intervals 0.3.56

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (131) hide show
  1. data/VERSION.txt +1 -0
  2. data/ext/crlibm/AUTHORS +2 -0
  3. data/ext/crlibm/COPYING +504 -0
  4. data/ext/crlibm/ChangeLog +80 -0
  5. data/ext/crlibm/INSTALL +182 -0
  6. data/ext/crlibm/Makefile.am +84 -0
  7. data/ext/crlibm/Makefile.in +530 -0
  8. data/ext/crlibm/NEWS +0 -0
  9. data/ext/crlibm/README +31 -0
  10. data/ext/crlibm/TODO +47 -0
  11. data/ext/crlibm/VERSION +1 -0
  12. data/ext/crlibm/aclocal.m4 +989 -0
  13. data/ext/crlibm/atan-itanium.c +846 -0
  14. data/ext/crlibm/atan-pentium.c +261 -0
  15. data/ext/crlibm/atan_accurate.c +244 -0
  16. data/ext/crlibm/atan_accurate.h +191 -0
  17. data/ext/crlibm/atan_fast.c +324 -0
  18. data/ext/crlibm/atan_fast.h +678 -0
  19. data/ext/crlibm/config.guess +1461 -0
  20. data/ext/crlibm/config.sub +1566 -0
  21. data/ext/crlibm/configure +7517 -0
  22. data/ext/crlibm/configure.ac +364 -0
  23. data/ext/crlibm/crlibm.h +125 -0
  24. data/ext/crlibm/crlibm_config.h +149 -0
  25. data/ext/crlibm/crlibm_config.h.in +148 -0
  26. data/ext/crlibm/crlibm_private.c +293 -0
  27. data/ext/crlibm/crlibm_private.h +658 -0
  28. data/ext/crlibm/csh_fast.c +631 -0
  29. data/ext/crlibm/csh_fast.h +771 -0
  30. data/ext/crlibm/double-extended.h +496 -0
  31. data/ext/crlibm/exp-td.c +962 -0
  32. data/ext/crlibm/exp-td.h +685 -0
  33. data/ext/crlibm/exp_accurate.c +197 -0
  34. data/ext/crlibm/exp_accurate.h +85 -0
  35. data/ext/crlibm/gappa/log-de-E0-logir0.gappa +106 -0
  36. data/ext/crlibm/gappa/log-de-E0.gappa +79 -0
  37. data/ext/crlibm/gappa/log-de.gappa +81 -0
  38. data/ext/crlibm/gappa/log-td-E0-logir0.gappa +126 -0
  39. data/ext/crlibm/gappa/log-td-E0.gappa +143 -0
  40. data/ext/crlibm/gappa/log-td-accurate-E0-logir0.gappa +230 -0
  41. data/ext/crlibm/gappa/log-td-accurate-E0.gappa +213 -0
  42. data/ext/crlibm/gappa/log-td-accurate.gappa +217 -0
  43. data/ext/crlibm/gappa/log-td.gappa +156 -0
  44. data/ext/crlibm/gappa/trigoSinCosCase3.gappa +204 -0
  45. data/ext/crlibm/gappa/trigoTanCase2.gappa +73 -0
  46. data/ext/crlibm/install-sh +269 -0
  47. data/ext/crlibm/log-de.c +431 -0
  48. data/ext/crlibm/log-de.h +732 -0
  49. data/ext/crlibm/log-td.c +852 -0
  50. data/ext/crlibm/log-td.h +819 -0
  51. data/ext/crlibm/log10-td.c +906 -0
  52. data/ext/crlibm/log10-td.h +823 -0
  53. data/ext/crlibm/log2-td.c +935 -0
  54. data/ext/crlibm/log2-td.h +821 -0
  55. data/ext/crlibm/maple/atan.mpl +359 -0
  56. data/ext/crlibm/maple/common-procedures.mpl +997 -0
  57. data/ext/crlibm/maple/csh.mpl +446 -0
  58. data/ext/crlibm/maple/double-extended.mpl +151 -0
  59. data/ext/crlibm/maple/exp-td.mpl +195 -0
  60. data/ext/crlibm/maple/log-de.mpl +243 -0
  61. data/ext/crlibm/maple/log-td.mpl +316 -0
  62. data/ext/crlibm/maple/log10-td.mpl +345 -0
  63. data/ext/crlibm/maple/log2-td.mpl +334 -0
  64. data/ext/crlibm/maple/trigo.mpl +728 -0
  65. data/ext/crlibm/maple/triple-double.mpl +58 -0
  66. data/ext/crlibm/missing +198 -0
  67. data/ext/crlibm/mkinstalldirs +40 -0
  68. data/ext/crlibm/rem_pio2_accurate.c +219 -0
  69. data/ext/crlibm/rem_pio2_accurate.h +53 -0
  70. data/ext/crlibm/scs_lib/AUTHORS +3 -0
  71. data/ext/crlibm/scs_lib/COPYING +504 -0
  72. data/ext/crlibm/scs_lib/ChangeLog +16 -0
  73. data/ext/crlibm/scs_lib/INSTALL +215 -0
  74. data/ext/crlibm/scs_lib/Makefile.am +18 -0
  75. data/ext/crlibm/scs_lib/Makefile.in +328 -0
  76. data/ext/crlibm/scs_lib/NEWS +0 -0
  77. data/ext/crlibm/scs_lib/README +9 -0
