rst.rs +577 -577
- data/vendor/kreuzberg/src/extractors/rtf.rs +809 -809
- data/vendor/kreuzberg/src/extractors/security.rs +484 -484
- data/vendor/kreuzberg/src/extractors/security_tests.rs +367 -367
- data/vendor/kreuzberg/src/extractors/structured.rs +142 -142
- data/vendor/kreuzberg/src/extractors/text.rs +265 -265
- data/vendor/kreuzberg/src/extractors/typst.rs +651 -651
- data/vendor/kreuzberg/src/extractors/xml.rs +147 -147
- data/vendor/kreuzberg/src/image/dpi.rs +164 -164
- data/vendor/kreuzberg/src/image/mod.rs +6 -6
- data/vendor/kreuzberg/src/image/preprocessing.rs +417 -417
- data/vendor/kreuzberg/src/image/resize.rs +89 -89
- data/vendor/kreuzberg/src/keywords/config.rs +154 -154
- data/vendor/kreuzberg/src/keywords/mod.rs +237 -237
- data/vendor/kreuzberg/src/keywords/processor.rs +275 -275
- data/vendor/kreuzberg/src/keywords/rake.rs +293 -293
- data/vendor/kreuzberg/src/keywords/types.rs +68 -68
- data/vendor/kreuzberg/src/keywords/yake.rs +163 -163
- data/vendor/kreuzberg/src/language_detection/mod.rs +985 -985
- data/vendor/kreuzberg/src/language_detection/processor.rs +219 -219
- data/vendor/kreuzberg/src/lib.rs +113 -113
- data/vendor/kreuzberg/src/mcp/mod.rs +35 -35
- data/vendor/kreuzberg/src/mcp/server.rs +2076 -2076
- data/vendor/kreuzberg/src/ocr/cache.rs +469 -469
- data/vendor/kreuzberg/src/ocr/error.rs +37 -37
- data/vendor/kreuzberg/src/ocr/hocr.rs +216 -216
- data/vendor/kreuzberg/src/ocr/mod.rs +58 -58
- data/vendor/kreuzberg/src/ocr/processor.rs +863 -863
- data/vendor/kreuzberg/src/ocr/table/mod.rs +4 -4
- data/vendor/kreuzberg/src/ocr/table/tsv_parser.rs +144 -144
- data/vendor/kreuzberg/src/ocr/tesseract_backend.rs +452 -452
- data/vendor/kreuzberg/src/ocr/types.rs +393 -393
- data/vendor/kreuzberg/src/ocr/utils.rs +47 -47
- data/vendor/kreuzberg/src/ocr/validation.rs +206 -206
- data/vendor/kreuzberg/src/panic_context.rs +154 -154
- data/vendor/kreuzberg/src/pdf/bindings.rs +44 -44
- data/vendor/kreuzberg/src/pdf/bundled.rs +452 -346
- data/vendor/kreuzberg/src/pdf/error.rs +130 -130
- data/vendor/kreuzberg/src/pdf/images.rs +139 -139
- data/vendor/kreuzberg/src/pdf/metadata.rs +489 -489
- data/vendor/kreuzberg/src/pdf/mod.rs +68 -68
- data/vendor/kreuzberg/src/pdf/rendering.rs +368 -368
- data/vendor/kreuzberg/src/pdf/table.rs +420 -420
- data/vendor/kreuzberg/src/pdf/text.rs +240 -240
- data/vendor/kreuzberg/src/plugins/extractor.rs +1044 -1044
- data/vendor/kreuzberg/src/plugins/mod.rs +212 -212
- data/vendor/kreuzberg/src/plugins/ocr.rs +639 -639
- data/vendor/kreuzberg/src/plugins/processor.rs +650 -650
- data/vendor/kreuzberg/src/plugins/registry.rs +1339 -1339
- data/vendor/kreuzberg/src/plugins/traits.rs +258 -258
- data/vendor/kreuzberg/src/plugins/validator.rs +967 -967
- data/vendor/kreuzberg/src/stopwords/mod.rs +1470 -1470
- data/vendor/kreuzberg/src/text/mod.rs +25 -25
- data/vendor/kreuzberg/src/text/quality.rs +697 -697
- data/vendor/kreuzberg/src/text/quality_processor.rs +219 -219
- data/vendor/kreuzberg/src/text/string_utils.rs +217 -217
- data/vendor/kreuzberg/src/text/token_reduction/cjk_utils.rs +164 -164
- data/vendor/kreuzberg/src/text/token_reduction/config.rs +100 -100
- data/vendor/kreuzberg/src/text/token_reduction/core.rs +796 -796
- data/vendor/kreuzberg/src/text/token_reduction/filters.rs +902 -902
- data/vendor/kreuzberg/src/text/token_reduction/mod.rs +160 -160
- data/vendor/kreuzberg/src/text/token_reduction/semantic.rs +619 -619
- data/vendor/kreuzberg/src/text/token_reduction/simd_text.rs +147 -147
- data/vendor/kreuzberg/src/types.rs +1055 -1055
- data/vendor/kreuzberg/src/utils/mod.rs +17 -17
- data/vendor/kreuzberg/src/utils/quality.rs +959 -959
- data/vendor/kreuzberg/src/utils/string_utils.rs +381 -381
- data/vendor/kreuzberg/stopwords/af_stopwords.json +53 -53
- data/vendor/kreuzberg/stopwords/ar_stopwords.json +482 -482
- data/vendor/kreuzberg/stopwords/bg_stopwords.json +261 -261
- data/vendor/kreuzberg/stopwords/bn_stopwords.json +400 -400
- data/vendor/kreuzberg/stopwords/br_stopwords.json +1205 -1205
- data/vendor/kreuzberg/stopwords/ca_stopwords.json +280 -280
- data/vendor/kreuzberg/stopwords/cs_stopwords.json +425 -425
- data/vendor/kreuzberg/stopwords/da_stopwords.json +172 -172
- data/vendor/kreuzberg/stopwords/de_stopwords.json +622 -622
- data/vendor/kreuzberg/stopwords/el_stopwords.json +849 -849
- data/vendor/kreuzberg/stopwords/en_stopwords.json +1300 -1300
- data/vendor/kreuzberg/stopwords/eo_stopwords.json +175 -175
- data/vendor/kreuzberg/stopwords/es_stopwords.json +734 -734
- data/vendor/kreuzberg/stopwords/et_stopwords.json +37 -37
- data/vendor/kreuzberg/stopwords/eu_stopwords.json +100 -100
- data/vendor/kreuzberg/stopwords/fa_stopwords.json +801 -801
- data/vendor/kreuzberg/stopwords/fi_stopwords.json +849 -849
- data/vendor/kreuzberg/stopwords/fr_stopwords.json +693 -693
- data/vendor/kreuzberg/stopwords/ga_stopwords.json +111 -111
- data/vendor/kreuzberg/stopwords/gl_stopwords.json +162 -162
- data/vendor/kreuzberg/stopwords/gu_stopwords.json +226 -226
- data/vendor/kreuzberg/stopwords/ha_stopwords.json +41 -41
- data/vendor/kreuzberg/stopwords/he_stopwords.json +196 -196
- data/vendor/kreuzberg/stopwords/hi_stopwords.json +227 -227
- data/vendor/kreuzberg/stopwords/hr_stopwords.json +181 -181
- data/vendor/kreuzberg/stopwords/hu_stopwords.json +791 -791
- data/vendor/kreuzberg/stopwords/hy_stopwords.json +47 -47
- data/vendor/kreuzberg/stopwords/id_stopwords.json +760 -760
- data/vendor/kreuzberg/stopwords/it_stopwords.json +634 -634
- data/vendor/kreuzberg/stopwords/ja_stopwords.json +136 -136
- data/vendor/kreuzberg/stopwords/kn_stopwords.json +84 -84
- data/vendor/kreuzberg/stopwords/ko_stopwords.json +681 -681
- data/vendor/kreuzberg/stopwords/ku_stopwords.json +64 -64
- data/vendor/kreuzberg/stopwords/la_stopwords.json +51 -51
- data/vendor/kreuzberg/stopwords/lt_stopwords.json +476 -476
- data/vendor/kreuzberg/stopwords/lv_stopwords.json +163 -163
- data/vendor/kreuzberg/stopwords/ml_stopwords.json +1 -1
- data/vendor/kreuzberg/stopwords/mr_stopwords.json +101 -101
- data/vendor/kreuzberg/stopwords/ms_stopwords.json +477 -477
- data/vendor/kreuzberg/stopwords/ne_stopwords.json +490 -490
- data/vendor/kreuzberg/stopwords/nl_stopwords.json +415 -415
- data/vendor/kreuzberg/stopwords/no_stopwords.json +223 -223
- data/vendor/kreuzberg/stopwords/pl_stopwords.json +331 -331
- data/vendor/kreuzberg/stopwords/pt_stopwords.json +562 -562
- data/vendor/kreuzberg/stopwords/ro_stopwords.json +436 -436
- data/vendor/kreuzberg/stopwords/ru_stopwords.json +561 -561
- data/vendor/kreuzberg/stopwords/si_stopwords.json +193 -193
- data/vendor/kreuzberg/stopwords/sk_stopwords.json +420 -420
- data/vendor/kreuzberg/stopwords/sl_stopwords.json +448 -448
- data/vendor/kreuzberg/stopwords/so_stopwords.json +32 -32
- data/vendor/kreuzberg/stopwords/st_stopwords.json +33 -33
- data/vendor/kreuzberg/stopwords/sv_stopwords.json +420 -420
- data/vendor/kreuzberg/stopwords/sw_stopwords.json +76 -76
- data/vendor/kreuzberg/stopwords/ta_stopwords.json +129 -129
- data/vendor/kreuzberg/stopwords/te_stopwords.json +54 -54
- data/vendor/kreuzberg/stopwords/th_stopwords.json +118 -118
- data/vendor/kreuzberg/stopwords/tl_stopwords.json +149 -149
- data/vendor/kreuzberg/stopwords/tr_stopwords.json +506 -506
- data/vendor/kreuzberg/stopwords/uk_stopwords.json +75 -75
- data/vendor/kreuzberg/stopwords/ur_stopwords.json +519 -519
- data/vendor/kreuzberg/stopwords/vi_stopwords.json +647 -647
- data/vendor/kreuzberg/stopwords/yo_stopwords.json +62 -62
- data/vendor/kreuzberg/stopwords/zh_stopwords.json +796 -796
- data/vendor/kreuzberg/stopwords/zu_stopwords.json +31 -31
- data/vendor/kreuzberg/tests/api_extract_multipart.rs +52 -52
- data/vendor/kreuzberg/tests/api_tests.rs +966 -966
- data/vendor/kreuzberg/tests/archive_integration.rs +545 -545
- data/vendor/kreuzberg/tests/batch_orchestration.rs +556 -556
- data/vendor/kreuzberg/tests/batch_processing.rs +318 -318
- data/vendor/kreuzberg/tests/bibtex_parity_test.rs +421 -421
- data/vendor/kreuzberg/tests/concurrency_stress.rs +533 -533
- data/vendor/kreuzberg/tests/config_features.rs +612 -612
- data/vendor/kreuzberg/tests/config_loading_tests.rs +416 -416
- data/vendor/kreuzberg/tests/core_integration.rs +510 -510
- data/vendor/kreuzberg/tests/csv_integration.rs +414 -414
- data/vendor/kreuzberg/tests/docbook_extractor_tests.rs +500 -500
- data/vendor/kreuzberg/tests/docx_metadata_extraction_test.rs +122 -122
- data/vendor/kreuzberg/tests/docx_vs_pandoc_comparison.rs +370 -370
- data/vendor/kreuzberg/tests/email_integration.rs +327 -327
- data/vendor/kreuzberg/tests/epub_native_extractor_tests.rs +275 -275
- data/vendor/kreuzberg/tests/error_handling.rs +402 -402
- data/vendor/kreuzberg/tests/fictionbook_extractor_tests.rs +228 -228
- data/vendor/kreuzberg/tests/format_integration.rs +165 -164
- data/vendor/kreuzberg/tests/helpers/mod.rs +142 -142
- data/vendor/kreuzberg/tests/html_table_test.rs +551 -551
- data/vendor/kreuzberg/tests/image_integration.rs +255 -255
- data/vendor/kreuzberg/tests/instrumentation_test.rs +139 -139
- data/vendor/kreuzberg/tests/jats_extractor_tests.rs +639 -639
- data/vendor/kreuzberg/tests/jupyter_extractor_tests.rs +704 -704
- data/vendor/kreuzberg/tests/keywords_integration.rs +479 -479
- data/vendor/kreuzberg/tests/keywords_quality.rs +509 -509
- data/vendor/kreuzberg/tests/latex_extractor_tests.rs +496 -496
- data/vendor/kreuzberg/tests/markdown_extractor_tests.rs +490 -490
- data/vendor/kreuzberg/tests/mime_detection.rs +429 -429
- data/vendor/kreuzberg/tests/ocr_configuration.rs +514 -514
- data/vendor/kreuzberg/tests/ocr_errors.rs +698 -698
- data/vendor/kreuzberg/tests/ocr_quality.rs +629 -629
- data/vendor/kreuzberg/tests/ocr_stress.rs +469 -469
- data/vendor/kreuzberg/tests/odt_extractor_tests.rs +674 -674
