kreuzberg 4.0.0.pre.rc.13 → 4.0.0.pre.rc.15

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (369) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +14 -14
  3. data/.rspec +3 -3
  4. data/.rubocop.yaml +1 -1
  5. data/.rubocop.yml +538 -538
  6. data/Gemfile +8 -8
  7. data/Gemfile.lock +104 -2
  8. data/README.md +454 -454
  9. data/Rakefile +33 -25
  10. data/Steepfile +47 -47
  11. data/examples/async_patterns.rb +341 -341
  12. data/ext/kreuzberg_rb/extconf.rb +45 -45
  13. data/ext/kreuzberg_rb/native/.cargo/config.toml +2 -2
  14. data/ext/kreuzberg_rb/native/Cargo.lock +6750 -6941
  15. data/ext/kreuzberg_rb/native/Cargo.toml +53 -54
  16. data/ext/kreuzberg_rb/native/README.md +425 -425
  17. data/ext/kreuzberg_rb/native/build.rs +52 -15
  18. data/ext/kreuzberg_rb/native/include/ieeefp.h +11 -11
  19. data/ext/kreuzberg_rb/native/include/msvc_compat/strings.h +14 -14
  20. data/ext/kreuzberg_rb/native/include/strings.h +20 -20
  21. data/ext/kreuzberg_rb/native/include/unistd.h +47 -47
  22. data/ext/kreuzberg_rb/native/src/lib.rs +3158 -3158
  23. data/extconf.rb +28 -28
  24. data/kreuzberg.gemspec +214 -214
  25. data/lib/kreuzberg/api_proxy.rb +142 -142
  26. data/lib/kreuzberg/cache_api.rb +81 -81
  27. data/lib/kreuzberg/cli.rb +55 -55
  28. data/lib/kreuzberg/cli_proxy.rb +127 -127
  29. data/lib/kreuzberg/config.rb +724 -724
  30. data/lib/kreuzberg/error_context.rb +80 -80
  31. data/lib/kreuzberg/errors.rb +118 -118
  32. data/lib/kreuzberg/extraction_api.rb +340 -340
  33. data/lib/kreuzberg/mcp_proxy.rb +186 -186
  34. data/lib/kreuzberg/ocr_backend_protocol.rb +113 -113
  35. data/lib/kreuzberg/post_processor_protocol.rb +86 -86
  36. data/lib/kreuzberg/result.rb +279 -279
  37. data/lib/kreuzberg/setup_lib_path.rb +80 -80
  38. data/lib/kreuzberg/validator_protocol.rb +89 -89
  39. data/lib/kreuzberg/version.rb +5 -5
  40. data/lib/kreuzberg.rb +109 -109
  41. data/lib/{pdfium.dll → libpdfium.so} +0 -0
  42. data/sig/kreuzberg/internal.rbs +184 -184
  43. data/sig/kreuzberg.rbs +546 -546
  44. data/spec/binding/cache_spec.rb +227 -227
  45. data/spec/binding/cli_proxy_spec.rb +85 -85
  46. data/spec/binding/cli_spec.rb +55 -55
  47. data/spec/binding/config_spec.rb +345 -345
  48. data/spec/binding/config_validation_spec.rb +283 -283
  49. data/spec/binding/error_handling_spec.rb +213 -213
  50. data/spec/binding/errors_spec.rb +66 -66
  51. data/spec/binding/plugins/ocr_backend_spec.rb +307 -307
  52. data/spec/binding/plugins/postprocessor_spec.rb +269 -269
  53. data/spec/binding/plugins/validator_spec.rb +274 -274
  54. data/spec/fixtures/config.toml +39 -39
  55. data/spec/fixtures/config.yaml +41 -41
  56. data/spec/fixtures/invalid_config.toml +4 -4
  57. data/spec/smoke/package_spec.rb +178 -178
  58. data/spec/spec_helper.rb +42 -42
  59. data/vendor/Cargo.toml +2 -2
  60. data/vendor/kreuzberg/Cargo.toml +5 -5
  61. data/vendor/kreuzberg/README.md +230 -230
  62. data/vendor/kreuzberg/benches/otel_overhead.rs +48 -48
  63. data/vendor/kreuzberg/build.rs +887 -843
  64. data/vendor/kreuzberg/src/api/error.rs +81 -81
  65. data/vendor/kreuzberg/src/api/handlers.rs +199 -199
  66. data/vendor/kreuzberg/src/api/mod.rs +87 -79
  67. data/vendor/kreuzberg/src/api/server.rs +353 -353
  68. data/vendor/kreuzberg/src/api/types.rs +170 -170
  69. data/vendor/kreuzberg/src/cache/mod.rs +1167 -1167
  70. data/vendor/kreuzberg/src/chunking/mod.rs +1877 -1877
  71. data/vendor/kreuzberg/src/chunking/processor.rs +220 -220
  72. data/vendor/kreuzberg/src/core/batch_mode.rs +95 -95
  73. data/vendor/kreuzberg/src/core/config.rs +1080 -1080
  74. data/vendor/kreuzberg/src/core/extractor.rs +1156 -1156
  75. data/vendor/kreuzberg/src/core/io.rs +329 -329
  76. data/vendor/kreuzberg/src/core/mime.rs +605 -605
  77. data/vendor/kreuzberg/src/core/mod.rs +47 -47
  78. data/vendor/kreuzberg/src/core/pipeline.rs +1184 -1184
  79. data/vendor/kreuzberg/src/embeddings.rs +500 -500
  80. data/vendor/kreuzberg/src/error.rs +431 -431
  81. data/vendor/kreuzberg/src/extraction/archive.rs +954 -954
  82. data/vendor/kreuzberg/src/extraction/docx.rs +398 -398
  83. data/vendor/kreuzberg/src/extraction/email.rs +854 -854
  84. data/vendor/kreuzberg/src/extraction/excel.rs +688 -688
  85. data/vendor/kreuzberg/src/extraction/html.rs +634 -601
  86. data/vendor/kreuzberg/src/extraction/image.rs +491 -491
  87. data/vendor/kreuzberg/src/extraction/libreoffice.rs +574 -574
  88. data/vendor/kreuzberg/src/extraction/markdown.rs +213 -213
  89. data/vendor/kreuzberg/src/extraction/mod.rs +81 -81
  90. data/vendor/kreuzberg/src/extraction/office_metadata/app_properties.rs +398 -398
  91. data/vendor/kreuzberg/src/extraction/office_metadata/core_properties.rs +247 -247
  92. data/vendor/kreuzberg/src/extraction/office_metadata/custom_properties.rs +240 -240
  93. data/vendor/kreuzberg/src/extraction/office_metadata/mod.rs +130 -130
  94. data/vendor/kreuzberg/src/extraction/office_metadata/odt_properties.rs +284 -284
  95. data/vendor/kreuzberg/src/extraction/pptx.rs +3100 -3100
  96. data/vendor/kreuzberg/src/extraction/structured.rs +490 -490
  97. data/vendor/kreuzberg/src/extraction/table.rs +328 -328
  98. data/vendor/kreuzberg/src/extraction/text.rs +269 -269
  99. data/vendor/kreuzberg/src/extraction/xml.rs +333 -333
  100. data/vendor/kreuzberg/src/extractors/archive.rs +447 -447
  101. data/vendor/kreuzberg/src/extractors/bibtex.rs +470 -470
  102. data/vendor/kreuzberg/src/extractors/docbook.rs +504 -504
  103. data/vendor/kreuzberg/src/extractors/docx.rs +400 -400
  104. data/vendor/kreuzberg/src/extractors/email.rs +157 -157
  105. data/vendor/kreuzberg/src/extractors/epub.rs +708 -708
  106. data/vendor/kreuzberg/src/extractors/excel.rs +345 -345
  107. data/vendor/kreuzberg/src/extractors/fictionbook.rs +492 -492
  108. data/vendor/kreuzberg/src/extractors/html.rs +407 -407
  109. data/vendor/kreuzberg/src/extractors/image.rs +219 -219
  110. data/vendor/kreuzberg/src/extractors/jats.rs +1054 -1054
  111. data/vendor/kreuzberg/src/extractors/jupyter.rs +368 -368
  112. data/vendor/kreuzberg/src/extractors/latex.rs +653 -653
  113. data/vendor/kreuzberg/src/extractors/markdown.rs +701 -701
  114. data/vendor/kreuzberg/src/extractors/mod.rs +429 -429
  115. data/vendor/kreuzberg/src/extractors/odt.rs +628 -628
  116. data/vendor/kreuzberg/src/extractors/opml.rs +635 -635
