kreuzberg 4.0.0.pre.rc.13 → 4.0.0.pre.rc.15

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (369) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +14 -14
  3. data/.rspec +3 -3
  4. data/.rubocop.yaml +1 -1
  5. data/.rubocop.yml +538 -538
  6. data/Gemfile +8 -8
  7. data/Gemfile.lock +104 -2
  8. data/README.md +454 -454
  9. data/Rakefile +33 -25
  10. data/Steepfile +47 -47
  11. data/examples/async_patterns.rb +341 -341
  12. data/ext/kreuzberg_rb/extconf.rb +45 -45
  13. data/ext/kreuzberg_rb/native/.cargo/config.toml +2 -2
  14. data/ext/kreuzberg_rb/native/Cargo.lock +6750 -6941
  15. data/ext/kreuzberg_rb/native/Cargo.toml +53 -54
  16. data/ext/kreuzberg_rb/native/README.md +425 -425
  17. data/ext/kreuzberg_rb/native/build.rs +52 -15
  18. data/ext/kreuzberg_rb/native/include/ieeefp.h +11 -11
  19. data/ext/kreuzberg_rb/native/include/msvc_compat/strings.h +14 -14
  20. data/ext/kreuzberg_rb/native/include/strings.h +20 -20
  21. data/ext/kreuzberg_rb/native/include/unistd.h +47 -47
  22. data/ext/kreuzberg_rb/native/src/lib.rs +3158 -3158
  23. data/extconf.rb +28 -28
  24. data/kreuzberg.gemspec +214 -214
  25. data/lib/kreuzberg/api_proxy.rb +142 -142
  26. data/lib/kreuzberg/cache_api.rb +81 -81
  27. data/lib/kreuzberg/cli.rb +55 -55
  28. data/lib/kreuzberg/cli_proxy.rb +127 -127
  29. data/lib/kreuzberg/config.rb +724 -724
  30. data/lib/kreuzberg/error_context.rb +80 -80
  31. data/lib/kreuzberg/errors.rb +118 -118
  32. data/lib/kreuzberg/extraction_api.rb +340 -340
  33. data/lib/kreuzberg/mcp_proxy.rb +186 -186
  34. data/lib/kreuzberg/ocr_backend_protocol.rb +113 -113
  35. data/lib/kreuzberg/post_processor_protocol.rb +86 -86
  36. data/lib/kreuzberg/result.rb +279 -279
  37. data/lib/kreuzberg/setup_lib_path.rb +80 -80
  38. data/lib/kreuzberg/validator_protocol.rb +89 -89
  39. data/lib/kreuzberg/version.rb +5 -5
  40. data/lib/kreuzberg.rb +109 -109
  41. data/lib/{pdfium.dll → libpdfium.so} +0 -0
  42. data/sig/kreuzberg/internal.rbs +184 -184
  43. data/sig/kreuzberg.rbs +546 -546
  44. data/spec/binding/cache_spec.rb +227 -227
  45. data/spec/binding/cli_proxy_spec.rb +85 -85
  46. data/spec/binding/cli_spec.rb +55 -55
  47. data/spec/binding/config_spec.rb +345 -345
  48. data/spec/binding/config_validation_spec.rb +283 -283
  49. data/spec/binding/error_handling_spec.rb +213 -213
  50. data/spec/binding/errors_spec.rb +66 -66
  51. data/spec/binding/plugins/ocr_backend_spec.rb +307 -307
  52. data/spec/binding/plugins/postprocessor_spec.rb +269 -269
  53. data/spec/binding/plugins/validator_spec.rb +274 -274
  54. data/spec/fixtures/config.toml +39 -39
  55. data/spec/fixtures/config.yaml +41 -41
  56. data/spec/fixtures/invalid_config.toml +4 -4
  57. data/spec/smoke/package_spec.rb +178 -178
  58. data/spec/spec_helper.rb +42 -42
  59. data/vendor/Cargo.toml +2 -2
  60. data/vendor/kreuzberg/Cargo.toml +5 -5
  61. data/vendor/kreuzberg/README.md +230 -230
  62. data/vendor/kreuzberg/benches/otel_overhead.rs +48 -48
  63. data/vendor/kreuzberg/build.rs +887 -843
  64. data/vendor/kreuzberg/src/api/error.rs +81 -81
  65. data/vendor/kreuzberg/src/api/handlers.rs +199 -199
  66. data/vendor/kreuzberg/src/api/mod.rs +87 -79
  67. data/vendor/kreuzberg/src/api/server.rs +353 -353
  68. data/vendor/kreuzberg/src/api/types.rs +170 -170
  69. data/vendor/kreuzberg/src/cache/mod.rs +1167 -1167
  70. data/vendor/kreuzberg/src/chunking/mod.rs +1877 -1877
  71. data/vendor/kreuzberg/src/chunking/processor.rs +220 -220
  72. data/vendor/kreuzberg/src/core/batch_mode.rs +95 -95
  73. data/vendor/kreuzberg/src/core/config.rs +1080 -1080
  74. data/vendor/kreuzberg/src/core/extractor.rs +1156 -1156
  75. data/vendor/kreuzberg/src/core/io.rs +329 -329
  76. data/vendor/kreuzberg/src/core/mime.rs +605 -605
  77. data/vendor/kreuzberg/src/core/mod.rs +47 -47
  78. data/vendor/kreuzberg/src/core/pipeline.rs +1184 -1184
  79. data/vendor/kreuzberg/src/embeddings.rs +500 -500
  80. data/vendor/kreuzberg/src/error.rs +431 -431
  81. data/vendor/kreuzberg/src/extraction/archive.rs +954 -954
  82. data/vendor/kreuzberg/src/extraction/docx.rs +398 -398
  83. data/vendor/kreuzberg/src/extraction/email.rs +854 -854
  84. data/vendor/kreuzberg/src/extraction/excel.rs +688 -688
  85. data/vendor/kreuzberg/src/extraction/html.rs +634 -601
  86. data/vendor/kreuzberg/src/extraction/image.rs +491 -491
  87. data/vendor/kreuzberg/src/extraction/libreoffice.rs +574 -574
  88. data/vendor/kreuzberg/src/extraction/markdown.rs +213 -213
  89. data/vendor/kreuzberg/src/extraction/mod.rs +81 -81
  90. data/vendor/kreuzberg/src/extraction/office_metadata/app_properties.rs +398 -398
  91. data/vendor/kreuzberg/src/extraction/office_metadata/core_properties.rs +247 -247
  92. data/vendor/kreuzberg/src/extraction/office_metadata/custom_properties.rs +240 -240
  93. data/vendor/kreuzberg/src/extraction/office_metadata/mod.rs +130 -130
  94. data/vendor/kreuzberg/src/extraction/office_metadata/odt_properties.rs +284 -284
  95. data/vendor/kreuzberg/src/extraction/pptx.rs +3100 -3100
  96. data/vendor/kreuzberg/src/extraction/structured.rs +490 -490
  97. data/vendor/kreuzberg/src/extraction/table.rs +328 -328
  98. data/vendor/kreuzberg/src/extraction/text.rs +269 -269
  99. data/vendor/kreuzberg/src/extraction/xml.rs +333 -333
  100. data/vendor/kreuzberg/src/extractors/archive.rs +447 -447
  101. data/vendor/kreuzberg/src/extractors/bibtex.rs +470 -470
  102. data/vendor/kreuzberg/src/extractors/docbook.rs +504 -504
  103. data/vendor/kreuzberg/src/extractors/docx.rs +400 -400
  104. data/vendor/kreuzberg/src/extractors/email.rs +157 -157
  105. data/vendor/kreuzberg/src/extractors/epub.rs +708 -708
  106. data/vendor/kreuzberg/src/extractors/excel.rs +345 -345
  107. data/vendor/kreuzberg/src/extractors/fictionbook.rs +492 -492
  108. data/vendor/kreuzberg/src/extractors/html.rs +407 -407
  109. data/vendor/kreuzberg/src/extractors/image.rs +219 -219
  110. data/vendor/kreuzberg/src/extractors/jats.rs +1054 -1054
  111. data/vendor/kreuzberg/src/extractors/jupyter.rs +368 -368
  112. data/vendor/kreuzberg/src/extractors/latex.rs +653 -653
  113. data/vendor/kreuzberg/src/extractors/markdown.rs +701 -701
  114. data/vendor/kreuzberg/src/extractors/mod.rs +429 -429
  115. data/vendor/kreuzberg/src/extractors/odt.rs +628 -628
  116. data/vendor/kreuzberg/src/extractors/opml.rs +635 -635
  117. data/vendor/kreuzberg/src/extractors/orgmode.rs +529 -529
  118. data/vendor/kreuzberg/src/extractors/pdf.rs +749 -749
  119. data/vendor/kreuzberg/src/extractors/pptx.rs +267 -267
  120. data/vendor/kreuzberg/src/extractors/rst.rs +577 -577
  121. data/vendor/kreuzberg/src/extractors/rtf.rs +809 -809
  122. data/vendor/kreuzberg/src/extractors/security.rs +484 -484
  123. data/vendor/kreuzberg/src/extractors/security_tests.rs +367 -367
  124. data/vendor/kreuzberg/src/extractors/structured.rs +142 -142
  125. data/vendor/kreuzberg/src/extractors/text.rs +265 -265
  126. data/vendor/kreuzberg/src/extractors/typst.rs +651 -651
  127. data/vendor/kreuzberg/src/extractors/xml.rs +147 -147
  128. data/vendor/kreuzberg/src/image/dpi.rs +164 -164
  129. data/vendor/kreuzberg/src/image/mod.rs +6 -6
  130. data/vendor/kreuzberg/src/image/preprocessing.rs +417 -417
  131. data/vendor/kreuzberg/src/image/resize.rs +89 -89
  132. data/vendor/kreuzberg/src/keywords/config.rs +154 -154
  133. data/vendor/kreuzberg/src/keywords/mod.rs +237 -237
  134. data/vendor/kreuzberg/src/keywords/processor.rs +275 -275
  135. data/vendor/kreuzberg/src/keywords/rake.rs +293 -293
  136. data/vendor/kreuzberg/src/keywords/types.rs +68 -68
  137. data/vendor/kreuzberg/src/keywords/yake.rs +163 -163
  138. data/vendor/kreuzberg/src/language_detection/mod.rs +985 -985
  139. data/vendor/kreuzberg/src/language_detection/processor.rs +219 -219
  140. data/vendor/kreuzberg/src/lib.rs +113 -113
  141. data/vendor/kreuzberg/src/mcp/mod.rs +35 -35
  142. data/vendor/kreuzberg/src/mcp/server.rs +2076 -2076
  143. data/vendor/kreuzberg/src/ocr/cache.rs +469 -469
  144. data/vendor/kreuzberg/src/ocr/error.rs +37 -37
  145. data/vendor/kreuzberg/src/ocr/hocr.rs +216 -216
  146. data/vendor/kreuzberg/src/ocr/mod.rs +58 -58
  147. data/vendor/kreuzberg/src/ocr/processor.rs +863 -863
  148. data/vendor/kreuzberg/src/ocr/table/mod.rs +4 -4
  149. data/vendor/kreuzberg/src/ocr/table/tsv_parser.rs +144 -144
  150. data/vendor/kreuzberg/src/ocr/tesseract_backend.rs +452 -452
  151. data/vendor/kreuzberg/src/ocr/types.rs +393 -393
  152. data/vendor/kreuzberg/src/ocr/utils.rs +47 -47