- data/vendor/kreuzberg/tests/opml_extractor_tests.rs +616 -616
- data/vendor/kreuzberg/tests/orgmode_extractor_tests.rs +822 -822
- data/vendor/kreuzberg/tests/pdf_integration.rs +45 -45
- data/vendor/kreuzberg/tests/pdfium_linking.rs +374 -374
- data/vendor/kreuzberg/tests/pipeline_integration.rs +1436 -1436
- data/vendor/kreuzberg/tests/plugin_ocr_backend_test.rs +776 -776
- data/vendor/kreuzberg/tests/plugin_postprocessor_test.rs +560 -560
- data/vendor/kreuzberg/tests/plugin_system.rs +927 -927
- data/vendor/kreuzberg/tests/plugin_validator_test.rs +783 -783
- data/vendor/kreuzberg/tests/registry_integration_tests.rs +587 -587
- data/vendor/kreuzberg/tests/rst_extractor_tests.rs +694 -694
- data/vendor/kreuzberg/tests/rtf_extractor_tests.rs +775 -775
- data/vendor/kreuzberg/tests/security_validation.rs +416 -416
- data/vendor/kreuzberg/tests/stopwords_integration_test.rs +888 -888
- data/vendor/kreuzberg/tests/test_fastembed.rs +631 -631
- data/vendor/kreuzberg/tests/typst_behavioral_tests.rs +1260 -1260
- data/vendor/kreuzberg/tests/typst_extractor_tests.rs +648 -648
- data/vendor/kreuzberg/tests/xlsx_metadata_extraction_test.rs +87 -87
- data/vendor/kreuzberg-tesseract/.commitlintrc.json +13 -13
- data/vendor/kreuzberg-tesseract/.crate-ignore +2 -2
- data/vendor/kreuzberg-tesseract/Cargo.lock +2933 -2933
- data/vendor/kreuzberg-tesseract/Cargo.toml +2 -2
- data/vendor/kreuzberg-tesseract/LICENSE +22 -22
- data/vendor/kreuzberg-tesseract/README.md +399 -399
- data/vendor/kreuzberg-tesseract/build.rs +1354 -1354
- data/vendor/kreuzberg-tesseract/patches/README.md +71 -71
- data/vendor/kreuzberg-tesseract/patches/tesseract.diff +199 -199
- data/vendor/kreuzberg-tesseract/src/api.rs +1371 -1371
- data/vendor/kreuzberg-tesseract/src/choice_iterator.rs +77 -77
- data/vendor/kreuzberg-tesseract/src/enums.rs +297 -297
- data/vendor/kreuzberg-tesseract/src/error.rs +81 -81
- data/vendor/kreuzberg-tesseract/src/lib.rs +145 -145
- data/vendor/kreuzberg-tesseract/src/monitor.rs +57 -57
- data/vendor/kreuzberg-tesseract/src/mutable_iterator.rs +197 -197
- data/vendor/kreuzberg-tesseract/src/page_iterator.rs +253 -253
- data/vendor/kreuzberg-tesseract/src/result_iterator.rs +286 -286
- data/vendor/kreuzberg-tesseract/src/result_renderer.rs +183 -183
- data/vendor/kreuzberg-tesseract/tests/integration_test.rs +211 -211
- data/vendor/rb-sys/.cargo_vcs_info.json +5 -5
- data/vendor/rb-sys/Cargo.lock +393 -393
- data/vendor/rb-sys/Cargo.toml +70 -70
- data/vendor/rb-sys/Cargo.toml.orig +57 -57
- data/vendor/rb-sys/LICENSE-APACHE +190 -190
- data/vendor/rb-sys/LICENSE-MIT +21 -21
- data/vendor/rb-sys/build/features.rs +111 -111
- data/vendor/rb-sys/build/main.rs +286 -286
- data/vendor/rb-sys/build/stable_api_config.rs +155 -155
- data/vendor/rb-sys/build/version.rs +50 -50
- data/vendor/rb-sys/readme.md +36 -36
- data/vendor/rb-sys/src/bindings.rs +21 -21
- data/vendor/rb-sys/src/hidden.rs +11 -11
- data/vendor/rb-sys/src/lib.rs +35 -35
- data/vendor/rb-sys/src/macros.rs +371 -371
- data/vendor/rb-sys/src/memory.rs +53 -53
- data/vendor/rb-sys/src/ruby_abi_version.rs +38 -38
- data/vendor/rb-sys/src/special_consts.rs +31 -31
- data/vendor/rb-sys/src/stable_api/compiled.c +179 -179
- data/vendor/rb-sys/src/stable_api/compiled.rs +257 -257
- data/vendor/rb-sys/src/stable_api/ruby_2_7.rs +324 -324
- data/vendor/rb-sys/src/stable_api/ruby_3_0.rs +332 -332
- data/vendor/rb-sys/src/stable_api/ruby_3_1.rs +325 -325
- data/vendor/rb-sys/src/stable_api/ruby_3_2.rs +323 -323
- data/vendor/rb-sys/src/stable_api/ruby_3_3.rs +339 -339
- data/vendor/rb-sys/src/stable_api/ruby_3_4.rs +339 -339
- data/vendor/rb-sys/src/stable_api.rs +260 -260
- data/vendor/rb-sys/src/symbol.rs +31 -31
- data/vendor/rb-sys/src/tracking_allocator.rs +330 -330
- data/vendor/rb-sys/src/utils.rs +89 -89
- data/vendor/rb-sys/src/value_type.rs +7 -7
- metadata +81 -22
- data/vendor/kreuzberg-ffi/Cargo.toml +0 -63
- data/vendor/kreuzberg-ffi/README.md +0 -851
- data/vendor/kreuzberg-ffi/build.rs +0 -176
- data/vendor/kreuzberg-ffi/cbindgen.toml +0 -27
- data/vendor/kreuzberg-ffi/kreuzberg-ffi-install.pc +0 -12
- data/vendor/kreuzberg-ffi/kreuzberg-ffi.pc.in +0 -12
- data/vendor/kreuzberg-ffi/kreuzberg.h +0 -1087
- data/vendor/kreuzberg-ffi/src/lib.rs +0 -3616
- data/vendor/kreuzberg-ffi/src/panic_shield.rs +0 -247
- data/vendor/kreuzberg-ffi/tests.disabled/README.md +0 -48
- data/vendor/kreuzberg-ffi/tests.disabled/config_loading_tests.rs +0 -299
- data/vendor/kreuzberg-ffi/tests.disabled/config_tests.rs +0 -346
- data/vendor/kreuzberg-ffi/tests.disabled/extractor_tests.rs +0 -232
- data/vendor/kreuzberg-ffi/tests.disabled/plugin_registration_tests.rs +0 -470
|
@@ -1,888 +1,888 @@
|
|
|
1
|
-
//! Integration tests for stopwords with token reduction and keywords extraction.
|
|
2
|
-
#![cfg(all(feature = "stopwords", feature = "quality"))]
|
|
3
|
-
//!
|
|
4
|
-
//! These tests verify that stopwords are properly integrated across different features:
|
|
5
|
-
//! - Token reduction at all ReductionLevels
|
|
6
|
-
//! - Keywords extraction (YAKE and RAKE algorithms)
|
|
7
|
-
//! - CJK text processing
|
|
8
|
-
//! - Multi-language documents
|
|
9
|
-
//! - Language fallback mechanisms
|
|
10
|
-
//! - Custom stopwords
|
|
11
|
-
|
|
12
|
-
use kreuzberg::stopwords::{STOPWORDS, get_stopwords, get_stopwords_with_fallback};
|
|
13
|
-
use kreuzberg::text::token_reduction::{ReductionLevel, TokenReductionConfig, reduce_tokens};
|
|
14
|
-
|
|
15
|
-
#[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
|
|
16
|
-
use kreuzberg::keywords::{KeywordConfig, extract_keywords};
|
|
17
|
-
|
|
18
|
-
use std::collections::HashMap;
|
|
19
|
-
|
|
20
|
-
fn count_stopwords(text: &str, lang: &str) -> usize {
|
|
21
|
-
let stopwords = get_stopwords(lang).expect("Stopwords must exist for language");
|
|
22
|
-
let words: Vec<&str> = text.split_whitespace().collect();
|
|
23
|
-
|
|
24
|
-
words
|
|
25
|
-
.iter()
|
|
26
|
-
.filter(|word| {
|
|
27
|
-
let clean = word
|
|
28
|
-
.chars()
|
|
29
|
-
.filter(|c| c.is_alphabetic())
|
|
30
|
-
.collect::<String>()
|
|
31
|
-
.to_lowercase();
|
|
32
|
-
|
|
33
|
-
!clean.is_empty() && stopwords.contains(&clean)
|
|
34
|
-
})
|
|
35
|
-
.count()
|
|
36
|
-
}
|
|
37
|
-
|
|
38
|
-
fn extract_content_words(text: &str, lang: &str) -> Vec<String> {
|
|
39
|
-
let stopwords = get_stopwords(lang).expect("Stopwords must exist for language");
|
|
40
|
-
let words: Vec<&str> = text.split_whitespace().collect();
|
|
41
|
-
|
|
42
|
-
words
|
|
43
|
-
.iter()
|
|
44
|
-
.filter_map(|word| {
|
|
45
|
-
let clean = word
|
|
46
|
-
.chars()
|
|
47
|
-
.filter(|c| c.is_alphabetic())
|
|
48
|
-
.collect::<String>()
|
|
49
|
-
.to_lowercase();
|
|
50
|
-
|
|
51
|
-
if !clean.is_empty() && !stopwords.contains(&clean) && clean.len() > 1 {
|
|
52
|
-
Some(clean)
|
|
53
|
-
} else {
|
|
54
|
-
None
|
|
55
|
-
}
|
|
56
|
-
})
|
|
57
|
-
.collect()
|
|
58
|
-
}
|
|
59
|
-
|
|
60
|
-
#[test]
|
|
61
|
-
fn test_stopwords_removed_during_moderate_token_reduction() {
|
|
62
|
-
let config = TokenReductionConfig {
|
|
63
|
-
level: ReductionLevel::Moderate,
|
|
64
|
-
language_hint: Some("en".to_string()),
|
|
65
|
-
use_simd: false,
|
|
66
|
-
..Default::default()
|
|
67
|
-
};
|
|
68
|
-
|
|
69
|
-
let input = "The quick brown fox is jumping over the lazy dog and running through the forest";
|
|
70
|
-
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
71
|
-
|
|
72
|
-
assert!(!result.contains(" the "), "Should remove 'the'. Result: {}", result);
|
|
73
|
-
assert!(!result.contains(" is "), "Should remove 'is'. Result: {}", result);
|
|
74
|
-
assert!(!result.contains(" and "), "Should remove 'and'. Result: {}", result);
|
|
75
|
-
|
|
76
|
-
assert!(result.contains("quick"), "Should preserve 'quick'. Result: {}", result);
|
|
77
|
-
assert!(result.contains("brown"), "Should preserve 'brown'. Result: {}", result);
|
|
78
|
-
assert!(result.contains("fox"), "Should preserve 'fox'. Result: {}", result);
|
|
79
|
-
assert!(
|
|
80
|
-
result.contains("jumping"),
|
|
81
|
-
"Should preserve 'jumping'. Result: {}",
|
|
82
|
-
result
|
|
83
|
-
);
|
|
84
|
-
assert!(result.contains("lazy"), "Should preserve 'lazy'. Result: {}", result);
|
|
85
|
-
|
|
86
|
-
let original_stopwords = count_stopwords(input, "en");
|
|
87
|
-
let result_stopwords = count_stopwords(&result, "en");
|
|
88
|
-
|
|
89
|
-
assert!(
|
|
90
|
-
result_stopwords < original_stopwords,
|
|
91
|
-
"Result should have fewer stopwords than original. Original: {}, Result: {}",
|
|
92
|
-
original_stopwords,
|
|
93
|
-
result_stopwords
|
|
94
|
-
);
|
|
95
|
-
}
|
|
96
|
-
|
|
97
|
-
#[test]
|
|
98
|
-
fn test_stopwords_across_reduction_levels() {
|
|
99
|
-
let text = "The machine learning model is trained on the large dataset and achieves good performance";
|
|
100
|
-
|
|
101
|
-
let light_config = TokenReductionConfig {
|
|
102
|
-
level: ReductionLevel::Light,
|
|
103
|
-
use_simd: false,
|
|
104
|
-
..Default::default()
|
|
105
|
-
};
|
|
106
|
-
let light_result = reduce_tokens(text, &light_config, Some("en")).unwrap();
|
|
107
|
-
|
|
108
|
-
let light_stopwords = count_stopwords(&light_result, "en");
|
|
109
|
-
assert!(light_stopwords > 0, "Light reduction should preserve some stopwords");
|
|
110
|
-
|
|
111
|
-
let moderate_config = TokenReductionConfig {
|
|
112
|
-
level: ReductionLevel::Moderate,
|
|
113
|
-
use_simd: false,
|
|
114
|
-
..Default::default()
|
|
115
|
-
};
|
|
116
|
-
let moderate_result = reduce_tokens(text, &moderate_config, Some("en")).unwrap();
|
|
117
|
-
|
|
118
|
-
let moderate_stopwords = count_stopwords(&moderate_result, "en");
|
|
119
|
-
assert!(
|
|
120
|
-
moderate_stopwords < light_stopwords,
|
|
121
|
-
"Moderate reduction should remove more stopwords than light. Light: {}, Moderate: {}",
|
|
122
|
-