  117. data/vendor/kreuzberg/src/extractors/orgmode.rs +529 -529
  118. data/vendor/kreuzberg/src/extractors/pdf.rs +749 -749
  119. data/vendor/kreuzberg/src/extractors/pptx.rs +267 -267
  120. data/vendor/kreuzberg/src/extractors/rst.rs +577 -577
  121. data/vendor/kreuzberg/src/extractors/rtf.rs +809 -809
  122. data/vendor/kreuzberg/src/extractors/security.rs +484 -484
  123. data/vendor/kreuzberg/src/extractors/security_tests.rs +367 -367
  124. data/vendor/kreuzberg/src/extractors/structured.rs +142 -142
  125. data/vendor/kreuzberg/src/extractors/text.rs +265 -265
  126. data/vendor/kreuzberg/src/extractors/typst.rs +651 -651
  127. data/vendor/kreuzberg/src/extractors/xml.rs +147 -147
  128. data/vendor/kreuzberg/src/image/dpi.rs +164 -164
  129. data/vendor/kreuzberg/src/image/mod.rs +6 -6
  130. data/vendor/kreuzberg/src/image/preprocessing.rs +417 -417
  131. data/vendor/kreuzberg/src/image/resize.rs +89 -89
  132. data/vendor/kreuzberg/src/keywords/config.rs +154 -154
  133. data/vendor/kreuzberg/src/keywords/mod.rs +237 -237
  134. data/vendor/kreuzberg/src/keywords/processor.rs +275 -275
  135. data/vendor/kreuzberg/src/keywords/rake.rs +293 -293
  136. data/vendor/kreuzberg/src/keywords/types.rs +68 -68
  137. data/vendor/kreuzberg/src/keywords/yake.rs +163 -163
  138. data/vendor/kreuzberg/src/language_detection/mod.rs +985 -985
  139. data/vendor/kreuzberg/src/language_detection/processor.rs +219 -219
  140. data/vendor/kreuzberg/src/lib.rs +113 -113
  141. data/vendor/kreuzberg/src/mcp/mod.rs +35 -35
  142. data/vendor/kreuzberg/src/mcp/server.rs +2076 -2076
  143. data/vendor/kreuzberg/src/ocr/cache.rs +469 -469
  144. data/vendor/kreuzberg/src/ocr/error.rs +37 -37
  145. data/vendor/kreuzberg/src/ocr/hocr.rs +216 -216
  146. data/vendor/kreuzberg/src/ocr/mod.rs +58 -58
  147. data/vendor/kreuzberg/src/ocr/processor.rs +863 -863
  148. data/vendor/kreuzberg/src/ocr/table/mod.rs +4 -4
  149. data/vendor/kreuzberg/src/ocr/table/tsv_parser.rs +144 -144
  150. data/vendor/kreuzberg/src/ocr/tesseract_backend.rs +452 -452
  151. data/vendor/kreuzberg/src/ocr/types.rs +393 -393
  152. data/vendor/kreuzberg/src/ocr/utils.rs +47 -47
  153. data/vendor/kreuzberg/src/ocr/validation.rs +206 -206
  154. data/vendor/kreuzberg/src/panic_context.rs +154 -154
  155. data/vendor/kreuzberg/src/pdf/bindings.rs +44 -44
  156. data/vendor/kreuzberg/src/pdf/bundled.rs +452 -346
  157. data/vendor/kreuzberg/src/pdf/error.rs +130 -130
  158. data/vendor/kreuzberg/src/pdf/images.rs +139 -139
  159. data/vendor/kreuzberg/src/pdf/metadata.rs +489 -489
  160. data/vendor/kreuzberg/src/pdf/mod.rs +68 -68
  161. data/vendor/kreuzberg/src/pdf/rendering.rs +368 -368
  162. data/vendor/kreuzberg/src/pdf/table.rs +420 -420
  163. data/vendor/kreuzberg/src/pdf/text.rs +240 -240
  164. data/vendor/kreuzberg/src/plugins/extractor.rs +1044 -1044
  165. data/vendor/kreuzberg/src/plugins/mod.rs +212 -212
  166. data/vendor/kreuzberg/src/plugins/ocr.rs +639 -639
  167. data/vendor/kreuzberg/src/plugins/processor.rs +650 -650
  168. data/vendor/kreuzberg/src/plugins/registry.rs +1339 -1339
  169. data/vendor/kreuzberg/src/plugins/traits.rs +258 -258
  170. data/vendor/kreuzberg/src/plugins/validator.rs +967 -967
  171. data/vendor/kreuzberg/src/stopwords/mod.rs +1470 -1470
  172. data/vendor/kreuzberg/src/text/mod.rs +25 -25
  173. data/vendor/kreuzberg/src/text/quality.rs +697 -697
  174. data/vendor/kreuzberg/src/text/quality_processor.rs +219 -219
  175. data/vendor/kreuzberg/src/text/string_utils.rs +217 -217
  176. data/vendor/kreuzberg/src/text/token_reduction/cjk_utils.rs +164 -164
  177. data/vendor/kreuzberg/src/text/token_reduction/config.rs +100 -100
  178. data/vendor/kreuzberg/src/text/token_reduction/core.rs +796 -796
  179. data/vendor/kreuzberg/src/text/token_reduction/filters.rs +902 -902
  180. data/vendor/kreuzberg/src/text/token_reduction/mod.rs +160 -160
  181. data/vendor/kreuzberg/src/text/token_reduction/semantic.rs +619 -619
  182. data/vendor/kreuzberg/src/text/token_reduction/simd_text.rs +147 -147
  183. data/vendor/kreuzberg/src/types.rs +1055 -1055
  184. data/vendor/kreuzberg/src/utils/mod.rs +17 -17
  185. data/vendor/kreuzberg/src/utils/quality.rs +959 -959
  186. data/vendor/kreuzberg/src/utils/string_utils.rs +381 -381
  187. data/vendor/kreuzberg/stopwords/af_stopwords.json +53 -53
  188. data/vendor/kreuzberg/stopwords/ar_stopwords.json +482 -482
  189. data/vendor/kreuzberg/stopwords/bg_stopwords.json +261 -261
  190. data/vendor/kreuzberg/stopwords/bn_stopwords.json +400 -400
  191. data/vendor/kreuzberg/stopwords/br_stopwords.json +1205 -1205
  192. data/vendor/kreuzberg/stopwords/ca_stopwords.json +280 -280
  193. data/vendor/kreuzberg/stopwords/cs_stopwords.json +425 -425
  194. data/vendor/kreuzberg/stopwords/da_stopwords.json +172 -172
  195. data/vendor/kreuzberg/stopwords/de_stopwords.json +622 -622
  196. data/vendor/kreuzberg/stopwords/el_stopwords.json +849 -849
  197. data/vendor/kreuzberg/stopwords/en_stopwords.json +1300 -1300
  198. data/vendor/kreuzberg/stopwords/eo_stopwords.json +175 -175
  199. data/vendor/kreuzberg/stopwords/es_stopwords.json +734 -734
  200. data/vendor/kreuzberg/stopwords/et_stopwords.json +37 -37
  201. data/vendor/kreuzberg/stopwords/eu_stopwords.json +100 -100
  202. data/vendor/kreuzberg/stopwords/fa_stopwords.json +801 -801
  203. data/vendor/kreuzberg/stopwords/fi_stopwords.json +849 -849
  204. data/vendor/kreuzberg/stopwords/fr_stopwords.json +693 -693
  205. data/vendor/kreuzberg/stopwords/ga_stopwords.json +111 -111
  206. data/vendor/kreuzberg/stopwords/gl_stopwords.json +162 -162
  207. data/vendor/kreuzberg/stopwords/gu_stopwords.json +226 -226
  208. data/vendor/kreuzberg/stopwords/ha_stopwords.json +41 -41
  209. data/vendor/kreuzberg/stopwords/he_stopwords.json +196 -196
  210. data/vendor/kreuzberg/stopwords/hi_stopwords.json +227 -227
  211. data/vendor/kreuzberg/stopwords/hr_stopwords.json +181 -181
  212. data/vendor/kreuzberg/stopwords/hu_stopwords.json +791 -791
  213. data/vendor/kreuzberg/stopwords/hy_stopwords.json +47 -47
  214. data/vendor/kreuzberg/stopwords/id_stopwords.json +760 -760
  215. data/vendor/kreuzberg/stopwords/it_stopwords.json +634 -634
  216. data/vendor/kreuzberg/stopwords/ja_stopwords.json +136 -136
  217. data/vendor/kreuzberg/stopwords/kn_stopwords.json +84 -84