  78. data/ext/crlibm/scs_lib/TODO +4 -0
  79. data/ext/crlibm/scs_lib/addition_scs.c +623 -0
  80. data/ext/crlibm/scs_lib/config.guess +1461 -0
  81. data/ext/crlibm/scs_lib/config.sub +1566 -0
  82. data/ext/crlibm/scs_lib/configure +6226 -0
  83. data/ext/crlibm/scs_lib/division_scs.c +110 -0
  84. data/ext/crlibm/scs_lib/double2scs.c +174 -0
  85. data/ext/crlibm/scs_lib/install-sh +269 -0
  86. data/ext/crlibm/scs_lib/missing +198 -0
  87. data/ext/crlibm/scs_lib/mkinstalldirs +40 -0
  88. data/ext/crlibm/scs_lib/multiplication_scs.c +456 -0
  89. data/ext/crlibm/scs_lib/poly_fct.c +112 -0
  90. data/ext/crlibm/scs_lib/print_scs.c +73 -0
  91. data/ext/crlibm/scs_lib/rand_scs.c +63 -0
  92. data/ext/crlibm/scs_lib/scs.h +353 -0
  93. data/ext/crlibm/scs_lib/scs2double.c +391 -0
  94. data/ext/crlibm/scs_lib/scs2mpf.c +58 -0
  95. data/ext/crlibm/scs_lib/scs2mpfr.c +61 -0
  96. data/ext/crlibm/scs_lib/scs_private.c +23 -0
  97. data/ext/crlibm/scs_lib/scs_private.h +133 -0
  98. data/ext/crlibm/scs_lib/tests/tbx_timing.h +102 -0
  99. data/ext/crlibm/scs_lib/wrapper_scs.h +486 -0
  100. data/ext/crlibm/scs_lib/zero_scs.c +52 -0
  101. data/ext/crlibm/stamp-h.in +1 -0
  102. data/ext/crlibm/tests/Makefile.am +43 -0
  103. data/ext/crlibm/tests/Makefile.in +396 -0
  104. data/ext/crlibm/tests/blind_test.c +148 -0
  105. data/ext/crlibm/tests/generate_test_vectors.c +258 -0
  106. data/ext/crlibm/tests/soak_test.c +334 -0
  107. data/ext/crlibm/tests/test_common.c +627 -0
  108. data/ext/crlibm/tests/test_common.h +28 -0
  109. data/ext/crlibm/tests/test_perf.c +570 -0
  110. data/ext/crlibm/tests/test_val.c +249 -0
  111. data/ext/crlibm/trigo_accurate.c +500 -0
  112. data/ext/crlibm/trigo_accurate.h +331 -0
  113. data/ext/crlibm/trigo_fast.c +1219 -0
  114. data/ext/crlibm/trigo_fast.h +639 -0
  115. data/ext/crlibm/triple-double.h +878 -0
  116. data/ext/extconf.rb +31 -0
  117. data/ext/fpu.c +107 -0
  118. data/ext/jamis-mod.rb +591 -0
  119. data/lib/fpu.rb +287 -0
  120. data/lib/interval.rb +1170 -0
  121. data/lib/intervals.rb +212 -0
  122. data/lib/struct_float.rb +133 -0
  123. data/test/data_atan.txt +360 -0
  124. data/test/data_cos.txt +346 -0
  125. data/test/data_cosh.txt +3322 -0
  126. data/test/data_exp.txt +3322 -0
  127. data/test/data_log.txt +141 -0
  128. data/test/data_sin.txt +140 -0
  129. data/test/data_sinh.txt +3322 -0
  130. data/test/data_tan.txt +342 -0
  131. metadata +186 -0
@@ -0,0 +1,962 @@
1
+ /*
2
+ * This function computes exp, correctly rounded,
3
+ * using experimental techniques based on triple double arithmetics
4
+
5
+ THIS IS EXPERIMENTAL SOFTWARE
6
+
7
+ *
8
+ * Author : Christoph Lauter
9
+ * christoph.lauter at ens-lyon.fr
10
+ *
11
+
12
+ To have it replace the crlibm exp, do:
13
+
14
+ gcc -DHAVE_CONFIG_H -I. -fPIC -O2 -c exp-td.c; mv exp-td.o exp_fast.o; make
15
+
16
+ */
17
+
18
+
19
+ #include <stdio.h>
20
+ #include <stdlib.h>
21
+ #include "crlibm.h"
22
+ #include "crlibm_private.h"
23
+ #include "triple-double.h"
24
+ #include "exp-td.h"
25
+
26
+ #define AVOID_FMA 0
27
+ #define EVAL_PERF 1
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+ void exp_td_accurate(double *polyTblh, double *polyTblm, double *polyTbll,
36
+ double rh, double rm, double rl,
37
+ double tbl1h, double tbl1m, double tbl1l,
38
+ double tbl2h, double tbl2m, double tbl2l) {
39
+ double highPoly, highPolyMulth, highPolyMultm, highPolyMultl;
40
+ double rhSquareh, rhSquarel, rhSquareHalfh, rhSquareHalfl;
41
