intervals 0.3.56
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/VERSION.txt +1 -0
- data/ext/crlibm/AUTHORS +2 -0
- data/ext/crlibm/COPYING +504 -0
- data/ext/crlibm/ChangeLog +80 -0
- data/ext/crlibm/INSTALL +182 -0
- data/ext/crlibm/Makefile.am +84 -0
- data/ext/crlibm/Makefile.in +530 -0
- data/ext/crlibm/NEWS +0 -0
- data/ext/crlibm/README +31 -0
- data/ext/crlibm/TODO +47 -0
- data/ext/crlibm/VERSION +1 -0
- data/ext/crlibm/aclocal.m4 +989 -0
- data/ext/crlibm/atan-itanium.c +846 -0
- data/ext/crlibm/atan-pentium.c +261 -0
- data/ext/crlibm/atan_accurate.c +244 -0
- data/ext/crlibm/atan_accurate.h +191 -0
- data/ext/crlibm/atan_fast.c +324 -0
- data/ext/crlibm/atan_fast.h +678 -0
- data/ext/crlibm/config.guess +1461 -0
- data/ext/crlibm/config.sub +1566 -0
- data/ext/crlibm/configure +7517 -0
- data/ext/crlibm/configure.ac +364 -0
- data/ext/crlibm/crlibm.h +125 -0
- data/ext/crlibm/crlibm_config.h +149 -0
- data/ext/crlibm/crlibm_config.h.in +148 -0
- data/ext/crlibm/crlibm_private.c +293 -0
- data/ext/crlibm/crlibm_private.h +658 -0
- data/ext/crlibm/csh_fast.c +631 -0
- data/ext/crlibm/csh_fast.h +771 -0
- data/ext/crlibm/double-extended.h +496 -0
- data/ext/crlibm/exp-td.c +962 -0
- data/ext/crlibm/exp-td.h +685 -0
- data/ext/crlibm/exp_accurate.c +197 -0
- data/ext/crlibm/exp_accurate.h +85 -0
- data/ext/crlibm/gappa/log-de-E0-logir0.gappa +106 -0
- data/ext/crlibm/gappa/log-de-E0.gappa +79 -0
- data/ext/crlibm/gappa/log-de.gappa +81 -0
- data/ext/crlibm/gappa/log-td-E0-logir0.gappa +126 -0
- data/ext/crlibm/gappa/log-td-E0.gappa +143 -0
- data/ext/crlibm/gappa/log-td-accurate-E0-logir0.gappa +230 -0
- data/ext/crlibm/gappa/log-td-accurate-E0.gappa +213 -0
- data/ext/crlibm/gappa/log-td-accurate.gappa +217 -0
- data/ext/crlibm/gappa/log-td.gappa +156 -0
- data/ext/crlibm/gappa/trigoSinCosCase3.gappa +204 -0
- data/ext/crlibm/gappa/trigoTanCase2.gappa +73 -0
- data/ext/crlibm/install-sh +269 -0
- data/ext/crlibm/log-de.c +431 -0
- data/ext/crlibm/log-de.h +732 -0
- data/ext/crlibm/log-td.c +852 -0
- data/ext/crlibm/log-td.h +819 -0
- data/ext/crlibm/log10-td.c +906 -0
- data/ext/crlibm/log10-td.h +823 -0
- data/ext/crlibm/log2-td.c +935 -0
- data/ext/crlibm/log2-td.h +821 -0
- data/ext/crlibm/maple/atan.mpl +359 -0
- data/ext/crlibm/maple/common-procedures.mpl +997 -0
- data/ext/crlibm/maple/csh.mpl +446 -0
- data/ext/crlibm/maple/double-extended.mpl +151 -0
- data/ext/crlibm/maple/exp-td.mpl +195 -0
- data/ext/crlibm/maple/log-de.mpl +243 -0
- data/ext/crlibm/maple/log-td.mpl +316 -0
- data/ext/crlibm/maple/log10-td.mpl +345 -0
- data/ext/crlibm/maple/log2-td.mpl +334 -0
- data/ext/crlibm/maple/trigo.mpl +728 -0
- data/ext/crlibm/maple/triple-double.mpl +58 -0
- data/ext/crlibm/missing +198 -0
- data/ext/crlibm/mkinstalldirs +40 -0
- data/ext/crlibm/rem_pio2_accurate.c +219 -0
- data/ext/crlibm/rem_pio2_accurate.h +53 -0
- data/ext/crlibm/scs_lib/AUTHORS +3 -0
- data/ext/crlibm/scs_lib/COPYING +504 -0
- data/ext/crlibm/scs_lib/ChangeLog +16 -0
- data/ext/crlibm/scs_lib/INSTALL +215 -0
- data/ext/crlibm/scs_lib/Makefile.am +18 -0
- data/ext/crlibm/scs_lib/Makefile.in +328 -0
- data/ext/crlibm/scs_lib/NEWS +0 -0
- data/ext/crlibm/scs_lib/README +9 -0
- data/ext/crlibm/scs_lib/TODO +4 -0
- data/ext/crlibm/scs_lib/addition_scs.c +623 -0
- data/ext/crlibm/scs_lib/config.guess +1461 -0
- data/ext/crlibm/scs_lib/config.sub +1566 -0
- data/ext/crlibm/scs_lib/configure +6226 -0
- data/ext/crlibm/scs_lib/division_scs.c +110 -0
- data/ext/crlibm/scs_lib/double2scs.c +174 -0
- data/ext/crlibm/scs_lib/install-sh +269 -0
- data/ext/crlibm/scs_lib/missing +198 -0
- data/ext/crlibm/scs_lib/mkinstalldirs +40 -0
- data/ext/crlibm/scs_lib/multiplication_scs.c +456 -0
- data/ext/crlibm/scs_lib/poly_fct.c +112 -0
- data/ext/crlibm/scs_lib/print_scs.c +73 -0
- data/ext/crlibm/scs_lib/rand_scs.c +63 -0
- data/ext/crlibm/scs_lib/scs.h +353 -0
- data/ext/crlibm/scs_lib/scs2double.c +391 -0
- data/ext/crlibm/scs_lib/scs2mpf.c +58 -0
- data/ext/crlibm/scs_lib/scs2mpfr.c +61 -0
- data/ext/crlibm/scs_lib/scs_private.c +23 -0
- data/ext/crlibm/scs_lib/scs_private.h +133 -0
- data/ext/crlibm/scs_lib/tests/tbx_timing.h +102 -0
- data/ext/crlibm/scs_lib/wrapper_scs.h +486 -0
- data/ext/crlibm/scs_lib/zero_scs.c +52 -0
- data/ext/crlibm/stamp-h.in +1 -0