  153. data/vendor/kreuzberg/src/ocr/validation.rs +206 -206
  154. data/vendor/kreuzberg/src/panic_context.rs +154 -154
  155. data/vendor/kreuzberg/src/pdf/bindings.rs +44 -44
  156. data/vendor/kreuzberg/src/pdf/bundled.rs +452 -346
  157. data/vendor/kreuzberg/src/pdf/error.rs +130 -130
  158. data/vendor/kreuzberg/src/pdf/images.rs +139 -139
  159. data/vendor/kreuzberg/src/pdf/metadata.rs +489 -489
  160. data/vendor/kreuzberg/src/pdf/mod.rs +68 -68
  161. data/vendor/kreuzberg/src/pdf/rendering.rs +368 -368
  162. data/vendor/kreuzberg/src/pdf/table.rs +420 -420
  163. data/vendor/kreuzberg/src/pdf/text.rs +240 -240
  164. data/vendor/kreuzberg/src/plugins/extractor.rs +1044 -1044
  165. data/vendor/kreuzberg/src/plugins/mod.rs +212 -212
  166. data/vendor/kreuzberg/src/plugins/ocr.rs +639 -639
  167. data/vendor/kreuzberg/src/plugins/processor.rs +650 -650
  168. data/vendor/kreuzberg/src/plugins/registry.rs +1339 -1339
  169. data/vendor/kreuzberg/src/plugins/traits.rs +258 -258
  170. data/vendor/kreuzberg/src/plugins/validator.rs +967 -967
  171. data/vendor/kreuzberg/src/stopwords/mod.rs +1470 -1470
  172. data/vendor/kreuzberg/src/text/mod.rs +25 -25
  173. data/vendor/kreuzberg/src/text/quality.rs +697 -697
  174. data/vendor/kreuzberg/src/text/quality_processor.rs +219 -219
  175. data/vendor/kreuzberg/src/text/string_utils.rs +217 -217
  176. data/vendor/kreuzberg/src/text/token_reduction/cjk_utils.rs +164 -164
  177. data/vendor/kreuzberg/src/text/token_reduction/config.rs +100 -100
  178. data/vendor/kreuzberg/src/text/token_reduction/core.rs +796 -796
  179. data/vendor/kreuzberg/src/text/token_reduction/filters.rs +902 -902
  180. data/vendor/kreuzberg/src/text/token_reduction/mod.rs +160 -160
  181. data/vendor/kreuzberg/src/text/token_reduction/semantic.rs +619 -619
  182. data/vendor/kreuzberg/src/text/token_reduction/simd_text.rs +147 -147
  183. data/vendor/kreuzberg/src/types.rs +1055 -1055
  184. data/vendor/kreuzberg/src/utils/mod.rs +17 -17
  185. data/vendor/kreuzberg/src/utils/quality.rs +959 -959
  186. data/vendor/kreuzberg/src/utils/string_utils.rs +381 -381
  187. data/vendor/kreuzberg/stopwords/af_stopwords.json +53 -53
  188. data/vendor/kreuzberg/stopwords/ar_stopwords.json +482 -482
  189. data/vendor/kreuzberg/stopwords/bg_stopwords.json +261 -261
  190. data/vendor/kreuzberg/stopwords/bn_stopwords.json +400 -400
  191. data/vendor/kreuzberg/stopwords/br_stopwords.json +1205 -1205
  192. data/vendor/kreuzberg/stopwords/ca_stopwords.json +280 -280
  193. data/vendor/kreuzberg/stopwords/cs_stopwords.json +425 -425
  194. data/vendor/kreuzberg/stopwords/da_stopwords.json +172 -172
  195. data/vendor/kreuzberg/stopwords/de_stopwords.json +622 -622
  196. data/vendor/kreuzberg/stopwords/el_stopwords.json +849 -849
  197. data/vendor/kreuzberg/stopwords/en_stopwords.json +1300 -1300
  198. data/vendor/kreuzberg/stopwords/eo_stopwords.json +175 -175
  199. data/vendor/kreuzberg/stopwords/es_stopwords.json +734 -734
  200. data/vendor/kreuzberg/stopwords/et_stopwords.json +37 -37
  201. data/vendor/kreuzberg/stopwords/eu_stopwords.json +100 -100
  202. data/vendor/kreuzberg/stopwords/fa_stopwords.json +801 -801
  203. data/vendor/kreuzberg/stopwords/fi_stopwords.json +849 -849
  204. data/vendor/kreuzberg/stopwords/fr_stopwords.json +693 -693
  205. data/vendor/kreuzberg/stopwords/ga_stopwords.json +111 -111
  206. data/vendor/kreuzberg/stopwords/gl_stopwords.json +162 -162
  207. data/vendor/kreuzberg/stopwords/gu_stopwords.json +226 -226
  208. data/vendor/kreuzberg/stopwords/ha_stopwords.json +41 -41
  209. data/vendor/kreuzberg/stopwords/he_stopwords.json +196 -196
  210. data/vendor/kreuzberg/stopwords/hi_stopwords.json +227 -227
  211. data/vendor/kreuzberg/stopwords/hr_stopwords.json +181 -181
  212. data/vendor/kreuzberg/stopwords/hu_stopwords.json +791 -791
  213. data/vendor/kreuzberg/stopwords/hy_stopwords.json +47 -47
  214. data/vendor/kreuzberg/stopwords/id_stopwords.json +760 -760
  215. data/vendor/kreuzberg/stopwords/it_stopwords.json +634 -634
  216. data/vendor/kreuzberg/stopwords/ja_stopwords.json +136 -136
  217. data/vendor/kreuzberg/stopwords/kn_stopwords.json +84 -84
  218. data/vendor/kreuzberg/stopwords/ko_stopwords.json +681 -681
  219. data/vendor/kreuzberg/stopwords/ku_stopwords.json +64 -64
  220. data/vendor/kreuzberg/stopwords/la_stopwords.json +51 -51
  221. data/vendor/kreuzberg/stopwords/lt_stopwords.json +476 -476
  222. data/vendor/kreuzberg/stopwords/lv_stopwords.json +163 -163
  223. data/vendor/kreuzberg/stopwords/ml_stopwords.json +1 -1
  224. data/vendor/kreuzberg/stopwords/mr_stopwords.json +101 -101
  225. data/vendor/kreuzberg/stopwords/ms_stopwords.json +477 -477
  226. data/vendor/kreuzberg/stopwords/ne_stopwords.json +490 -490
  227. data/vendor/kreuzberg/stopwords/nl_stopwords.json +415 -415
  228. data/vendor/kreuzberg/stopwords/no_stopwords.json +223 -223
  229. data/vendor/kreuzberg/stopwords/pl_stopwords.json +331 -331
  230. data/vendor/kreuzberg/stopwords/pt_stopwords.json +562 -562
  231. data/vendor/kreuzberg/stopwords/ro_stopwords.json +436 -436
  232. data/vendor/kreuzberg/stopwords/ru_stopwords.json +561 -561
  233. data/vendor/kreuzberg/stopwords/si_stopwords.json +193 -193
  234. data/vendor/kreuzberg/stopwords/sk_stopwords.json +420 -420
  235. data/vendor/kreuzberg/stopwords/sl_stopwords.json +448 -448
  236. data/vendor/kreuzberg/stopwords/so_stopwords.json +32 -32
  237. data/vendor/kreuzberg/stopwords/st_stopwords.json +33 -33
  238. data/vendor/kreuzberg/stopwords/sv_stopwords.json +420 -420
  239. data/vendor/kreuzberg/stopwords/sw_stopwords.json +76 -76
  240. data/vendor/kreuzberg/stopwords/ta_stopwords.json +129 -129
  241. data/vendor/kreuzberg/stopwords/te_stopwords.json +54 -54
  242. data/vendor/kreuzberg/stopwords/th_stopwords.json +118 -118
  243. data/vendor/kreuzberg/stopwords/tl_stopwords.json +149 -149
  244. data/vendor/kreuzberg/stopwords/tr_stopwords.json +506 -506
  245. data/vendor/kreuzberg/stopwords/uk_stopwords.json +75 -75
  246. data/vendor/kreuzberg/stopwords/ur_stopwords.json +519 -519
  247. data/vendor/kreuzberg/stopwords/vi_stopwords.json +647 -647
  248. data/vendor/kreuzberg/stopwords/yo_stopwords.json +62 -62
  249. data/vendor/kreuzberg/stopwords/zh_stopwords.json +796 -796
  250. data/vendor/kreuzberg/stopwords/zu_stopwords.json +31 -31
  251. data/vendor/kreuzberg/tests/api_extract_multipart.rs +52 -52
  252. data/vendor/kreuzberg/tests/api_tests.rs +966 -966
  253. data/vendor/kreuzberg/tests/archive_integration.rs +545 -545
  254. data/vendor/kreuzberg/tests/batch_orchestration.rs +556 -556
  255. data/vendor/kreuzberg/tests/batch_processing.rs +318 -318
  256. data/vendor/kreuzberg/tests/bibtex_parity_test.rs +421 -421
  257. data/vendor/kreuzberg/tests/concurrency_stress.rs +533 -533
  258. data/vendor/kreuzberg/tests/config_features.rs +612 -612
  259. data/vendor/kreuzberg/tests/config_loading_tests.rs +416 -416
  260. data/vendor/kreuzberg/tests/core_integration.rs +510 -510
  261. data/vendor/kreuzberg/tests/csv_integration.rs +414 -414
  262. data/vendor/kreuzberg/tests/docbook_extractor_tests.rs +500 -500
  263. data/vendor/kreuzberg/tests/docx_metadata_extraction_test.rs +122 -122
  264. data/vendor/kreuzberg/tests/docx_vs_pandoc_comparison.rs +370 -370
  265. data/vendor/kreuzberg/tests/email_integration.rs +327 -327
  266. data/vendor/kreuzberg/tests/epub_native_extractor_tests.rs +275 -275
  267. data/vendor/kreuzberg/tests/error_handling.rs +402 -402
  268. data/vendor/kreuzberg/tests/fictionbook_extractor_tests.rs +228 -228
  269. data/vendor/kreuzberg/tests/format_integration.rs +165 -164
  270. data/vendor/kreuzberg/tests/helpers/mod.rs +142 -142
  271. data/vendor/kreuzberg/tests/html_table_test.rs +551 -551
  272. data/vendor/kreuzberg/tests/image_integration.rs +255 -255
  273. data/vendor/kreuzberg/tests/instrumentation_test.rs +139 -139
  274. data/vendor/kreuzberg/tests/jats_extractor_tests.rs +639 -639
  275. data/vendor/kreuzberg/tests/jupyter_extractor_tests.rs +704 -704
  276. data/vendor/kreuzberg/tests/keywords_integration.rs +479 -479
  277. data/vendor/kreuzberg/tests/keywords_quality.rs +509 -509
  278. data/vendor/kreuzberg/tests/latex_extractor_tests.rs +496 -496
  279. data/vendor/kreuzberg/tests/markdown_extractor_tests.rs +490 -490
  280. data/vendor/kreuzberg/tests/mime_detection.rs +429 -429
  281. data/vendor/kreuzberg/tests/ocr_configuration.rs +514 -514
  282. data/vendor/kreuzberg/tests/ocr_errors.rs +698 -698
  283. data/vendor/kreuzberg/tests/ocr_quality.rs +629 -629
  284. data/vendor/kreuzberg/tests/ocr_stress.rs +469 -469