light_stopwords,
|
|
123
|
-
moderate_stopwords
|
|
124
|
-
);
|
|
125
|
-
|
|
126
|
-
let aggressive_config = TokenReductionConfig {
|
|
127
|
-
level: ReductionLevel::Aggressive,
|
|
128
|
-
use_simd: false,
|
|
129
|
-
..Default::default()
|
|
130
|
-
};
|
|
131
|
-
let aggressive_result = reduce_tokens(text, &aggressive_config, Some("en")).unwrap();
|
|
132
|
-
|
|
133
|
-
assert!(
|
|
134
|
-
aggressive_result.len() <= moderate_result.len(),
|
|
135
|
-
"Aggressive reduction should be more aggressive than moderate"
|
|
136
|
-
);
|
|
137
|
-
}
|
|
138
|
-
|
|
139
|
-
#[test]
|
|
140
|
-
fn test_stopwords_preserve_semantic_meaning() {
|
|
141
|
-
let config = TokenReductionConfig {
|
|
142
|
-
level: ReductionLevel::Moderate,
|
|
143
|
-
use_simd: false,
|
|
144
|
-
..Default::default()
|
|
145
|
-
};
|
|
146
|
-
|
|
147
|
-
let input =
|
|
148
|
-
"The artificial intelligence system is processing the natural language text for extracting meaningful insights";
|
|
149
|
-
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
150
|
-
|
|
151
|
-
let content_words = extract_content_words(&result, "en");
|
|
152
|
-
|
|
153
|
-
assert!(
|
|
154
|
-
content_words.contains(&"artificial".to_string()) || result.contains("artificial"),
|
|
155
|
-
"Should preserve 'artificial'. Result: {}",
|
|
156
|
-
result
|
|
157
|
-
);
|
|
158
|
-
assert!(
|
|
159
|
-
content_words.contains(&"intelligence".to_string()) || result.contains("intelligence"),
|
|
160
|
-
"Should preserve 'intelligence'. Result: {}",
|
|
161
|
-
result
|
|
162
|
-
);
|
|
163
|
-
assert!(
|
|
164
|
-
content_words.contains(&"processing".to_string()) || result.contains("processing"),
|
|
165
|
-
"Should preserve 'processing'. Result: {}",
|
|
166
|
-
result
|
|
167
|
-
);
|
|
168
|
-
assert!(
|
|
169
|
-
content_words.contains(&"natural".to_string()) || result.contains("natural"),
|
|
170
|
-
"Should preserve 'natural'. Result: {}",
|
|
171
|
-
result
|
|
172
|
-
);
|
|
173
|
-
assert!(
|
|
174
|
-
content_words.contains(&"language".to_string()) || result.contains("language"),
|
|
175
|
-
"Should preserve 'language'. Result: {}",
|
|
176
|
-
result
|
|
177
|
-
);
|
|
178
|
-
}
|
|
179
|
-
|
|
180
|
-
#[test]
|
|
181
|
-
fn test_stopwords_with_multiple_languages() {
|
|
182
|
-
let en_config = TokenReductionConfig {
|
|
183
|
-
level: ReductionLevel::Moderate,
|
|
184
|
-
use_simd: false,
|
|
185
|
-
..Default::default()
|
|
186
|
-
};
|
|
187
|
-
let en_input = "The computer science program is very comprehensive and includes many courses";
|
|
188
|
-
let en_result = reduce_tokens(en_input, &en_config, Some("en")).unwrap();
|
|
189
|
-
|
|
190
|
-
let en_original_stopwords = count_stopwords(en_input, "en");
|
|
191
|
-
let en_result_stopwords = count_stopwords(&en_result, "en");
|
|
192
|
-
assert!(
|
|
193
|
-
en_result_stopwords < en_original_stopwords,
|
|
194
|
-
"English stopwords should be removed"
|
|
195
|
-
);
|
|
196
|
-
|
|
197
|
-
let es_config = TokenReductionConfig {
|
|
198
|
-
level: ReductionLevel::Moderate,
|
|
199
|
-
use_simd: false,
|
|
200
|
-
..Default::default()
|
|
201
|
-
};
|
|
202
|
-
let es_input = "El programa de ciencias de la computación es muy completo y tiene muchos cursos";
|
|
203
|
-
let es_result = reduce_tokens(es_input, &es_config, Some("es")).unwrap();
|
|
204
|
-
|
|
205
|
-
let es_original_stopwords = count_stopwords(es_input, "es");
|
|
206
|
-
let es_result_stopwords = count_stopwords(&es_result, "es");
|
|
207
|
-
assert!(
|
|
208
|
-
es_result_stopwords < es_original_stopwords,
|
|
209
|
-
"Spanish stopwords should be removed"
|
|
210
|
-
);
|
|
211
|
-
|
|
212
|
-
assert!(
|
|
213
|
-
es_result.contains("programa") || es_result.contains("ciencias") || es_result.contains("computación"),
|
|
214
|
-
"Should preserve Spanish content words. Result: {}",
|
|
215
|
-
es_result
|
|
216
|
-
);
|
|
217
|
-
|
|
218
|
-
let de_config = TokenReductionConfig {
|
|
219
|
-
level: ReductionLevel::Moderate,
|
|
220
|
-
use_simd: false,
|
|
221
|
-
..Default::default()
|
|
222
|
-
};
|
|
223
|
-
let de_input = "Die künstliche Intelligenz ist ein wichtiges Forschungsgebiet der Informatik";
|
|
224
|
-
let de_result = reduce_tokens(de_input, &de_config, Some("de")).unwrap();
|
|
225
|
-
|
|
226
|
-
let de_original_stopwords = count_stopwords(de_input, "de");
|
|
227
|
-
let de_result_stopwords = count_stopwords(&de_result, "de");
|
|
228
|
-
assert!(
|
|
229
|
-
de_result_stopwords < de_original_stopwords,
|
|
230
|
-
"German stopwords should be removed"
|
|
231
|
-
);
|
|
232
|
-
}
|
|
233
|
-
|
|
234
|
-
#[test]
|
|
235
|
-
fn test_language_fallback_to_english_stopwords() {
|
|
236
|
-
let config = TokenReductionConfig {
|
|
237
|
-
level: ReductionLevel::Moderate,
|
|
238
|
-
use_simd: false,
|
|
239
|
-
..Default::default()
|
|
240
|
-
};
|
|
241
|
-
|
|
242
|
-
let input = "The system is processing the data with the algorithm";
|
|
243
|
-
let result = reduce_tokens(input, &config, Some("xyz")).unwrap();
|
|
244
|
-
|
|
245
|
-
let original_stopwords = count_stopwords(input, "en");
|
|
246
|
-
let result_stopwords = count_stopwords(&result, "en");
|
|
247
|
-
|
|
248
|
-
assert!(
|
|
249
|
-
result_stopwords < original_stopwords,
|
|
250
|
-
"Should fallback to English stopwords for unsupported language"
|
|
251
|
-
);
|
|
252
|
-
}
|
|
253
|
-
|
|
254
|
-
#[test]
|
|
255
|
-
fn test_custom_stopwords_integration() {
|
|
256
|
-
let mut custom_stopwords = HashMap::new();
|
|
257
|
-
custom_stopwords.insert(
|
|
258
|
-
"en".to_string(),
|
|
259
|
-
vec!["algorithm".to_string(), "system".to_string(), "data".to_string()],
|
|
260
|
-
);
|
|
261
|
-
|
|
262
|
-
let config = TokenReductionConfig {
|
|
263
|
-
level: ReductionLevel::Moderate,
|
|
264
|
-
use_simd: false,
|
|
265
|
-
custom_stopwords: Some(custom_stopwords),
|
|
266
|
-
..Default::default()
|
|
267
|
-
};
|
|
268
|
-
|
|
269
|
-
let input = "The algorithm processes the data in the system efficiently";
|
|
270
|
-
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
271
|
-
|
|
272
|
-
assert!(
|
|
273
|
-
!result.contains("algorithm"),
|
|
274
|
-
"Should remove custom stopword 'algorithm'. Result: {}",
|
|
275
|
-
result
|
|
276
|
-
);
|
|
277
|
-
assert!(
|
|
278
|
-
!result.contains("system"),
|
|
279
|
-
"Should remove custom stopword 'system'. Result: {}",
|
|
280
|
-
result
|
|
281
|
-
);
|
|
282
|
-
assert!(
|
|
283
|
-
!result.contains("data"),
|
|
284
|
-
"Should remove custom stopword 'data'. Result: {}",
|
|
285
|
-
result
|
|
286
|
-
);
|
|
287
|
-
|
|
288
|
-
assert!(
|
|
289
|
-
result.contains("processes") || result.contains("efficiently"),
|
|
290
|
-
"Should preserve non-stopword content. Result: {}",
|
|
291
|
-
result
|
|
292
|
-
);
|
|
293
|
-
}
|
|
294
|
-
|
|
295
|
-
#[test]
|
|
296
|
-
fn test_stopwords_with_chinese_text() {
|
|
297
|
-
let config = TokenReductionConfig {
|
|
298
|
-
level: ReductionLevel::Moderate,
|
|
299
|
-
use_simd: false,
|
|
300
|
-
..Default::default()
|
|
301
|
-
};
|
|
302
|
-
|
|
303
|
-
let input = "这个人工智能系统可以处理自然语言";
|
|
304
|
-
let result = reduce_tokens(input, &config, Some("zh")).unwrap();
|
|
305
|
-
|
|
306
|
-
assert!(
|
|
307
|
-
!result.is_empty(),
|
|
308
|
-
"Chinese text should be processed. Result: {}",
|
|
309
|
-
result
|
|
310
|
-
);
|
|
311
|
-
|
|
312
|
-
assert!(
|
|
313
|
-
result.contains("人工") || result.contains("智能") || result.contains("语言"),
|
|
314
|
-
"Should preserve important Chinese terms. Result: {}",
|
|
315
|
-
result
|
|
316
|
-
);
|
|
317
|
-
}
|
|
318
|
-
|
|
319
|
-
#[test]
|
|
320
|
-
fn test_stopwords_with_mixed_cjk_english() {
|
|
321
|
-
let config = TokenReductionConfig {
|
|
322
|
-
level: ReductionLevel::Moderate,
|
|
323
|
-
use_simd: false,
|
|
324
|
-
..Default::default()
|
|
325
|
-
};
|
|
326
|
-
|
|
327
|
-
let input = "The machine learning model 机器学习模型 is processing data efficiently";
|
|
328
|
-
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
329
|
-
|
|
330
|
-
assert!(
|
|
331
|
-
!result.contains(" the ") && !result.contains("The "),
|
|
332
|
-
"Should remove English 'the'. Result: {}",
|
|
333
|
-
result
|
|
334
|
-
);
|
|
335
|
-
|
|
336
|
-
assert!(
|
|
337
|
-
result.contains("machine") || result.contains("learning"),
|
|
338
|
-
"Should preserve English content. Result: {}",
|
|
339
|
-
result
|
|
340
|
-
);
|
|
341
|
-
|
|
342
|
-
assert!(
|
|
343
|
-
result.contains("机器") || result.contains("学习") || result.contains("模型"),
|
|
344
|
-
"Should preserve Chinese content. Result: {}",
|
|
345
|
-
result
|
|
346
|
-
);
|
|
347
|
-
}
|
|
348
|
-
|
|
349
|
-
#[test]
|
|
350
|
-
fn test_stopwords_with_japanese_text() {
|
|
351
|
-
let config = TokenReductionConfig {
|
|
352
|
-
level: ReductionLevel::Moderate,
|
|
353
|
-
use_simd: false,
|
|
354
|
-
..Default::default()
|
|
355
|
-
};
|
|
356
|
-
|
|
357
|
-
let input = "人工知能技術の研究開発";
|
|
358
|
-
let result = reduce_tokens(input, &config, Some("ja")).unwrap();
|
|
359
|
-
|
|
360
|
-
assert!(
|
|
361
|
-
!result.is_empty(),
|
|
362
|
-
"Japanese text should be processed. Result: {}",
|
|
363
|
-
result
|
|
364
|
-
);
|
|
365
|
-
}
|
|
366
|
-
|
|
367
|
-
#[test]
|
|
368
|
-
fn test_stopwords_with_korean_text() {
|
|
369
|
-
let config = TokenReductionConfig {
|
|
370
|
-
level: ReductionLevel::Moderate,
|
|
371
|
-
use_simd: false,
|
|
372
|
-
..Default::default()
|
|
373
|
-
};
|
|
374
|
-
|
|
375
|
-
let input = "인공 지능 기술 개발";
|
|
376
|
-
let result = reduce_tokens(input, &config, Some("ko")).unwrap();
|
|
377
|
-
|
|
378
|
-
assert!(
|
|
379
|
-
!result.is_empty(),
|
|
380
|
-
"Korean text should be processed. Result: {}",
|
|
381
|
-
result
|
|
382
|
-
);
|
|
383
|
-
}
|
|
384
|
-
|
|
385
|
-
#[cfg(feature = "keywords-rake")]
|
|
386
|
-
#[test]
|
|
387
|
-
fn test_stopwords_excluded_from_rake_keywords() {
|
|
388
|
-
let text = "The machine learning model is trained on a large dataset. \