- data/ext/crlibm/tests/Makefile.am +43 -0
- data/ext/crlibm/tests/Makefile.in +396 -0
- data/ext/crlibm/tests/blind_test.c +148 -0
- data/ext/crlibm/tests/generate_test_vectors.c +258 -0
- data/ext/crlibm/tests/soak_test.c +334 -0
- data/ext/crlibm/tests/test_common.c +627 -0
- data/ext/crlibm/tests/test_common.h +28 -0
- data/ext/crlibm/tests/test_perf.c +570 -0
- data/ext/crlibm/tests/test_val.c +249 -0
- data/ext/crlibm/trigo_accurate.c +500 -0
- data/ext/crlibm/trigo_accurate.h +331 -0
- data/ext/crlibm/trigo_fast.c +1219 -0
- data/ext/crlibm/trigo_fast.h +639 -0
- data/ext/crlibm/triple-double.h +878 -0
- data/ext/extconf.rb +31 -0
- data/ext/fpu.c +107 -0
- data/ext/jamis-mod.rb +591 -0
- data/lib/fpu.rb +287 -0
- data/lib/interval.rb +1170 -0
- data/lib/intervals.rb +212 -0
- data/lib/struct_float.rb +133 -0
- data/test/data_atan.txt +360 -0
- data/test/data_cos.txt +346 -0
- data/test/data_cosh.txt +3322 -0
- data/test/data_exp.txt +3322 -0
- data/test/data_log.txt +141 -0
- data/test/data_sin.txt +140 -0
- data/test/data_sinh.txt +3322 -0
- data/test/data_tan.txt +342 -0
- metadata +186 -0
@@ -0,0 +1,143 @@
|
|
1
|
+
|
2
|
+
c3 = <float64ne> (_c3);
|
3
|
+
c4 = <float64ne> (_c4);
|
4
|
+
c5 = <float64ne> (_c5);
|
5
|
+
c6 = <float64ne> (_c6);
|
6
|
+
c7 = <float64ne> (_c7);
|
7
|
+
|
8
|
+
E = 0; #MAPLE
|
9
|
+
|
10
|
+
logih = <float64ne> (_logih);
|
11
|
+
logim = <float64ne> (_logim);
|
12
|
+
logil = <float64ne> (_logil);
|
13
|
+
|
14
|
+
|
15
|
+
zh = <float64ne> (Z);
|
16
|
+
zl = Z - zh; #MAPLE
|
17
|
+
|
18
|
+
polyHorner <float64ne>= c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh * c7)));
|
19
|
+
|
20
|
+
ZhSquarehl = zh * zh; #MAPLE
|
21
|
+
zhSquareh = <float64ne> (ZhSquarehl);
|
22
|
+
zhSquarel = <float64ne> (ZhSquarehl - zhSquareh);
|
23
|
+
|
24
|
+
zhSquareHalfh = zhSquareh * (-0.5); #MAPLE
|
25
|
+
zhSquareHalfl = zhSquarel * (-0.5); #MAPLE
|
26
|
+
ZhSquareHalfhl = ZhSquarehl * (-0.5); #MAPLE
|
27
|
+
|
28
|
+
polyUpper <float64ne>= polyHorner * (zh * zhSquareh);
|
29
|
+
|
30
|
+
temp = <float64ne> (zh * zl);
|
31
|
+
T1hl = polyUpper - temp; #MAPLE
|
32
|
+
t1h = <float64ne> (T1hl);
|
33
|
+
t1l = <float64ne> (T1hl - t1h);
|
34
|
+
|
35
|
+
T2 = Z + ZhSquareHalfhl; #MAPLE
|
36
|
+
t2h = <float64ne> (T2hl);
|
37
|
+
t2l = <float64ne> (T2hl - t2h);
|
38
|
+
|
39
|
+
PE = T2hl + T1hl; #MAPLE
|
40
|
+
ph = <float64ne> (Phl);
|
41
|
+
pl = <float64ne> (Phl - ph);
|
42
|
+
|
43
|
+
|
44
|
+
#Useful additional definitions
|
45
|
+
Log2hm = log2h + log2m; #MAPLE
|
46
|
+
Logihm = logih + logim; #MAPLE
|
47
|
+
#End additional
|
48
|
+
|
49
|
+
LogTabPoly = Logihm + Phl; #MAPLE
|
50
|
+
logTabPolyh = <float64ne> (LogTabPolyhl);
|
51
|
+
logTabPolyl = <float64ne> (LogTabPolyhl - logTabPolyh);
|
52
|
+
|
53
|
+
#We know that the addition of E * log2hm = 0 and logTabPolyhl is exact
|
54
|
+
#Thus we simplify the proof at this level
|
55
|
+
|
56
|
+
Loghm = LogTabPolyhl; #MAPLE
|
57
|
+
|
58
|
+
logh = <float64ne> (Loghm);
|
59
|
+
logm = <float64ne> (Loghm - logh);
|
60
|
+
|
61
|
+
#Mathematical definition of the logarithm and the polynomial
|
62
|
+
|
63
|
+
Phigher = (c3 + Z * (c4 + Z * (c5 + Z * (c6 + Z * c7)))); #MAPLE
|
64
|
+
ZZZ = Z*Z*Z; #MAPLE
|
65
|
+
ZZZPhigher = ZZZ * Phigher; #MAPLE
|
66
|
+
HZZ = (-0.5*Z*Z); #MAPLE
|
67
|
+
ZpHZZ = Z + HZZ; #MAPLE
|
68
|
+
P = ZpHZZ + ZZZPhigher; #MAPLE
|
69
|
+
Log1pZpTab = Log1pZ + Logir; #MAPLE
|
70
|
+
|
71
|
+
#We apply the same simplification to the mathematical definition of the logarithm
|
72
|
+
|
73
|
+
Log = Log1pZpTab; #MAPLE
|
74
|
+
|
75
|
+
# Useful additional definitions
|
76
|
+
|
77
|
+
HZZsimp = HZZ + (zh * zl); #MAPLE
|
78
|
+
ZpHZZsimp = Z + HZZsimp; #MAPLE
|
79
|
+
ZZZPhigherPzhzl = ZZZPhigher - zh * zl; #MAPLE
|
80
|
+
zhCube = zh * zhSquareh; #MAPLE
|
81
|
+
|
82
|
+
delta1 = T2hl - T2; #MAPLE
|
83
|
+
delta2 = polyUpper - (polyHorner * zhCube); #MAPLE
|
84
|
+
delta3 = zhCube - ZZZ; #MAPLE
|
85
|
+
delta4 = Phl - PE; #MAPLE
|
86
|
+
delta6 = P - Log1pZ; #MAPLE
|
87
|
+
delta7 = LogTabPolyhl - LogTabPoly; #MAPLE
|
88
|
+
|
89
|
+
# End additional
|
90
|
+
|
91
|
+
|
92
|
+
{
|
93
|
+
(T2hl - T2) / T2 in [-1b-103,1b-103]
|
94
|
+
/\ (Phl - PE) / PE in [-1b-103,1b-103]
|
95
|
+
/\ (LogTabPolyhl - LogTabPoly) / LogTabPoly in [-1b-103,1b-103]
|
96
|
+
/\ (Log2hm - Log2) / Log2 in [-1b-84,1b-84]