  218. data/vendor/kreuzberg/stopwords/ko_stopwords.json +681 -681
  219. data/vendor/kreuzberg/stopwords/ku_stopwords.json +64 -64
  220. data/vendor/kreuzberg/stopwords/la_stopwords.json +51 -51
  221. data/vendor/kreuzberg/stopwords/lt_stopwords.json +476 -476
  222. data/vendor/kreuzberg/stopwords/lv_stopwords.json +163 -163
  223. data/vendor/kreuzberg/stopwords/ml_stopwords.json +1 -1
  224. data/vendor/kreuzberg/stopwords/mr_stopwords.json +101 -101
  225. data/vendor/kreuzberg/stopwords/ms_stopwords.json +477 -477
  226. data/vendor/kreuzberg/stopwords/ne_stopwords.json +490 -490
  227. data/vendor/kreuzberg/stopwords/nl_stopwords.json +415 -415
  228. data/vendor/kreuzberg/stopwords/no_stopwords.json +223 -223
  229. data/vendor/kreuzberg/stopwords/pl_stopwords.json +331 -331
  230. data/vendor/kreuzberg/stopwords/pt_stopwords.json +562 -562
  231. data/vendor/kreuzberg/stopwords/ro_stopwords.json +436 -436
  232. data/vendor/kreuzberg/stopwords/ru_stopwords.json +561 -561
  233. data/vendor/kreuzberg/stopwords/si_stopwords.json +193 -193
  234. data/vendor/kreuzberg/stopwords/sk_stopwords.json +420 -420
  235. data/vendor/kreuzberg/stopwords/sl_stopwords.json +448 -448
  236. data/vendor/kreuzberg/stopwords/so_stopwords.json +32 -32
  237. data/vendor/kreuzberg/stopwords/st_stopwords.json +33 -33
  238. data/vendor/kreuzberg/stopwords/sv_stopwords.json +420 -420
  239. data/vendor/kreuzberg/stopwords/sw_stopwords.json +76 -76
  240. data/vendor/kreuzberg/stopwords/ta_stopwords.json +129 -129
  241. data/vendor/kreuzberg/stopwords/te_stopwords.json +54 -54
  242. data/vendor/kreuzberg/stopwords/th_stopwords.json +118 -118
  243. data/vendor/kreuzberg/stopwords/tl_stopwords.json +149 -149
  244. data/vendor/kreuzberg/stopwords/tr_stopwords.json +506 -506
  245. data/vendor/kreuzberg/stopwords/uk_stopwords.json +75 -75
  246. data/vendor/kreuzberg/stopwords/ur_stopwords.json +519 -519
  247. data/vendor/kreuzberg/stopwords/vi_stopwords.json +647 -647
  248. data/vendor/kreuzberg/stopwords/yo_stopwords.json +62 -62
  249. data/vendor/kreuzberg/stopwords/zh_stopwords.json +796 -796
  250. data/vendor/kreuzberg/stopwords/zu_stopwords.json +31 -31
  251. data/vendor/kreuzberg/tests/api_extract_multipart.rs +52 -52
  252. data/vendor/kreuzberg/tests/api_tests.rs +966 -966
  253. data/vendor/kreuzberg/tests/archive_integration.rs +545 -545
  254. data/vendor/kreuzberg/tests/batch_orchestration.rs +556 -556
  255. data/vendor/kreuzberg/tests/batch_processing.rs +318 -318
  256. data/vendor/kreuzberg/tests/bibtex_parity_test.rs +421 -421
  257. data/vendor/kreuzberg/tests/concurrency_stress.rs +533 -533
  258. data/vendor/kreuzberg/tests/config_features.rs +612 -612
  259. data/vendor/kreuzberg/tests/config_loading_tests.rs +416 -416
  260. data/vendor/kreuzberg/tests/core_integration.rs +510 -510
  261. data/vendor/kreuzberg/tests/csv_integration.rs +414 -414
  262. data/vendor/kreuzberg/tests/docbook_extractor_tests.rs +500 -500
  263. data/vendor/kreuzberg/tests/docx_metadata_extraction_test.rs +122 -122
  264. data/vendor/kreuzberg/tests/docx_vs_pandoc_comparison.rs +370 -370
  265. data/vendor/kreuzberg/tests/email_integration.rs +327 -327
  266. data/vendor/kreuzberg/tests/epub_native_extractor_tests.rs +275 -275
  267. data/vendor/kreuzberg/tests/error_handling.rs +402 -402
  268. data/vendor/kreuzberg/tests/fictionbook_extractor_tests.rs +228 -228
  269. data/vendor/kreuzberg/tests/format_integration.rs +165 -164
  270. data/vendor/kreuzberg/tests/helpers/mod.rs +142 -142
  271. data/vendor/kreuzberg/tests/html_table_test.rs +551 -551
  272. data/vendor/kreuzberg/tests/image_integration.rs +255 -255
  273. data/vendor/kreuzberg/tests/instrumentation_test.rs +139 -139
  274. data/vendor/kreuzberg/tests/jats_extractor_tests.rs +639 -639
  275. data/vendor/kreuzberg/tests/jupyter_extractor_tests.rs +704 -704
  276. data/vendor/kreuzberg/tests/keywords_integration.rs +479 -479
  277. data/vendor/kreuzberg/tests/keywords_quality.rs +509 -509
  278. data/vendor/kreuzberg/tests/latex_extractor_tests.rs +496 -496
  279. data/vendor/kreuzberg/tests/markdown_extractor_tests.rs +490 -490
  280. data/vendor/kreuzberg/tests/mime_detection.rs +429 -429
  281. data/vendor/kreuzberg/tests/ocr_configuration.rs +514 -514
  282. data/vendor/kreuzberg/tests/ocr_errors.rs +698 -698
  283. data/vendor/kreuzberg/tests/ocr_quality.rs +629 -629
  284. data/vendor/kreuzberg/tests/ocr_stress.rs +469 -469
  285. data/vendor/kreuzberg/tests/odt_extractor_tests.rs +674 -674
  286. data/vendor/kreuzberg/tests/opml_extractor_tests.rs +616 -616
  287. data/vendor/kreuzberg/tests/orgmode_extractor_tests.rs +822 -822
  288. data/vendor/kreuzberg/tests/pdf_integration.rs +45 -45
  289. data/vendor/kreuzberg/tests/pdfium_linking.rs +374 -374
  290. data/vendor/kreuzberg/tests/pipeline_integration.rs +1436 -1436
  291. data/vendor/kreuzberg/tests/plugin_ocr_backend_test.rs +776 -776
  292. data/vendor/kreuzberg/tests/plugin_postprocessor_test.rs +560 -560
  293. data/vendor/kreuzberg/tests/plugin_system.rs +927 -927
  294. data/vendor/kreuzberg/tests/plugin_validator_test.rs +783 -783
  295. data/vendor/kreuzberg/tests/registry_integration_tests.rs +587 -587
  296. data/vendor/kreuzberg/tests/rst_extractor_tests.rs +694 -694
  297. data/vendor/kreuzberg/tests/rtf_extractor_tests.rs +775 -775
  298. data/vendor/kreuzberg/tests/security_validation.rs +416 -416
  299. data/vendor/kreuzberg/tests/stopwords_integration_test.rs +888 -888
  300. data/vendor/kreuzberg/tests/test_fastembed.rs +631 -631
  301. data/vendor/kreuzberg/tests/typst_behavioral_tests.rs +1260 -1260
  302. data/vendor/kreuzberg/tests/typst_extractor_tests.rs +648 -648
  303. data/vendor/kreuzberg/tests/xlsx_metadata_extraction_test.rs +87 -87
  304. data/vendor/kreuzberg-tesseract/.commitlintrc.json +13 -13
  305. data/vendor/kreuzberg-tesseract/.crate-ignore +2 -2
  306. data/vendor/kreuzberg-tesseract/Cargo.lock +2933 -2933
  307. data/vendor/kreuzberg-tesseract/Cargo.toml +2 -2
  308. data/vendor/kreuzberg-tesseract/LICENSE +22 -22
  309. data/vendor/kreuzberg-tesseract/README.md +399 -399
  310. data/vendor/kreuzberg-tesseract/build.rs +1354 -1354
  311. data/vendor/kreuzberg-tesseract/patches/README.md +71 -71
  312. data/vendor/kreuzberg-tesseract/patches/tesseract.diff +199 -199
  313. data/vendor/kreuzberg-tesseract/src/api.rs +1371 -1371