|
|
389
|
-
The model uses neural networks and deep learning algorithms. \
|
|
390
|
-
The training process requires significant computational resources.";
|
|
391
|
-
|
|
392
|
-
let config = KeywordConfig::rake().with_language("en").with_max_keywords(10);
|
|
393
|
-
|
|
394
|
-
let keywords = extract_keywords(text, &config).unwrap();
|
|
395
|
-
|
|
396
|
-
assert!(!keywords.is_empty(), "Should extract keywords");
|
|
397
|
-
|
|
398
|
-
let en_stopwords = get_stopwords("en").expect("English stopwords must exist");
|
|
399
|
-
|
|
400
|
-
for keyword in &keywords {
|
|
401
|
-
let words: Vec<&str> = keyword.text.split_whitespace().collect();
|
|
402
|
-
|
|
403
|
-
let all_stopwords = words.iter().all(|word| {
|
|
404
|
-
let clean = word
|
|
405
|
-
.chars()
|
|
406
|
-
.filter(|c| c.is_alphabetic())
|
|
407
|
-
.collect::<String>()
|
|
408
|
-
.to_lowercase();
|
|
409
|
-
en_stopwords.contains(&clean)
|
|
410
|
-
});
|
|
411
|
-
|
|
412
|
-
assert!(
|
|
413
|
-
!all_stopwords,
|
|
414
|
-
"Keyword '{}' should not be composed entirely of stopwords",
|
|
415
|
-
keyword.text
|
|
416
|
-
);
|
|
417
|
-
}
|
|
418
|
-
|
|
419
|
-
let keyword_texts: Vec<String> = keywords.iter().map(|k| k.text.to_lowercase()).collect();
|
|
420
|
-
|
|
421
|
-
assert!(
|
|
422
|
-
keyword_texts.iter().any(|k| k.contains("machine learning")
|
|
423
|
-
|| k.contains("neural networks")
|
|
424
|
-
|| k.contains("deep learning")
|
|
425
|
-
|| k.contains("dataset")
|
|
426
|
-
|| k.contains("model")
|
|
427
|
-
|| k.contains("training")),
|
|
428
|
-
"Should extract meaningful technical keywords. Got: {:?}",
|
|
429
|
-
keyword_texts
|
|
430
|
-
);
|
|
431
|
-
}
|
|
432
|
-
|
|
433
|
-
#[cfg(feature = "keywords-yake")]
|
|
434
|
-
#[test]
|
|
435
|
-
fn test_stopwords_excluded_from_yake_keywords() {
|
|
436
|
-
let text = "Natural language processing enables computers to understand human language. \
|
|
437
|
-
Deep learning models achieve state-of-the-art performance in text analysis. \
|
|
438
|
-
These systems can extract meaningful information from large text corpora.";
|
|
439
|
-
|
|
440
|
-
let config = KeywordConfig::yake().with_language("en").with_max_keywords(10);
|
|
441
|
-
|
|
442
|
-
let keywords = extract_keywords(text, &config).unwrap();
|
|
443
|
-
|
|
444
|
-
assert!(!keywords.is_empty(), "Should extract keywords");
|
|
445
|
-
|
|
446
|
-
let en_stopwords = get_stopwords("en").expect("English stopwords must exist");
|
|
447
|
-
|
|
448
|
-
for keyword in &keywords {
|
|
449
|
-
let has_content_word = keyword.text.split_whitespace().any(|word| {
|
|
450
|
-
let clean = word
|
|
451
|
-
.chars()
|
|
452
|
-
.filter(|c| c.is_alphabetic())
|
|
453
|
-
.collect::<String>()
|
|
454
|
-
.to_lowercase();
|
|
455
|
-
!clean.is_empty() && !en_stopwords.contains(&clean)
|
|
456
|
-
});
|
|
457
|
-
|
|
458
|
-
assert!(
|
|
459
|
-
has_content_word,
|
|
460
|
-
"Keyword '{}' should contain at least one content word (non-stopword)",
|
|
461
|
-
keyword.text
|
|
462
|
-
);
|
|
463
|
-
}
|
|
464
|
-
}
|
|
465
|
-
|
|
466
|
-
#[cfg(feature = "keywords-rake")]
|
|
467
|
-
#[test]
|
|
468
|
-
fn test_keywords_respect_language_specific_stopwords() {
|
|
469
|
-
let spanish_text = "El aprendizaje automático es una rama de la inteligencia artificial. \
|
|
470
|
-
Los modelos de aprendizaje profundo logran un rendimiento excepcional. \
|
|
471
|
-
Estos sistemas pueden procesar grandes cantidades de datos.";
|
|
472
|
-
|
|
473
|
-
let config = KeywordConfig::rake().with_language("es").with_max_keywords(8);
|
|
474
|
-
|
|
475
|
-
let keywords = extract_keywords(spanish_text, &config).unwrap();
|
|
476
|
-
|
|
477
|
-
assert!(!keywords.is_empty(), "Should extract Spanish keywords");
|
|
478
|
-
|
|
479
|
-
let es_stopwords = get_stopwords("es").expect("Spanish stopwords must exist");
|
|
480
|
-
|
|
481
|
-
for keyword in &keywords {
|
|
482
|
-
let words: Vec<&str> = keyword.text.split_whitespace().collect();
|
|
483
|
-
let all_stopwords = words.iter().all(|word| {
|
|
484
|
-
let clean = word
|
|
485
|
-
.chars()
|
|
486
|
-
.filter(|c| c.is_alphabetic())
|
|
487
|
-
.collect::<String>()
|
|
488
|
-
.to_lowercase();
|
|
489
|
-
es_stopwords.contains(&clean)
|
|
490
|
-
});
|
|
491
|
-
|
|
492
|
-
assert!(
|
|
493
|
-
!all_stopwords,
|
|
494
|
-
"Spanish keyword '{}' should not be all stopwords",
|
|
495
|
-
keyword.text
|
|
496
|
-
);
|
|
497
|
-
}
|
|
498
|
-
|
|
499
|
-
let keyword_texts: Vec<String> = keywords.iter().map(|k| k.text.to_lowercase()).collect();
|
|
500
|
-
assert!(
|
|
501
|
-
keyword_texts.iter().any(|k| k.contains("aprendizaje")
|
|
502
|
-
|| k.contains("inteligencia")
|
|
503
|
-
|| k.contains("modelos")
|
|
504
|
-
|| k.contains("datos")),
|
|
505
|
-
"Should extract meaningful Spanish keywords. Got: {:?}",
|
|
506
|
-
keyword_texts
|
|
507
|
-
);
|
|
508
|
-
}
|
|
509
|
-
|
|
510
|
-
#[test]
|
|
511
|
-
fn test_all_stopwords_text_reduction() {
|
|
512
|
-
let config = TokenReductionConfig {
|
|
513
|
-
level: ReductionLevel::Moderate,
|
|
514
|
-
use_simd: false,
|
|
515
|
-
..Default::default()
|
|
516
|
-
};
|
|
517
|
-
|
|
518
|
-
let input = "the is a an and or but of to in for on at by";
|
|
519
|
-
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
520
|
-
|
|
521
|
-
assert!(
|
|
522
|
-
result.len() < input.len(),
|
|
523
|
-
"Text of all stopwords should be significantly reduced"
|
|
524
|
-
);
|
|
525
|
-
}
|
|
526
|
-
|
|
527
|
-
#[test]
|
|
528
|
-
fn test_no_stopwords_text_reduction() {
|
|
529
|
-
let config = TokenReductionConfig {
|
|
530
|
-
level: ReductionLevel::Moderate,
|
|
531
|
-
use_simd: false,
|
|
532
|
-
..Default::default()
|
|
533
|
-
};
|
|
534
|
-
|
|
535
|
-
let input = "PyTorch TensorFlow CUDA GPU optimization benchmark performance metrics";
|
|
536
|
-
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
537
|
-
|
|
538
|
-
let input_words: Vec<&str> = input.split_whitespace().collect();
|
|
539
|
-
let result_lower = result.to_lowercase();
|
|
540
|
-
|
|
541
|
-
for word in input_words {
|
|
542
|
-
let word_lower = word.to_lowercase();
|
|
543
|
-
assert!(
|
|
544
|
-
result_lower.contains(&word_lower),
|
|
545
|
-
"Technical term '{}' should be preserved. Result: {}",
|
|
546
|
-
word,
|
|
547
|
-
result
|
|
548
|
-
);
|
|
549
|
-
}
|
|
550
|
-
}
|
|
551
|
-
|
|
552
|
-
#[test]
|
|
553
|
-
fn test_mixed_case_stopwords_removal() {
|
|
554
|
-
let config = TokenReductionConfig {
|
|
555
|
-
level: ReductionLevel::Moderate,
|
|
556
|
-
use_simd: false,
|
|
557
|
-
..Default::default()
|
|
558
|
-
};
|
|
559
|
-
|
|
560
|
-
let input = "The SYSTEM Is Processing The DATA With The ALGORITHM";
|
|
561
|
-
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
562
|
-
|
|
563
|
-
let result_words: Vec<&str> = result.split_whitespace().collect();
|
|
564
|
-
assert!(
|
|
565
|
-
!result_words.contains(&"the"),
|
|
566
|
-
"Should remove lowercase 'the'. Result: {}",
|
|
567
|
-
result
|
|
568
|
-
);
|
|
569
|
-
assert!(
|
|
570
|
-
!result_words.contains(&"is"),
|
|
571
|
-
"Should remove lowercase 'is'. Result: {}",
|
|
572
|
-
result
|
|
573
|
-
);
|
|
574
|
-
|
|
575
|
-
assert!(
|
|
576
|
-
result.contains("SYSTEM"),
|
|
577
|
-
"Should preserve 'SYSTEM'. Result: {}",
|
|
578
|
-
result
|
|
579
|
-
);
|
|
580
|
-
assert!(result.contains("DATA"), "Should preserve 'DATA'. Result: {}", result);
|
|
581
|
-
assert!(
|
|
582
|
-
result.contains("ALGORITHM"),
|
|
583
|
-
"Should preserve 'ALGORITHM'. Result: {}",
|
|
584
|
-
result
|
|
585
|
-
);
|
|
586
|
-
}
|
|
587
|
-
|
|
588
|
-
#[test]
|
|
589
|
-
fn test_reduce_tokens_function_with_stopwords() {
|
|
590
|
-
let config = TokenReductionConfig {
|
|
591
|
-
level: ReductionLevel::Moderate,
|
|
592
|
-
use_simd: false,
|
|
593
|
-
..Default::default()
|
|
594
|
-
};
|
|
595
|
-
|
|
596
|
-
let text = "The artificial intelligence system processes the natural language efficiently";
|
|
597
|
-
let result = reduce_tokens(text, &config, Some("en")).unwrap();
|
|
598
|
-
|
|
599
|
-
let original_stopwords = count_stopwords(text, "en");
|
|
600
|
-
let result_stopwords = count_stopwords(&result, "en");
|
|
601
|
-
|
|
602
|
-
assert!(
|
|
603
|
-
result_stopwords < original_stopwords,
|
|
604
|
-
"reduce_tokens should remove stopwords. Original: {}, Result: {}",
|
|
605
|
-
original_stopwords,
|
|
606
|
-
result_stopwords
|
|
607
|
-
);
|
|
608
|
-
|
|
609
|
-
assert!(
|
|
610
|
-
result.contains("artificial") || result.contains("intelligence"),
|
|
611
|
-
"Should preserve content words. Result: {}",
|
|
612
|
-
result
|
|
613
|
-
);
|
|
614
|
-
}
|
|
615
|
-
|
|
616
|
-
#[test]
|
|
617
|
-
fn test_stopwords_with_punctuation() {
|
|
618
|
-
let config = TokenReductionConfig {
|
|
619
|
-
level: ReductionLevel::Moderate,
|
|
620
|
-
use_simd: false,
|
|
621
|
-
..Default::default()
|
|
622
|
-
};
|
|
623
|
-
|
|
624
|
-
let input = "The system, which is processing the data, uses the algorithm.";
|
|
625
|
-
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
626
|
-
|
|
627
|
-
assert!(
|
|
628
|
-
!result.contains(" the ") || result.split_whitespace().filter(|w| w.contains("the")).count() < 3,
|
|
629
|
-
"Should remove most instances of 'the'. Result: {}",
|
|
630
|
-
result
|
|
631
|
-
);
|
|
632
|
-
|
|
633
|
-
assert!(
|
|
634
|
-
result.contains("system") || result.contains("processing") || result.contains("algorithm"),
|
|
635
|
-
"Should preserve content words. Result: {}",
|
|
636
|
-
result
|
|
637
|
-
);
|
|
638
|
-
}
|
|
639
|
-
|
|
640
|
-
#[test]
|
|
641
|
-
fn test_stopwords_with_numbers() {
|
|
642
|
-
let config = TokenReductionConfig {
|
|
643
|
-
level: ReductionLevel::Moderate,
|
|
644
|
-
use_simd: false,
|
|
645
|
-
..Default::default()
|
|
646
|
-
};
|
|
647
|
-
|
|
648
|
-
let input = "The model has 100 layers and processes the data in 10 seconds";