|
97
|
+
/\ (Logihm - Logir) / Logir in [-1b-106,1b-106]
|
98
|
+
/\ Z in [_zmin,_zmax]
|
99
|
+
/\ (P - Log1pZ) / Log1pZ in [-_epsilonApproxQuick,_epsilonApproxQuick]
|
100
|
+
/\ ((logh + logm) - Loghm) / Loghm in [-1b-106,1b-106]
|
101
|
+
->
|
102
|
+
((logh + logm) - Log) / Log in [-5b-65,5b-65]
|
103
|
+
}
|
104
|
+
|
105
|
+
T2hl - T2 -> ((T2hl - T2) / T2) * T2;
|
106
|
+
T2hl -> (T2hl - T2) + T2;
|
107
|
+
|
108
|
+
Phl - PE -> ((Phl - PE) / PE) * PE;
|
109
|
+
Phl -> (Phl - PE) + PE;
|
110
|
+
|
111
|
+
|
112
|
+
LogTabPolyhl -> (LogTabPolyhl - LogTabPoly) + LogTabPoly;
|
113
|
+
|
114
|
+
Loghm -> (Loghm - LogE) + LogE;
|
115
|
+
|
116
|
+
Log2 -> Log2hm * (1 / (((Log2hm - Log2) / Log2) + 1));
|
117
|
+
|
118
|
+
Logir -> Logihm * (1 / (((Logihm - Logir) / Logir) + 1));
|
119
|
+
|
120
|
+
|
121
|
+
|
122
|
+
HZZsimp -> (-0.5 * zh * zh) - (0.5 * zl * zl);
|
123
|
+
|
124
|
+
T2hl - ZpHZZsimp -> (0.5 * zl * zl) + delta1;
|
125
|
+
|
126
|
+
zhCube - ZZZ -> (Z * (zhSquareh - Z * Z)) - (zl * zhSquareh);
|
127
|
+
|
128
|
+
polyUpper - ZZZPhigher -> ZZZ * (polyHorner - Phigher) + polyHorner * delta3 + delta2;
|
129
|
+
|
130
|
+
ZpHZZ + ZZZPhigher -> ZpHZZsimp + ZZZPhigherPzhzl;
|
131
|
+
|
132
|
+
Phl - P -> (T2hl - ZpHZZsimp) + (T1hl - ZZZPhigherPzhzl) + delta4;
|
133
|
+
|
134
|
+
Log1pZ -> P * (1 / (((P - Log1pZ) / Log1pZ) + 1));
|
135
|
+
P - Log1pZ -> ((P - Log1pZ) / Log1pZ) * Log1pZ;
|
136
|
+
|
137
|
+
Phl - Log1pZ -> (Phl - P) + delta6;
|
138
|
+
|
139
|
+
LogTabPolyhl - Log1pZpTab -> (Logihm - Logir) + (Phl - Log1pZ) + delta7;
|
140
|
+
|
141
|
+
(logh + logm) - Loghm -> (((logh + logm) - Loghm) / Loghm) * Loghm;
|
142
|
+
|
143
|
+
(logh + logm) - Log -> ((logh + logm) - Loghm) + (Loghm - Log);
|
@@ -0,0 +1,230 @@
|
|
1
|
+
|
2
|
+
|
3
|
+
accPolyC14 = <float64ne> (_accPolyC14);
|
4
|
+
accPolyC13 = <float64ne> (_accPolyC13);
|
5
|
+
accPolyC12 = <float64ne> (_accPolyC12);
|
6
|
+
accPolyC11 = <float64ne> (_accPolyC11);
|
7
|
+
accPolyC10 = <float64ne> (_accPolyC10);
|
8
|
+
|
9
|
+
accPolyC9h = <float64ne> (_accPolyC9h);
|
10
|
+
accPolyC9l = <float64ne> (_accPolyC9l);
|
11
|
+
AccPolyC9hl = accPolyC9h + accPolyC9l; #MAPLE
|
12
|
+
accPolyC8h = <float64ne> (_accPolyC8h);
|
13
|
+
accPolyC8l = <float64ne> (_accPolyC8l);
|
14
|
+
AccPolyC8hl = accPolyC8h + accPolyC8l; #MAPLE
|
15
|
+
accPolyC7h = <float64ne> (_accPolyC7h);
|
16
|
+
accPolyC7l = <float64ne> (_accPolyC7l);
|
17
|
+
AccPolyC7hl = accPolyC7h + accPolyC7l; #MAPLE
|
18
|
+
accPolyC6h = <float64ne> (_accPolyC6h);
|
19
|
+
accPolyC6l = <float64ne> (_accPolyC6l);
|
20
|
+
AccPolyC6hl = accPolyC6h + accPolyC6l; #MAPLE
|
21
|
+
accPolyC5h = <float64ne> (_accPolyC5h);
|
22
|
+
accPolyC5l = <float64ne> (_accPolyC5l);
|
23
|
+
AccPolyC5hl = accPolyC5h + accPolyC5l; #MAPLE
|
24
|
+
accPolyC4h = <float64ne> (_accPolyC4h);
|
25
|
+
accPolyC4l = <float64ne> (_accPolyC4l);
|
26
|
+
AccPolyC4hl = accPolyC4h + accPolyC4l; #MAPLE
|
27
|
+
accPolyC3h = <float64ne> (_accPolyC3h);
|
28
|
+
accPolyC3l = <float64ne> (_accPolyC3l);
|
29
|
+
AccPolyC3hl = accPolyC3h + accPolyC3l; #MAPLE
|
30
|
+
|
31
|
+
E = 0; #MAPLE
|
32
|
+
|
33
|
+
zh = <float64ne> (Z);
|
34
|
+
zl = Z - zh; #MAPLE
|
35
|
+
|
36
|
+
highPoly <float64ne> = accPolyC10 + zh * (accPolyC11 + zh * (accPolyC12 + zh * (accPolyC13 + zh * accPolyC14)));
|
37
|
+
|
38
|
+
T1hl = zh * highPoly; #MAPLE
|
39
|
+
|
40
|
+
T2 = AccPolyC9hl + T1hl; #MAPLE
|
41
|
+
T3 = Z * T2hl; #MAPLE
|
42
|
+
T4 = AccPolyC8hl + T3hl; #MAPLE
|
43
|
+
T5 = Z * T4hl; #MAPLE
|
44
|
+
T6 = AccPolyC7hl + T5hl; #MAPLE
|
45
|
+
T7 = Z * T6hl; #MAPLE
|
46
|
+
T8 = AccPolyC6hl + T7hl; #MAPLE
|
47
|
+
T9 = Z * T8hl; #MAPLE
|
48
|
+
T10 = AccPolyC5hl + T9hl; #MAPLE
|
49
|
+
T11 = Z * T10hl; #MAPLE
|
50
|
+
T12 = AccPolyC4hl + T11hl; #MAPLE
|
51
|
+
T13 = Z * T12hl; #MAPLE
|
52
|
+
T14 = AccPolyC3hl + T13hl; #MAPLE
|
53
|
+
|
54
|
+
|
55
|
+
ZSquare = Z * Z; #MAPLE
|
56
|
+
ZCube = Z * ZSquarehml; #MAPLE
|
57
|
+
HigherPolyMultZ = T14hl * ZCubehml; #MAPLE
|
58
|
+
ZSquareHalfhml = -0.5 * ZSquarehml; #MAPLE
|
59
|
+
PolyWithSquare = ZSquareHalfhml + HigherPolyMultZhml; #MAPLE
|
60
|
+
Poly = Z + PolyWithSquarehml; #MAPLE
|
61
|
+
|
62
|
+
#We can simplify the proof in this case since we know that adding a triple double which is
|
63
|
+
#equal to 0 exactly is exact.