  285. data/vendor/kreuzberg/tests/odt_extractor_tests.rs +674 -674
  286. data/vendor/kreuzberg/tests/opml_extractor_tests.rs +616 -616
  287. data/vendor/kreuzberg/tests/orgmode_extractor_tests.rs +822 -822
  288. data/vendor/kreuzberg/tests/pdf_integration.rs +45 -45
  289. data/vendor/kreuzberg/tests/pdfium_linking.rs +374 -374
  290. data/vendor/kreuzberg/tests/pipeline_integration.rs +1436 -1436
  291. data/vendor/kreuzberg/tests/plugin_ocr_backend_test.rs +776 -776
  292. data/vendor/kreuzberg/tests/plugin_postprocessor_test.rs +560 -560
  293. data/vendor/kreuzberg/tests/plugin_system.rs +927 -927
  294. data/vendor/kreuzberg/tests/plugin_validator_test.rs +783 -783
  295. data/vendor/kreuzberg/tests/registry_integration_tests.rs +587 -587
  296. data/vendor/kreuzberg/tests/rst_extractor_tests.rs +694 -694
  297. data/vendor/kreuzberg/tests/rtf_extractor_tests.rs +775 -775
  298. data/vendor/kreuzberg/tests/security_validation.rs +416 -416
  299. data/vendor/kreuzberg/tests/stopwords_integration_test.rs +888 -888
  300. data/vendor/kreuzberg/tests/test_fastembed.rs +631 -631
  301. data/vendor/kreuzberg/tests/typst_behavioral_tests.rs +1260 -1260
  302. data/vendor/kreuzberg/tests/typst_extractor_tests.rs +648 -648
  303. data/vendor/kreuzberg/tests/xlsx_metadata_extraction_test.rs +87 -87
  304. data/vendor/kreuzberg-tesseract/.commitlintrc.json +13 -13
  305. data/vendor/kreuzberg-tesseract/.crate-ignore +2 -2
  306. data/vendor/kreuzberg-tesseract/Cargo.lock +2933 -2933
  307. data/vendor/kreuzberg-tesseract/Cargo.toml +2 -2
  308. data/vendor/kreuzberg-tesseract/LICENSE +22 -22
  309. data/vendor/kreuzberg-tesseract/README.md +399 -399
  310. data/vendor/kreuzberg-tesseract/build.rs +1354 -1354
  311. data/vendor/kreuzberg-tesseract/patches/README.md +71 -71
  312. data/vendor/kreuzberg-tesseract/patches/tesseract.diff +199 -199
  313. data/vendor/kreuzberg-tesseract/src/api.rs +1371 -1371
  314. data/vendor/kreuzberg-tesseract/src/choice_iterator.rs +77 -77
  315. data/vendor/kreuzberg-tesseract/src/enums.rs +297 -297
  316. data/vendor/kreuzberg-tesseract/src/error.rs +81 -81
  317. data/vendor/kreuzberg-tesseract/src/lib.rs +145 -145
  318. data/vendor/kreuzberg-tesseract/src/monitor.rs +57 -57
  319. data/vendor/kreuzberg-tesseract/src/mutable_iterator.rs +197 -197
  320. data/vendor/kreuzberg-tesseract/src/page_iterator.rs +253 -253
  321. data/vendor/kreuzberg-tesseract/src/result_iterator.rs +286 -286
  322. data/vendor/kreuzberg-tesseract/src/result_renderer.rs +183 -183
  323. data/vendor/kreuzberg-tesseract/tests/integration_test.rs +211 -211
  324. data/vendor/rb-sys/.cargo_vcs_info.json +5 -5
  325. data/vendor/rb-sys/Cargo.lock +393 -393
  326. data/vendor/rb-sys/Cargo.toml +70 -70
  327. data/vendor/rb-sys/Cargo.toml.orig +57 -57
  328. data/vendor/rb-sys/LICENSE-APACHE +190 -190
  329. data/vendor/rb-sys/LICENSE-MIT +21 -21
  330. data/vendor/rb-sys/build/features.rs +111 -111
  331. data/vendor/rb-sys/build/main.rs +286 -286
  332. data/vendor/rb-sys/build/stable_api_config.rs +155 -155
  333. data/vendor/rb-sys/build/version.rs +50 -50
  334. data/vendor/rb-sys/readme.md +36 -36
  335. data/vendor/rb-sys/src/bindings.rs +21 -21
  336. data/vendor/rb-sys/src/hidden.rs +11 -11
  337. data/vendor/rb-sys/src/lib.rs +35 -35
  338. data/vendor/rb-sys/src/macros.rs +371 -371
  339. data/vendor/rb-sys/src/memory.rs +53 -53
  340. data/vendor/rb-sys/src/ruby_abi_version.rs +38 -38
  341. data/vendor/rb-sys/src/special_consts.rs +31 -31
  342. data/vendor/rb-sys/src/stable_api/compiled.c +179 -179
  343. data/vendor/rb-sys/src/stable_api/compiled.rs +257 -257
  344. data/vendor/rb-sys/src/stable_api/ruby_2_7.rs +324 -324
  345. data/vendor/rb-sys/src/stable_api/ruby_3_0.rs +332 -332
  346. data/vendor/rb-sys/src/stable_api/ruby_3_1.rs +325 -325
  347. data/vendor/rb-sys/src/stable_api/ruby_3_2.rs +323 -323
  348. data/vendor/rb-sys/src/stable_api/ruby_3_3.rs +339 -339
  349. data/vendor/rb-sys/src/stable_api/ruby_3_4.rs +339 -339
  350. data/vendor/rb-sys/src/stable_api.rs +260 -260
  351. data/vendor/rb-sys/src/symbol.rs +31 -31
  352. data/vendor/rb-sys/src/tracking_allocator.rs +330 -330
  353. data/vendor/rb-sys/src/utils.rs +89 -89
  354. data/vendor/rb-sys/src/value_type.rs +7 -7
  355. metadata +81 -22
  356. data/vendor/kreuzberg-ffi/Cargo.toml +0 -63
  357. data/vendor/kreuzberg-ffi/README.md +0 -851
  358. data/vendor/kreuzberg-ffi/build.rs +0 -176
  359. data/vendor/kreuzberg-ffi/cbindgen.toml +0 -27
  360. data/vendor/kreuzberg-ffi/kreuzberg-ffi-install.pc +0 -12
  361. data/vendor/kreuzberg-ffi/kreuzberg-ffi.pc.in +0 -12
  362. data/vendor/kreuzberg-ffi/kreuzberg.h +0 -1087
  363. data/vendor/kreuzberg-ffi/src/lib.rs +0 -3616
  364. data/vendor/kreuzberg-ffi/src/panic_shield.rs +0 -247
  365. data/vendor/kreuzberg-ffi/tests.disabled/README.md +0 -48
  366. data/vendor/kreuzberg-ffi/tests.disabled/config_loading_tests.rs +0 -299
  367. data/vendor/kreuzberg-ffi/tests.disabled/config_tests.rs +0 -346
  368. data/vendor/kreuzberg-ffi/tests.disabled/extractor_tests.rs +0 -232
  369. data/vendor/kreuzberg-ffi/tests.disabled/plugin_registration_tests.rs +0 -470
@@ -1,796 +1,796 @@
1
- use crate::error::Result;
2
- use crate::text::token_reduction::{
3
- cjk_utils::CjkTokenizer,
4
- config::{ReductionLevel, TokenReductionConfig},
5
- filters::FilterPipeline,
6
- semantic::SemanticAnalyzer,
7
- simd_text::{SimdTextProcessor, chunk_text_for_parallel},
8
- };
9
- use once_cell::sync::Lazy;
10
- use rayon::prelude::*;
11
- use regex::Regex;
12
- use std::sync::Arc;
13
- use unicode_normalization::UnicodeNormalization;
14
-
15
- static REPEATED_EXCLAMATION: Lazy<Regex> =
16
- Lazy::new(|| Regex::new(r"[!]{2,}").expect("Repeated exclamation regex pattern is valid and should compile"));
17
- static REPEATED_QUESTION: Lazy<Regex> =
18
- Lazy::new(|| Regex::new(r"[?]{2,}").expect("Repeated question regex pattern is valid and should compile"));
19
- static REPEATED_COMMA: Lazy<Regex> =
20
- Lazy::new(|| Regex::new(r"[,]{2,}").expect("Repeated comma regex pattern is valid and should compile"));
21
-
22
- /// Bonus added for sentences at the beginning or end of the document
23
- const SENTENCE_EDGE_POSITION_BONUS: f32 = 0.3;
24
-
25
- /// Bonus added for sentences with ideal word count (neither too short nor too long)
26
- const IDEAL_WORD_COUNT_BONUS: f32 = 0.2;
27
-
28
- /// Minimum word count for ideal sentence length
29
- const MIN_IDEAL_WORD_COUNT: usize = 3;
30
-
31
- /// Maximum word count for ideal sentence length
32
- const MAX_IDEAL_WORD_COUNT: usize = 25;
33
-
34
- /// Weight multiplier for numeric content density in sentences
35
- const NUMERIC_CONTENT_WEIGHT: f32 = 0.3;
36
-
37
- /// Weight multiplier for capitalized/acronym word density in sentences
38
- const CAPS_ACRONYM_WEIGHT: f32 = 0.25;
39
-
40
- /// Weight multiplier for long word density in sentences
41
- const LONG_WORD_WEIGHT: f32 = 0.2;
42
-
43
- /// Minimum character length for a word to be considered "long"
44
- const LONG_WORD_THRESHOLD: usize = 8;
45
-
46
- /// Weight multiplier for punctuation density in sentences
47
- const PUNCTUATION_DENSITY_WEIGHT: f32 = 0.15;
48
-
49
- /// Weight multiplier for word diversity ratio (unique words / total words)
50
- const DIVERSITY_RATIO_WEIGHT: f32 = 0.15;
51
-
52
- /// Weight multiplier for character entropy (measure of text randomness/information)
53
- const CHAR_ENTROPY_WEIGHT: f32 = 0.1;
54
-
55
- pub struct TokenReducer {
56
- config: Arc<TokenReductionConfig>,
57
- text_processor: SimdTextProcessor,
58
- filter_pipeline: FilterPipeline,
59
- semantic_analyzer: Option<SemanticAnalyzer>,
60
- cjk_tokenizer: CjkTokenizer,
61
- language: String,
62
- }
63
-
64
- impl TokenReducer {
65
- pub fn new(config: &TokenReductionConfig, language_hint: Option<&str>) -> Result<Self> {
66
- let config = Arc::new(config.clone());
67
- let language = language_hint
68
- .or(config.language_hint.as_deref())
69
- .unwrap_or("en")
70
- .to_string();
71
-
72
- let text_processor = SimdTextProcessor::new();
73
- let filter_pipeline = FilterPipeline::new(&config, &language)?;
74
-
75
- let semantic_analyzer = if matches!(config.level, ReductionLevel::Aggressive | ReductionLevel::Maximum) {
76
- Some(SemanticAnalyzer::new(&language))
77
- } else {
78
- None
79
- };
80
-
81
- Ok(Self {
82
- config,
83
- text_processor,
84
- filter_pipeline,
85
- semantic_analyzer,
86
- cjk_tokenizer: CjkTokenizer::new(),
87
- language,
88
- })
89
- }
90
-
91
- /// Get the language code being used for stopwords and semantic analysis.