+ double rhCubeh, rhCubem, rhCubel;
42
+ double t1h, t1l, t2h, t2l, t3h, t3l, t4h, t4l, t5, t6;
43
+ double lowPolyh, lowPolym, lowPolyl;
44
+ double ph, pm, pl, phnorm, pmnorm, rmlMultPh, rmlMultPl;
45
+ double qh, ql, fullPolyh, fullPolym, fullPolyl;
46
+ double polyWithTbl1h, polyWithTbl1m, polyWithTbl1l;
47
+ double polyAddOneh,polyAddOnem,polyAddOnel;
48
+ double polyWithTablesh, polyWithTablesm, polyWithTablesl;
49
+
50
+
51
+ #if EVAL_PERF
52
+ crlibm_second_step_taken++;
53
+ #endif
54
+
55
+ #if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
56
+ highPoly = FMA(FMA(accPolyC7,rh,accPolyC6),rh,accPolyC5);
57
+ #else
58
+ highPoly = accPolyC5 + rh * (accPolyC6 + rh * accPolyC7);
59
+ #endif
60
+
61
+ Mul12(&t1h,&t1l,rh,highPoly);
62
+ Add22(&t2h,&t2l,accPolyC4h,accPolyC4l,t1h,t1l);
63
+ Mul22(&t3h,&t3l,rh,0,t2h,t2l);
64
+ Add22(&t4h,&t4l,accPolyC3h,accPolyC3l,t3h,t3l);
65
+
66
+ Mul12(&rhSquareh,&rhSquarel,rh,rh);
67
+ Mul23(&rhCubeh,&rhCubem,&rhCubel,rh,0,rhSquareh,rhSquarel);
68
+
69
+ rhSquareHalfh = 0.5 * rhSquareh;
70
+ rhSquareHalfl = 0.5 * rhSquarel;
71
+
72
+ Renormalize3(&lowPolyh,&lowPolym,&lowPolyl,rh,rhSquareHalfh,rhSquareHalfl);
73
+
74
+ Mul233(&highPolyMulth,&highPolyMultm,&highPolyMultl,t4h,t4l,rhCubeh,rhCubem,rhCubel);
75
+
76
+ Add33(&ph,&pm,&pl,lowPolyh,lowPolym,lowPolyl,highPolyMulth,highPolyMultm,highPolyMultl);
77
+
78
+ Add12(phnorm,pmnorm,ph,pm);
79
+ Mul22(&rmlMultPh,&rmlMultPl,rm,rl,phnorm,pmnorm);
80
+ Add22(&qh,&ql,rm,rl,rmlMultPh,rmlMultPl);
81
+
82
+ Add233Cond(&fullPolyh,&fullPolym,&fullPolyl,qh,ql,ph,pm,pl);
83
+ Add12(polyAddOneh,t5,1,fullPolyh);
84
+ Add12Cond(polyAddOnem,t6,t5,fullPolym);
85
+ polyAddOnel = t6 + fullPolyl;
86
+ Mul33(&polyWithTbl1h,&polyWithTbl1m,&polyWithTbl1l,tbl1h,tbl1m,tbl1l,polyAddOneh,polyAddOnem,polyAddOnel);
87
+ Mul33(&polyWithTablesh,&polyWithTablesm,&polyWithTablesl,
88
+ tbl2h,tbl2m,tbl2l,
89
+ polyWithTbl1h,polyWithTbl1m,polyWithTbl1l);
90
+
91
+ Renormalize3(polyTblh,polyTblm,polyTbll,polyWithTablesh,polyWithTablesm,polyWithTablesl);
92
+ }
93
+
94
+
95
+
96
+ /*************************************************************
97
+ *************************************************************
98
+ * ROUNDED TO NEAREST *
99
+ *************************************************************
100
+ *************************************************************/
101
+ double exp_rn(double x){
102
+ double rh, rm, rl, tbl1h, tbl1m, tbl1l;
103
+ double tbl2h, tbl2m, tbl2l;
104
+ double xMultLog2InvMult2L, shiftedXMult, kd;
105
+ double msLog2Div2LMultKh, msLog2Div2LMultKm, msLog2Div2LMultKl;
106
+ double t1, t2, t3, t4, polyTblh, polyTblm, polyTbll;
107
+ db_number shiftedXMultdb, twoPowerMdb, xdb, t4db, t4db2, polyTblhdb, resdb;
108
+ int k, M, index1, index2, xIntHi, mightBeDenorm;
109
+ double t5, t6, t7, t8, t9, t10, t11, t12, t13;
110
+ double rhSquare, rhSquareHalf, rhC3, rhFour, monomialCube;
111
+ double highPoly, highPolyWithSquare, monomialFour;
112
+ double tablesh, tablesl;
113
+ double s1, s2, s3, s4, s5;
114
+ double res;
115
+
116
+ /* Argument reduction and filtering for special cases */
117
+
118
+ /* Compute k as a double and as an int */
119
+ xdb.d = x;
120
+ xMultLog2InvMult2L = x * log2InvMult2L;
121
+ shiftedXMult = xMultLog2InvMult2L + shiftConst;
122
+ kd = shiftedXMult - shiftConst;
123
+ shiftedXMultdb.d = shiftedXMult;
124
+
125
+ /* Special cases tests */
126
+ xIntHi = xdb.i[HI];
127
+ mightBeDenorm = 0;
128
+ /* Test if argument is a denormal or zero */
129
+ if ((xIntHi & 0x7ff00000) == 0) {