|
|
649
|
-
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
650
|
-
|
|
651
|
-
assert!(
|
|
652
|
-
result.contains("100"),
|
|
653
|
-
"Should preserve number '100'. Result: {}",
|
|
654
|
-
result
|
|
655
|
-
);
|
|
656
|
-
assert!(result.contains("10"), "Should preserve number '10'. Result: {}", result);
|
|
657
|
-
|
|
658
|
-
assert!(
|
|
659
|
-
result.contains("model") || result.contains("layers") || result.contains("processes"),
|
|
660
|
-
"Should preserve content words. Result: {}",
|
|
661
|
-
result
|
|
662
|
-
);
|
|
663
|
-
}
|
|
664
|
-
|
|
665
|
-
#[test]
|
|
666
|
-
fn test_stopwords_removal_consistency_across_calls() {
|
|
667
|
-
let config = TokenReductionConfig {
|
|
668
|
-
level: ReductionLevel::Moderate,
|
|
669
|
-
use_simd: false,
|
|
670
|
-
..Default::default()
|
|
671
|
-
};
|
|
672
|
-
|
|
673
|
-
let input = "The machine learning model is trained on the dataset";
|
|
674
|
-
|
|
675
|
-
let result1 = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
676
|
-
let result2 = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
677
|
-
let result3 = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
678
|
-
|
|
679
|
-
assert_eq!(result1, result2, "Results should be consistent across calls");
|
|
680
|
-
assert_eq!(result2, result3, "Results should be consistent across calls");
|
|
681
|
-
}
|
|
682
|
-
|
|
683
|
-
#[test]
|
|
684
|
-
fn test_stopwords_with_long_text() {
|
|
685
|
-
let config = TokenReductionConfig {
|
|
686
|
-
level: ReductionLevel::Moderate,
|
|
687
|
-
use_simd: false,
|
|
688
|
-
enable_parallel: false,
|
|
689
|
-
..Default::default()
|
|
690
|
-
};
|
|
691
|
-
|
|
692
|
-
let paragraph = "The machine learning model is trained on the large dataset. \
|
|
693
|
-
The training process uses the neural network architecture. \
|
|
694
|
-
The system processes the data efficiently and achieves the best performance. ";
|
|
695
|
-
let input = paragraph.repeat(10);
|
|
696
|
-
|
|
697
|
-
let result = reduce_tokens(&input, &config, Some("en")).unwrap();
|
|
698
|
-
|
|
699
|
-
assert!(
|
|
700
|
-
result.len() < input.len(),
|
|
701
|
-
"Long stopword-heavy text should be reduced. Input: {} chars, Result: {} chars",
|
|
702
|
-
input.len(),
|
|
703
|
-
result.len()
|
|
704
|
-
);
|
|
705
|
-
|
|
706
|
-
let original_stopwords = count_stopwords(&input, "en");
|
|
707
|
-
let result_stopwords = count_stopwords(&result, "en");
|
|
708
|
-
|
|
709
|
-
assert!(
|
|
710
|
-
result_stopwords < original_stopwords,
|
|
711
|
-
"Should remove stopwords from long text. Original: {}, Result: {}",
|
|
712
|
-
original_stopwords,
|
|
713
|
-
result_stopwords
|
|
714
|
-
);
|
|
715
|
-
}
|
|
716
|
-
|
|
717
|
-
#[test]
|
|
718
|
-
fn test_get_stopwords_with_fallback_in_reduction() {
|
|
719
|
-
let primary_stopwords = get_stopwords_with_fallback("xyz", "en");
|
|
720
|
-
assert!(primary_stopwords.is_some(), "Should fallback to English");
|
|
721
|
-
|
|
722
|
-
let en_stopwords = get_stopwords("en").unwrap();
|
|
723
|
-
assert_eq!(
|
|
724
|
-
primary_stopwords.unwrap().len(),
|
|
725
|
-
en_stopwords.len(),
|
|
726
|
-
"Fallback should return English stopwords"
|
|
727
|
-
);
|
|
728
|
-
|
|
729
|
-
let config = TokenReductionConfig {
|
|
730
|
-
level: ReductionLevel::Moderate,
|
|
731
|
-
use_simd: false,
|
|
732
|
-
..Default::default()
|
|
733
|
-
};
|
|
734
|
-
|
|
735
|
-
let input = "The system is processing the data";
|
|
736
|
-
let result = reduce_tokens(input, &config, Some("xyz")).unwrap();
|
|
737
|
-
|
|
738
|
-
assert!(
|
|
739
|
-
!result.contains(" the ") && !result.contains(" is "),
|
|
740
|
-
"Should use fallback stopwords. Result: {}",
|
|
741
|
-
result
|
|
742
|
-
);
|
|
743
|
-
}
|
|
744
|
-
|
|
745
|
-
#[test]
|
|
746
|
-
fn test_stopwords_registry_completeness() {
|
|
747
|
-
assert_eq!(STOPWORDS.len(), 64, "Should have exactly 64 language stopword sets");
|
|
748
|
-
|
|
749
|
-
let en_stopwords = get_stopwords("en").expect("English stopwords must exist");
|
|
750
|
-
assert!(en_stopwords.len() >= 70, "English should have at least 70 stopwords");
|
|
751
|
-
|
|
752
|
-
assert!(en_stopwords.contains("the"), "Should contain 'the'");
|
|
753
|
-
assert!(en_stopwords.contains("is"), "Should contain 'is'");
|
|
754
|
-
assert!(en_stopwords.contains("and"), "Should contain 'and'");
|
|
755
|
-
assert!(en_stopwords.contains("a"), "Should contain 'a'");
|
|
756
|
-
assert!(en_stopwords.contains("an"), "Should contain 'an'");
|
|
757
|
-
assert!(en_stopwords.contains("of"), "Should contain 'of'");
|
|
758
|
-
assert!(en_stopwords.contains("to"), "Should contain 'to'");
|
|
759
|
-
assert!(en_stopwords.contains("in"), "Should contain 'in'");
|
|
760
|
-
assert!(en_stopwords.contains("for"), "Should contain 'for'");
|
|
761
|
-
}
|
|
762
|
-
|
|
763
|
-
#[test]
|
|
764
|
-
fn test_token_reduction_handles_nan_threshold() {
|
|
765
|
-
let mut config = TokenReductionConfig {
|
|
766
|
-
level: ReductionLevel::Maximum,
|
|
767
|
-
semantic_threshold: f32::NAN,
|
|
768
|
-
enable_semantic_clustering: true,
|
|
769
|
-
target_reduction: Some(0.5),
|
|
770
|
-
..Default::default()
|
|
771
|
-
};
|
|
772
|
-
|
|
773
|
-
config.language_hint = Some("en".to_string());
|
|
774
|
-
let input = "Critical system update highlights performance improvements across distributed modules.";
|
|
775
|
-
|
|
776
|
-
let result = reduce_tokens(input, &config, Some("en")).unwrap_or_else(|_| String::new());
|
|
777
|
-
assert!(
|
|
778
|
-
result.chars().all(|c| !c.is_control()),
|
|
779
|
-
"Result should not contain unexpected control characters"
|
|
780
|
-
);
|
|
781
|
-
}
|
|
782
|
-
|
|
783
|
-
#[test]
|
|
784
|
-
fn test_token_reduction_handles_multibyte_utf8() {
|
|
785
|
-
let config = TokenReductionConfig {
|
|
786
|
-
level: ReductionLevel::Moderate,
|
|
787
|
-
language_hint: Some("ja".to_string()),
|
|
788
|
-
..Default::default()
|
|
789
|
-
};
|
|
790
|
-
|
|
791
|
-
let input = "品質管理は重要です。🚀 高速抽出と漢字処理が求められています。";
|
|
792
|
-
let result = reduce_tokens(input, &config, Some("ja")).unwrap();
|
|
793
|
-
|
|
794
|
-
assert!(
|
|
795
|
-
result.contains("品質管理") || result.contains("漢字処理"),
|
|
796
|
-
"Important multibyte terms should survive reduction: {}",
|
|
797
|
-
result
|
|
798
|
-
);
|
|
799
|
-
}
|
|
800
|
-
|
|
801
|
-
#[test]
|
|
802
|
-
fn test_token_reduction_concurrent_access() {
|
|
803
|
-
use std::sync::Arc;
|
|
804
|
-
|
|
805
|
-
let config = Arc::new(TokenReductionConfig {
|
|
806
|
-
level: ReductionLevel::Aggressive,
|
|
807
|
-
enable_parallel: true,
|
|
808
|
-
..Default::default()
|
|
809
|
-
});
|
|
810
|
-
|
|
811
|
-
let input = "Concurrent reduction ensures thread safety without deadlocks or panics.";
|
|
812
|
-
|
|
813
|
-
std::thread::scope(|scope| {
|
|
814
|
-
for _ in 0..8 {
|
|
815
|
-
let cfg = Arc::clone(&config);
|
|
816
|
-
scope.spawn(move || {
|
|
817
|
-
let reduced = reduce_tokens(input, &cfg, Some("en")).unwrap();
|
|
818
|
-
assert!(!reduced.is_empty());
|
|
819
|
-
});
|
|
820
|
-
}
|
|
821
|
-
});
|
|
822
|
-
}
|
|
823
|
-
#[test]
|
|
824
|
-
fn demo_stopwords_effectiveness() {
|
|
825
|
-
use kreuzberg::stopwords::get_stopwords;
|
|
826
|
-
use kreuzberg::text::token_reduction::{ReductionLevel, TokenReductionConfig, reduce_tokens};
|
|
827
|
-
|
|
828
|
-
let en_text = "The machine learning model is trained on the large dataset and achieves good performance";
|
|
829
|
-
let en_config = TokenReductionConfig {
|
|
830
|
-
level: ReductionLevel::Moderate,
|
|
831
|
-
use_simd: false,
|
|
832
|
-
..Default::default()
|
|
833
|
-
};
|
|
834
|
-
let en_result = reduce_tokens(en_text, &en_config, Some("en")).unwrap();
|
|
835
|
-
|
|
836
|
-
println!("\n=== English Example ===");
|
|
837
|
-
println!("BEFORE: {} chars", en_text.len());
|
|
838
|
-
println!("{}", en_text);
|
|
839
|
-
println!(
|
|
840
|
-
"\nAFTER: {} chars ({}% reduction)",
|
|
841
|
-
en_result.len(),
|
|
842
|
-
100 - (en_result.len() * 100 / en_text.len())
|
|
843
|
-
);
|
|
844
|
-
println!("{}", en_result);
|
|
845
|
-
|
|
846
|
-
let zh_text = "这个人工智能系统可以处理自然语言";
|
|
847
|
-
let zh_config = TokenReductionConfig {
|
|
848
|
-
level: ReductionLevel::Moderate,
|
|
849
|
-
use_simd: false,
|
|
850
|
-
..Default::default()
|
|
851
|
-
};
|
|
852
|
-
let zh_result = reduce_tokens(zh_text, &zh_config, Some("zh")).unwrap();
|
|
853
|
-
|
|
854
|
-
println!("\n=== Chinese Example ===");
|
|
855
|
-
println!("BEFORE: {}", zh_text);
|
|
856
|
-
println!("AFTER: {}", zh_result);
|
|
857
|
-
|
|
858
|
-
let text = "The artificial intelligence system processes the natural language efficiently";
|
|
859
|
-
|
|
860
|
-
println!("\n=== Reduction Level Comparison ===");
|
|
861
|
-
println!("ORIGINAL: {}", text);
|
|
862
|
-
|
|
863
|
-
for level in [
|
|
864
|
-
ReductionLevel::Light,
|
|
865
|
-
ReductionLevel::Moderate,
|
|
866
|
-
ReductionLevel::Aggressive,
|
|
867
|
-
] {
|
|
868
|
-
let config = TokenReductionConfig {
|
|
869
|
-
level,
|
|
870
|
-
use_simd: false,
|
|
871
|
-
..Default::default()
|
|
872
|
-
};
|
|
873
|
-
let result = reduce_tokens(text, &config, Some("en")).unwrap();
|
|
874
|
-
println!(
|
|
875
|
-
"{:?}: {} chars -> {} chars ({}% reduction)",
|
|
876
|
-
level,
|
|
877
|
-
text.len(),
|
|
878
|
-
result.len(),
|
|
879
|
-
100 - (result.len() * 100 / text.len())
|
|
880
|
-
);
|
|
881
|
-
println!(" {}", result);
|
|
882
|
-
}
|
|
883
|
-
|
|
884
|
-
let stopwords = get_stopwords("en").unwrap();
|
|
885
|
-
println!("\n=== Stopwords Stats ===");
|
|
886
|
-
println!("English stopwords: {}", stopwords.len());
|
|
887
|
-
println!("Sample stopwords: {:?}", stopwords.iter().take(10).collect::<Vec<_>>());
|
|
888
|
-
}
|
|
1
|
+
//! Integration tests for stopwords with token reduction and keywords extraction.
|
|
2
|
+
#![cfg(all(feature = "stopwords", feature = "quality"))]
|
|
3
|
+
//!