92
- pub fn language(&self) -> &str {
93
- &self.language
94
- }
95
-
96
- pub fn reduce(&self, text: &str) -> String {
97
- if text.is_empty() || matches!(self.config.level, ReductionLevel::Off) {
98
- return text.to_string();
99
- }
100
-
101
- let working_text = if text.is_ascii() {
102
- text
103
- } else {
104
- &text.nfc().collect::<String>()
105
- };
106
-
107
- match self.config.level {
108
- ReductionLevel::Off => working_text.to_string(),
109
- ReductionLevel::Light => self.apply_light_reduction_optimized(working_text),
110
- ReductionLevel::Moderate => self.apply_moderate_reduction_optimized(working_text),
111
- ReductionLevel::Aggressive => self.apply_aggressive_reduction_optimized(working_text),
112
- ReductionLevel::Maximum => self.apply_maximum_reduction_optimized(working_text),
113
- }
114
- }
115
-
116
- pub fn batch_reduce(&self, texts: &[&str]) -> Vec<String> {
117
- if !self.config.enable_parallel || texts.len() < 2 {
118
- return texts.iter().map(|text| self.reduce(text)).collect();
119
- }
120
-
121
- texts.par_iter().map(|text| self.reduce(text)).collect()
122
- }
123
-
124
- fn apply_light_reduction_optimized(&self, text: &str) -> String {
125
- let mut result = if self.config.use_simd {
126
- self.text_processor.clean_punctuation(text)
127
- } else {
128
- self.clean_punctuation_optimized(text)
129
- };
130
-
131
- result = self.filter_pipeline.apply_light_filters(&result);
132
- result.trim().to_string()
133
- }
134
-
135
- fn apply_moderate_reduction_optimized(&self, text: &str) -> String {
136
- let mut result = self.apply_light_reduction_optimized(text);
137
-
138
- result = if self.config.enable_parallel && text.len() > 1000 {
139
- self.apply_parallel_moderate_reduction(&result)
140
- } else {
141
- self.filter_pipeline.apply_moderate_filters(&result)
142
- };
143
-
144
- result
145
- }
146
-
147
- fn apply_aggressive_reduction_optimized(&self, text: &str) -> String {
148
- let mut result = self.apply_moderate_reduction_optimized(text);
149
-
150
- result = self.remove_additional_common_words(&result);
151
- result = self.apply_sentence_selection(&result);
152
-
153
- if let Some(ref analyzer) = self.semantic_analyzer {
154
- result = analyzer.apply_semantic_filtering(&result, self.config.semantic_threshold);
155
- }
156
-
157
- result
158
- }
159
-
160
- fn apply_maximum_reduction_optimized(&self, text: &str) -> String {
161
- let mut result = self.apply_aggressive_reduction_optimized(text);
162
-
163
- if let Some(ref analyzer) = self.semantic_analyzer
164
- && self.config.enable_semantic_clustering
165
- {
166
- result = analyzer.apply_hypernym_compression(&result, self.config.target_reduction);
167
- }
168
-
169
- result
170
- }
171
-
172
- fn apply_parallel_moderate_reduction(&self, text: &str) -> String {
173
- let num_threads = rayon::current_num_threads();
174
- let chunks = chunk_text_for_parallel(text, num_threads);
175
-
176
- let processed_chunks: Vec<String> = chunks
177
- .par_iter()
178
- .map(|chunk| self.filter_pipeline.apply_moderate_filters(chunk))
179
- .collect();
180
-
181
- processed_chunks.join(" ")
182
- }
183
-
184
- fn clean_punctuation_optimized(&self, text: &str) -> String {
185
- let mut result = text.to_string();
186
-
187
- result = REPEATED_EXCLAMATION.replace_all(&result, "!").to_string();
188
- result = REPEATED_QUESTION.replace_all(&result, "?").to_string();
189
- result = REPEATED_COMMA.replace_all(&result, ",").to_string();
190
-
191
- result
192
- }
193
-
194
- fn remove_additional_common_words(&self, text: &str) -> String {
195
- let words = self.universal_tokenize(text);
196
-
197
- if words.len() < 4 {
198
- return text.to_string();
199
- }
200
-
201
- let mut word_freq = std::collections::HashMap::new();
202
- let mut word_lengths = Vec::new();
203
-
204
- for word in &words {
205
- let clean_word = if word.chars().all(|c| c.is_alphabetic()) {
206
- word.to_lowercase()
207
- } else {
208
- word.chars()
209
- .filter(|c| c.is_alphabetic())
210
- .collect::<String>()
211
- .to_lowercase()
212
- };
213
-
214
- if !clean_word.is_empty() {
215
- *word_freq.entry(clean_word.clone()).or_insert(0) += 1;
216
- word_lengths.push(clean_word.chars().count());
217
- }
218
- }
219
-
220
- let avg_length = if !word_lengths.is_empty() {
221
- word_lengths.iter().sum::<usize>() as f32 / word_lengths.len() as f32
222
- } else {
223
- 5.0
224
- };
225
-
226
- let original_count = words.len();
227
-
228
- let filtered_words: Vec<String> = words
229
- .iter()
230
- .filter(|word| {
231
- let clean_word = if word.chars().all(|c| c.is_alphabetic()) {
232
- word.to_lowercase()
233
- } else {
234
- word.chars()
235
- .filter(|c| c.is_alphabetic())
236
- .collect::<String>()
237
- .to_lowercase()
238
- };
239
-
240
- if clean_word.is_empty() {
241
- return true;
242
- }
243
-
244
- let freq = word_freq.get(&clean_word).unwrap_or(&0);
245
- let word_len = clean_word.chars().count() as f32;
246
-
247
- self.has_important_characteristics(word)
248
- || (*freq <= 2 && word_len >= avg_length * 0.8)
249
- || (word_len >= avg_length * 1.5)
250
- })
251
- .cloned()
252
- .collect();
253
-
254
- let has_cjk_content = text.chars().any(|c| c as u32 >= 0x4E00 && (c as u32) <= 0x9FFF);
255
- let fallback_threshold = if has_cjk_content {
256
- original_count / 5
257
- } else {
258
- original_count / 3
259
- };
260
-
261
- if filtered_words.len() < fallback_threshold {
262
- let fallback_words: Vec<String> = words
263
- .iter()
264
- .filter(|word| {
265
- let clean_word = if word.chars().all(|c| c.is_alphabetic()) {
266
- (*word).clone()
267
- } else {
268
- word.chars().filter(|c| c.is_alphabetic()).collect::<String>()
269
- };
270
-
271
- clean_word.is_empty() || clean_word.chars().count() >= 3 || self.has_important_characteristics(word)
272
- })
273
- .cloned()
274
- .collect();
275
- self.smart_join(&fallback_words, has_cjk_content)
276
- } else {
277
- self.smart_join(&filtered_words, has_cjk_content)
278
- }
279
- }
280
-
281
- fn smart_join(&self, tokens: &[String], has_cjk_content: bool) -> String {
282
- if has_cjk_content {
283
- tokens.join("")
284
- } else {
285
- tokens.join(" ")
286
- }
287
- }
288
-
289
- fn has_important_characteristics(&self, word: &str) -> bool {
290
- if word.len() > 1 && word.chars().all(|c| c.is_uppercase()) {
291
- return true;
292
- }
293
-
294
- if word.chars().any(|c| c.is_numeric()) {
295
- return true;
296
- }
297
-
298
- if word.len() > 10 {
299
- return true;
300
- }
301
-
302
- let uppercase_count = word.chars().filter(|c| c.is_uppercase()).count();
303
- if uppercase_count > 1 && uppercase_count < word.len() {
304
- return true;
305
- }
306
-
307
- if self.has_cjk_importance(word) {
308
- return true;
309
- }
310
-
311
- false
312
- }
313
-
314
- fn has_cjk_importance(&self, word: &str) -> bool {
315
- let chars: Vec<char> = word.chars().collect();
316
-
317
- let has_cjk = chars.iter().any(|&c| c as u32 >= 0x4E00 && (c as u32) <= 0x9FFF);
318
- if !has_cjk {
319
- return false;
320
- }
321
-
322
- let important_radicals = [
323
- '学', '智', '能', '技', '术', '法', '算', '理', '科', '研', '究', '发', '展', '系', '统', '模', '型', '方',
324
- '式', '过', '程', '结', '构', '功', '效', '应', '分', '析', '计', '算', '数', '据', '信', '息', '处', '理',
325
- '语', '言', '文', '生', '成', '产', '用', '作', '为', '成', '变', '化', '转', '换', '提', '高', '网', '络',
326
- '神', '经', '机', '器', '人', '工', '智', '能', '自', '然', '复',
327
- ];
328
-
329
- for &char in &chars {
330
- if important_radicals.contains(&char) {
331
- return true;
332
- }
333
- }
334
-
335
- if chars.len() == 2 && has_cjk {
336
- let has_technical = chars.iter().any(|&c| {
337
- let code = c as u32;
338
- (0x4E00..=0x4FFF).contains(&code)
339
- || (0x5000..=0x51FF).contains(&code)
340
- || (0x6700..=0x68FF).contains(&code)
341
- || (0x7500..=0x76FF).contains(&code)
342
- });
343
-
344
- if has_technical {
345
- return true;
346
- }
347
- }
348
-
349
- false
350
- }
351
-
352
- fn apply_sentence_selection(&self, text: &str) -> String {
353
- let sentences: Vec<&str> = text
354
- .split(['.', '!', '?'])