130
+ /* We are in the RN case, return 1.0 in all cases */
131
+ return 1.0;
132
+ }
133
+
134
+ /* Test if argument is greater than approx. 709 in magnitude */
135
+ if ((xIntHi & 0x7fffffff) >= OVRUDRFLWSMPLBOUND) {
136
+ /* If we are here, the result might be overflowed, underflowed, inf, or NaN */
137
+
138
+ /* Test if +/- Inf or NaN */
139
+ if ((xIntHi & 0x7fffffff) >= 0x7ff00000) {
140
+ /* Either NaN or Inf in this case since exponent is maximal */
141
+
142
+ /* Test if NaN: mantissa is not 0 */
143
+ if (((xIntHi & 0x000fffff) | xdb.i[LO]) != 0) {
144
+ /* x = NaN, return NaN */
145
+ return x + x;
146
+ } else {
147
+ /* +/- Inf */
148
+
149
+ /* Test sign */
150
+ if ((xIntHi & 0x80000000)==0)
151
+ /* x = +Inf, return +Inf */
152
+ return x;
153
+ else
154
+ /* x = -Inf, return 0 */
155
+ return 0;
156
+ } /* End which in NaN, Inf */
157
+ } /* End NaN or Inf ? */
158
+
159
+ /* If we are here, we might be overflowed, denormalized or underflowed in the result
160
+ but there is no special case (NaN, Inf) left */
161
+
162
+ /* Test if actually overflowed */
163
+ if (x > OVRFLWBOUND) {
164
+ /* We are actually overflowed in the result */
165
+ return LARGEST * LARGEST;
166
+ }
167
+
168
+ /* Test if surely underflowed */
169
+ if (x <= UNDERFLWBOUND) {
170
+ /* We are actually sure to be underflowed and not denormalized any more
171
+ So we return 0 and raise the inexact flag */
172
+ return SMALLEST * SMALLEST;
173
+ }
174
+
175
+ /* Test if possibly denormalized */
176
+ if (x <= DENORMBOUND) {
177
+ /* We know now that we are not sure to be normalized in the result
178
+ We just set an internal flag for a further test
179
+ */
180
+ mightBeDenorm = 1;
181
+ }
182
+ } /* End might be a special case */
183
+
184
+ /* If we are here, we are sure to be neither +/- Inf nor NaN nor overflowed nor denormalized in the argument
185
+ but we might be denormalized in the result
186
+
187
+ We continue the argument reduction for the quick phase and table reads for both phases
188
+ */
189
+
190
+ Mul12(&s1,&s2,msLog2Div2Lh,kd);
191
+ s3 = kd * msLog2Div2Lm;
192
+ s4 = s2 + s3;
193
+ s5 = x + s1;
194
+ Add12Cond(rh,rm,s5,s4);
195
+
196
+ k = shiftedXMultdb.i[LO];
197
+ M = k >> L;
198
+ index1 = k & INDEXMASK1;
199
+ index2 = (k & INDEXMASK2) >> LHALF;
200
+
201
+ /* Table reads */
202
+ tbl1h = twoPowerIndex1[index1].hi;
203
+ tbl1m = twoPowerIndex1[index1].mi;
204
+ tbl2h = twoPowerIndex2[index2].hi;
205
+ tbl2m = twoPowerIndex2[index2].mi;
206
+
207
+ /* Test now if it is sure to launch the quick phase because no denormalized result is possible */
208
+ if (mightBeDenorm == 1) {
209
+ /* The result might be denormalized, we launch the accurate phase in all cases */
210
+
211
+ /* Rest of argument reduction for accurate phase */
212
+
213
+ Mul133(&msLog2Div2LMultKh,&msLog2Div2LMultKm,&msLog2Div2LMultKl,kd,msLog2Div2Lh,msLog2Div2Lm,msLog2Div2Ll);
214
+ t1 = x + msLog2Div2LMultKh;
215
+ Add12Cond(rh,t2,t1,msLog2Div2LMultKm);
216
+ Add12Cond(rm,rl,t2,msLog2Div2LMultKl);
217
+
218
+ /* Table reads for accurate phase */
219
+ tbl1l = twoPowerIndex1[index1].lo;
220
+ tbl2l = twoPowerIndex2[index2].lo;
221
+
222
+ /* Call accurate phase */
223
+ exp_td_accurate(&polyTblh, &polyTblm, &polyTbll, rh, rm, rl, tbl1h, tbl1m, tbl1l, tbl2h, tbl2m, tbl2l);
224
+
225
+ /* Final rounding and multiplication with 2^M
226
+
227
+ We first multiply the highest significant byte by 2^M in two steps
228
+ and adjust it then depending on the lower significant parts.