|
64
|
+
|
65
|
+
Loghml = Polyhml; #MAPLE
|
66
|
+
|
67
|
+
|
68
|
+
#Mathematical definition of the logarithm
|
69
|
+
|
70
|
+
MHighPoly = accPolyC10 + Z * (accPolyC11 + Z * (accPolyC12 + Z * (accPolyC13 + Z * accPolyC14))); #MAPLE
|
71
|
+
MT1 = Z * MHighPoly; #MAPLE
|
72
|
+
MT2 = AccPolyC9hl + MT1; #MAPLE
|
73
|
+
MT3 = Z * MT2; #MAPLE
|
74
|
+
MT4 = AccPolyC8hl + MT3; #MAPLE
|
75
|
+
MT5 = Z * MT4; #MAPLE
|
76
|
+
MT6 = AccPolyC7hl + MT5; #MAPLE
|
77
|
+
MT7 = Z * MT6; #MAPLE
|
78
|
+
MT8 = AccPolyC6hl + MT7; #MAPLE
|
79
|
+
MT9 = Z * MT8; #MAPLE
|
80
|
+
MT10 = AccPolyC5hl + MT9; #MAPLE
|
81
|
+
MT11 = Z * MT10; #MAPLE
|
82
|
+
MT12 = AccPolyC4hl + MT11; #MAPLE
|
83
|
+
MT13 = Z * MT12; #MAPLE
|
84
|
+
MT14 = AccPolyC3hl + MT13; #MAPLE
|
85
|
+
MZSquare = Z * Z; #MAPLE
|
86
|
+
MZCube = Z * MZSquare; #MAPLE
|
87
|
+
MHigherPolyMultZ = MT14 * MZCube; #MAPLE
|
88
|
+
MZSquareHalf = -0.5 * MZSquare; #MAPLE
|
89
|
+
MPolyWithSquare = MZSquareHalf + MHigherPolyMultZ; #MAPLE
|
90
|
+
MPoly = Z + MPolyWithSquare; #MAPLE
|
91
|
+
|
92
|
+
#We apply the same simplification here
|
93
|
+
|
94
|
+
MLog = MLog1pZ; #MAPLE
|
95
|
+
|
96
|
+
|
97
|
+
#Useful additional definitions
|
98
|
+
|
99
|
+
epsilon1 = (highPoly - MHighPoly) / MHighPoly; #MAPLE
|
100
|
+
epsilon2 = (T1hl - MT1) / MT1; #MAPLE
|
101
|
+
epsilon3 = (T2hl - MT2) / MT2; #MAPLE
|
102
|
+
epsilon4 = (T3hl - MT3) / MT3; #MAPLE
|
103
|
+
epsilon5 = (T4hl - MT4) / MT4; #MAPLE
|
104
|
+
epsilon6 = (T5hl - MT5) / MT5; #MAPLE
|
105
|
+
epsilon7 = (T6hl - MT6) / MT6; #MAPLE
|
106
|
+
epsilon8 = (T7hl - MT7) / MT7; #MAPLE
|
107
|
+
epsilon9 = (T8hl - MT8) / MT8; #MAPLE
|
108
|
+
epsilon10 = (T9hl - MT9) / MT9; #MAPLE
|
109
|
+
epsilon11 = (T10hl - MT10) / MT10; #MAPLE
|
110
|
+
epsilon12 = (T11hl - MT11) / MT11; #MAPLE
|
111
|
+
epsilon13 = (T12hl - MT12) / MT12; #MAPLE
|
112
|
+
epsilon14 = (T13hl - MT13) / MT13; #MAPLE
|
113
|
+
epsilon15 = (T14hl - MT14) / MT14; #MAPLE
|
114
|
+
|
115
|
+
epsilon16 = (ZCubehml - MZCube) / MZCube; #MAPLE
|
116
|
+
epsilon17 = (HigherPolyMultZhml - MHigherPolyMultZ) / MHigherPolyMultZ; #MAPLE
|
117
|
+
epsilon18 = (ZSquareHalfhml - MZSquareHalf) / MZSquareHalf; #MAPLE
|
118
|
+
epsilon19 = (PolyWithSquarehml - MPolyWithSquare) / MPolyWithSquare; #MAPLE
|
119
|
+
epsilon20 = (Polyhml - MLog1pZ) / MLog1pZ; #MAPLE
|
120
|
+
|
121
|
+
epsilon21 = (PolyWithSquare - MPolyWithSquare) / MPolyWithSquare; #MAPLE
|
122
|
+
epsilon22 = (Polyhml - MPoly) / MPoly; #MAPLE
|
123
|
+
epsilon23 = (Poly - MPoly) / MPoly; #MAPLE
|
124
|
+
|
125
|
+
aux1 = -0.5 * Z + MZSquare * MT14; #MAPLE
|
126
|
+
|
127
|
+
|
128
|
+
#End additional definitions
|
129
|
+
|
130
|
+
{
|
131
|
+
(
|
132
|
+
(T2hl - T2) / T2 in [-1b-103,1b-103]
|
133
|
+
/\ (T3hl - T3) / T3 in [-1b-102,1b-102]
|
134
|
+
/\ (T4hl - T4) / T4 in [-1b-103,1b-103]
|
135
|
+
/\ (T5hl - T5) / T5 in [-1b-102,1b-102]
|
136
|
+
/\ (T6hl - T6) / T6 in [-1b-103,1b-103]
|
137
|
+
/\ (T7hl - T7) / T7 in [-1b-102,1b-102]
|
138
|
+
/\ (T8hl - T8) / T8 in [-1b-103,1b-103]
|
139
|
+
/\ (T9hl - T9) / T9 in [-1b-102,1b-102]
|
140
|
+
/\ (T10hl - T10) / T10 in [-1b-103,1b-103]
|
141
|
+
/\ (T11hl - T11) / T11 in [-1b-102,1b-102]
|
142
|
+
/\ (T12hl - T12) / T12 in [-1b-103,1b-103]
|
143
|
+
/\ (T13hl - T13) / T13 in [-1b-102,1b-102]
|
144
|
+
/\ (T14hl - T14) / T14 in [-1b-103,1b-103]
|
145
|
+
/\ (ZSquarehml - ZSquare) / ZSquare in [-1b-149,1b-149]
|
146
|
+
/\ (ZCubehml - ZCube) / ZCube in [-1b-144,1b-144]
|
147
|
+
/\ (HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ in [-1b-141,1b-141]
|
148
|
+
/\ (PolyWithSquarehml - PolyWithSquare) / PolyWithSquare in [-1b-137,1b-137]
|
149
|
+
/\ (Polyhml - Poly) / Poly in [-1b-134,1b-134]
|
150
|
+
/\ (MPoly - MLog1pZ) / MLog1pZ in [-_epsilonApproxAccurate,_epsilonApproxAccurate]
|
151
|
+
/\ Z in [1b-900,_zmax]
|
152
|
+
/\ ((logh + logm + logl) - Loghml) / Loghml in [-1b-159,1b-159]
|
153
|
+
->
|
154
|
+