355
- .map(|s| s.trim())
356
- .filter(|s| !s.is_empty())
357
- .collect();
358
-
359
- if sentences.len() <= 2 {
360
- return text.to_string();
361
- }
362
-
363
- let mut scored_sentences: Vec<(usize, f32, &str)> = sentences
364
- .iter()
365
- .enumerate()
366
- .map(|(i, sentence)| {
367
- let score = self.score_sentence_importance(sentence, i, sentences.len());
368
- (i, score, *sentence)
369
- })
370
- .collect();
371
-
372
- scored_sentences.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
373
-
374
- let keep_count = ((sentences.len() as f32 * 0.4).ceil() as usize).max(1);
375
- let mut selected_indices: Vec<usize> = scored_sentences[..keep_count].iter().map(|(i, _, _)| *i).collect();
376
-
377
- selected_indices.sort();
378
-
379
- let selected_sentences: Vec<&str> = selected_indices
380
- .iter()
381
- .filter_map(|&i| sentences.get(i))
382
- .copied()
383
- .collect();
384
-
385
- if selected_sentences.is_empty() {
386
- text.to_string()
387
- } else {
388
- selected_sentences.join(". ")
389
- }
390
- }
391
-
392
- fn score_sentence_importance(&self, sentence: &str, position: usize, total_sentences: usize) -> f32 {
393
- let mut score = 0.0;
394
-
395
- if position == 0 || position == total_sentences - 1 {
396
- score += SENTENCE_EDGE_POSITION_BONUS;
397
- }
398
-
399
- let words: Vec<&str> = sentence.split_whitespace().collect();
400
- if words.is_empty() {
401
- return score;
402
- }
403
-
404
- let word_count = words.len();
405
- if (MIN_IDEAL_WORD_COUNT..=MAX_IDEAL_WORD_COUNT).contains(&word_count) {
406
- score += IDEAL_WORD_COUNT_BONUS;
407
- }
408
-
409
- let mut numeric_count = 0;
410
- let mut caps_count = 0;
411
- let mut long_word_count = 0;
412
- let mut punct_density = 0;
413
-
414
- for word in &words {
415
- if word.chars().any(|c| c.is_numeric()) {
416
- numeric_count += 1;
417
- }
418
-
419
- if word.len() > 1 && word.chars().all(|c| c.is_uppercase()) {
420
- caps_count += 1;
421
- }
422
-
423
- if word.len() > LONG_WORD_THRESHOLD {
424
- long_word_count += 1;
425
- }
426
-
427
- punct_density += word.chars().filter(|c| c.is_ascii_punctuation()).count();
428
- }
429
-
430
- score += (numeric_count as f32 / words.len() as f32) * NUMERIC_CONTENT_WEIGHT;
431
- score += (caps_count as f32 / words.len() as f32) * CAPS_ACRONYM_WEIGHT;
432
- score += (long_word_count as f32 / words.len() as f32) * LONG_WORD_WEIGHT;
433
- score += (punct_density as f32 / sentence.len() as f32) * PUNCTUATION_DENSITY_WEIGHT;
434
-
435
- let unique_words: std::collections::HashSet<_> = words
436
- .iter()
437
- .map(|w| {
438
- w.chars()
439
- .filter(|c| c.is_alphabetic())
440
- .collect::<String>()
441
- .to_lowercase()
442
- })
443
- .collect();
444
- let diversity_ratio = unique_words.len() as f32 / words.len() as f32;
445
- score += diversity_ratio * DIVERSITY_RATIO_WEIGHT;
446
-
447
- let char_entropy = self.calculate_char_entropy(sentence);
448
- score += char_entropy * CHAR_ENTROPY_WEIGHT;
449
-
450
- score
451
- }
452
-
453
- fn universal_tokenize(&self, text: &str) -> Vec<String> {
454
- self.cjk_tokenizer.tokenize_mixed_text(text)
455
- }
456
-
457
- fn calculate_char_entropy(&self, text: &str) -> f32 {
458
- let chars: Vec<char> = text.chars().collect();
459
- if chars.is_empty() {
460
- return 0.0;
461
- }
462
-
463
- let mut char_freq = std::collections::HashMap::new();
464
- for &ch in &chars {
465
- let lowercase_ch = ch
466
- .to_lowercase()
467
- .next()
468
- .expect("to_lowercase() must yield at least one character for valid Unicode");
469
- *char_freq.entry(lowercase_ch).or_insert(0) += 1;
470
- }
471
-
472
- let total_chars = chars.len() as f32;
473
- char_freq
474
- .values()
475
- .map(|&freq| {
476
- let p = freq as f32 / total_chars;
477
- if p > 0.0 { -p * p.log2() } else { 0.0 }
478
- })
479
- .sum::<f32>()
480
- .min(5.0)
481
- }
482
- }
483
-
484
- #[cfg(test)]
485
- mod tests {
486
- use super::*;
487
-
488
- #[test]
489
- fn test_light_reduction() {
490
- let config = TokenReductionConfig {
491
- level: ReductionLevel::Light,
492
- use_simd: false,
493
- ..Default::default()
494
- };
495
-
496
- let reducer = TokenReducer::new(&config, None).unwrap();
497
- let input = "Hello world!!! How are you???";
498
- let result = reducer.reduce(input);
499
-
500
- assert!(result.len() < input.len());
501
- assert!(!result.contains(" "));
502
- }
503
-
504
- #[test]
505
- fn test_moderate_reduction() {
506
- let config = TokenReductionConfig {
507
- level: ReductionLevel::Moderate,
508
- use_simd: false,
509
- ..Default::default()
510
- };
511
-
512
- let reducer = TokenReducer::new(&config, Some("en")).unwrap();
513
- let input = "The quick brown fox is jumping over the lazy dog";
514
- let result = reducer.reduce(input);
515
-
516
- assert!(result.len() < input.len());
517
- assert!(result.contains("quick"));
518
- assert!(result.contains("brown"));
519
- assert!(result.contains("fox"));
520
- }
521
-
522
- #[test]
523
- fn test_batch_processing() {
524
- let config = TokenReductionConfig {
525
- level: ReductionLevel::Light,
526
- enable_parallel: false,
527
- ..Default::default()
528
- };
529
-
530
- let reducer = TokenReducer::new(&config, None).unwrap();
531
- let inputs = vec!["Hello world!", "How are you?", "Fine, thanks!"];
532
- let results = reducer.batch_reduce(&inputs);
533
-
534
- assert_eq!(results.len(), inputs.len());
535
- for result in &results {
536
- assert!(!result.contains(" "));
537
- }
538
- }
539
-
540
- #[test]
541
- fn test_aggressive_reduction() {
542
- let config = TokenReductionConfig {
543
- level: ReductionLevel::Aggressive,
544
- use_simd: false,
545
- ..Default::default()
546
- };
547
-
548
- let reducer = TokenReducer::new(&config, Some("en")).unwrap();
549
- let input = "The quick brown fox is jumping over the lazy dog and running through the forest";
550
- let result = reducer.reduce(input);
551
-
552
- assert!(result.len() < input.len());
553
- assert!(!result.is_empty());
554
- }
555
-
556
- #[test]
557
- fn test_maximum_reduction() {
558
- let config = TokenReductionConfig {
559
- level: ReductionLevel::Maximum,
560
- use_simd: false,
561
- enable_semantic_clustering: true,
562
- ..Default::default()
563
- };
564
-
565
- let reducer = TokenReducer::new(&config, Some("en")).unwrap();
566
- let input = "The quick brown fox is jumping over the lazy dog and running through the forest";
567
- let result = reducer.reduce(input);
568
-
569
- assert!(result.len() < input.len());
570
- assert!(!result.is_empty());
571
- }
572
-
573
- #[test]
574
- fn test_empty_text_handling() {
575
- let config = TokenReductionConfig {
576
- level: ReductionLevel::Moderate,
577
- ..Default::default()
578
- };
579
-
580
- let reducer = TokenReducer::new(&config, None).unwrap();
581
- assert_eq!(reducer.reduce(""), "");
582
- let result = reducer.reduce(" ");
583
- assert!(result == " " || result.is_empty());
584
- }
585
-
586
- #[test]
587
- fn test_off_mode_preserves_text() {
588
- let config = TokenReductionConfig {
589
- level: ReductionLevel::Off,
590
- ..Default::default()
591
- };
592
-
593
- let reducer = TokenReducer::new(&config, None).unwrap();
594
- let input = "Text with multiple spaces!!!";
595
- assert_eq!(reducer.reduce(input), input);
596
- }
597
-
598
- #[test]
599
- fn test_parallel_batch_processing() {
600
- let config = TokenReductionConfig {
601
- level: ReductionLevel::Light,
602
- enable_parallel: true,
603
- ..Default::default()
604
- };
605
-
606
- let reducer = TokenReducer::new(&config, None).unwrap();
607
- let inputs = vec![
608
- "First text with spaces",
609
- "Second text with spaces",
610
- "Third text with spaces",
611
- ];
612
- let results = reducer.batch_reduce(&inputs);
613
-
614
- assert_eq!(results.len(), inputs.len());
615
- for result in &results {
616
- assert!(!result.contains(" "));
617
- }
618
- }
619
-
620
- #[test]
621
- fn test_cjk_text_handling() {
622
- let config = TokenReductionConfig {
623
- level: ReductionLevel::Moderate,
624
- ..Default::default()
625
- };
626
-
627
- let reducer = TokenReducer::new(&config, Some("zh")).unwrap();
628
- let input = "这是中文文本测试";
629
- let result = reducer.reduce(input);
630
-
631
- assert!(!result.is_empty());
632
- }
633
-
634
- #[test]
635
- fn test_mixed_language_text() {
636
- let config = TokenReductionConfig {
637
- level: ReductionLevel::Moderate,
638
- ..Default::default()
639
- };
640
-
641
- let reducer = TokenReducer::new(&config, None).unwrap();
642
- let input = "This is English text 这是中文 and some more English";
643
- let result = reducer.reduce(input);
644
-
645
- assert!(!result.is_empty());
646
- assert!(result.contains("English") || result.contains("中"));
647
- }
648
-
649
- #[test]
650
- fn test_punctuation_normalization() {
651
- let config = TokenReductionConfig {
652
- level: ReductionLevel::Light,
653
- ..Default::default()
654
- };
655
-
656
- let reducer = TokenReducer::new(&config, None).unwrap();
657
- let input = "Text!!!!!! with????? excessive,,,,,, punctuation";
658
- let result = reducer.reduce(input);
659
-
660
- assert!(!result.contains("!!!!!!"));
661
- assert!(!result.contains("?????"));
662
- assert!(!result.contains(",,,,,,"));
663
- }
664
-
665
- #[test]
666
- fn test_sentence_selection() {
667
- let config = TokenReductionConfig {
668
- level: ReductionLevel::Aggressive,
669
- ..Default::default()
670
- };
671
-
672
- let reducer = TokenReducer::new(&config, None).unwrap();
673
- let input = "First sentence here. Second sentence with more words. Third one. Fourth sentence is even longer than the others.";