229
+
230
+ We cannot multiply directly by 2^M since M is less than -1022.
231
+ We first multiply by 2^(-1000) and then by 2^(M+1000).
232
+
233
+ */
234
+
235
+ t3 = polyTblh * twoPowerM1000;
236
+
237
+ /* Form now twoPowerM with adjusted M */
238
+ twoPowerMdb.i[LO] = 0;
239
+ twoPowerMdb.i[HI] = (M + 2023) << 20;
240
+
241
+
242
+ /* Multiply with the rest of M, the result will be denormalized */
243
+ t4 = t3 * twoPowerMdb.d;
244
+
245
+ /* For x86, force the compiler to pass through memory for having the right rounding */
246
+
247
+ t4db.d = t4; /* Do not #if-ify this line, we need the copy */
248
+ #if defined(CRLIBM_TYPECPU_AMD64) || defined(CRLIBM_TYPECPU_X86)
249
+ t4db2.i[HI] = t4db.i[HI];
250
+ t4db2.i[LO] = t4db.i[LO];
251
+ t4 = t4db2.d;
252
+ #endif
253
+
254
+ /* Remultiply by 2^(-M) for manipulating the rounding error and the lower significant parts */
255
+ M *= -1;
256
+ twoPowerMdb.i[LO] = 0;
257
+ twoPowerMdb.i[HI] = (M + 23) << 20;
258
+ t5 = t4 * twoPowerMdb.d;
259
+ t6 = t5 * twoPower1000;
260
+ t7 = polyTblh - t6;
261
+
262
+ /* The rounding decision is made at 1 ulp of a denormal, i.e. at 2^(-1075)
263
+ We construct this number and by comparing with it we get to know
264
+ whether we are in a difficult rounding case or not. If not we just return
265
+ the known result. Otherwise we continue with further tests.
266
+ */
267
+
268
+ twoPowerMdb.i[LO] = 0;
269
+ twoPowerMdb.i[HI] = (M - 52) << 20;
270
+
271
+ if (ABS(t7) != twoPowerMdb.d) return t4;
272
+
273
+ /* If we are here, we are in a difficult rounding case */
274
+
275
+ /* We have to adjust the result iff the sign of the error on
276
+ rounding 2^M * polyTblh (which must be an ulp of a denormal)
277
+ and polyTblm +arith polyTbll is the same which means that
278
+ the error made was greater than an ulp of an denormal.
279
+ */
280
+
281
+ polyTblm = polyTblm + polyTbll;
282
+
283
+ if (t7 > 0.0) {
284
+ if (polyTblm > 0.0) {
285
+ t4db.l++;
286
+ return t4db.d;
287
+ } else return t4;
288
+ } else {
289
+ if (polyTblm < 0.0) {
290
+ t4db.l--;
291
+ return t4db.d;
292
+ } else return t4;
293
+ }
294
+ } /* End accurate phase launched as there might be a denormalized result */
295
+
296
+ /* No more underflow nor denormal is possible. There may be the case where
297
+ M is 1024 and the value 2^M is to be multiplied may be less than 1
298
+ So the final result will be normalized and representable by the multiplication must be
299
+ made in 2 steps
300
+ */
301
+
302
+ /* Quick phase starts here */
303
+
304
+ rhSquare = rh * rh;
305
+ rhC3 = c3 * rh;
306
+
307
+ rhSquareHalf = 0.5 * rhSquare;
308
+ monomialCube = rhC3 * rhSquare;
309
+ rhFour = rhSquare * rhSquare;
310
+
311
+ monomialFour = c4 * rhFour;
312
+
313
+ highPoly = monomialCube + monomialFour;
314
+
315
+ highPolyWithSquare = rhSquareHalf + highPoly;
316
+
317
+ Mul22(&tablesh,&tablesl,tbl1h,tbl1m,tbl2h,tbl2m);
318
+
319
+ t8 = rm + highPolyWithSquare;
320
+ t9 = rh + t8;
321
+
322
+ t10 = tablesh * t9;
323
+
324
+ Add12(t11,t12,tablesh,t10);
325
+ t13 = t12 + tablesl;
326
+ Add12(polyTblh,polyTblm,t11,t13);
327
+
328
+ /* Rounding test
329
+ Since we know that the result of the final multiplication with 2^M
330
+ will always be representable, we can do the rounding test on the
331
+ factors and multiply only the final result.