|
|
4
|
+
//! These tests verify that stopwords are properly integrated across different features:
|
|
5
|
+
//! - Token reduction at all ReductionLevels
|
|
6
|
+
//! - Keywords extraction (YAKE and RAKE algorithms)
|
|
7
|
+
//! - CJK text processing
|
|
8
|
+
//! - Multi-language documents
|
|
9
|
+
//! - Language fallback mechanisms
|
|
10
|
+
//! - Custom stopwords
|
|
11
|
+
|
|
12
|
+
use kreuzberg::stopwords::{STOPWORDS, get_stopwords, get_stopwords_with_fallback};
|
|
13
|
+
use kreuzberg::text::token_reduction::{ReductionLevel, TokenReductionConfig, reduce_tokens};
|
|
14
|
+
|
|
15
|
+
#[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
|
|
16
|
+
use kreuzberg::keywords::{KeywordConfig, extract_keywords};
|
|
17
|
+
|
|
18
|
+
use std::collections::HashMap;
|
|
19
|
+
|
|
20
|
+
fn count_stopwords(text: &str, lang: &str) -> usize {
|
|
21
|
+
let stopwords = get_stopwords(lang).expect("Stopwords must exist for language");
|
|
22
|
+
let words: Vec<&str> = text.split_whitespace().collect();
|
|
23
|
+
|
|
24
|
+
words
|
|
25
|
+
.iter()
|
|
26
|
+
.filter(|word| {
|
|
27
|
+
let clean = word
|
|
28
|
+
.chars()
|
|
29
|
+
.filter(|c| c.is_alphabetic())
|
|
30
|
+
.collect::<String>()
|
|
31
|
+
.to_lowercase();
|
|
32
|
+
|
|
33
|
+
!clean.is_empty() && stopwords.contains(&clean)
|
|
34
|
+
})
|
|
35
|
+
.count()
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
fn extract_content_words(text: &str, lang: &str) -> Vec<String> {
|
|
39
|
+
let stopwords = get_stopwords(lang).expect("Stopwords must exist for language");
|
|
40
|
+
let words: Vec<&str> = text.split_whitespace().collect();
|
|
41
|
+
|
|
42
|
+
words
|
|
43
|
+
.iter()
|
|
44
|
+
.filter_map(|word| {
|
|
45
|
+
let clean = word
|
|
46
|
+
.chars()
|
|
47
|
+
.filter(|c| c.is_alphabetic())
|
|
48
|
+
.collect::<String>()
|
|
49
|
+
.to_lowercase();
|
|
50
|
+
|
|
51
|
+
if !clean.is_empty() && !stopwords.contains(&clean) && clean.len() > 1 {
|
|
52
|
+
Some(clean)
|
|
53
|
+
} else {
|
|
54
|
+
None
|
|
55
|
+
}
|
|
56
|
+
})
|
|
57
|
+
.collect()
|
|
58
|
+
}
|
|
59
|
+
|
|
60
|
+
#[test]
|
|
61
|
+
fn test_stopwords_removed_during_moderate_token_reduction() {
|
|
62
|
+
let config = TokenReductionConfig {
|
|
63
|
+
level: ReductionLevel::Moderate,
|
|
64
|
+
language_hint: Some("en".to_string()),
|
|
65
|
+
use_simd: false,
|
|
66
|
+
..Default::default()
|
|
67
|
+
};
|
|
68
|
+
|
|
69
|
+
let input = "The quick brown fox is jumping over the lazy dog and running through the forest";
|
|
70
|
+
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
71
|
+
|
|
72
|
+
assert!(!result.contains(" the "), "Should remove 'the'. Result: {}", result);
|
|
73
|
+
assert!(!result.contains(" is "), "Should remove 'is'. Result: {}", result);
|
|
74
|
+
assert!(!result.contains(" and "), "Should remove 'and'. Result: {}", result);
|
|
75
|
+
|
|
76
|
+
assert!(result.contains("quick"), "Should preserve 'quick'. Result: {}", result);
|
|
77
|
+
assert!(result.contains("brown"), "Should preserve 'brown'. Result: {}", result);
|
|
78
|
+
assert!(result.contains("fox"), "Should preserve 'fox'. Result: {}", result);
|
|
79
|
+
assert!(
|
|
80
|
+
result.contains("jumping"),
|
|
81
|
+
"Should preserve 'jumping'. Result: {}",
|
|
82
|
+
result
|
|
83
|
+
);
|
|
84
|
+
assert!(result.contains("lazy"), "Should preserve 'lazy'. Result: {}", result);
|
|
85
|
+
|
|
86
|
+
let original_stopwords = count_stopwords(input, "en");
|
|
87
|
+
let result_stopwords = count_stopwords(&result, "en");
|
|
88
|
+
|
|
89
|
+
assert!(
|
|
90
|
+
result_stopwords < original_stopwords,
|
|
91
|
+
"Result should have fewer stopwords than original. Original: {}, Result: {}",
|
|
92
|
+
original_stopwords,
|
|
93
|
+
result_stopwords
|
|
94
|
+
);
|
|
95
|
+
}
|
|
96
|
+
|
|
97
|
+
#[test]
|
|
98
|
+
fn test_stopwords_across_reduction_levels() {
|
|
99
|
+
let text = "The machine learning model is trained on the large dataset and achieves good performance";
|
|
100
|
+
|
|
101
|
+
let light_config = TokenReductionConfig {
|
|
102
|
+
level: ReductionLevel::Light,
|
|
103
|
+
use_simd: false,
|
|
104
|
+
..Default::default()
|
|
105
|
+
};
|
|
106
|
+
let light_result = reduce_tokens(text, &light_config, Some("en")).unwrap();
|
|
107
|
+
|
|
108
|
+
let light_stopwords = count_stopwords(&light_result, "en");
|
|
109
|
+
assert!(light_stopwords > 0, "Light reduction should preserve some stopwords");
|
|
110
|
+
|
|
111
|
+
let moderate_config = TokenReductionConfig {
|
|
112
|
+
level: ReductionLevel::Moderate,
|
|
113
|
+
use_simd: false,
|
|
114
|
+
..Default::default()
|
|
115
|
+
};
|
|
116
|
+
let moderate_result = reduce_tokens(text, &moderate_config, Some("en")).unwrap();
|
|
117
|
+
|
|
118
|
+
let moderate_stopwords = count_stopwords(&moderate_result, "en");
|
|
119
|
+
assert!(
|
|
120
|
+
moderate_stopwords < light_stopwords,
|
|
121
|
+
"Moderate reduction should remove more stopwords than light. Light: {}, Moderate: {}",
|
|
122
|
+
light_stopwords,
|
|
123
|
+
moderate_stopwords
|
|
124
|
+
);
|
|
125
|
+
|
|
126
|
+
let aggressive_config = TokenReductionConfig {
|
|
127
|
+
level: ReductionLevel::Aggressive,
|
|
128
|
+
use_simd: false,
|
|
129
|
+
..Default::default()
|
|
130
|
+
};
|
|
131
|
+
let aggressive_result = reduce_tokens(text, &aggressive_config, Some("en")).unwrap();
|
|
132
|
+
|
|
133
|
+
assert!(
|
|
134
|
+
aggressive_result.len() <= moderate_result.len(),
|
|
135
|
+
"Aggressive reduction should be more aggressive than moderate"
|
|
136
|
+
);
|
|
137
|
+
}
|
|
138
|
+
|
|
139
|
+
#[test]
|
|
140
|
+
fn test_stopwords_preserve_semantic_meaning() {
|
|
141
|
+
let config = TokenReductionConfig {
|
|
142
|
+
level: ReductionLevel::Moderate,
|
|
143
|
+
use_simd: false,
|
|
144
|
+
..Default::default()
|
|
145
|
+
};
|
|
146
|
+
|
|
147
|
+
let input =
|
|
148
|
+
"The artificial intelligence system is processing the natural language text for extracting meaningful insights";
|
|
149
|
+
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
150
|
+
|
|
151
|
+
let content_words = extract_content_words(&result, "en");
|
|
152
|
+
|
|
153
|
+
assert!(
|
|
154
|
+
content_words.contains(&"artificial".to_string()) || result.contains("artificial"),
|
|
155
|
+
"Should preserve 'artificial'. Result: {}",
|
|
156
|
+
result
|
|
157
|
+
);
|
|
158
|
+
assert!(
|
|
159
|
+
content_words.contains(&"intelligence".to_string()) || result.contains("intelligence"),
|
|
160
|
+
"Should preserve 'intelligence'. Result: {}",
|
|
161
|
+
result
|
|
162
|
+
);
|
|
163
|
+
assert!(
|
|
164
|
+
content_words.contains(&"processing".to_string()) || result.contains("processing"),
|
|
165
|
+
"Should preserve 'processing'. Result: {}",
|
|
166
|
+
result
|
|
167
|
+
);
|
|
168
|
+
assert!(
|
|
169
|
+
content_words.contains(&"natural".to_string()) || result.contains("natural"),
|
|
170
|
+
"Should preserve 'natural'. Result: {}",
|
|
171
|
+
result
|
|
172
|
+
);
|
|
173
|
+
assert!(
|
|
174
|
+
content_words.contains(&"language".to_string()) || result.contains("language"),
|
|
175
|
+
"Should preserve 'language'. Result: {}",
|
|
176
|
+
result
|
|
177
|
+
);
|
|
178
|
+
}
|
|
179
|
+
|
|
180
|
+
#[test]
|
|
181
|
+
fn test_stopwords_with_multiple_languages() {
|
|
182
|
+
let en_config = TokenReductionConfig {
|
|
183
|
+
level: ReductionLevel::Moderate,
|
|
184
|
+
use_simd: false,
|
|
185
|
+
..Default::default()
|
|
186
|
+
};
|
|
187
|
+
let en_input = "The computer science program is very comprehensive and includes many courses";
|
|
188
|
+
let en_result = reduce_tokens(en_input, &en_config, Some("en")).unwrap();
|
|
189
|
+
|
|
190
|
+
let en_original_stopwords = count_stopwords(en_input, "en");
|
|
191
|
+
let en_result_stopwords = count_stopwords(&en_result, "en");
|
|
192
|
+
assert!(
|
|
193
|
+
en_result_stopwords < en_original_stopwords,
|
|
194
|
+
"English stopwords should be removed"
|
|
195
|
+
);
|
|
196
|
+
|
|
197
|
+
let es_config = TokenReductionConfig {
|
|
198
|
+
level: ReductionLevel::Moderate,
|
|
199
|
+
use_simd: false,
|
|
200
|
+
..Default::default()
|
|
201
|
+
};
|
|
202
|
+
let es_input = "El programa de ciencias de la computación es muy completo y tiene muchos cursos";
|
|
203
|
+
let es_result = reduce_tokens(es_input, &es_config, Some("es")).unwrap();
|
|
204
|
+
|
|
205
|
+
let es_original_stopwords = count_stopwords(es_input, "es");
|
|
206
|
+
let es_result_stopwords = count_stopwords(&es_result, "es");
|
|
207
|
+
assert!(
|
|
208
|
+
es_result_stopwords < es_original_stopwords,
|
|
209
|
+
"Spanish stopwords should be removed"
|
|
210
|
+
);
|
|
211
|
+
|
|
212
|
+
assert!(
|
|
213
|
+
es_result.contains("programa") || es_result.contains("ciencias") || es_result.contains("computación"),
|
|
214
|
+
"Should preserve Spanish content words. Result: {}",
|
|
215
|
+
es_result
|
|
216
|
+
);
|
|
217
|
+
|
|
218
|
+
let de_config = TokenReductionConfig {
|
|
219
|
+
level: ReductionLevel::Moderate,
|
|
220
|
+
use_simd: false,
|
|
221
|
+
..Default::default()
|
|
222
|
+
};
|
|
223
|
+
let de_input = "Die künstliche Intelligenz ist ein wichtiges Forschungsgebiet der Informatik";
|
|
224
|
+
let de_result = reduce_tokens(de_input, &de_config, Some("de")).unwrap();
|
|
225
|
+
|
|
226
|
+
let de_original_stopwords = count_stopwords(de_input, "de");
|
|
227
|
+
let de_result_stopwords = count_stopwords(&de_result, "de");
|
|
228
|
+
assert!(
|
|
229
|
+
de_result_stopwords < de_original_stopwords,
|
|
230
|
+
"German stopwords should be removed"
|
|
231
|
+
);
|
|
232
|
+
}
|
|
233
|
+
|
|
234
|
+
#[test]
|
|
235
|
+
fn test_language_fallback_to_english_stopwords() {
|
|
236
|
+
let config = TokenReductionConfig {
|
|
237
|
+
level: ReductionLevel::Moderate,
|
|
238
|
+
use_simd: false,
|
|
239
|
+
..Default::default()
|
|
240
|
+
};
|
|
241
|
+
|
|
242
|
+
let input = "The system is processing the data with the algorithm";
|
|
243
|
+
let result = reduce_tokens(input, &config, Some("xyz")).unwrap();
|
|
244
|
+
|
|
245
|
+
let original_stopwords = count_stopwords(input, "en");
|
|
246
|
+
let result_stopwords = count_stopwords(&result, "en");
|
|
247
|
+
|
|
248
|
+
assert!(
|
|
249
|
+
result_stopwords < original_stopwords,
|
|
250
|
+
"Should fallback to English stopwords for unsupported language"
|
|
251
|
+
);
|
|
252
|
+
}
|
|
253
|
+
|
|
254
|
+
#[test]
|
|
255
|
+
fn test_custom_stopwords_integration() {
|
|
256
|
+
let mut custom_stopwords = HashMap::new();
|
|
257
|
+
custom_stopwords.insert(
|
|
258
|
+
"en".to_string(),
|
|
259
|
+
vec!["algorithm".to_string(), "system".to_string(), "data".to_string()],
|
|
260
|
+
);
|
|
261
|
+
|
|
262
|
+
let config = TokenReductionConfig {
|
|
263
|
+
level: ReductionLevel::Moderate,
|
|
264
|
+
use_simd: false,
|
|
265
|
+
custom_stopwords: Some(custom_stopwords),
|
|
266
|
+
..Default::default()
|
|
267
|
+
};
|
|
268
|
+
|
|
269
|
+
let input = "The algorithm processes the data in the system efficiently";
|
|
270
|
+
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
271
|
+
|
|
272
|
+
assert!(
|
|
273
|
+
!result.contains("algorithm"),
|
|
274
|
+
"Should remove custom stopword 'algorithm'. Result: {}",
|
|
275
|
+
result
|
|
276
|
+
);
|
|
277
|
+
assert!(
|
|
278
|
+
!result.contains("system"),
|
|
279
|
+
"Should remove custom stopword 'system'. Result: {}",
|
|
280
|
+
result
|
|
281
|
+
);
|
|
282
|
+
assert!(
|
|
283
|
+
!result.contains("data"),
|
|
284
|
+
"Should remove custom stopword 'data'. Result: {}",