674
- let result = reducer.reduce(input);
675
-
676
- assert!(result.len() < input.len());
677
- assert!(result.split(". ").count() < 4);
678
- }
679
-
680
- #[test]
681
- fn test_unicode_normalization_ascii() {
682
- let config = TokenReductionConfig {
683
- level: ReductionLevel::Light,
684
- ..Default::default()
685
- };
686
-
687
- let reducer = TokenReducer::new(&config, None).unwrap();
688
- let input = "Pure ASCII text without special characters";
689
- let result = reducer.reduce(input);
690
-
691
- assert!(result.contains("ASCII"));
692
- }
693
-
694
- #[test]
695
- fn test_unicode_normalization_non_ascii() {
696
- let config = TokenReductionConfig {
697
- level: ReductionLevel::Light,
698
- ..Default::default()
699
- };
700
-
701
- let reducer = TokenReducer::new(&config, None).unwrap();
702
- let input = "Café naïve résumé";
703
- let result = reducer.reduce(input);
704
-
705
- assert!(result.contains("Café") || result.contains("Cafe"));
706
- }
707
-
708
- #[test]
709
- fn test_single_text_vs_batch() {
710
- let config = TokenReductionConfig {
711
- level: ReductionLevel::Moderate,
712
- ..Default::default()
713
- };
714
-
715
- let reducer = TokenReducer::new(&config, None).unwrap();
716
- let text = "The quick brown fox jumps over the lazy dog";
717
-
718
- let single_result = reducer.reduce(text);
719
- let batch_results = reducer.batch_reduce(&[text]);
720
-
721
- assert_eq!(single_result, batch_results[0]);
722
- }
723
-
724
- #[test]
725
- fn test_important_word_preservation() {
726
- let config = TokenReductionConfig {
727
- level: ReductionLevel::Aggressive,
728
- ..Default::default()
729
- };
730
-
731
- let reducer = TokenReducer::new(&config, None).unwrap();
732
- let input = "The IMPORTANT word COVID-19 and 12345 numbers should be preserved";
733
- let result = reducer.reduce(input);
734
-
735
- assert!(result.contains("IMPORTANT") || result.contains("COVID") || result.contains("12345"));
736
- }
737
-
738
- #[test]
739
- fn test_technical_terms_preservation() {
740
- let config = TokenReductionConfig {
741
- level: ReductionLevel::Aggressive,
742
- ..Default::default()
743
- };
744
-
745
- let reducer = TokenReducer::new(&config, None).unwrap();
746
- let input = "The implementation uses PyTorch and TensorFlow frameworks";
747
- let result = reducer.reduce(input);
748
-
749
- assert!(result.contains("PyTorch") || result.contains("TensorFlow"));
750
- }
751
-
752
- #[test]
753
- fn test_calculate_char_entropy() {
754
- let config = TokenReductionConfig::default();
755
- let reducer = TokenReducer::new(&config, None).unwrap();
756
-
757
- let low_entropy = reducer.calculate_char_entropy("aaaaaaa");
758
- assert!(low_entropy < 1.0);
759
-
760
- let high_entropy = reducer.calculate_char_entropy("abcdefg123");
761
- assert!(high_entropy > low_entropy);
762
- }
763
-
764
- #[test]
765
- fn test_universal_tokenize_english() {
766
- let config = TokenReductionConfig::default();
767
- let reducer = TokenReducer::new(&config, None).unwrap();
768
-
769
- let tokens = reducer.universal_tokenize("hello world test");
770
- assert_eq!(tokens, vec!["hello", "world", "test"]);
771
- }
772
-
773
- #[test]
774
- fn test_universal_tokenize_cjk() {
775
- let config = TokenReductionConfig::default();
776
- let reducer = TokenReducer::new(&config, None).unwrap();
777
-
778
- let tokens = reducer.universal_tokenize("中文");
779
- assert!(!tokens.is_empty());
780
- }
781
-
782
- #[test]
783
- fn test_fallback_threshold() {
784
- let config = TokenReductionConfig {
785
- level: ReductionLevel::Aggressive,
786
- ..Default::default()
787
- };
788
-
789
- let reducer = TokenReducer::new(&config, None).unwrap();
790
-
791
- let input = "a the is of to in for on at by";
792
- let result = reducer.reduce(input);
793
-
794
- assert!(!result.is_empty());
795
- }
796
- }
1
+ use crate::error::Result;
2
+ use crate::text::token_reduction::{
3
+ cjk_utils::CjkTokenizer,
4
+ config::{ReductionLevel, TokenReductionConfig},
5
+ filters::FilterPipeline,
6
+ semantic::SemanticAnalyzer,
7
+ simd_text::{SimdTextProcessor, chunk_text_for_parallel},
8
+ };
9
+ use once_cell::sync::Lazy;
10
+ use rayon::prelude::*;
11
+ use regex::Regex;
12
+ use std::sync::Arc;
13
+ use unicode_normalization::UnicodeNormalization;
14
+
15
+ static REPEATED_EXCLAMATION: Lazy<Regex> =
16
+ Lazy::new(|| Regex::new(r"[!]{2,}").expect("Repeated exclamation regex pattern is valid and should compile"));
17
+ static REPEATED_QUESTION: Lazy<Regex> =
18
+ Lazy::new(|| Regex::new(r"[?]{2,}").expect("Repeated question regex pattern is valid and should compile"));
19
+ static REPEATED_COMMA: Lazy<Regex> =
20
+ Lazy::new(|| Regex::new(r"[,]{2,}").expect("Repeated comma regex pattern is valid and should compile"));
21
+
22
+ /// Bonus added for sentences at the beginning or end of the document
23
+ const SENTENCE_EDGE_POSITION_BONUS: f32 = 0.3;
24
+
25
+ /// Bonus added for sentences with ideal word count (neither too short nor too long)
26
+ const IDEAL_WORD_COUNT_BONUS: f32 = 0.2;
27
+
28
+ /// Minimum word count for ideal sentence length
29
+ const MIN_IDEAL_WORD_COUNT: usize = 3;
30
+
31
+ /// Maximum word count for ideal sentence length
32
+ const MAX_IDEAL_WORD_COUNT: usize = 25;
33
+
34
+ /// Weight multiplier for numeric content density in sentences
35
+ const NUMERIC_CONTENT_WEIGHT: f32 = 0.3;
36
+
37
+ /// Weight multiplier for capitalized/acronym word density in sentences
38
+ const CAPS_ACRONYM_WEIGHT: f32 = 0.25;
39
+
40
+ /// Weight multiplier for long word density in sentences
41
+ const LONG_WORD_WEIGHT: f32 = 0.2;
42
+
43
+ /// Minimum character length for a word to be considered "long"
44
+ const LONG_WORD_THRESHOLD: usize = 8;
45
+
46
+ /// Weight multiplier for punctuation density in sentences
47
+ const PUNCTUATION_DENSITY_WEIGHT: f32 = 0.15;
48
+
49
+ /// Weight multiplier for word diversity ratio (unique words / total words)
50
+ const DIVERSITY_RATIO_WEIGHT: f32 = 0.15;
51
+
52
+ /// Weight multiplier for character entropy (measure of text randomness/information)
53
+ const CHAR_ENTROPY_WEIGHT: f32 = 0.1;
54
+
55
+ pub struct TokenReducer {
56
+ config: Arc<TokenReductionConfig>,
57
+ text_processor: SimdTextProcessor,
58
+ filter_pipeline: FilterPipeline,
59
+ semantic_analyzer: Option<SemanticAnalyzer>,
60
+ cjk_tokenizer: CjkTokenizer,
61
+ language: String,
62
+ }
63
+
64
+ impl TokenReducer {
65
+ pub fn new(config: &TokenReductionConfig, language_hint: Option<&str>) -> Result<Self> {
66
+ let config = Arc::new(config.clone());
67
+ let language = language_hint
68
+ .or(config.language_hint.as_deref())
69
+ .unwrap_or("en")
70
+ .to_string();
71
+
72
+ let text_processor = SimdTextProcessor::new();
73
+ let filter_pipeline = FilterPipeline::new(&config, &language)?;
74
+
75
+ let semantic_analyzer = if matches!(config.level, ReductionLevel::Aggressive | ReductionLevel::Maximum) {
76
+ Some(SemanticAnalyzer::new(&language))
77
+ } else {
78
+ None
79
+ };
80
+
81
+ Ok(Self {
82
+ config,
83
+ text_processor,
84
+ filter_pipeline,
85
+ semantic_analyzer,
86
+ cjk_tokenizer: CjkTokenizer::new(),
87
+ language,
88
+ })
89
+ }
90
+
91
+ /// Get the language code being used for stopwords and semantic analysis.
92
+ pub fn language(&self) -> &str {
93
+ &self.language
94
+ }
95
+
96
+ pub fn reduce(&self, text: &str) -> String {
97
+ if text.is_empty() || matches!(self.config.level, ReductionLevel::Off) {
98
+ return text.to_string();
99
+ }
100
+
101
+ let working_text = if text.is_ascii() {
102
+ text
103
+ } else {
104
+ &text.nfc().collect::<String>()
105
+ };
106
+
107
+ match self.config.level {
108
+ ReductionLevel::Off => working_text.to_string(),
109
+ ReductionLevel::Light => self.apply_light_reduction_optimized(working_text),
110
+ ReductionLevel::Moderate => self.apply_moderate_reduction_optimized(working_text),
111
+ ReductionLevel::Aggressive => self.apply_aggressive_reduction_optimized(working_text),
112
+ ReductionLevel::Maximum => self.apply_maximum_reduction_optimized(working_text),
113
+ }
114
+ }
115
+
116
+ pub fn batch_reduce(&self, texts: &[&str]) -> Vec<String> {
117
+ if !self.config.enable_parallel || texts.len() < 2 {
118
+ return texts.iter().map(|text| self.reduce(text)).collect();
119
+ }
120
+
121
+ texts.par_iter().map(|text| self.reduce(text)).collect()
122
+ }
123
+
124
+ fn apply_light_reduction_optimized(&self, text: &str) -> String {
125
+ let mut result = if self.config.use_simd {
126
+ self.text_processor.clean_punctuation(text)
127
+ } else {
128
+ self.clean_punctuation_optimized(text)
129
+ };
130
+
131
+ result = self.filter_pipeline.apply_light_filters(&result);
132
+ result.trim().to_string()
133
+ }
134
+
135
+ fn apply_moderate_reduction_optimized(&self, text: &str) -> String {
136
+ let mut result = self.apply_light_reduction_optimized(text);
137
+
138
+ result = if self.config.enable_parallel && text.len() > 1000 {
139
+ self.apply_parallel_moderate_reduction(&result)
140
+ } else {
141
+ self.filter_pipeline.apply_moderate_filters(&result)
142
+ };
143
+
144
+ result
145
+ }
146
+
147
+ fn apply_aggressive_reduction_optimized(&self, text: &str) -> String {
148
+ let mut result = self.apply_moderate_reduction_optimized(text);
149
+
150
+ result = self.remove_additional_common_words(&result);
151
+ result = self.apply_sentence_selection(&result);
152
+
153
+ if let Some(ref analyzer) = self.semantic_analyzer {
154
+ result = analyzer.apply_semantic_filtering(&result, self.config.semantic_threshold);
155
+ }
156
+
157
+ result
158
+ }
159
+
160