((logh + logm + logl) - MLog) / MLog in [-5735b-132,5735b-132]
|
155
|
+
)
|
156
|
+
/\
|
157
|
+
(
|
158
|
+
(T2hl - T2) / T2 in [-1b-103,1b-103]
|
159
|
+
/\ (T3hl - T3) / T3 in [-1b-102,1b-102]
|
160
|
+
/\ (T4hl - T4) / T4 in [-1b-103,1b-103]
|
161
|
+
/\ (T5hl - T5) / T5 in [-1b-102,1b-102]
|
162
|
+
/\ (T6hl - T6) / T6 in [-1b-103,1b-103]
|
163
|
+
/\ (T7hl - T7) / T7 in [-1b-102,1b-102]
|
164
|
+
/\ (T8hl - T8) / T8 in [-1b-103,1b-103]
|
165
|
+
/\ (T9hl - T9) / T9 in [-1b-102,1b-102]
|
166
|
+
/\ (T10hl - T10) / T10 in [-1b-103,1b-103]
|
167
|
+
/\ (T11hl - T11) / T11 in [-1b-102,1b-102]
|
168
|
+
/\ (T12hl - T12) / T12 in [-1b-103,1b-103]
|
169
|
+
/\ (T13hl - T13) / T13 in [-1b-102,1b-102]
|
170
|
+
/\ (T14hl - T14) / T14 in [-1b-103,1b-103]
|
171
|
+
/\ (ZSquarehml - ZSquare) / ZSquare in [-1b-149,1b-149]
|
172
|
+
/\ (ZCubehml - ZCube) / ZCube in [-1b-144,1b-144]
|
173
|
+
/\ (HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ in [-1b-141,1b-141]
|
174
|
+
/\ (PolyWithSquarehml - PolyWithSquare) / PolyWithSquare in [-1b-137,1b-137]
|
175
|
+
/\ (Polyhml - Poly) / Poly in [-1b-134,1b-134]
|
176
|
+
/\ (MPoly - MLog1pZ) / MLog1pZ in [-_epsilonApproxAccurate,_epsilonApproxAccurate]
|
177
|
+
/\ Z in [_zmin,-1b-900]
|
178
|
+
/\ ((logh + logm + logl) - Loghml) / Loghml in [-1b-159,1b-159]
|
179
|
+
->
|
180
|
+
((logh + logm + logl) - MLog) / MLog in [-5735b-132,5735b-132]
|
181
|
+
)
|
182
|
+
}
|
183
|
+
|
184
|
+
((logh + logm + logl) - MLog) / MLog -> ((Loghml - MLog) / MLog) + ((((logh + logm + logl) - Loghml) / Loghml) * (((Loghml - MLog) / MLog) + 1));
|
185
|
+
|
186
|
+
T2hl -> (T2 * ((T2hl - T2) / T2)) + T2;
|
187
|
+
T3hl -> (T3 * ((T3hl - T3) / T3)) + T3;
|
188
|
+
T4hl -> (T4 * ((T4hl - T4) / T4)) + T4;
|
189
|
+
T5hl -> (T5 * ((T5hl - T5) / T5)) + T5;
|
190
|
+
T6hl -> (T6 * ((T6hl - T6) / T6)) + T6;
|
191
|
+
T7hl -> (T7 * ((T7hl - T7) / T7)) + T7;
|
192
|
+
T8hl -> (T8 * ((T8hl - T8) / T8)) + T8;
|
193
|
+
T9hl -> (T9 * ((T9hl - T9) / T9)) + T9;
|
194
|
+
T10hl -> (T10 * ((T10hl - T10) / T10)) + T10;
|
195
|
+
T11hl -> (T11 * ((T11hl - T11) / T11)) + T11;
|
196
|
+
T12hl -> (T12 * ((T12hl - T12) / T12)) + T12;
|
197
|
+
T13hl -> (T13 * ((T13hl - T13) / T13)) + T13;
|
198
|
+
T14hl -> (T14 * ((T14hl - T14) / T14)) + T14;
|
199
|
+
|
200
|
+
|
201
|
+
ZSquarehml -> (ZSquare * ((ZSquarehml - ZSquare) / ZSquare)) + ZSquare;
|
202
|
+
ZCubehml -> (ZCube * ((ZCubehml - ZCube) / ZCube)) + ZCube;
|
203
|
+
HigherPolyMultZhml -> (HigherPolyMultZ * ((HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ)) + HigherPolyMultZ;
|
204
|
+
PolyWithSquarehml -> (PolyWithSquare * ((PolyWithSquarehml - PolyWithSquare) / PolyWithSquare)) + PolyWithSquare;
|
205
|
+
Polyhml -> (Poly * ((Polyhml - Poly) / Poly)) + Poly;
|
206
|
+
|
207
|
+
|
208
|
+
epsilon2 -> epsilon1 + (((zh - Z) / Z) * (epsilon1 + 1));
|
209
|
+
epsilon3 -> ((epsilon2 * MT1) / (AccPolyC9hl + MT1)) + (((AccPolyC9hl + T1hl) / (AccPolyC9hl + MT1)) * ((T2hl - T2) / T2));
|
210
|
+
epsilon4 -> epsilon3 + (((T3hl - T3) / T3) * (epsilon3 + 1));
|
211
|
+
epsilon5 -> ((epsilon4 * MT3) / (AccPolyC8hl + MT3)) + (((AccPolyC8hl + T3hl) / (AccPolyC8hl + MT3)) * ((T4hl - T4) / T4));
|
212
|
+
epsilon6 -> epsilon5 + (((T5hl - T5) / T5) * (epsilon5 + 1));
|
213
|
+
epsilon7 -> ((epsilon6 * MT5) / (AccPolyC7hl + MT5)) + (((AccPolyC7hl + T5hl) / (AccPolyC7hl + MT5)) * ((T6hl - T6) / T6));
|
214
|
+
epsilon8 -> epsilon7 + (((T7hl - T7) / T7) * (epsilon7 + 1));
|
215
|
+
epsilon9 -> ((epsilon8 * MT7) / (AccPolyC6hl + MT7)) + (((AccPolyC6hl + T7hl) / (AccPolyC6hl + MT7)) * ((T8hl - T8) / T8));
|
216
|
+
epsilon10 -> epsilon9 + (((T9hl - T9) / T9) * (epsilon9 + 1));
|
217
|
+
epsilon11 -> ((epsilon10 * MT9) / (AccPolyC5hl + MT9)) + (((AccPolyC5hl + T9hl) / (AccPolyC5hl + MT9)) * ((T10hl - T10) / T10));
|
218
|
+
epsilon12 -> epsilon11 + (((T11hl - T11) / T11) * (epsilon11 + 1));
|
219
|
+
epsilon13 -> ((epsilon12 * MT11) / (AccPolyC4hl + MT11)) + (((AccPolyC4hl + T11hl) / (AccPolyC4hl + MT11)) * ((T12hl - T12) / T12));