  314. data/vendor/kreuzberg-tesseract/src/choice_iterator.rs +77 -77
  315. data/vendor/kreuzberg-tesseract/src/enums.rs +297 -297
  316. data/vendor/kreuzberg-tesseract/src/error.rs +81 -81
  317. data/vendor/kreuzberg-tesseract/src/lib.rs +145 -145
  318. data/vendor/kreuzberg-tesseract/src/monitor.rs +57 -57
  319. data/vendor/kreuzberg-tesseract/src/mutable_iterator.rs +197 -197
  320. data/vendor/kreuzberg-tesseract/src/page_iterator.rs +253 -253
  321. data/vendor/kreuzberg-tesseract/src/result_iterator.rs +286 -286
  322. data/vendor/kreuzberg-tesseract/src/result_renderer.rs +183 -183
  323. data/vendor/kreuzberg-tesseract/tests/integration_test.rs +211 -211
  324. data/vendor/rb-sys/.cargo_vcs_info.json +5 -5
  325. data/vendor/rb-sys/Cargo.lock +393 -393
  326. data/vendor/rb-sys/Cargo.toml +70 -70
  327. data/vendor/rb-sys/Cargo.toml.orig +57 -57
  328. data/vendor/rb-sys/LICENSE-APACHE +190 -190
  329. data/vendor/rb-sys/LICENSE-MIT +21 -21
  330. data/vendor/rb-sys/build/features.rs +111 -111
  331. data/vendor/rb-sys/build/main.rs +286 -286
  332. data/vendor/rb-sys/build/stable_api_config.rs +155 -155
  333. data/vendor/rb-sys/build/version.rs +50 -50
  334. data/vendor/rb-sys/readme.md +36 -36
  335. data/vendor/rb-sys/src/bindings.rs +21 -21
  336. data/vendor/rb-sys/src/hidden.rs +11 -11
  337. data/vendor/rb-sys/src/lib.rs +35 -35
  338. data/vendor/rb-sys/src/macros.rs +371 -371
  339. data/vendor/rb-sys/src/memory.rs +53 -53
  340. data/vendor/rb-sys/src/ruby_abi_version.rs +38 -38
  341. data/vendor/rb-sys/src/special_consts.rs +31 -31
  342. data/vendor/rb-sys/src/stable_api/compiled.c +179 -179
  343. data/vendor/rb-sys/src/stable_api/compiled.rs +257 -257
  344. data/vendor/rb-sys/src/stable_api/ruby_2_7.rs +324 -324
  345. data/vendor/rb-sys/src/stable_api/ruby_3_0.rs +332 -332
  346. data/vendor/rb-sys/src/stable_api/ruby_3_1.rs +325 -325
  347. data/vendor/rb-sys/src/stable_api/ruby_3_2.rs +323 -323
  348. data/vendor/rb-sys/src/stable_api/ruby_3_3.rs +339 -339
  349. data/vendor/rb-sys/src/stable_api/ruby_3_4.rs +339 -339
  350. data/vendor/rb-sys/src/stable_api.rs +260 -260
  351. data/vendor/rb-sys/src/symbol.rs +31 -31
  352. data/vendor/rb-sys/src/tracking_allocator.rs +330 -330
  353. data/vendor/rb-sys/src/utils.rs +89 -89
  354. data/vendor/rb-sys/src/value_type.rs +7 -7
  355. metadata +81 -22
  356. data/vendor/kreuzberg-ffi/Cargo.toml +0 -63
  357. data/vendor/kreuzberg-ffi/README.md +0 -851
  358. data/vendor/kreuzberg-ffi/build.rs +0 -176
  359. data/vendor/kreuzberg-ffi/cbindgen.toml +0 -27
  360. data/vendor/kreuzberg-ffi/kreuzberg-ffi-install.pc +0 -12
  361. data/vendor/kreuzberg-ffi/kreuzberg-ffi.pc.in +0 -12
  362. data/vendor/kreuzberg-ffi/kreuzberg.h +0 -1087
  363. data/vendor/kreuzberg-ffi/src/lib.rs +0 -3616
  364. data/vendor/kreuzberg-ffi/src/panic_shield.rs +0 -247
  365. data/vendor/kreuzberg-ffi/tests.disabled/README.md +0 -48
  366. data/vendor/kreuzberg-ffi/tests.disabled/config_loading_tests.rs +0 -299
  367. data/vendor/kreuzberg-ffi/tests.disabled/config_tests.rs +0 -346
  368. data/vendor/kreuzberg-ffi/tests.disabled/extractor_tests.rs +0 -232
  369. data/vendor/kreuzberg-ffi/tests.disabled/plugin_registration_tests.rs +0 -470
@@ -1,509 +1,509 @@
1
- //! Keyword extraction quality assessment tests.
2
- //!
3
- //! This module tests keyword extraction quality by comparing against ground truth keywords.
4
- //! Measures precision, recall, and F1 to ensure default configurations work well out of the box.
5
- //!
6
- //! Test philosophy:
7
- //! - Define ground truth keywords for test documents (domain experts would identify these)
8
- //! - Measure how well extracted keywords match ground truth
9
- //! - Assert minimum quality thresholds for precision/recall/F1
10
- //! - Verify domain relevance of extracted terms
11
-
12
- #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
13
- use kreuzberg::keywords::{KeywordConfig, extract_keywords};
14
- use std::collections::HashSet;
15
-
16
- /// Ground truth keywords for ML document.
17
- /// These are the terms a machine learning expert would identify as key concepts.
18
- #[allow(dead_code)]
19
- fn get_ml_ground_truth() -> HashSet<&'static str> {
20
- [
21
- "machine learning",
22
- "artificial intelligence",
23
- "deep learning",
24
- "neural networks",
25
- "artificial neural networks",
26
- "convolutional neural networks",
27
- "algorithms",
28
- "training data",
29
- "supervised learning",
30
- "unsupervised learning",
31
- "semi-supervised",
32
- "natural language processing",
33
- "computer science",
34
- "model",
35
- "predictions",
36
- "data",
37
- "learning",
38
- ]
39
- .iter()
40
- .cloned()
41
- .collect()
42
- }
43
-
44
- /// Ground truth keywords for climate change document.
45
- #[allow(dead_code)]
46
- fn get_climate_ground_truth() -> HashSet<&'static str> {
47
- [
48
- "climate change",
49
- "global warming",
50
- "greenhouse gases",
51
- "greenhouse gas emissions",
52
- "fossil fuels",
53
- "burning fossil fuels",
54
- "carbon dioxide",
55
- "methane",
56
- "temperatures",
57
- "weather patterns",
58
- "climate system",
59
- "human activities",
60
- "agriculture",
61
- "deforestation",
62
- "solar cycle",
63
- "earth",
64
- ]
65
- .iter()
66
- .cloned()
67
- .collect()
68
- }
69
-
70
- #[derive(Debug)]
71
- #[allow(dead_code)]
72
- struct KeywordQualityScores {
73
- precision: f64,
74
- recall: f64,
75
- f1: f64,
76
- exact_matches: usize,
77
- partial_matches: usize,
78
- total_extracted: usize,
79
- total_ground_truth: usize,
80
- }
81
-
82
- impl KeywordQualityScores {
83
- fn new(exact_matches: usize, partial_matches: usize, total_extracted: usize, total_ground_truth: usize) -> Self {
84
- let precision = if total_extracted > 0 {
85
- (exact_matches + partial_matches) as f64 / total_extracted as f64
86
- } else {
87
- 0.0
88
- };
89
-
90
- let recall = if total_ground_truth > 0 {
91
- (exact_matches + partial_matches) as f64 / total_ground_truth as f64
92
- } else {
93
- 0.0
94
- };
95
-
96
- let f1 = if precision + recall > 0.0 {
97
- 2.0 * precision * recall / (precision + recall)
98
- } else {
99
- 0.0
100
- };
101
-
102
- Self {
103
- precision,
104
- recall,
105
- f1,
106
- exact_matches,
107
- partial_matches,
108
- total_extracted,
109
- total_ground_truth,
110
- }
111
- }
112
- }
113
-
114
- /// Evaluate extracted keywords against ground truth.