332
+ We implement the multiplication in integer computations to overcome
333
+ the problem of the non-representability of 2^1024 if M = 1024
334
+ */
335
+
336
+ if(polyTblh == (polyTblh + (polyTblm * ROUNDCST))) {
337
+ polyTblhdb.d = polyTblh;
338
+ polyTblhdb.i[HI] += M << 20;
339
+ return polyTblhdb.d;
340
+ } else
341
+ {
342
+ /* Rest of argument reduction for accurate phase */
343
+
344
+ Mul133(&msLog2Div2LMultKh,&msLog2Div2LMultKm,&msLog2Div2LMultKl,kd,msLog2Div2Lh,msLog2Div2Lm,msLog2Div2Ll);
345
+ t1 = x + msLog2Div2LMultKh;
346
+ Add12Cond(rh,t2,t1,msLog2Div2LMultKm);
347
+ Add12Cond(rm,rl,t2,msLog2Div2LMultKl);
348
+
349
+ /* Table reads for accurate phase */
350
+ tbl1l = twoPowerIndex1[index1].lo;
351
+ tbl2l = twoPowerIndex2[index2].lo;
352
+
353
+ /* Call accurate phase */
354
+ exp_td_accurate(&polyTblh, &polyTblm, &polyTbll, rh, rm, rl, tbl1h, tbl1m, tbl1l, tbl2h, tbl2m, tbl2l);
355
+
356
+ /* Since the final multiplication is exact, we can do the final rounding before multiplying
357
+ We overcome this way also the cases where the final result is not underflowed whereas the
358
+ lower parts of the intermediate final result are.
359
+ */
360
+
361
+ RoundToNearest3(&res,polyTblh,polyTblm,polyTbll);
362
+
363
+ /* Final multiplication with 2^M
364
+ We implement the multiplication in integer computations to overcome
365
+ the problem of the non-representability of 2^1024 if M = 1024
366
+ */
367
+
368
+ resdb.d = res;
369
+ resdb.i[HI] += M << 20;
370
+ return resdb.d;
371
+ } /* Accurate phase launched after rounding test*/
372
+ }
373
+
374
+
375
+ /*************************************************************
376
+ *************************************************************
377
+ * ROUNDED UPWARDS *
378
+ *************************************************************
379
+ *************************************************************/
380
+ double exp_ru(double x) {
381
+ double rh, rm, rl, tbl1h, tbl1m, tbl1l;
382
+ double tbl2h, tbl2m, tbl2l;
383
+ double xMultLog2InvMult2L, shiftedXMult, kd;
384
+ double msLog2Div2LMultKh, msLog2Div2LMultKm, msLog2Div2LMultKl;
385
+ double t1, t2, t3, t4, polyTblh, polyTblm, polyTbll;
386
+ db_number shiftedXMultdb, twoPowerMdb, xdb, t4db, t4db2, resdb;
387
+ int k, M, index1, index2, xIntHi, mightBeDenorm, roundable;
388
+ double t5, t6, t7, t8, t9, t10, t11, t12, t13;
389
+ double rhSquare, rhSquareHalf, rhC3, rhFour, monomialCube;
390
+ double highPoly, highPolyWithSquare, monomialFour;
391
+ double tablesh, tablesl;
392
+ double s1, s2, s3, s4, s5;
393
+ double res;
394
+
395
+ /* Argument reduction and filtering for special cases */
396
+
397
+ /* Compute k as a double and as an int */
398
+ xdb.d = x;
399
+ xMultLog2InvMult2L = x * log2InvMult2L;
400
+ shiftedXMult = xMultLog2InvMult2L + shiftConst;
401
+ kd = shiftedXMult - shiftConst;
402
+ shiftedXMultdb.d = shiftedXMult;
403
+
404
+ /* Special cases tests */
405
+ xIntHi = xdb.i[HI];
406
+ mightBeDenorm = 0;
407
+ /* Test if argument is a denormal or zero */
408
+ if ((xIntHi & 0x7ff00000) == 0) {
409
+ /* If the argument is exactly zero, we just return 1.0
410
+ which is the mathematical image of the function
411
+ */
412
+ if (x == 0.0) return 1.0;
413
+
414
+ /* If the argument is a negative denormal, we
415
+ must return 1.0 and raise the inexact flag.
416
+ */
417
+
418
+ if (x < 0.0) return 1.0 + SMALLEST;
419
+
420
+ /* Otherwise, we return 1.0 + 1ulp since
421
+ exp(greatest denorm) < 1.0 + 1ulp
422
+ We must do the addition dynamically for
423
+ raising the inexact flag.