|
220
|
+
epsilon14 -> epsilon13 + (((T13hl - T13) / T13) * (epsilon13 + 1));
|
221
|
+
epsilon15 -> ((epsilon14 * MT13) / (AccPolyC3hl + MT13)) + (((AccPolyC3hl + T13hl) / (AccPolyC3hl + MT13)) * ((T14hl - T14) / T14));
|
222
|
+
epsilon16 -> ((ZSquarehml - MZSquare) / MZSquare) + (((ZCubehml - ZCube) / ZCube) * (((ZSquarehml - MZSquare) / MZSquare) + 1));
|
223
|
+
epsilon17 -> epsilon15 + epsilon16 + epsilon15 * epsilon16 +
|
224
|
+
((HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ) * (1 + epsilon15 + epsilon16 + epsilon15 * epsilon16);
|
225
|
+
epsilon18 -> (ZSquarehml - MZSquare) / MZSquare;
|
226
|
+
epsilon19 -> epsilon21 + (1 + epsilon21) * ((PolyWithSquarehml - PolyWithSquare) / PolyWithSquare);
|
227
|
+
epsilon20 -> (((Polyhml - MPoly) / MPoly) + ((MPoly - MLog1pZ) / MLog1pZ)) + (((Polyhml - MPoly) / MPoly) * ((MPoly - MLog1pZ) / MLog1pZ));
|
228
|
+
epsilon21 -> ((-0.5 * epsilon18) + (Z * MT14 * epsilon17)) / (-0.5 + (Z * MT14));
|
229
|
+
epsilon22 -> epsilon23 + (((Polyhml - Poly) / Poly) * (1+ epsilon23));
|
230
|
+
epsilon23 -> epsilon19 * (aux1 / (1 + aux1));
|
@@ -0,0 +1,213 @@
|
|
1
|
+
|
2
|
+
logih = <float64ne> (_logih);
|
3
|
+
logim = <float64ne> (_logim);
|
4
|
+
logil = <float64ne> (_logil);
|
5
|
+
|
6
|
+
Logihml = logih + logim + logil; #MAPLE
|
7
|
+
|
8
|
+
|
9
|
+
accPolyC14 = <float64ne> (_accPolyC14);
|
10
|
+
accPolyC13 = <float64ne> (_accPolyC13);
|
11
|
+
accPolyC12 = <float64ne> (_accPolyC12);
|
12
|
+
accPolyC11 = <float64ne> (_accPolyC11);
|
13
|
+
accPolyC10 = <float64ne> (_accPolyC10);
|
14
|
+
|
15
|
+
accPolyC9h = <float64ne> (_accPolyC9h);
|
16
|
+
accPolyC9l = <float64ne> (_accPolyC9l);
|
17
|
+
AccPolyC9hl = accPolyC9h + accPolyC9l; #MAPLE
|
18
|
+
accPolyC8h = <float64ne> (_accPolyC8h);
|
19
|
+
accPolyC8l = <float64ne> (_accPolyC8l);
|
20
|
+
AccPolyC8hl = accPolyC8h + accPolyC8l; #MAPLE
|
21
|
+
accPolyC7h = <float64ne> (_accPolyC7h);
|
22
|
+
accPolyC7l = <float64ne> (_accPolyC7l);
|
23
|
+
AccPolyC7hl = accPolyC7h + accPolyC7l; #MAPLE
|
24
|
+
accPolyC6h = <float64ne> (_accPolyC6h);
|
25
|
+
accPolyC6l = <float64ne> (_accPolyC6l);
|
26
|
+
AccPolyC6hl = accPolyC6h + accPolyC6l; #MAPLE
|
27
|
+
accPolyC5h = <float64ne> (_accPolyC5h);
|
28
|
+
accPolyC5l = <float64ne> (_accPolyC5l);
|
29
|
+
AccPolyC5hl = accPolyC5h + accPolyC5l; #MAPLE
|
30
|
+
accPolyC4h = <float64ne> (_accPolyC4h);
|
31
|
+
accPolyC4l = <float64ne> (_accPolyC4l);
|
32
|
+
AccPolyC4hl = accPolyC4h + accPolyC4l; #MAPLE
|
33
|
+
accPolyC3h = <float64ne> (_accPolyC3h);
|
34
|
+
accPolyC3l = <float64ne> (_accPolyC3l);
|
35
|
+
AccPolyC3hl = accPolyC3h + accPolyC3l; #MAPLE
|
36
|
+
|
37
|
+
E = 0; #MAPLE
|
38
|
+
|
39
|
+
zh = <float64ne> (Z);
|
40
|
+
zl = Z - zh; #MAPLE
|
41
|
+
|
42
|
+
highPoly <float64ne> = accPolyC10 + zh * (accPolyC11 + zh * (accPolyC12 + zh * (accPolyC13 + zh * accPolyC14)));
|
43
|
+
|
44
|
+
T1hl = zh * highPoly; #MAPLE
|
45
|
+
|
46
|
+
T2 = AccPolyC9hl + T1hl; #MAPLE
|
47
|
+
T3 = Z * T2hl; #MAPLE
|
48
|
+
T4 = AccPolyC8hl + T3hl; #MAPLE
|
49
|
+
T5 = Z * T4hl; #MAPLE
|
50
|
+
T6 = AccPolyC7hl + T5hl; #MAPLE
|
51
|
+
T7 = Z * T6hl; #MAPLE
|
52
|
+
T8 = AccPolyC6hl + T7hl; #MAPLE
|
53
|
+
T9 = Z * T8hl; #MAPLE
|
54
|
+
T10 = AccPolyC5hl + T9hl; #MAPLE
|
55
|
+
T11 = Z * T10hl; #MAPLE
|
56
|
+
T12 = AccPolyC4hl + T11hl; #MAPLE
|
57
|
+
T13 = Z * T12hl; #MAPLE
|
58
|
+
T14 = AccPolyC3hl + T13hl; #MAPLE
|
59
|
+
|
60
|
+
|
61
|
+
ZSquare = Z * Z; #MAPLE
|
62
|
+
ZCube = Z * ZSquarehml; #MAPLE
|
63
|
+
HigherPolyMultZ = T14hl * ZCubehml; #MAPLE
|
64
|
+
ZSquareHalfhml = -0.5 * ZSquarehml; #MAPLE
|
65
|
+
PolyWithSquare = ZSquareHalfhml + HigherPolyMultZhml; #MAPLE
|
66
|
+
Poly = Z + PolyWithSquarehml; #MAPLE
|
67
|
+
Logy = Logihml + Polyhml; #MAPLE
|
68
|
+
|
69
|
+
#We can simplify the proof in this case since we know that adding a triple double which is
|
70
|
+
#equal to 0 exactly is exact.