115
- ///
116
- /// Supports both exact matches and partial matches:
117
- /// - Exact: "machine learning" == "machine learning"
118
- /// - Partial: "machine" matches "machine learning" (subset)
119
- #[allow(dead_code)]
120
- fn evaluate_keyword_quality(extracted: &[&str], ground_truth: &HashSet<&str>) -> KeywordQualityScores {
121
- let extracted_lower: Vec<String> = extracted.iter().map(|s| s.to_lowercase()).collect();
122
- let ground_truth_lower: HashSet<String> = ground_truth.iter().map(|s| s.to_lowercase()).collect();
123
-
124
- let mut exact_matches = 0;
125
- let mut partial_matches = 0;
126
- let mut matched_ground_truth: HashSet<String> = HashSet::new();
127
-
128
- for extracted_kw in &extracted_lower {
129
- if ground_truth_lower.contains(extracted_kw) {
130
- exact_matches += 1;
131
- matched_ground_truth.insert(extracted_kw.clone());
132
- continue;
133
- }
134
-
135
- let mut found_partial = false;
136
- for gt_kw in &ground_truth_lower {
137
- if (gt_kw.contains(extracted_kw) || extracted_kw.contains(gt_kw)) && !matched_ground_truth.contains(gt_kw) {
138
- partial_matches += 1;
139
- matched_ground_truth.insert(gt_kw.clone());
140
- found_partial = true;
141
- break;
142
- }
143
- }
144
-
145
- if !found_partial {
146
- for gt_kw in &ground_truth_lower {
147
- let gt_words: Vec<&str> = gt_kw.split_whitespace().collect();
148
- let ex_words: HashSet<&str> = extracted_kw.split_whitespace().collect();
149
-
150
- let overlap = gt_words.iter().filter(|w| ex_words.contains(*w)).count();
151
- if overlap >= gt_words.len() / 2 && overlap > 0 && !matched_ground_truth.contains(gt_kw) {
152
- partial_matches += 1;
153
- matched_ground_truth.insert(gt_kw.clone());
154
- break;
155
- }
156
- }
157
- }
158
- }
159
-
160
- KeywordQualityScores::new(
161
- exact_matches,
162
- partial_matches,
163
- extracted_lower.len(),
164
- ground_truth_lower.len(),
165
- )
166
- }
167
-
168
- /// ML document text (subset for testing).
169
- #[allow(dead_code)]
170
- const ML_DOC_SAMPLE: &str = r#"
171
- Machine learning is a branch of artificial intelligence and computer science which focuses on the use of data and algorithms to imitate the way that humans learn.
172
- Machine learning algorithms build a model based on sample data, known as training data, to make predictions or decisions without being explicitly programmed to do so.
173
- Deep learning is a type of machine learning based on artificial neural networks. The learning process is deep because the structure of artificial neural networks consists of multiple input, output, and hidden layers.
174
- Neural networks can be used for supervised, semi-supervised, and unsupervised learning. Convolutional neural networks are commonly applied to analyzing visual imagery.
175
- Natural language processing is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language.
176
- "#;
177
-
178
- /// Climate document text (subset for testing).
179
- #[allow(dead_code)]
180
- const CLIMATE_DOC_SAMPLE: &str = r#"
181
- Climate change refers to long-term shifts in temperatures and weather patterns. These shifts may be natural, such as through variations in the solar cycle.
182
- But since the 1800s, human activities have been the main driver of climate change, primarily due to burning fossil fuels like coal, oil, and gas.
183
- Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun's heat and raising temperatures.
184
- The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from burning fossil fuels for energy, agriculture, and deforestation.
185
- Global warming is the long-term heating of Earth's climate system. Climate science reveals that human activity has been the dominant cause of climate change since the mid-20th century.
186
- "#;
187
-
188
- #[cfg(feature = "keywords-yake")]
189
- #[test]
190
- fn test_yake_quality_ml_document_default_config() {
191
- let config = KeywordConfig::yake();
192
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
193
-
194
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
195
-
196
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
197
- let ground_truth = get_ml_ground_truth();
198
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
199
-
200
- println!("\nYAKE ML Document Quality (Default Config):");
201
- println!(" Extracted: {} keywords", scores.total_extracted);
202
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
203
- println!(" Exact matches: {}", scores.exact_matches);
204
- println!(" Partial matches: {}", scores.partial_matches);
205
- println!(" Precision: {:.3}", scores.precision);
206
- println!(" Recall: {:.3}", scores.recall);
207
- println!(" F1: {:.3}", scores.f1);
208
- println!("\nExtracted keywords:");
209
- for (i, kw) in keywords.iter().enumerate().take(10) {
210
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
211
- }
212
-
213
- assert!(
214
- scores.precision >= 0.40,
215
- "YAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
216
- scores.precision,
217
- scores.exact_matches + scores.partial_matches,
218
- scores.total_extracted
219
- );
220
-
221
- assert!(
222
- scores.recall >= 0.30,
223
- "YAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
224
- scores.recall,
225
- scores.exact_matches + scores.partial_matches,
226
- scores.total_ground_truth
227
- );
228
-
229
- assert!(
230
- scores.f1 >= 0.30,
231
- "YAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
232
- scores.f1,
233
- scores.precision,
234
- scores.recall
235
- );
236
- }
237
-
238
- #[cfg(feature = "keywords-rake")]
239
- #[test]
240
- fn test_rake_quality_ml_document_default_config() {
241
- let config = KeywordConfig::rake();
242
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
243
-
244
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
245
-
246
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
247
- let ground_truth = get_ml_ground_truth();
248
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
249
-
250
- println!("\nRAKE ML Document Quality (Default Config):");
251
- println!(" Extracted: {} keywords", scores.total_extracted);
252
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
253
- println!(" Exact matches: {}", scores.exact_matches);
254
- println!(" Partial matches: {}", scores.partial_matches);
255
- println!(" Precision: {:.3}", scores.precision);
256
- println!(" Recall: {:.3}", scores.recall);
257
- println!(" F1: {:.3}", scores.f1);
258
- println!("\nExtracted keywords:");
259
- for (i, kw) in keywords.iter().enumerate().take(10) {
260
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
261
- }
262
-
263
- assert!(
264
- scores.precision >= 0.40,
265
- "RAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
266
- scores.precision,
267
- scores.exact_matches + scores.partial_matches,
268
- scores.total_extracted
269
- );
270
-
271
- assert!(
272
- scores.recall >= 0.30,
273
- "RAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
274
- scores.recall,
275
- scores.exact_matches + scores.partial_matches,
276
- scores.total_ground_truth
277
- );
278
-
279
- assert!(
280
- scores.f1 >= 0.30,
281
- "RAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
282
- scores.f1,
283
- scores.precision,
284
- scores.recall
285
- );
286
- }
287
-
288
- #[cfg(feature = "keywords-yake")]
289
- #[test]
290
- fn test_yake_quality_climate_document_default_config() {
291
- let config = KeywordConfig::yake();
292
- let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
293
-
294
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
295
-
296
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
297
- let ground_truth = get_climate_ground_truth();
298
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
299
-
300
- println!("\nYAKE Climate Document Quality (Default Config):");
301
- println!(" Extracted: {} keywords", scores.total_extracted);
302
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
303
- println!(" Exact matches: {}", scores.exact_matches);
304
- println!(" Partial matches: {}", scores.partial_matches);
305
- println!(" Precision: {:.3}", scores.precision);
306
- println!(" Recall: {:.3}", scores.recall);
307