|
|
285
|
+
result
|
|
286
|
+
);
|
|
287
|
+
|
|
288
|
+
assert!(
|
|
289
|
+
result.contains("processes") || result.contains("efficiently"),
|
|
290
|
+
"Should preserve non-stopword content. Result: {}",
|
|
291
|
+
result
|
|
292
|
+
);
|
|
293
|
+
}
|
|
294
|
+
|
|
295
|
+
#[test]
|
|
296
|
+
fn test_stopwords_with_chinese_text() {
|
|
297
|
+
let config = TokenReductionConfig {
|
|
298
|
+
level: ReductionLevel::Moderate,
|
|
299
|
+
use_simd: false,
|
|
300
|
+
..Default::default()
|
|
301
|
+
};
|
|
302
|
+
|
|
303
|
+
let input = "这个人工智能系统可以处理自然语言";
|
|
304
|
+
let result = reduce_tokens(input, &config, Some("zh")).unwrap();
|
|
305
|
+
|
|
306
|
+
assert!(
|
|
307
|
+
!result.is_empty(),
|
|
308
|
+
"Chinese text should be processed. Result: {}",
|
|
309
|
+
result
|
|
310
|
+
);
|
|
311
|
+
|
|
312
|
+
assert!(
|
|
313
|
+
result.contains("人工") || result.contains("智能") || result.contains("语言"),
|
|
314
|
+
"Should preserve important Chinese terms. Result: {}",
|
|
315
|
+
result
|
|
316
|
+
);
|
|
317
|
+
}
|
|
318
|
+
|
|
319
|
+
#[test]
|
|
320
|
+
fn test_stopwords_with_mixed_cjk_english() {
|
|
321
|
+
let config = TokenReductionConfig {
|
|
322
|
+
level: ReductionLevel::Moderate,
|
|
323
|
+
use_simd: false,
|
|
324
|
+
..Default::default()
|
|
325
|
+
};
|
|
326
|
+
|
|
327
|
+
let input = "The machine learning model 机器学习模型 is processing data efficiently";
|
|
328
|
+
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
329
|
+
|
|
330
|
+
assert!(
|
|
331
|
+
!result.contains(" the ") && !result.contains("The "),
|
|
332
|
+
"Should remove English 'the'. Result: {}",
|
|
333
|
+
result
|
|
334
|
+
);
|
|
335
|
+
|
|
336
|
+
assert!(
|
|
337
|
+
result.contains("machine") || result.contains("learning"),
|
|
338
|
+
"Should preserve English content. Result: {}",
|
|
339
|
+
result
|
|
340
|
+
);
|
|
341
|
+
|
|
342
|
+
assert!(
|
|
343
|
+
result.contains("机器") || result.contains("学习") || result.contains("模型"),
|
|
344
|
+
"Should preserve Chinese content. Result: {}",
|
|
345
|
+
result
|
|
346
|
+
);
|
|
347
|
+
}
|
|
348
|
+
|
|
349
|
+
#[test]
|
|
350
|
+
fn test_stopwords_with_japanese_text() {
|
|
351
|
+
let config = TokenReductionConfig {
|
|
352
|
+
level: ReductionLevel::Moderate,
|
|
353
|
+
use_simd: false,
|
|
354
|
+
..Default::default()
|
|
355
|
+
};
|
|
356
|
+
|
|
357
|
+
let input = "人工知能技術の研究開発";
|
|
358
|
+
let result = reduce_tokens(input, &config, Some("ja")).unwrap();
|
|
359
|
+
|
|
360
|
+
assert!(
|
|
361
|
+
!result.is_empty(),
|
|
362
|
+
"Japanese text should be processed. Result: {}",
|
|
363
|
+
result
|
|
364
|
+
);
|
|
365
|
+
}
|
|
366
|
+
|
|
367
|
+
#[test]
|
|
368
|
+
fn test_stopwords_with_korean_text() {
|
|
369
|
+
let config = TokenReductionConfig {
|
|
370
|
+
level: ReductionLevel::Moderate,
|
|
371
|
+
use_simd: false,
|
|
372
|
+
..Default::default()
|
|
373
|
+
};
|
|
374
|
+
|
|
375
|
+
let input = "인공 지능 기술 개발";
|
|
376
|
+
let result = reduce_tokens(input, &config, Some("ko")).unwrap();
|
|
377
|
+
|
|
378
|
+
assert!(
|
|
379
|
+
!result.is_empty(),
|
|
380
|
+
"Korean text should be processed. Result: {}",
|
|
381
|
+
result
|
|
382
|
+
);
|
|
383
|
+
}
|
|
384
|
+
|
|
385
|
+
#[cfg(feature = "keywords-rake")]
|
|
386
|
+
#[test]
|
|
387
|
+
fn test_stopwords_excluded_from_rake_keywords() {
|
|
388
|
+
let text = "The machine learning model is trained on a large dataset. \
|
|
389
|
+
The model uses neural networks and deep learning algorithms. \
|
|
390
|
+
The training process requires significant computational resources.";
|
|
391
|
+
|
|
392
|
+
let config = KeywordConfig::rake().with_language("en").with_max_keywords(10);
|
|
393
|
+
|
|
394
|
+
let keywords = extract_keywords(text, &config).unwrap();
|
|
395
|
+
|
|
396
|
+
assert!(!keywords.is_empty(), "Should extract keywords");
|
|
397
|
+
|
|
398
|
+
let en_stopwords = get_stopwords("en").expect("English stopwords must exist");
|
|
399
|
+
|
|
400
|
+
for keyword in &keywords {
|
|
401
|
+
let words: Vec<&str> = keyword.text.split_whitespace().collect();
|
|
402
|
+
|
|
403
|
+
let all_stopwords = words.iter().all(|word| {
|
|
404
|
+
let clean = word
|
|
405
|
+
.chars()
|
|
406
|
+
.filter(|c| c.is_alphabetic())
|
|
407
|
+
.collect::<String>()
|
|
408
|
+
.to_lowercase();
|
|
409
|
+
en_stopwords.contains(&clean)
|
|
410
|
+
});
|
|
411
|
+
|
|
412
|
+
assert!(
|
|
413
|
+
!all_stopwords,
|
|
414
|
+
"Keyword '{}' should not be composed entirely of stopwords",
|
|
415
|
+
keyword.text
|
|
416
|
+
);
|
|
417
|
+
}
|
|
418
|
+
|
|
419
|
+
let keyword_texts: Vec<String> = keywords.iter().map(|k| k.text.to_lowercase()).collect();
|
|
420
|
+
|
|
421
|
+
assert!(
|
|
422
|
+
keyword_texts.iter().any(|k| k.contains("machine learning")
|
|
423
|
+
|| k.contains("neural networks")
|
|
424
|
+
|| k.contains("deep learning")
|
|
425
|
+
|| k.contains("dataset")
|
|
426
|
+
|| k.contains("model")
|
|
427
|
+
|| k.contains("training")),
|
|
428
|
+
"Should extract meaningful technical keywords. Got: {:?}",
|
|
429
|
+
keyword_texts
|
|
430
|
+
);
|
|
431
|
+
}
|
|
432
|
+
|
|
433
|
+
#[cfg(feature = "keywords-yake")]
|
|
434
|
+
#[test]
|
|
435
|
+
fn test_stopwords_excluded_from_yake_keywords() {
|
|
436
|
+
let text = "Natural language processing enables computers to understand human language. \
|
|
437
|
+
Deep learning models achieve state-of-the-art performance in text analysis. \
|
|
438
|
+
These systems can extract meaningful information from large text corpora.";
|
|
439
|
+
|
|
440
|
+
let config = KeywordConfig::yake().with_language("en").with_max_keywords(10);
|
|
441
|
+
|
|
442
|
+
let keywords = extract_keywords(text, &config).unwrap();
|
|
443
|
+
|
|
444
|
+
assert!(!keywords.is_empty(), "Should extract keywords");
|
|
445
|
+
|
|
446
|
+
let en_stopwords = get_stopwords("en").expect("English stopwords must exist");
|
|
447
|
+
|
|
448
|
+
for keyword in &keywords {
|
|
449
|
+
let has_content_word = keyword.text.split_whitespace().any(|word| {
|
|
450
|
+
let clean = word
|
|
451
|
+
.chars()
|
|
452
|
+
.filter(|c| c.is_alphabetic())
|
|
453
|
+
.collect::<String>()
|
|
454
|
+
.to_lowercase();
|
|
455
|
+
!clean.is_empty() && !en_stopwords.contains(&clean)
|
|
456
|
+
});
|
|
457
|
+
|
|
458
|
+
assert!(
|
|
459
|
+
has_content_word,
|
|
460
|
+
"Keyword '{}' should contain at least one content word (non-stopword)",
|
|
461
|
+
keyword.text
|
|
462
|
+
);
|
|
463
|
+
}
|
|
464
|
+
}
|
|
465
|
+
|
|
466
|
+
#[cfg(feature = "keywords-rake")]
|
|
467
|
+
#[test]
|
|
468
|
+
fn test_keywords_respect_language_specific_stopwords() {
|
|
469
|
+
let spanish_text = "El aprendizaje automático es una rama de la inteligencia artificial. \
|
|
470
|
+
Los modelos de aprendizaje profundo logran un rendimiento excepcional. \
|
|
471
|
+
Estos sistemas pueden procesar grandes cantidades de datos.";
|
|
472
|
+
|
|
473
|
+
let config = KeywordConfig::rake().with_language("es").with_max_keywords(8);
|
|
474
|
+
|
|
475
|
+
let keywords = extract_keywords(spanish_text, &config).unwrap();
|
|
476
|
+
|
|
477
|
+
assert!(!keywords.is_empty(), "Should extract Spanish keywords");
|
|
478
|
+
|
|
479
|
+
let es_stopwords = get_stopwords("es").expect("Spanish stopwords must exist");
|
|
480
|
+
|
|
481
|
+
for keyword in &keywords {
|
|
482
|
+
let words: Vec<&str> = keyword.text.split_whitespace().collect();
|
|
483
|
+
let all_stopwords = words.iter().all(|word| {
|
|
484
|
+
let clean = word
|
|
485
|
+
.chars()
|
|
486
|
+
.filter(|c| c.is_alphabetic())
|
|
487
|
+
.collect::<String>()
|
|
488
|
+
.to_lowercase();
|
|
489
|
+
es_stopwords.contains(&clean)
|
|
490
|
+
});
|
|
491
|
+
|
|
492
|
+
assert!(
|
|
493
|
+
!all_stopwords,
|
|
494
|
+
"Spanish keyword '{}' should not be all stopwords",
|
|
495
|
+
keyword.text
|
|
496
|
+
);
|
|
497
|
+
}
|
|
498
|
+
|
|
499
|
+
let keyword_texts: Vec<String> = keywords.iter().map(|k| k.text.to_lowercase()).collect();
|
|
500
|
+
assert!(
|
|
501
|
+
keyword_texts.iter().any(|k| k.contains("aprendizaje")
|
|
502
|
+
|| k.contains("inteligencia")
|
|
503
|
+
|| k.contains("modelos")
|
|
504
|
+
|| k.contains("datos")),
|
|
505
|
+
"Should extract meaningful Spanish keywords. Got: {:?}",
|
|
506
|
+
keyword_texts
|
|
507
|
+
);
|
|
508
|
+
}
|
|
509
|
+
|
|
510
|
+
#[test]
|
|
511
|
+
fn test_all_stopwords_text_reduction() {
|
|
512
|
+
let config = TokenReductionConfig {
|
|
513
|
+
level: ReductionLevel::Moderate,
|
|
514
|
+
use_simd: false,
|
|
515
|
+
..Default::default()
|
|
516
|
+
};
|
|
517
|
+
|
|
518
|
+
let input = "the is a an and or but of to in for on at by";
|
|
519
|
+
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
520
|
+
|
|
521
|
+
assert!(
|
|
522
|
+
result.len() < input.len(),
|
|
523
|
+
"Text of all stopwords should be significantly reduced"
|
|
524
|
+
);
|
|
525
|
+
}
|
|
526
|
+
|
|
527
|
+
#[test]
|
|
528
|
+
fn test_no_stopwords_text_reduction() {
|
|
529
|
+
let config = TokenReductionConfig {
|
|
530
|
+
level: ReductionLevel::Moderate,
|
|
531
|
+
use_simd: false,
|
|
532
|
+
..Default::default()
|
|
533
|
+
};
|
|
534
|
+
|
|
535
|
+
let input = "PyTorch TensorFlow CUDA GPU optimization benchmark performance metrics";
|
|
536
|
+
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
537
|
+
|
|
538
|
+
let input_words: Vec<&str> = input.split_whitespace().collect();
|
|
539
|
+
let result_lower = result.to_lowercase();
|
|
540
|
+
|
|
541
|
+
for word in input_words {
|
|
542
|
+
let word_lower = word.to_lowercase();
|
|
543
|
+
assert!(
|
|
544
|
+
result_lower.contains(&word_lower),
|
|
545
|
+
"Technical term '{}' should be preserved. Result: {}",
|
|
546
|
+
word,
|
|
547
|
+
result
|
|
548
|
+
);
|
|
549
|
+
}
|
|
550
|
+
}
|
|
551
|
+
|
|
552
|
+
#[test]
|
|
553
|
+
fn test_mixed_case_stopwords_removal() {
|
|
554
|
+
let config = TokenReductionConfig {
|
|
555
|
+
level: ReductionLevel::Moderate,
|
|
556
|
+
use_simd: false,
|
|
557
|
+
..Default::default()
|
|
558
|
+
};
|
|
559
|
+
|
|
560
|
+
let input = "The SYSTEM Is Processing The DATA With The ALGORITHM";
|
|
561
|
+
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
562
|
+
|
|
563
|
+
let result_words: Vec<&str> = result.split_whitespace().collect();
|
|
564
|
+
assert!(
|
|
565
|
+
!result_words.contains(&"the"),
|
|
566
|
+
"Should remove lowercase 'the'. Result: {}",
|
|
567
|
+
result
|
|
568
|
+
);
|
|
569
|
+
assert!(
|
|
570
|
+
!result_words.contains(&"is"),
|
|
571
|
+
"Should remove lowercase 'is'. Result: {}",
|
|
572
|
+
result
|
|
573
|
+
);
|
|
574
|
+
|
|
575
|
+
assert!(
|
|
576
|
+
result.contains("SYSTEM"),
|
|
577
|
+
"Should preserve 'SYSTEM'. Result: {}",
|
|
578
|
+
result
|
|
579
|
+
);
|
|
580
|
+
assert!(result.contains("DATA"), "Should preserve 'DATA'. Result: {}", result);
|
|
581
|
+
assert!(
|
|
582
|
+
result.contains("ALGORITHM"),
|
|
583
|
+
"Should preserve 'ALGORITHM'. Result: {}",
|
|
584
|
+
result
|
|
585
|
+
);
|
|
586
|
+
}
|
|
587
|
+
|
|
588
|
+
#[test]
|
|
589
|
+
fn test_reduce_tokens_function_with_stopwords() {
|
|
590
|
+
let config = TokenReductionConfig {
|
|
591
|
+
level: ReductionLevel::Moderate,
|
|
592
|
+
use_simd: false,
|
|
593
|
+
..Default::default()
|
|
594
|
+
};
|
|
595
|
+
|
|
596
|
+
let text = "The artificial intelligence system processes the natural language efficiently";
|
|
597
|
+
let result = reduce_tokens(text, &config, Some("en")).unwrap();
|
|
598
|
+
|
|
599
|
+
let original_stopwords = count_stopwords(text, "en");