|
71
|
+
|
72
|
+
Loghml = Logyhml; #MAPLE
|
73
|
+
|
74
|
+
|
75
|
+
#Mathematical definition of the logarithm
|
76
|
+
|
77
|
+
MHighPoly = accPolyC10 + Z * (accPolyC11 + Z * (accPolyC12 + Z * (accPolyC13 + Z * accPolyC14))); #MAPLE
|
78
|
+
MT1 = Z * MHighPoly; #MAPLE
|
79
|
+
MT2 = AccPolyC9hl + MT1; #MAPLE
|
80
|
+
MT3 = Z * MT2; #MAPLE
|
81
|
+
MT4 = AccPolyC8hl + MT3; #MAPLE
|
82
|
+
MT5 = Z * MT4; #MAPLE
|
83
|
+
MT6 = AccPolyC7hl + MT5; #MAPLE
|
84
|
+
MT7 = Z * MT6; #MAPLE
|
85
|
+
MT8 = AccPolyC6hl + MT7; #MAPLE
|
86
|
+
MT9 = Z * MT8; #MAPLE
|
87
|
+
MT10 = AccPolyC5hl + MT9; #MAPLE
|
88
|
+
MT11 = Z * MT10; #MAPLE
|
89
|
+
MT12 = AccPolyC4hl + MT11; #MAPLE
|
90
|
+
MT13 = Z * MT12; #MAPLE
|
91
|
+
MT14 = AccPolyC3hl + MT13; #MAPLE
|
92
|
+
MZSquare = Z * Z; #MAPLE
|
93
|
+
MZCube = Z * MZSquare; #MAPLE
|
94
|
+
MHigherPolyMultZ = MT14 * MZCube; #MAPLE
|
95
|
+
MZSquareHalf = -0.5 * MZSquare; #MAPLE
|
96
|
+
MPolyWithSquare = MZSquareHalf + MHigherPolyMultZ; #MAPLE
|
97
|
+
MPoly = Z + MPolyWithSquare; #MAPLE
|
98
|
+
MLogy = MLogi + MLog1pZ; #MAPLE
|
99
|
+
|
100
|
+
#We apply the same simplification here
|
101
|
+
|
102
|
+
MLog = MLogy; #MAPLE
|
103
|
+
|
104
|
+
|
105
|
+
#Useful additional definitions
|
106
|
+
|
107
|
+
delta1 = highPoly - MHighPoly; #MAPLE
|
108
|
+
delta2 = T1hl - MT1; #MAPLE
|
109
|
+
delta3 = T2hl - MT2; #MAPLE
|
110
|
+
delta4 = T3hl - MT3; #MAPLE
|
111
|
+
delta5 = T4hl - MT4; #MAPLE
|
112
|
+
delta6 = T5hl - MT5; #MAPLE
|
113
|
+
delta7 = T6hl - MT6; #MAPLE
|
114
|
+
delta8 = T7hl - MT7; #MAPLE
|
115
|
+
delta9 = T8hl - MT8; #MAPLE
|
116
|
+
delta10 = T9hl - MT9; #MAPLE
|
117
|
+
delta11 = T10hl - MT10; #MAPLE
|
118
|
+
delta12 = T11hl - MT11; #MAPLE
|
119
|
+
delta13 = T12hl - MT12; #MAPLE
|
120
|
+
delta14 = T13hl - MT13; #MAPLE
|
121
|
+
delta15 = T14hl - MT14; #MAPLE
|
122
|
+
delta16 = ZSquarehml - MZSquare; #MAPLE
|
123
|
+
delta17 = ZCubehml - MZCube; #MAPLE
|
124
|
+
delta18 = HigherPolyMultZhml - MHigherPolyMultZ; #MAPLE
|
125
|
+
delta19 = ZSquareHalfhml - MZSquareHalf; #MAPLE
|
126
|
+
delta20 = PolyWithSquarehml - MPolyWithSquare; #MAPLE
|
127
|
+
delta21 = Polyhml - MPoly; #MAPLE
|
128
|
+
delta22 = Logyhml - MLogy; #MAPLE
|
129
|
+
delta24 = Loghml - MLog; #MAPLE
|
130
|
+
delta25 = Logihml - MLogi; #MAPLE
|
131
|
+
delta26 = Polyhml - MLog1pZ; #MAPLE
|
132
|
+
|
133
|
+
|
134
|
+
#End additional definitions
|
135
|
+
|
136
|
+
{
|
137
|
+
(T2hl - T2) / T2 in [-1b-103,1b-103]
|
138
|
+
/\ (T3hl - T3) / T3 in [-1b-102,1b-102]
|
139
|
+
/\ (T4hl - T4) / T4 in [-1b-103,1b-103]
|
140
|
+
/\ (T5hl - T5) / T5 in [-1b-102,1b-102]
|
141
|
+
/\ (T6hl - T6) / T6 in [-1b-103,1b-103]
|
142
|
+
/\ (T7hl - T7) / T7 in [-1b-102,1b-102]
|
143
|
+
/\ (T8hl - T8) / T8 in [-1b-103,1b-103]
|
144
|
+
/\ (T9hl - T9) / T9 in [-1b-102,1b-102]
|
145
|
+
/\ (T10hl - T10) / T10 in [-1b-103,1b-103]
|
146
|
+
/\ (T11hl - T11) / T11 in [-1b-102,1b-102]
|
147
|
+
/\ (T12hl - T12) / T12 in [-1b-103,1b-103]
|
148
|
+
/\ (T13hl - T13) / T13 in [-1b-102,1b-102]
|
149
|
+
/\ (T14hl - T14) / T14 in [-1b-103,1b-103]
|
150
|
+
/\ (ZSquarehml - ZSquare) / ZSquare in [-1b-149,1b-149]
|
151
|
+
/\ (ZCubehml - ZCube) / ZCube in [-1b-144,1b-144]
|
152
|
+
/\ (HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ in [-1b-141,1b-141]
|
153
|
+
/\ (PolyWithSquarehml - PolyWithSquare) / PolyWithSquare in [-1b-137,1b-137]
|
154
|
+
/\ (Polyhml - Poly) / Poly in [-1b-134,1b-134]
|
155