- println!(" F1: {:.3}", scores.f1);
308
- println!("\nExtracted keywords:");
309
- for (i, kw) in keywords.iter().enumerate().take(10) {
310
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
311
- }
312
-
313
- assert!(
314
- scores.precision >= 0.40,
315
- "YAKE precision too low: {:.3} (expected >= 0.40)",
316
- scores.precision
317
- );
318
- assert!(
319
- scores.recall >= 0.30,
320
- "YAKE recall too low: {:.3} (expected >= 0.30)",
321
- scores.recall
322
- );
323
- assert!(
324
- scores.f1 >= 0.30,
325
- "YAKE F1 too low: {:.3} (expected >= 0.30)",
326
- scores.f1
327
- );
328
- }
329
-
330
- #[cfg(feature = "keywords-rake")]
331
- #[test]
332
- fn test_rake_quality_climate_document_default_config() {
333
- let config = KeywordConfig::rake();
334
- let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
335
-
336
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
337
-
338
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
339
- let ground_truth = get_climate_ground_truth();
340
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
341
-
342
- println!("\nRAKE Climate Document Quality (Default Config):");
343
- println!(" Extracted: {} keywords", scores.total_extracted);
344
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
345
- println!(" Exact matches: {}", scores.exact_matches);
346
- println!(" Partial matches: {}", scores.partial_matches);
347
- println!(" Precision: {:.3}", scores.precision);
348
- println!(" Recall: {:.3}", scores.recall);
349
- println!(" F1: {:.3}", scores.f1);
350
- println!("\nExtracted keywords:");
351
- for (i, kw) in keywords.iter().enumerate().take(10) {
352
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
353
- }
354
-
355
- assert!(
356
- scores.precision >= 0.40,
357
- "RAKE precision too low: {:.3} (expected >= 0.40)",
358
- scores.precision
359
- );
360
- assert!(
361
- scores.recall >= 0.30,
362
- "RAKE recall too low: {:.3} (expected >= 0.30)",
363
- scores.recall
364
- );
365
- assert!(
366
- scores.f1 >= 0.30,
367
- "RAKE F1 too low: {:.3} (expected >= 0.30)",
368
- scores.f1
369
- );
370
- }
371
-
372
- #[cfg(all(feature = "keywords-yake", feature = "keywords-rake"))]
373
- #[test]
374
- fn test_yake_vs_rake_quality_comparison() {
375
- let yake_config = KeywordConfig::yake();
376
- let rake_config = KeywordConfig::rake();
377
-
378
- let yake_keywords = extract_keywords(ML_DOC_SAMPLE, &yake_config).unwrap();
379
- let rake_keywords = extract_keywords(ML_DOC_SAMPLE, &rake_config).unwrap();
380
-
381
- let yake_extracted: Vec<&str> = yake_keywords.iter().map(|k| k.text.as_str()).collect();
382
- let rake_extracted: Vec<&str> = rake_keywords.iter().map(|k| k.text.as_str()).collect();
383
-
384
- let ground_truth = get_ml_ground_truth();
385
- let yake_scores = evaluate_keyword_quality(&yake_extracted, &ground_truth);
386
- let rake_scores = evaluate_keyword_quality(&rake_extracted, &ground_truth);
387
-
388
- println!("\nYAKE vs RAKE Quality Comparison (ML Document):");
389
- println!(
390
- " YAKE F1: {:.3} (P: {:.3}, R: {:.3})",
391
- yake_scores.f1, yake_scores.precision, yake_scores.recall
392
- );
393
- println!(
394
- " RAKE F1: {:.3} (P: {:.3}, R: {:.3})",
395
- rake_scores.f1, rake_scores.precision, rake_scores.recall
396
- );
397
-
398
- assert!(yake_scores.f1 >= 0.25, "YAKE F1 too low: {:.3}", yake_scores.f1);
399
- assert!(rake_scores.f1 >= 0.25, "RAKE F1 too low: {:.3}", rake_scores.f1);
400
-
401
- let best_f1 = yake_scores.f1.max(rake_scores.f1);
402
- assert!(
403
- best_f1 >= 0.30,
404
- "Neither algorithm achieved F1 >= 0.30. Best: {:.3}",
405
- best_f1
406
- );
407
- }
408
-
409
- #[cfg(feature = "keywords-yake")]
410
- #[test]
411
- fn test_yake_quality_with_optimized_config() {
412
- let config = KeywordConfig::yake()
413
- .with_max_keywords(15)
414
- .with_ngram_range(1, 3)
415
- .with_min_score(0.0);
416
-
417
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
418
-
419
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
420
- let ground_truth = get_ml_ground_truth();
421
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
422
-
423
- println!("\nYAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
424
- println!(
425
- " F1: {:.3} (P: {:.3}, R: {:.3})",
426
- scores.f1, scores.precision, scores.recall
427
- );
428
-
429
- assert!(
430
- scores.recall >= 0.35,
431
- "Optimized config should improve recall: {:.3} (expected >= 0.35)",
432
- scores.recall
433
- );
434
- }
435
-
436
- #[cfg(feature = "keywords-rake")]
437
- #[test]
438
- fn test_rake_quality_with_optimized_config() {
439
- let config = KeywordConfig::rake()
440
- .with_max_keywords(15)
441
- .with_ngram_range(1, 3)
442
- .with_min_score(0.0);
443
-
444
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
445
-
446
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
447
- let ground_truth = get_ml_ground_truth();
448
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
449
-
450
- println!("\nRAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
451
- println!(
452
- " F1: {:.3} (P: {:.3}, R: {:.3})",
453
- scores.f1, scores.precision, scores.recall
454
- );
455
-
456
- assert!(
457
- scores.recall >= 0.35,
458
- "Optimized config should improve recall: {:.3} (expected >= 0.35)",
459
- scores.recall
460
- );
461
- }
462
-
463
- #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
464
- #[test]
465
- fn test_extracted_keywords_are_domain_relevant() {
466
- let config = KeywordConfig::default();
467
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
468
-
469
- let ml_terms = [
470
- "machine",
471
- "learning",
472
- "artificial",
473
- "intelligence",
474
- "neural",
475
- "network",
476
- "deep",
477
- "algorithm",
478
- "data",
479
- "model",
480
- "training",
481
- "supervised",
482
- "unsupervised",
483
- "language",
484
- "processing",
485
- ];
486
-
487
- let relevant_count = keywords
488
- .iter()
489
- .filter(|kw| {
490
- let kw_lower = kw.text.to_lowercase();
491
- ml_terms.iter().any(|term| kw_lower.contains(term))
492
- })
493
- .count();
494
-
495
- let relevance_ratio = relevant_count as f64 / keywords.len() as f64;
496
-
497
- println!("\nDomain Relevance Check:");
498
- println!(" Extracted keywords: {}", keywords.len());
499
- println!(" Domain-relevant keywords: {}", relevant_count);
500
- println!(" Relevance ratio: {:.3}", relevance_ratio);
501
-
502
- assert!(
503
- relevance_ratio >= 0.70,
504
- "Too many irrelevant keywords extracted. Relevance: {:.3} (expected >= 0.70). Relevant: {}/{}",
505
- relevance_ratio,
506
- relevant_count,
507
- keywords.len()
508
- );
509
- }
1
+ //! Keyword extraction quality assessment tests.
2
+ //!
3
+ //! This module tests keyword extraction quality by comparing against ground truth keywords.
4
+ //! Measures precision, recall, and F1 to ensure default configurations work well out of the box.
5
+ //!
6
+ //! Test philosophy:
7
+ //! - Define ground truth keywords for test documents (domain experts would identify these)
8
+ //! - Measure how well extracted keywords match ground truth
9
+ //! - Assert minimum quality thresholds for precision/recall/F1
10
+ //! - Verify domain relevance of extracted terms
11
+
12
+ #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
13
+ use kreuzberg::keywords::{KeywordConfig, extract_keywords};
14
+ use std::collections::HashSet;
15
+
16
+ /// Ground truth keywords for ML document.
17
+ /// These are the terms a machine learning expert would identify as key concepts.
18
+ #[allow(dead_code)]
19
+ fn get_ml_ground_truth() -> HashSet<&'static str> {
20
+ [
21
+ "machine learning",
22
+ "artificial intelligence",
23
+ "deep learning",
24
+ "neural networks",
25
+ "artificial neural networks",
26
+ "convolutional neural networks",
27
+ "algorithms",
28
+ "training data",
29
+ "supervised learning",
30
+ "unsupervised learning",
31
+ "semi-supervised",
32
+ "natural language processing",
33
+ "computer science",
34
+ "model",
35
+ "predictions",
36
+ "data",
37
+ "learning",
38
+ ]
39
+ .iter()
40
+ .cloned()
41
+ .collect()
42
+ }
43
+
44
+ /// Ground truth keywords for climate change document.