+ fn apply_maximum_reduction_optimized(&self, text: &str) -> String {
161
+ let mut result = self.apply_aggressive_reduction_optimized(text);
162
+
163
+ if let Some(ref analyzer) = self.semantic_analyzer
164
+ && self.config.enable_semantic_clustering
165
+ {
166
+ result = analyzer.apply_hypernym_compression(&result, self.config.target_reduction);
167
+ }
168
+
169
+ result
170
+ }
171
+
172
+ fn apply_parallel_moderate_reduction(&self, text: &str) -> String {
173
+ let num_threads = rayon::current_num_threads();
174
+ let chunks = chunk_text_for_parallel(text, num_threads);
175
+
176
+ let processed_chunks: Vec<String> = chunks
177
+ .par_iter()
178
+ .map(|chunk| self.filter_pipeline.apply_moderate_filters(chunk))
179
+ .collect();
180
+
181
+ processed_chunks.join(" ")
182
+ }
183
+
184
+ fn clean_punctuation_optimized(&self, text: &str) -> String {
185
+ let mut result = text.to_string();
186
+
187
+ result = REPEATED_EXCLAMATION.replace_all(&result, "!").to_string();
188
+ result = REPEATED_QUESTION.replace_all(&result, "?").to_string();
189
+ result = REPEATED_COMMA.replace_all(&result, ",").to_string();
190
+
191
+ result
192
+ }
193
+
194
+ fn remove_additional_common_words(&self, text: &str) -> String {
195
+ let words = self.universal_tokenize(text);
196
+
197
+ if words.len() < 4 {
198
+ return text.to_string();
199
+ }
200
+
201
+ let mut word_freq = std::collections::HashMap::new();
202
+ let mut word_lengths = Vec::new();
203
+
204
+ for word in &words {
205
+ let clean_word = if word.chars().all(|c| c.is_alphabetic()) {
206
+ word.to_lowercase()
207
+ } else {
208
+ word.chars()
209
+ .filter(|c| c.is_alphabetic())
210
+ .collect::<String>()
211
+ .to_lowercase()
212
+ };
213
+
214
+ if !clean_word.is_empty() {
215
+ *word_freq.entry(clean_word.clone()).or_insert(0) += 1;
216
+ word_lengths.push(clean_word.chars().count());
217
+ }
218
+ }
219
+
220
+ let avg_length = if !word_lengths.is_empty() {
221
+ word_lengths.iter().sum::<usize>() as f32 / word_lengths.len() as f32
222
+ } else {
223
+ 5.0
224
+ };
225
+
226
+ let original_count = words.len();
227
+
228
+ let filtered_words: Vec<String> = words
229
+ .iter()
230
+ .filter(|word| {
231
+ let clean_word = if word.chars().all(|c| c.is_alphabetic()) {
232
+ word.to_lowercase()
233
+ } else {
234
+ word.chars()
235
+ .filter(|c| c.is_alphabetic())
236
+ .collect::<String>()
237
+ .to_lowercase()
238
+ };
239
+
240
+ if clean_word.is_empty() {
241
+ return true;
242
+ }
243
+
244
+ let freq = word_freq.get(&clean_word).unwrap_or(&0);
245
+ let word_len = clean_word.chars().count() as f32;
246
+
247
+ self.has_important_characteristics(word)
248
+ || (*freq <= 2 && word_len >= avg_length * 0.8)
249
+ || (word_len >= avg_length * 1.5)
250
+ })
251
+ .cloned()
252
+ .collect();
253
+
254
+ let has_cjk_content = text.chars().any(|c| c as u32 >= 0x4E00 && (c as u32) <= 0x9FFF);
255
+ let fallback_threshold = if has_cjk_content {
256
+ original_count / 5
257
+ } else {
258
+ original_count / 3
259
+ };
260
+
261
+ if filtered_words.len() < fallback_threshold {
262
+ let fallback_words: Vec<String> = words
263
+ .iter()
264
+ .filter(|word| {
265
+ let clean_word = if word.chars().all(|c| c.is_alphabetic()) {
266
+ (*word).clone()
267
+ } else {
268
+ word.chars().filter(|c| c.is_alphabetic()).collect::<String>()
269
+ };
270
+
271
+ clean_word.is_empty() || clean_word.chars().count() >= 3 || self.has_important_characteristics(word)
272
+ })
273
+ .cloned()
274
+ .collect();
275
+ self.smart_join(&fallback_words, has_cjk_content)
276
+ } else {
277
+ self.smart_join(&filtered_words, has_cjk_content)
278
+ }
279
+ }
280
+
281
+ fn smart_join(&self, tokens: &[String], has_cjk_content: bool) -> String {
282
+ if has_cjk_content {
283
+ tokens.join("")
284
+ } else {
285
+ tokens.join(" ")
286
+ }
287
+ }
288
+
289
+ fn has_important_characteristics(&self, word: &str) -> bool {
290
+ if word.len() > 1 && word.chars().all(|c| c.is_uppercase()) {
291
+ return true;
292
+ }
293
+
294
+ if word.chars().any(|c| c.is_numeric()) {
295
+ return true;
296
+ }
297
+
298
+ if word.len() > 10 {
299
+ return true;
300
+ }
301
+
302
+ let uppercase_count = word.chars().filter(|c| c.is_uppercase()).count();
303
+ if uppercase_count > 1 && uppercase_count < word.len() {
304
+ return true;
305
+ }
306
+
307
+ if self.has_cjk_importance(word) {
308
+ return true;
309
+ }
310
+
311
+ false
312
+ }
313
+
314
+ fn has_cjk_importance(&self, word: &str) -> bool {
315
+ let chars: Vec<char> = word.chars().collect();
316
+
317
+ let has_cjk = chars.iter().any(|&c| c as u32 >= 0x4E00 && (c as u32) <= 0x9FFF);
318
+ if !has_cjk {
319
+ return false;
320
+ }
321
+
322
+ let important_radicals = [
323
+ '学', '智', '能', '技', '术', '法', '算', '理', '科', '研', '究', '发', '展', '系', '统', '模', '型', '方',
324
+ '式', '过', '程', '结', '构', '功', '效', '应', '分', '析', '计', '算', '数', '据', '信', '息', '处', '理',
325
+ '语', '言', '文', '生', '成', '产', '用', '作', '为', '成', '变', '化', '转', '换', '提', '高', '网', '络',
326
+ '神', '经', '机', '器', '人', '工', '智', '能', '自', '然', '复',
327
+ ];
328
+
329
+ for &char in &chars {
330
+ if important_radicals.contains(&char) {
331
+ return true;
332
+ }
333
+ }
334
+
335
+ if chars.len() == 2 && has_cjk {
336
+ let has_technical = chars.iter().any(|&c| {
337
+ let code = c as u32;
338
+ (0x4E00..=0x4FFF).contains(&code)
339
+ || (0x5000..=0x51FF).contains(&code)
340
+ || (0x6700..=0x68FF).contains(&code)
341
+ || (0x7500..=0x76FF).contains(&code)
342
+ });
343
+
344
+ if has_technical {
345
+ return true;
346
+ }
347
+ }
348
+
349
+ false
350
+ }
351
+
352
+ fn apply_sentence_selection(&self, text: &str) -> String {
353
+ let sentences: Vec<&str> = text
354
+ .split(['.', '!', '?'])
355
+ .map(|s| s.trim())
356
+ .filter(|s| !s.is_empty())
357
+ .collect();
358
+
359
+ if sentences.len() <= 2 {
360
+ return text.to_string();
361
+ }
362
+
363
+ let mut scored_sentences: Vec<(usize, f32, &str)> = sentences
364
+ .iter()
365
+ .enumerate()
366
+ .map(|(i, sentence)| {
367
+ let score = self.score_sentence_importance(sentence, i, sentences.len());
368
+ (i, score, *sentence)
369
+ })
370
+ .collect();
371
+
372
+ scored_sentences.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
373
+
374
+ let keep_count = ((sentences.len() as f32 * 0.4).ceil() as usize).max(1);
375
+ let mut selected_indices: Vec<usize> = scored_sentences[..keep_count].iter().map(|(i, _, _)| *i).collect();
376
+
377
+ selected_indices.sort();
378
+
379
+ let selected_sentences: Vec<&str> = selected_indices
380
+ .iter()
381
+ .filter_map(|&i| sentences.get(i))
382
+ .copied()
383
+ .collect();
384
+
385
+ if selected_sentences.is_empty() {
386
+ text.to_string()
387
+ } else {
388
+ selected_sentences.join(". ")
389
+ }
390
+ }
391
+
392
+ fn score_sentence_importance(&self, sentence: &str, position: usize, total_sentences: usize) -> f32 {
393
+ let mut score = 0.0;
394
+
395
+ if position == 0 || position == total_sentences - 1 {
396
+ score += SENTENCE_EDGE_POSITION_BONUS;
397
+ }
398
+
399
+ let words: Vec<&str> = sentence.split_whitespace().collect();
400
+ if words.is_empty() {
401
+ return score;
402
+ }
403
+
404
+ let word_count = words.len();
405
+ if (MIN_IDEAL_WORD_COUNT..=MAX_IDEAL_WORD_COUNT).contains(&word_count) {
406
+ score += IDEAL_WORD_COUNT_BONUS;
407
+ }
408
+
409
+ let mut numeric_count = 0;
410
+ let mut caps_count = 0;
411
+ let mut long_word_count = 0;
412
+ let mut punct_density = 0;
413
+
414
+ for word in &words {
415
+ if word.chars().any(|c| c.is_numeric()) {
416
+ numeric_count += 1;
417
+ }
418
+
419
+ if word.len() > 1 && word.chars().all(|c| c.is_uppercase()) {
420
+ caps_count += 1;
421
+ }
422
+
423
+ if word.len() > LONG_WORD_THRESHOLD {
424
+ long_word_count += 1;
425
+ }
426
+
427
+ punct_density += word.chars().filter(|c| c.is_ascii_punctuation()).count();
428
+ }
429
+
430
+ score += (numeric_count as f32 / words.len() as f32) * NUMERIC_CONTENT_WEIGHT;
431
+ score += (caps_count as f32 / words.len() as f32) * CAPS_ACRONYM_WEIGHT;
432
+ score += (long_word_count as f32 / words.len() as f32) * LONG_WORD_WEIGHT;
433
+ score += (punct_density as f32 / sentence.len() as f32) * PUNCTUATION_DENSITY_WEIGHT;
434
+
435
+ let unique_words: std::collections::HashSet<_> = words
436
+ .iter()
437
+ .map(|w| {
438
+ w.chars()
439
+ .filter(|c| c.is_alphabetic())
440
+ .collect::<String>()
441
+ .to_lowercase()
442
+ })
443
+ .collect();
444
+ let diversity_ratio = unique_words.len() as f32 / words.len() as f32;
445
+ score += diversity_ratio * DIVERSITY_RATIO_WEIGHT;
446
+
447
+ let char_entropy = self.calculate_char_entropy(sentence);
448
+ score += char_entropy * CHAR_ENTROPY_WEIGHT;
449
+
450
+ score
451
+ }
452
+
453
+ fn universal_tokenize(&self, text: &str) -> Vec<String> {
454
+ self.cjk_tokenizer.tokenize_mixed_text(text)
455
+ }
456
+
457
+ fn calculate_char_entropy(&self, text: &str) -> f32 {
458
+ let chars: Vec<char> = text.chars().collect();
459
+ if chars.is_empty() {
460
+ return 0.0;
461
+ }
462
+
463
+ let mut char_freq = std::collections::HashMap::new();
464
+ for &ch in &chars {
465
+ let lowercase_ch = ch
466
+ .to_lowercase()
467
+ .next()
468
+ .expect("to_lowercase() must yield at least one character for valid Unicode");
469
+ *char_freq.entry(lowercase_ch).or_insert(0) += 1;
470
+ }
471
+
472
+ let total_chars = chars.len() as f32;
473
+ char_freq
474
+ .values()
475
+ .map(|&freq| {
476
+ let p = freq as f32 / total_chars;
477
+ if p > 0.0 { -p * p.log2() } else { 0.0 }
478
+ })
479
+ .sum::<f32>()
480
+ .min(5.0)
481
+ }