424
+ */
425
+
426
+ return 1.0 + twoM52;
427
+ }
428
+
429
+ /* Test if argument is greater than approx. 709 in magnitude */
430
+ if ((xIntHi & 0x7fffffff) >= OVRUDRFLWSMPLBOUND) {
431
+ /* If we are here, the result might be overflowed, underflowed, inf, or NaN */
432
+
433
+ /* Test if +/- Inf or NaN */
434
+ if ((xIntHi & 0x7fffffff) >= 0x7ff00000) {
435
+ /* Either NaN or Inf in this case since exponent is maximal */
436
+
437
+ /* Test if NaN: mantissa is not 0 */
438
+ if (((xIntHi & 0x000fffff) | xdb.i[LO]) != 0) {
439
+ /* x = NaN, return NaN */
440
+ return x + x;
441
+ } else {
442
+ /* +/- Inf */
443
+
444
+ /* Test sign */
445
+ if ((xIntHi & 0x80000000)==0)
446
+ /* x = +Inf, return +Inf */
447
+ return x;
448
+ else
449
+ /* x = -Inf, return 0 (even in RU!) */
450
+ return 0;
451
+ } /* End which in NaN, Inf */
452
+ } /* End NaN or Inf ? */
453
+
454
+ /* If we are here, we might be overflowed, denormalized or underflowed in the result
455
+ but there is no special case (NaN, Inf) left */
456
+
457
+ /* Test if actually overflowed */
458
+ if (x > OVRFLWBOUND) {
459
+ /* We are actually overflowed in the result */
460
+ return LARGEST * LARGEST;
461
+ }
462
+
463
+ /* Test if surely underflowed */
464
+ if (x <= UNDERFLWBOUND) {
465
+ /* We are actually sure to be underflowed and not denormalized any more
466
+ (at least where computing makes sense); since we are in the round
467
+ upwards case, we return the smallest denormal possible.
468
+ */
469
+ return SMALLEST;
470
+ }
471
+
472
+ /* Test if possibly denormalized */
473
+ if (x <= DENORMBOUND) {
474
+ /* We know now that we are not sure to be normalized in the result
475
+ We just set an internal flag for a further test
476
+ */
477
+ mightBeDenorm = 1;
478
+ }
479
+ } /* End might be a special case */
480
+
481
+ /* If we are here, we are sure to be neither +/- Inf nor NaN nor overflowed nor denormalized in the argument
482
+ but we might be denormalized in the result
483
+
484
+ We continue the argument reduction for the quick phase and table reads for both phases
485
+ */
486
+
487
+ Mul12(&s1,&s2,msLog2Div2Lh,kd);
488
+ s3 = kd * msLog2Div2Lm;
489
+ s4 = s2 + s3;
490
+ s5 = x + s1;
491
+ Add12Cond(rh,rm,s5,s4);
492
+
493
+ k = shiftedXMultdb.i[LO];
494
+ M = k >> L;
495
+ index1 = k & INDEXMASK1;
496
+ index2 = (k & INDEXMASK2) >> LHALF;
497
+
498
+ /* Table reads */
499
+ tbl1h = twoPowerIndex1[index1].hi;
500
+ tbl1m = twoPowerIndex1[index1].mi;
501
+ tbl2h = twoPowerIndex2[index2].hi;
502
+ tbl2m = twoPowerIndex2[index2].mi;
503
+
504
+ /* Test now if it is sure to launch the quick phase because no denormalized result is possible */
505
+ if (mightBeDenorm == 1) {
506
+ /* The result might be denormalized, we launch the accurate phase in all cases */
507
+
508
+ /* Rest of argument reduction for accurate phase */
509
+
510
+ Mul133(&msLog2Div2LMultKh,&msLog2Div2LMultKm,&msLog2Div2LMultKl,kd,msLog2Div2Lh,msLog2Div2Lm,msLog2Div2Ll);
511
+ t1 = x + msLog2Div2LMultKh;
512
+ Add12Cond(rh,t2,t1,msLog2Div2LMultKm);
513
+ Add12Cond(rm,rl,t2,msLog2Div2LMultKl);
514
+
515
+ /* Table reads for accurate phase */
516
+ tbl1l = twoPowerIndex1[index1].lo;
517
+ tbl2l = twoPowerIndex2[index2].lo;
518
+
519
+ /* Call accurate phase */
520
+ exp_td_accurate(&polyTblh, &polyTblm, &polyTbll, rh, rm, rl, tbl1h, tbl1m, tbl1l, tbl2h, tbl2m, tbl2l);
521
+
522
+ /* Final rounding and multiplication with 2^M
523
+
524
+ We first multiply the highest significant byte by 2^M in two steps
525
+ and adjust it then depending on the lower significant parts.
526
+
527
+ We cannot multiply directly by 2^M since M is less than -1022.
528
+ We first multiply by 2^(-1000) and then by 2^(M+1000).
529
+
530
+ */
531
+
532
+ t3 = polyTblh * twoPowerM1000;
533
+
534
+ /* Form now twoPowerM with adjusted M */
535
+ twoPowerMdb.i[LO] = 0;
536
+ twoPowerMdb.i[HI] = (M + 2023) << 20;
537
+
538
+
539
+ /* Multiply with the rest of M, the result will be denormalized */
540
+ t4 = t3 * twoPowerMdb.d;
541
+
542
+ /* For x86, force the compiler to pass through memory for having the right rounding */
543
+
544
+ t4db.d = t4; /* Do not #if-ify this line, we need the copy */
545
+ #if defined(CRLIBM_TYPECPU_AMD64) || defined(CRLIBM_TYPECPU_X86)
546
+ t4db2.i[HI] = t4db.i[HI];
547
+ t4db2.i[LO] = t4db.i[LO];
548
+ t4 = t4db2.d;
549
+ #endif
550
+
551
+
552
+ /* Remultiply by 2^(-M) for manipulating the rounding error and the lower significant parts */
553
+ M *= -1;
554
+ twoPowerMdb.i[LO] = 0;
555
+ twoPowerMdb.i[HI] = (M + 23) << 20;
556
+ t5 = t4 * twoPowerMdb.d;
557
+ t6 = t5 * twoPower1000;
558
+ t7 = polyTblh - t6;
559
+
560
+ /* The rounding can be decided using the sign of the arithmetical sum of the
561
+ round-to-nearest-error (i.e. t7) and the lower part(s) of the final result.