45
+ #[allow(dead_code)]
46
+ fn get_climate_ground_truth() -> HashSet<&'static str> {
47
+ [
48
+ "climate change",
49
+ "global warming",
50
+ "greenhouse gases",
51
+ "greenhouse gas emissions",
52
+ "fossil fuels",
53
+ "burning fossil fuels",
54
+ "carbon dioxide",
55
+ "methane",
56
+ "temperatures",
57
+ "weather patterns",
58
+ "climate system",
59
+ "human activities",
60
+ "agriculture",
61
+ "deforestation",
62
+ "solar cycle",
63
+ "earth",
64
+ ]
65
+ .iter()
66
+ .cloned()
67
+ .collect()
68
+ }
69
+
70
+ #[derive(Debug)]
71
+ #[allow(dead_code)]
72
+ struct KeywordQualityScores {
73
+ precision: f64,
74
+ recall: f64,
75
+ f1: f64,
76
+ exact_matches: usize,
77
+ partial_matches: usize,
78
+ total_extracted: usize,
79
+ total_ground_truth: usize,
80
+ }
81
+
82
+ impl KeywordQualityScores {
83
+ fn new(exact_matches: usize, partial_matches: usize, total_extracted: usize, total_ground_truth: usize) -> Self {
84
+ let precision = if total_extracted > 0 {
85
+ (exact_matches + partial_matches) as f64 / total_extracted as f64
86
+ } else {
87
+ 0.0
88
+ };
89
+
90
+ let recall = if total_ground_truth > 0 {
91
+ (exact_matches + partial_matches) as f64 / total_ground_truth as f64
92
+ } else {
93
+ 0.0
94
+ };
95
+
96
+ let f1 = if precision + recall > 0.0 {
97
+ 2.0 * precision * recall / (precision + recall)
98
+ } else {
99
+ 0.0
100
+ };
101
+
102
+ Self {
103
+ precision,
104
+ recall,
105
+ f1,
106
+ exact_matches,
107
+ partial_matches,
108
+ total_extracted,
109
+ total_ground_truth,
110
+ }
111
+ }
112
+ }
113
+
114
+ /// Evaluate extracted keywords against ground truth.
115
+ ///
116
+ /// Supports both exact matches and partial matches:
117
+ /// - Exact: "machine learning" == "machine learning"
118
+ /// - Partial: "machine" matches "machine learning" (subset)
119
+ #[allow(dead_code)]
120
+ fn evaluate_keyword_quality(extracted: &[&str], ground_truth: &HashSet<&str>) -> KeywordQualityScores {
121
+ let extracted_lower: Vec<String> = extracted.iter().map(|s| s.to_lowercase()).collect();
122
+ let ground_truth_lower: HashSet<String> = ground_truth.iter().map(|s| s.to_lowercase()).collect();
123
+
124
+ let mut exact_matches = 0;
125
+ let mut partial_matches = 0;
126
+ let mut matched_ground_truth: HashSet<String> = HashSet::new();
127
+
128
+ for extracted_kw in &extracted_lower {
129
+ if ground_truth_lower.contains(extracted_kw) {
130
+ exact_matches += 1;
131
+ matched_ground_truth.insert(extracted_kw.clone());
132
+ continue;
133
+ }
134
+
135
+ let mut found_partial = false;
136
+ for gt_kw in &ground_truth_lower {
137
+ if (gt_kw.contains(extracted_kw) || extracted_kw.contains(gt_kw)) && !matched_ground_truth.contains(gt_kw) {
138
+ partial_matches += 1;
139
+ matched_ground_truth.insert(gt_kw.clone());
140
+ found_partial = true;
141
+ break;
142
+ }
143
+ }
144
+
145
+ if !found_partial {
146
+ for gt_kw in &ground_truth_lower {
147
+ let gt_words: Vec<&str> = gt_kw.split_whitespace().collect();
148
+ let ex_words: HashSet<&str> = extracted_kw.split_whitespace().collect();
149
+
150
+ let overlap = gt_words.iter().filter(|w| ex_words.contains(*w)).count();
151
+ if overlap >= gt_words.len() / 2 && overlap > 0 && !matched_ground_truth.contains(gt_kw) {
152
+ partial_matches += 1;
153
+ matched_ground_truth.insert(gt_kw.clone());
154
+ break;
155
+ }
156
+ }
157
+ }
158
+ }
159
+
160
+ KeywordQualityScores::new(
161
+ exact_matches,
162
+ partial_matches,
163
+ extracted_lower.len(),
164
+ ground_truth_lower.len(),
165
+ )
166
+ }
167
+
168
+ /// ML document text (subset for testing).
169
+ #[allow(dead_code)]
170
+ const ML_DOC_SAMPLE: &str = r#"
171
+ Machine learning is a branch of artificial intelligence and computer science which focuses on the use of data and algorithms to imitate the way that humans learn.
172
+ Machine learning algorithms build a model based on sample data, known as training data, to make predictions or decisions without being explicitly programmed to do so.
173
+ Deep learning is a type of machine learning based on artificial neural networks. The learning process is deep because the structure of artificial neural networks consists of multiple input, output, and hidden layers.
174
+ Neural networks can be used for supervised, semi-supervised, and unsupervised learning. Convolutional neural networks are commonly applied to analyzing visual imagery.
175
+ Natural language processing is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language.
176
+ "#;
177
+
178
+ /// Climate document text (subset for testing).
179
+ #[allow(dead_code)]
180
+ const CLIMATE_DOC_SAMPLE: &str = r#"
181
+ Climate change refers to long-term shifts in temperatures and weather patterns. These shifts may be natural, such as through variations in the solar cycle.
182
+ But since the 1800s, human activities have been the main driver of climate change, primarily due to burning fossil fuels like coal, oil, and gas.
183
+ Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun's heat and raising temperatures.
184
+ The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from burning fossil fuels for energy, agriculture, and deforestation.
185
+ Global warming is the long-term heating of Earth's climate system. Climate science reveals that human activity has been the dominant cause of climate change since the mid-20th century.
186
+ "#;
187
+
188
+ #[cfg(feature = "keywords-yake")]
189
+ #[test]
190
+ fn test_yake_quality_ml_document_default_config() {
191
+ let config = KeywordConfig::yake();
192
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
193
+
194
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
195
+
196
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
197
+ let ground_truth = get_ml_ground_truth();
198
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
199
+
200
+ println!("\nYAKE ML Document Quality (Default Config):");
201
+ println!(" Extracted: {} keywords", scores.total_extracted);
202
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
203
+ println!(" Exact matches: {}", scores.exact_matches);
204
+ println!(" Partial matches: {}", scores.partial_matches);
205
+ println!(" Precision: {:.3}", scores.precision);
206
+ println!(" Recall: {:.3}", scores.recall);
207
+ println!(" F1: {:.3}", scores.f1);
208
+ println!("\nExtracted keywords:");
209
+ for (i, kw) in keywords.iter().enumerate().take(10) {
210
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
211
+ }
212
+
213
+ assert!(
214
+ scores.precision >= 0.40,
215
+ "YAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
216
+ scores.precision,
217
+ scores.exact_matches + scores.partial_matches,
218
+ scores.total_extracted
219
+ );
220
+
221
+ assert!(
222
+ scores.recall >= 0.30,
223
+ "YAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
224
+ scores.recall,
225
+ scores.exact_matches + scores.partial_matches,
226
+ scores.total_ground_truth
227
+ );
228
+
229
+ assert!(
230
+ scores.f1 >= 0.30,
231
+ "YAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
232
+ scores.f1,
233
+ scores.precision,
234
+ scores.recall
235
+ );
236
+ }
237
+
238
+ #[cfg(feature = "keywords-rake")]
239
+ #[test]
240
+ fn test_rake_quality_ml_document_default_config() {
241
+ let config = KeywordConfig::rake();
242
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
243
+
244
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
245
+
246
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
247
+ let ground_truth = get_ml_ground_truth();
248
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
249
+
250
+ println!("\nRAKE ML Document Quality (Default Config):");
251
+ println!(" Extracted: {} keywords", scores.total_extracted);
252
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
253
+ println!(" Exact matches: {}", scores.exact_matches);
254
+ println!(" Partial matches: {}", scores.partial_matches);
255
+ println!(" Precision: {:.3}", scores.precision);
256
+ println!(" Recall: {:.3}", scores.recall);
257
+ println!(" F1: {:.3}", scores.f1);
258
+ println!("\nExtracted keywords:");
259
+ for (i, kw) in keywords.iter().enumerate().take(10) {
260
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