|
|
600
|
+
let result_stopwords = count_stopwords(&result, "en");
|
|
601
|
+
|
|
602
|
+
assert!(
|
|
603
|
+
result_stopwords < original_stopwords,
|
|
604
|
+
"reduce_tokens should remove stopwords. Original: {}, Result: {}",
|
|
605
|
+
original_stopwords,
|
|
606
|
+
result_stopwords
|
|
607
|
+
);
|
|
608
|
+
|
|
609
|
+
assert!(
|
|
610
|
+
result.contains("artificial") || result.contains("intelligence"),
|
|
611
|
+
"Should preserve content words. Result: {}",
|
|
612
|
+
result
|
|
613
|
+
);
|
|
614
|
+
}
|
|
615
|
+
|
|
616
|
+
#[test]
|
|
617
|
+
fn test_stopwords_with_punctuation() {
|
|
618
|
+
let config = TokenReductionConfig {
|
|
619
|
+
level: ReductionLevel::Moderate,
|
|
620
|
+
use_simd: false,
|
|
621
|
+
..Default::default()
|
|
622
|
+
};
|
|
623
|
+
|
|
624
|
+
let input = "The system, which is processing the data, uses the algorithm.";
|
|
625
|
+
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
626
|
+
|
|
627
|
+
assert!(
|
|
628
|
+
!result.contains(" the ") || result.split_whitespace().filter(|w| w.contains("the")).count() < 3,
|
|
629
|
+
"Should remove most instances of 'the'. Result: {}",
|
|
630
|
+
result
|
|
631
|
+
);
|
|
632
|
+
|
|
633
|
+
assert!(
|
|
634
|
+
result.contains("system") || result.contains("processing") || result.contains("algorithm"),
|
|
635
|
+
"Should preserve content words. Result: {}",
|
|
636
|
+
result
|
|
637
|
+
);
|
|
638
|
+
}
|
|
639
|
+
|
|
640
|
+
#[test]
|
|
641
|
+
fn test_stopwords_with_numbers() {
|
|
642
|
+
let config = TokenReductionConfig {
|
|
643
|
+
level: ReductionLevel::Moderate,
|
|
644
|
+
use_simd: false,
|
|
645
|
+
..Default::default()
|
|
646
|
+
};
|
|
647
|
+
|
|
648
|
+
let input = "The model has 100 layers and processes the data in 10 seconds";
|
|
649
|
+
let result = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
650
|
+
|
|
651
|
+
assert!(
|
|
652
|
+
result.contains("100"),
|
|
653
|
+
"Should preserve number '100'. Result: {}",
|
|
654
|
+
result
|
|
655
|
+
);
|
|
656
|
+
assert!(result.contains("10"), "Should preserve number '10'. Result: {}", result);
|
|
657
|
+
|
|
658
|
+
assert!(
|
|
659
|
+
result.contains("model") || result.contains("layers") || result.contains("processes"),
|
|
660
|
+
"Should preserve content words. Result: {}",
|
|
661
|
+
result
|
|
662
|
+
);
|
|
663
|
+
}
|
|
664
|
+
|
|
665
|
+
#[test]
|
|
666
|
+
fn test_stopwords_removal_consistency_across_calls() {
|
|
667
|
+
let config = TokenReductionConfig {
|
|
668
|
+
level: ReductionLevel::Moderate,
|
|
669
|
+
use_simd: false,
|
|
670
|
+
..Default::default()
|
|
671
|
+
};
|
|
672
|
+
|
|
673
|
+
let input = "The machine learning model is trained on the dataset";
|
|
674
|
+
|
|
675
|
+
let result1 = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
676
|
+
let result2 = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
677
|
+
let result3 = reduce_tokens(input, &config, Some("en")).unwrap();
|
|
678
|
+
|
|
679
|
+
assert_eq!(result1, result2, "Results should be consistent across calls");
|
|
680
|
+
assert_eq!(result2, result3, "Results should be consistent across calls");
|
|
681
|
+
}
|
|
682
|
+
|
|
683
|
+
#[test]
|
|
684
|
+
fn test_stopwords_with_long_text() {
|
|
685
|
+
let config = TokenReductionConfig {
|
|
686
|
+
level: ReductionLevel::Moderate,
|
|
687
|
+
use_simd: false,
|
|
688
|
+
enable_parallel: false,
|
|
689
|
+
..Default::default()
|
|
690
|
+
};
|
|
691
|
+
|
|
692
|
+
let paragraph = "The machine learning model is trained on the large dataset. \
|
|
693
|
+
The training process uses the neural network architecture. \
|
|
694
|
+
The system processes the data efficiently and achieves the best performance. ";
|
|
695
|
+
let input = paragraph.repeat(10);
|
|
696
|
+
|
|
697
|
+
let result = reduce_tokens(&input, &config, Some("en")).unwrap();
|
|
698
|
+
|
|
699
|
+
assert!(
|
|
700
|
+
result.len() < input.len(),
|
|
701
|
+
"Long stopword-heavy text should be reduced. Input: {} chars, Result: {} chars",
|
|
702
|
+
input.len(),
|
|
703
|
+
result.len()
|
|
704
|
+
);
|
|
705
|
+
|
|
706
|
+
let original_stopwords = count_stopwords(&input, "en");
|
|
707
|
+
let result_stopwords = count_stopwords(&result, "en");
|
|
708
|
+
|
|
709
|
+
assert!(
|
|
710
|
+
result_stopwords < original_stopwords,
|
|
711
|
+
"Should remove stopwords from long text. Original: {}, Result: {}",
|
|
712
|
+
original_stopwords,
|
|
713
|
+
result_stopwords
|
|
714
|
+
);
|
|
715
|
+
}
|
|
716
|
+
|
|
717
|
+
#[test]
|
|
718
|
+
fn test_get_stopwords_with_fallback_in_reduction() {
|
|
719
|
+
let primary_stopwords = get_stopwords_with_fallback("xyz", "en");
|
|
720
|
+
assert!(primary_stopwords.is_some(), "Should fallback to English");
|
|
721
|
+
|
|
722
|
+
let en_stopwords = get_stopwords("en").unwrap();
|
|
723
|
+
assert_eq!(
|
|
724
|
+
primary_stopwords.unwrap().len(),
|
|
725
|
+
en_stopwords.len(),
|
|
726
|
+
"Fallback should return English stopwords"
|
|
727
|
+
);
|
|
728
|
+
|
|
729
|
+
let config = TokenReductionConfig {
|
|
730
|
+
level: ReductionLevel::Moderate,
|
|
731
|
+
use_simd: false,
|
|
732
|
+
..Default::default()
|
|
733
|
+
};
|
|
734
|
+
|
|
735
|
+
let input = "The system is processing the data";
|
|
736
|
+
let result = reduce_tokens(input, &config, Some("xyz")).unwrap();
|
|
737
|
+
|
|
738
|
+
assert!(
|
|
739
|
+
!result.contains(" the ") && !result.contains(" is "),
|
|
740
|
+
"Should use fallback stopwords. Result: {}",
|
|
741
|
+
result
|
|
742
|
+
);
|
|
743
|
+
}
|
|
744
|
+
|
|
745
|
+
#[test]
|
|
746
|
+
fn test_stopwords_registry_completeness() {
|
|
747
|
+
assert_eq!(STOPWORDS.len(), 64, "Should have exactly 64 language stopword sets");
|
|
748
|
+
|
|
749
|
+
let en_stopwords = get_stopwords("en").expect("English stopwords must exist");
|
|
750
|
+
assert!(en_stopwords.len() >= 70, "English should have at least 70 stopwords");
|
|
751
|
+
|
|
752
|
+
assert!(en_stopwords.contains("the"), "Should contain 'the'");
|
|
753
|
+
assert!(en_stopwords.contains("is"), "Should contain 'is'");
|
|
754
|
+
assert!(en_stopwords.contains("and"), "Should contain 'and'");
|
|
755
|
+
assert!(en_stopwords.contains("a"), "Should contain 'a'");
|
|
756
|
+
assert!(en_stopwords.contains("an"), "Should contain 'an'");
|
|
757
|
+
assert!(en_stopwords.contains("of"), "Should contain 'of'");
|
|
758
|
+
assert!(en_stopwords.contains("to"), "Should contain 'to'");
|
|
759
|
+
assert!(en_stopwords.contains("in"), "Should contain 'in'");
|
|
760
|
+
assert!(en_stopwords.contains("for"), "Should contain 'for'");
|
|
761
|
+
}
|
|
762
|
+
|
|
763
|
+
#[test]
|
|
764
|
+
fn test_token_reduction_handles_nan_threshold() {
|
|
765
|
+
let mut config = TokenReductionConfig {
|
|
766
|
+
level: ReductionLevel::Maximum,
|
|
767
|
+
semantic_threshold: f32::NAN,
|
|
768
|
+
enable_semantic_clustering: true,
|
|
769
|
+
target_reduction: Some(0.5),
|
|
770
|
+
..Default::default()
|
|
771
|
+
};
|
|
772
|
+
|
|
773
|
+
config.language_hint = Some("en".to_string());
|
|
774
|
+
let input = "Critical system update highlights performance improvements across distributed modules.";
|
|
775
|
+
|
|
776
|
+
let result = reduce_tokens(input, &config, Some("en")).unwrap_or_else(|_| String::new());
|
|
777
|
+
assert!(
|
|
778
|
+
result.chars().all(|c| !c.is_control()),
|
|
779
|
+
"Result should not contain unexpected control characters"
|
|
780
|
+
);
|
|
781
|
+
}
|
|
782
|
+
|
|
783
|
+
#[test]
|
|
784
|
+
fn test_token_reduction_handles_multibyte_utf8() {
|
|
785
|
+
let config = TokenReductionConfig {
|
|
786
|
+
level: ReductionLevel::Moderate,
|
|
787
|
+
language_hint: Some("ja".to_string()),
|
|
788
|
+
..Default::default()
|
|
789
|
+
};
|
|
790
|
+
|
|
791
|
+
let input = "品質管理は重要です。🚀 高速抽出と漢字処理が求められています。";
|
|
792
|
+
let result = reduce_tokens(input, &config, Some("ja")).unwrap();
|
|
793
|
+
|
|
794
|
+
assert!(
|
|
795
|
+
result.contains("品質管理") || result.contains("漢字処理"),
|
|
796
|
+
"Important multibyte terms should survive reduction: {}",
|
|
797
|
+
result
|
|
798
|
+
);
|
|
799
|
+
}
|
|
800
|
+
|
|
801
|
+
#[test]
|
|
802
|
+
fn test_token_reduction_concurrent_access() {
|
|
803
|
+
use std::sync::Arc;
|
|
804
|
+
|
|
805
|
+
let config = Arc::new(TokenReductionConfig {
|
|
806
|
+
level: ReductionLevel::Aggressive,
|
|
807
|
+
enable_parallel: true,
|
|
808
|
+
..Default::default()
|
|
809
|
+
});
|
|
810
|
+
|
|
811
|
+
let input = "Concurrent reduction ensures thread safety without deadlocks or panics.";
|
|
812
|
+
|
|
813
|
+
std::thread::scope(|scope| {
|
|
814
|
+
for _ in 0..8 {
|
|
815
|
+
let cfg = Arc::clone(&config);
|
|
816
|
+
scope.spawn(move || {
|
|
817
|
+
let reduced = reduce_tokens(input, &cfg, Some("en")).unwrap();
|
|
818
|
+
assert!(!reduced.is_empty());
|
|
819
|
+
});
|
|
820
|
+
}
|
|
821
|
+
});
|
|
822
|
+
}
|
|
823
|
+
#[test]
|
|
824
|
+
fn demo_stopwords_effectiveness() {
|
|
825
|
+
use kreuzberg::stopwords::get_stopwords;
|
|
826
|
+
use kreuzberg::text::token_reduction::{ReductionLevel, TokenReductionConfig, reduce_tokens};
|
|
827
|
+
|
|
828
|
+
let en_text = "The machine learning model is trained on the large dataset and achieves good performance";
|
|
829
|
+
let en_config = TokenReductionConfig {
|
|
830
|
+
level: ReductionLevel::Moderate,
|
|
831
|
+
use_simd: false,
|
|
832
|
+
..Default::default()
|
|
833
|
+
};
|
|
834
|
+
let en_result = reduce_tokens(en_text, &en_config, Some("en")).unwrap();
|
|
835
|
+
|
|
836
|
+
println!("\n=== English Example ===");
|
|
837
|
+
println!("BEFORE: {} chars", en_text.len());
|
|
838
|
+
println!("{}", en_text);
|
|
839
|
+
println!(
|
|
840
|
+
"\nAFTER: {} chars ({}% reduction)",
|
|
841
|
+
en_result.len(),
|
|
842
|
+
100 - (en_result.len() * 100 / en_text.len())
|
|
843
|
+
);
|
|
844
|
+
println!("{}", en_result);
|
|
845
|
+
|
|
846
|
+
let zh_text = "这个人工智能系统可以处理自然语言";
|
|
847
|
+
let zh_config = TokenReductionConfig {
|
|
848
|
+
level: ReductionLevel::Moderate,
|
|
849
|
+
use_simd: false,
|
|
850
|
+
..Default::default()
|
|
851
|
+
};
|
|
852
|
+
let zh_result = reduce_tokens(zh_text, &zh_config, Some("zh")).unwrap();
|
|
853
|
+
|
|
854
|
+
println!("\n=== Chinese Example ===");
|
|
855
|
+
println!("BEFORE: {}", zh_text);
|
|
856
|
+
println!("AFTER: {}", zh_result);
|
|
857
|
+
|
|
858
|
+
let text = "The artificial intelligence system processes the natural language efficiently";
|
|
859
|
+
|
|
860
|
+
println!("\n=== Reduction Level Comparison ===");
|
|
861
|
+
println!("ORIGINAL: {}", text);
|
|
862
|
+
|
|
863
|
+
for level in [
|
|
864
|
+
ReductionLevel::Light,
|
|
865
|
+
ReductionLevel::Moderate,
|
|
866
|
+
ReductionLevel::Aggressive,
|
|
867
|
+
] {
|
|
868
|
+
let config = TokenReductionConfig {
|
|
869
|
+
level,
|
|
870
|
+
use_simd: false,
|
|
871
|
+
..Default::default()
|
|
872
|
+
};
|
|
873
|
+
let result = reduce_tokens(text, &config, Some("en")).unwrap();
|
|
874
|
+
println!(
|
|
875
|
+
"{:?}: {} chars -> {} chars ({}% reduction)",
|
|
876
|
+
level,
|
|
877
|
+
text.len(),
|
|
878
|
+
result.len(),
|
|
879
|
+
100 - (result.len() * 100 / text.len())
|
|
880
|
+
);
|
|
881
|
+
println!(" {}", result);
|
|
882
|
+
}
|
|
883
|
+
|
|
884
|
+
let stopwords = get_stopwords("en").unwrap();
|
|
885
|
+
println!("\n=== Stopwords Stats ===");
|
|
886
|
+
println!("English stopwords: {}", stopwords.len());
|
|
887
|
+
println!("Sample stopwords: {:?}", stopwords.iter().take(10).collect::<Vec<_>>());
|
|
888
|
+
}
|