|
+
/\ (Logyhml - Logy) / Logy in [-1b-128,1b-128]
|
156
|
+
/\ (Logihml - MLogi) / MLogi in [-1b-159,1b-159]
|
157
|
+
/\ (MPoly - MLog1pZ) / MLog1pZ in [-_epsilonApproxAccurate,_epsilonApproxAccurate]
|
158
|
+
/\ Z in [_zmin,_zmax]
|
159
|
+
/\ ((logh + logm + logl) - Loghml) / Loghml in [-1b-159,1b-159]
|
160
|
+
->
|
161
|
+
((logh + logm + logl) - MLog) / MLog in [-5735b-132,5735b-132]
|
162
|
+
}
|
163
|
+
|
164
|
+
MLog1pZ -> MPoly * (1 / (((MPoly - MLog1pZ) / MLog1pZ) + 1));
|
165
|
+
MLog2 -> Log2hml * (1 / (((Log2hml - MLog2) / MLog2) + 1));
|
166
|
+
MLogi -> Logihml * (1 / (((Logihml - MLogi) / MLogi) + 1));
|
167
|
+
|
168
|
+
T2hl -> (T2 * ((T2hl - T2) / T2)) + T2;
|
169
|
+
T3hl -> (T3 * ((T3hl - T3) / T3)) + T3;
|
170
|
+
T4hl -> (T4 * ((T4hl - T4) / T4)) + T4;
|
171
|
+
T5hl -> (T5 * ((T5hl - T5) / T5)) + T5;
|
172
|
+
T6hl -> (T6 * ((T6hl - T6) / T6)) + T6;
|
173
|
+
T7hl -> (T7 * ((T7hl - T7) / T7)) + T7;
|
174
|
+
T8hl -> (T8 * ((T8hl - T8) / T8)) + T8;
|
175
|
+
T9hl -> (T9 * ((T9hl - T9) / T9)) + T9;
|
176
|
+
T10hl -> (T10 * ((T10hl - T10) / T10)) + T10;
|
177
|
+
T11hl -> (T11 * ((T11hl - T11) / T11)) + T11;
|
178
|
+
T12hl -> (T12 * ((T12hl - T12) / T12)) + T12;
|
179
|
+
T13hl -> (T13 * ((T13hl - T13) / T13)) + T13;
|
180
|
+
T14hl -> (T14 * ((T14hl - T14) / T14)) + T14;
|
181
|
+
|
182
|
+
ZSquarehml -> (ZSquare * ((ZSquarehml - ZSquare) / ZSquare)) + ZSquare;
|
183
|
+
ZCubehml -> (ZCube * ((ZCubehml - ZCube) / ZCube)) + ZCube;
|
184
|
+
HigherPolyMultZhml -> (HigherPolyMultZ * ((HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ)) + HigherPolyMultZ;
|
185
|
+
PolyWithSquarehml -> (PolyWithSquare * ((PolyWithSquarehml - PolyWithSquare) / PolyWithSquare)) + PolyWithSquare;
|
186
|
+
Polyhml -> (Poly * ((Polyhml - Poly) / Poly)) + Poly;
|
187
|
+
Logyhml -> (Logy * ((Logyhml - Logy) / Logy)) + Logy;
|
188
|
+
|
189
|
+
|
190
|
+
delta3 -> delta2 + (T2 * ((T2hl - T2) / T2));
|
191
|
+
delta4 -> Z * delta3 + T3 * ((T3hl - T3) / T3);
|
192
|
+
delta5 -> delta4 + (T4 * ((T4hl - T4) / T4));
|
193
|
+
delta6 -> Z * delta5 + T5 * ((T5hl - T5) / T5);
|
194
|
+
delta7 -> delta6 + (T6 * ((T6hl - T6) / T6));
|
195
|
+
delta8 -> Z * delta7 + T7 * ((T7hl - T7) / T7);
|
196
|
+
delta9 -> delta8 + (T8 * ((T8hl - T8) / T8));
|
197
|
+
delta10 -> Z * delta9 + T9 * ((T9hl - T9) / T9);
|
198
|
+
delta11 -> delta10 + (T10 * ((T10hl - T10) / T10));
|
199
|
+
delta12 -> Z * delta11 + T11 * ((T11hl - T11) / T11);
|
200
|
+
delta13 -> delta12 + (T12 * ((T12hl - T12) / T12));
|
201
|
+
delta14 -> Z * delta13 + T13 * ((T13hl - T13) / T13);
|
202
|
+
delta15 -> delta14 + (T14 * ((T14hl - T14) / T14));
|
203
|
+
delta16 -> Z*Z*((ZSquarehml - ZSquare) / ZSquare);
|
204
|
+
delta17 -> Z * delta16 + ZCube * ((ZCubehml - ZCube) / ZCube);
|
205
|
+
delta18 -> delta15 * delta17 + delta15 * MZCube + delta17 * MT14 +
|
206
|
+
HigherPolyMultZ * ((HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ);
|
207
|
+
delta20 -> delta19 + delta18 + PolyWithSquare * ((PolyWithSquarehml - PolyWithSquare) / PolyWithSquare);
|
208
|
+
delta21 -> delta20 + Poly * ((Polyhml - Poly) / Poly);
|
209
|
+
delta22 -> delta25 + delta26 + Logy * ((Logyhml - Logy) / Logy);
|
210
|
+
delta26 -> delta21 + MLog1pZ * ((MPoly - MLog1pZ) / MLog1pZ);
|
211
|
+
|
212
|
+
|
213
|
+
((logh + logm + logl) - MLog) / MLog -> ((Loghml - MLog) / MLog) + ((((logh + logm + logl) - Loghml) / Loghml) * (((Loghml - MLog) / MLog) + 1));
|