261
+ }
262
+
263
+ assert!(
264
+ scores.precision >= 0.40,
265
+ "RAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
266
+ scores.precision,
267
+ scores.exact_matches + scores.partial_matches,
268
+ scores.total_extracted
269
+ );
270
+
271
+ assert!(
272
+ scores.recall >= 0.30,
273
+ "RAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
274
+ scores.recall,
275
+ scores.exact_matches + scores.partial_matches,
276
+ scores.total_ground_truth
277
+ );
278
+
279
+ assert!(
280
+ scores.f1 >= 0.30,
281
+ "RAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
282
+ scores.f1,
283
+ scores.precision,
284
+ scores.recall
285
+ );
286
+ }
287
+
288
+ #[cfg(feature = "keywords-yake")]
289
+ #[test]
290
+ fn test_yake_quality_climate_document_default_config() {
291
+ let config = KeywordConfig::yake();
292
+ let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
293
+
294
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
295
+
296
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
297
+ let ground_truth = get_climate_ground_truth();
298
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
299
+
300
+ println!("\nYAKE Climate Document Quality (Default Config):");
301
+ println!(" Extracted: {} keywords", scores.total_extracted);
302
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
303
+ println!(" Exact matches: {}", scores.exact_matches);
304
+ println!(" Partial matches: {}", scores.partial_matches);
305
+ println!(" Precision: {:.3}", scores.precision);
306
+ println!(" Recall: {:.3}", scores.recall);
307
+ println!(" F1: {:.3}", scores.f1);
308
+ println!("\nExtracted keywords:");
309
+ for (i, kw) in keywords.iter().enumerate().take(10) {
310
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
311
+ }
312
+
313
+ assert!(
314
+ scores.precision >= 0.40,
315
+ "YAKE precision too low: {:.3} (expected >= 0.40)",
316
+ scores.precision
317
+ );
318
+ assert!(
319
+ scores.recall >= 0.30,
320
+ "YAKE recall too low: {:.3} (expected >= 0.30)",
321
+ scores.recall
322
+ );
323
+ assert!(
324
+ scores.f1 >= 0.30,
325
+ "YAKE F1 too low: {:.3} (expected >= 0.30)",
326
+ scores.f1
327
+ );
328
+ }
329
+
330
+ #[cfg(feature = "keywords-rake")]
331
+ #[test]
332
+ fn test_rake_quality_climate_document_default_config() {
333
+ let config = KeywordConfig::rake();
334
+ let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
335
+
336
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
337
+
338
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
339
+ let ground_truth = get_climate_ground_truth();
340
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
341
+
342
+ println!("\nRAKE Climate Document Quality (Default Config):");
343
+ println!(" Extracted: {} keywords", scores.total_extracted);
344
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
345
+ println!(" Exact matches: {}", scores.exact_matches);
346
+ println!(" Partial matches: {}", scores.partial_matches);
347
+ println!(" Precision: {:.3}", scores.precision);
348
+ println!(" Recall: {:.3}", scores.recall);
349
+ println!(" F1: {:.3}", scores.f1);
350
+ println!("\nExtracted keywords:");
351
+ for (i, kw) in keywords.iter().enumerate().take(10) {
352
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
353
+ }
354
+
355
+ assert!(
356
+ scores.precision >= 0.40,
357
+ "RAKE precision too low: {:.3} (expected >= 0.40)",
358
+ scores.precision
359
+ );
360
+ assert!(
361
+ scores.recall >= 0.30,
362
+ "RAKE recall too low: {:.3} (expected >= 0.30)",
363
+ scores.recall
364
+ );
365
+ assert!(
366
+ scores.f1 >= 0.30,
367
+ "RAKE F1 too low: {:.3} (expected >= 0.30)",
368
+ scores.f1
369
+ );
370
+ }
371
+
372
+ #[cfg(all(feature = "keywords-yake", feature = "keywords-rake"))]
373
+ #[test]
374
+ fn test_yake_vs_rake_quality_comparison() {
375
+ let yake_config = KeywordConfig::yake();
376
+ let rake_config = KeywordConfig::rake();
377
+
378
+ let yake_keywords = extract_keywords(ML_DOC_SAMPLE, &yake_config).unwrap();
379
+ let rake_keywords = extract_keywords(ML_DOC_SAMPLE, &rake_config).unwrap();
380
+
381
+ let yake_extracted: Vec<&str> = yake_keywords.iter().map(|k| k.text.as_str()).collect();
382
+ let rake_extracted: Vec<&str> = rake_keywords.iter().map(|k| k.text.as_str()).collect();
383
+
384
+ let ground_truth = get_ml_ground_truth();
385
+ let yake_scores = evaluate_keyword_quality(&yake_extracted, &ground_truth);
386
+ let rake_scores = evaluate_keyword_quality(&rake_extracted, &ground_truth);
387
+
388
+ println!("\nYAKE vs RAKE Quality Comparison (ML Document):");
389
+ println!(
390
+ " YAKE F1: {:.3} (P: {:.3}, R: {:.3})",
391
+ yake_scores.f1, yake_scores.precision, yake_scores.recall
392
+ );
393
+ println!(
394
+ " RAKE F1: {:.3} (P: {:.3}, R: {:.3})",
395
+ rake_scores.f1, rake_scores.precision, rake_scores.recall
396
+ );
397
+
398
+ assert!(yake_scores.f1 >= 0.25, "YAKE F1 too low: {:.3}", yake_scores.f1);
399
+ assert!(rake_scores.f1 >= 0.25, "RAKE F1 too low: {:.3}", rake_scores.f1);
400
+
401
+ let best_f1 = yake_scores.f1.max(rake_scores.f1);
402
+ assert!(
403
+ best_f1 >= 0.30,
404
+ "Neither algorithm achieved F1 >= 0.30. Best: {:.3}",
405
+ best_f1
406
+ );
407
+ }
408
+
409
+ #[cfg(feature = "keywords-yake")]
410
+ #[test]
411
+ fn test_yake_quality_with_optimized_config() {
412
+ let config = KeywordConfig::yake()
413
+ .with_max_keywords(15)
414
+ .with_ngram_range(1, 3)
415
+ .with_min_score(0.0);
416
+
417
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
418
+
419
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
420
+ let ground_truth = get_ml_ground_truth();
421
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
422
+
423
+ println!("\nYAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
424
+ println!(
425
+ " F1: {:.3} (P: {:.3}, R: {:.3})",
426
+ scores.f1, scores.precision, scores.recall
427
+ );
428
+
429
+ assert!(
430
+ scores.recall >= 0.35,
431
+ "Optimized config should improve recall: {:.3} (expected >= 0.35)",
432
+ scores.recall
433
+ );
434
+ }
435
+
436
+ #[cfg(feature = "keywords-rake")]
437
+ #[test]
438
+ fn test_rake_quality_with_optimized_config() {
439
+ let config = KeywordConfig::rake()
440
+ .with_max_keywords(15)
441
+ .with_ngram_range(1, 3)
442
+ .with_min_score(0.0);
443
+
444
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
445
+
446
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
447
+ let ground_truth = get_ml_ground_truth();
448
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
449
+
450
+ println!("\nRAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
451
+ println!(
452
+ " F1: {:.3} (P: {:.3}, R: {:.3})",
453
+ scores.f1, scores.precision, scores.recall
454
+ );
455
+
456
+ assert!(
457
+ scores.recall >= 0.35,
458
+ "Optimized config should improve recall: {:.3} (expected >= 0.35)",
459
+ scores.recall
460
+ );
461
+ }
462
+
463
+ #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
464
+ #[test]
465
+ fn test_extracted_keywords_are_domain_relevant() {
466
+ let config = KeywordConfig::default();
467
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
468
+
469
+ let ml_terms = [
470
+ "machine",
471
+ "learning",
472
+ "artificial",
473
+ "intelligence",
474
+ "neural",
475
+ "network",
476
+ "deep",
477
+ "algorithm",
478
+ "data",
479
+ "model",
480
+ "training",
481
+ "supervised",
482
+ "unsupervised",
483
+ "language",
484
+ "processing",
485
+ ];
486
+
487
+ let relevant_count = keywords
488
+ .iter()
489
+ .filter(|kw| {
490
+ let kw_lower = kw.text.to_lowercase();
491
+ ml_terms.iter().any(|term| kw_lower.contains(term))
492
+ })
493
+ .count();
494
+
495
+ let relevance_ratio = relevant_count as f64 / keywords.len() as f64;
496
+
497
+ println!("\nDomain Relevance Check:");
498
+ println!(" Extracted keywords: {}", keywords.len());
499
+ println!(" Domain-relevant keywords: {}", relevant_count);
500
+ println!(" Relevance ratio: {:.3}", relevance_ratio);
501
+
502
+ assert!(
503
+ relevance_ratio >= 0.70,
504
+ "Too many irrelevant keywords extracted. Relevance: {:.3} (expected >= 0.70). Relevant: {}/{}",
505
+ relevance_ratio,
506
+ relevant_count,
507
+ keywords.len()
508
+ );
509
+ }