482
+ }
483
+
484
+ #[cfg(test)]
485
+ mod tests {
486
+ use super::*;
487
+
488
+ #[test]
489
+ fn test_light_reduction() {
490
+ let config = TokenReductionConfig {
491
+ level: ReductionLevel::Light,
492
+ use_simd: false,
493
+ ..Default::default()
494
+ };
495
+
496
+ let reducer = TokenReducer::new(&config, None).unwrap();
497
+ let input = "Hello world!!! How are you???";
498
+ let result = reducer.reduce(input);
499
+
500
+ assert!(result.len() < input.len());
501
+ assert!(!result.contains(" "));
502
+ }
503
+
504
+ #[test]
505
+ fn test_moderate_reduction() {
506
+ let config = TokenReductionConfig {
507
+ level: ReductionLevel::Moderate,
508
+ use_simd: false,
509
+ ..Default::default()
510
+ };
511
+
512
+ let reducer = TokenReducer::new(&config, Some("en")).unwrap();
513
+ let input = "The quick brown fox is jumping over the lazy dog";
514
+ let result = reducer.reduce(input);
515
+
516
+ assert!(result.len() < input.len());
517
+ assert!(result.contains("quick"));
518
+ assert!(result.contains("brown"));
519
+ assert!(result.contains("fox"));
520
+ }
521
+
522
+ #[test]
523
+ fn test_batch_processing() {
524
+ let config = TokenReductionConfig {
525
+ level: ReductionLevel::Light,
526
+ enable_parallel: false,
527
+ ..Default::default()
528
+ };
529
+
530
+ let reducer = TokenReducer::new(&config, None).unwrap();
531
+ let inputs = vec!["Hello world!", "How are you?", "Fine, thanks!"];
532
+ let results = reducer.batch_reduce(&inputs);
533
+
534
+ assert_eq!(results.len(), inputs.len());
535
+ for result in &results {
536
+ assert!(!result.contains(" "));
537
+ }
538
+ }
539
+
540
+ #[test]
541
+ fn test_aggressive_reduction() {
542
+ let config = TokenReductionConfig {
543
+ level: ReductionLevel::Aggressive,
544
+ use_simd: false,
545
+ ..Default::default()
546
+ };
547
+
548
+ let reducer = TokenReducer::new(&config, Some("en")).unwrap();
549
+ let input = "The quick brown fox is jumping over the lazy dog and running through the forest";
550
+ let result = reducer.reduce(input);
551
+
552
+ assert!(result.len() < input.len());
553
+ assert!(!result.is_empty());
554
+ }
555
+
556
+ #[test]
557
+ fn test_maximum_reduction() {
558
+ let config = TokenReductionConfig {
559
+ level: ReductionLevel::Maximum,
560
+ use_simd: false,
561
+ enable_semantic_clustering: true,
562
+ ..Default::default()
563
+ };
564
+
565
+ let reducer = TokenReducer::new(&config, Some("en")).unwrap();
566
+ let input = "The quick brown fox is jumping over the lazy dog and running through the forest";
567
+ let result = reducer.reduce(input);
568
+
569
+ assert!(result.len() < input.len());
570
+ assert!(!result.is_empty());
571
+ }
572
+
573
+ #[test]
574
+ fn test_empty_text_handling() {
575
+ let config = TokenReductionConfig {
576
+ level: ReductionLevel::Moderate,
577
+ ..Default::default()
578
+ };
579
+
580
+ let reducer = TokenReducer::new(&config, None).unwrap();
581
+ assert_eq!(reducer.reduce(""), "");
582
+ let result = reducer.reduce(" ");
583
+ assert!(result == " " || result.is_empty());
584
+ }
585
+
586
+ #[test]
587
+ fn test_off_mode_preserves_text() {
588
+ let config = TokenReductionConfig {
589
+ level: ReductionLevel::Off,
590
+ ..Default::default()
591
+ };
592
+
593
+ let reducer = TokenReducer::new(&config, None).unwrap();
594
+ let input = "Text with multiple spaces!!!";
595
+ assert_eq!(reducer.reduce(input), input);
596
+ }
597
+
598
+ #[test]
599
+ fn test_parallel_batch_processing() {
600
+ let config = TokenReductionConfig {
601
+ level: ReductionLevel::Light,
602
+ enable_parallel: true,
603
+ ..Default::default()
604
+ };
605
+
606
+ let reducer = TokenReducer::new(&config, None).unwrap();
607
+ let inputs = vec![
608
+ "First text with spaces",
609
+ "Second text with spaces",
610
+ "Third text with spaces",
611
+ ];
612
+ let results = reducer.batch_reduce(&inputs);
613
+
614
+ assert_eq!(results.len(), inputs.len());
615
+ for result in &results {
616
+ assert!(!result.contains(" "));
617
+ }
618
+ }
619
+
620
+ #[test]
621
+ fn test_cjk_text_handling() {
622
+ let config = TokenReductionConfig {
623
+ level: ReductionLevel::Moderate,
624
+ ..Default::default()
625
+ };
626
+
627
+ let reducer = TokenReducer::new(&config, Some("zh")).unwrap();
628
+ let input = "这是中文文本测试";
629
+ let result = reducer.reduce(input);
630
+
631
+ assert!(!result.is_empty());
632
+ }
633
+
634
+ #[test]
635
+ fn test_mixed_language_text() {
636
+ let config = TokenReductionConfig {
637
+ level: ReductionLevel::Moderate,
638
+ ..Default::default()
639
+ };
640
+
641
+ let reducer = TokenReducer::new(&config, None).unwrap();
642
+ let input = "This is English text 这是中文 and some more English";
643
+ let result = reducer.reduce(input);
644
+
645
+ assert!(!result.is_empty());
646
+ assert!(result.contains("English") || result.contains("中"));
647
+ }
648
+
649
+ #[test]
650
+ fn test_punctuation_normalization() {
651
+ let config = TokenReductionConfig {
652
+ level: ReductionLevel::Light,
653
+ ..Default::default()
654
+ };
655
+
656
+ let reducer = TokenReducer::new(&config, None).unwrap();
657
+ let input = "Text!!!!!! with????? excessive,,,,,, punctuation";
658
+ let result = reducer.reduce(input);
659
+
660
+ assert!(!result.contains("!!!!!!"));
661
+ assert!(!result.contains("?????"));
662
+ assert!(!result.contains(",,,,,,"));
663
+ }
664
+
665
+ #[test]
666
+ fn test_sentence_selection() {
667
+ let config = TokenReductionConfig {
668
+ level: ReductionLevel::Aggressive,
669
+ ..Default::default()
670
+ };
671
+
672
+ let reducer = TokenReducer::new(&config, None).unwrap();
673
+ let input = "First sentence here. Second sentence with more words. Third one. Fourth sentence is even longer than the others.";
674
+ let result = reducer.reduce(input);
675
+
676
+ assert!(result.len() < input.len());
677
+ assert!(result.split(". ").count() < 4);
678
+ }
679
+
680
+ #[test]
681
+ fn test_unicode_normalization_ascii() {
682
+ let config = TokenReductionConfig {
683
+ level: ReductionLevel::Light,
684
+ ..Default::default()
685
+ };
686
+
687
+ let reducer = TokenReducer::new(&config, None).unwrap();
688
+ let input = "Pure ASCII text without special characters";
689
+ let result = reducer.reduce(input);
690
+
691
+ assert!(result.contains("ASCII"));
692
+ }
693
+
694
+ #[test]
695
+ fn test_unicode_normalization_non_ascii() {
696
+ let config = TokenReductionConfig {
697
+ level: ReductionLevel::Light,
698
+ ..Default::default()
699
+ };
700
+
701
+ let reducer = TokenReducer::new(&config, None).unwrap();
702
+ let input = "Café naïve résumé";
703
+ let result = reducer.reduce(input);
704
+
705
+ assert!(result.contains("Café") || result.contains("Cafe"));
706
+ }
707
+
708
+ #[test]
709
+ fn test_single_text_vs_batch() {
710
+ let config = TokenReductionConfig {
711
+ level: ReductionLevel::Moderate,
712
+ ..Default::default()
713
+ };
714
+
715
+ let reducer = TokenReducer::new(&config, None).unwrap();
716
+ let text = "The quick brown fox jumps over the lazy dog";
717
+
718
+ let single_result = reducer.reduce(text);
719
+ let batch_results = reducer.batch_reduce(&[text]);
720
+
721
+ assert_eq!(single_result, batch_results[0]);
722
+ }
723
+
724
+ #[test]
725
+ fn test_important_word_preservation() {
726
+ let config = TokenReductionConfig {
727
+ level: ReductionLevel::Aggressive,
728
+ ..Default::default()
729
+ };
730
+
731
+ let reducer = TokenReducer::new(&config, None).unwrap();
732
+ let input = "The IMPORTANT word COVID-19 and 12345 numbers should be preserved";
733
+ let result = reducer.reduce(input);
734
+
735
+ assert!(result.contains("IMPORTANT") || result.contains("COVID") || result.contains("12345"));
736
+ }
737
+
738
+ #[test]
739
+ fn test_technical_terms_preservation() {
740
+ let config = TokenReductionConfig {
741
+ level: ReductionLevel::Aggressive,
742
+ ..Default::default()
743
+ };
744
+
745
+ let reducer = TokenReducer::new(&config, None).unwrap();
746
+ let input = "The implementation uses PyTorch and TensorFlow frameworks";
747
+ let result = reducer.reduce(input);
748
+
749
+ assert!(result.contains("PyTorch") || result.contains("TensorFlow"));
750
+ }
751
+
752
+ #[test]
753
+ fn test_calculate_char_entropy() {
754
+ let config = TokenReductionConfig::default();
755
+ let reducer = TokenReducer::new(&config, None).unwrap();
756
+
757
+ let low_entropy = reducer.calculate_char_entropy("aaaaaaa");
758
+ assert!(low_entropy < 1.0);
759
+
760
+ let high_entropy = reducer.calculate_char_entropy("abcdefg123");
761
+ assert!(high_entropy > low_entropy);
762
+ }
763
+
764
+ #[test]
765
+ fn test_universal_tokenize_english() {
766
+ let config = TokenReductionConfig::default();
767
+ let reducer = TokenReducer::new(&config, None).unwrap();
768
+
769
+ let tokens = reducer.universal_tokenize("hello world test");
770
+ assert_eq!(tokens, vec!["hello", "world", "test"]);
771
+ }
772
+
773
+ #[test]
774
+ fn test_universal_tokenize_cjk() {
775
+ let config = TokenReductionConfig::default();
776
+ let reducer = TokenReducer::new(&config, None).unwrap();
777
+
778
+ let tokens = reducer.universal_tokenize("中文");
779
+ assert!(!tokens.is_empty());
780
+ }
781
+
782
+ #[test]
783
+ fn test_fallback_threshold() {
784
+ let config = TokenReductionConfig {
785
+ level: ReductionLevel::Aggressive,
786
+ ..Default::default()
787
+ };
788
+
789
+ let reducer = TokenReducer::new(&config, None).unwrap();
790
+
791
+ let input = "a the is of to in for on at by";
792
+ let result = reducer.reduce(input);
793
+
794
+ assert!(!result.is_empty());
795
+ }
796
+ }