562
+ We add first the lower parts and add the result to the error in t7. We have to
563
+ keep in mind that everything is scaled by 2^(-M).
564
+ t8 can never be exactly 0 since we filter out the cases where the image of the
565
+ function is algebraic and the implementation is exacter than the TMD worst case.
566
+ */
567
+
568
+ polyTblm = polyTblm + polyTbll;
569
+ t8 = t7 + polyTblm;
570
+
571
+ /* Since we are rounding upwards, the round-to-nearest-rounding result in t4 is
572
+ equal to the final result if the rounding error (i.e. the error plus the lower parts)
573
+ is negative, i.e. if the rounding-to-nearest was upwards.
574
+ */
575
+
576
+ if (t8 < 0.0) return t4;
577
+
578
+ /* If we are here, we must adjust the final result by +1ulp
579
+ Relying on the fact that the exponential is always positive, we can simplify this
580
+ adjustment
581
+ */
582
+
583
+ t4db.l++;
584
+ return t4db.d;
585
+ } /* End accurate phase launched as there might be a denormalized result */
586
+
587
+ /* No more underflow nor denormal is possible. There may be the case where
588
+ M is 1024 and the value 2^M is to be multiplied may be less than 1
589
+ So the final result will be normalized and representable by the multiplication must be
590
+ made in 2 steps
591
+ */
592
+
593
+ /* Quick phase starts here */
594
+
595
+ rhSquare = rh * rh;
596
+ rhC3 = c3 * rh;
597
+
598
+ rhSquareHalf = 0.5 * rhSquare;
599
+ monomialCube = rhC3 * rhSquare;
600
+ rhFour = rhSquare * rhSquare;
601
+
602
+ monomialFour = c4 * rhFour;
603
+
604
+ highPoly = monomialCube + monomialFour;
605
+
606
+ highPolyWithSquare = rhSquareHalf + highPoly;
607
+
608
+ Mul22(&tablesh,&tablesl,tbl1h,tbl1m,tbl2h,tbl2m);
609
+
610
+ t8 = rm + highPolyWithSquare;
611
+ t9 = rh + t8;
612
+
613
+ t10 = tablesh * t9;
614
+
615
+ Add12(t11,t12,tablesh,t10);
616
+ t13 = t12 + tablesl;
617
+ Add12(polyTblh,polyTblm,t11,t13);
618
+
619
+ /* Rounding test
620
+ Since we know that the result of the final multiplication with 2^M
621
+ will always be representable, we can do the rounding test on the
622
+ factors and multiply only the final result.
623
+ We implement the multiplication in integer computations to overcome
624
+ the problem of the non-representability of 2^1024 if M = 1024
625
+ */
626
+
627
+ TEST_AND_COPY_RU(roundable,res,polyTblh,polyTblm,RDROUNDCST);
628
+
629
+ if (roundable) {
630
+ resdb.d = res;
631
+ resdb.i[HI] += M << 20;
632
+ return resdb.d;
633
+ } else
634
+ {
635
+ /* Rest of argument reduction for accurate phase */
636
+
637
+ Mul133(&msLog2Div2LMultKh,&msLog2Div2LMultKm,&msLog2Div2LMultKl,kd,msLog2Div2Lh,msLog2Div2Lm,msLog2Div2Ll);
638
+ t1 = x + msLog2Div2LMultKh;
639
+ Add12Cond(rh,t2,t1,msLog2Div2LMultKm);
640
+ Add12Cond(rm,rl,t2,msLog2Div2LMultKl);
641
+
642
+ /* Table reads for accurate phase */
643
+ tbl1l = twoPowerIndex1[index1].lo;
644
+ tbl2l = twoPowerIndex2[index2].lo;
645
+
646
+ /* Call accurate phase */
647
+ exp_td_accurate(&polyTblh, &polyTblm, &polyTbll, rh, rm, rl, tbl1h, tbl1m, tbl1l, tbl2h, tbl2m, tbl2l);
648
+
649
+ /* Since the final multiplication is exact, we can do the final rounding before multiplying
650
+ We overcome this way also the cases where the final result is not underflowed whereas the
651
+ lower parts of the intermediate final result are.
652
+ */
653
+
654
+ RoundUpwards3(&res,polyTblh,polyTblm,polyTbll);
655
+
656
+ /* Final multiplication with 2^M
657
+ We implement the multiplication in integer computations to overcome
658
+ the problem of the non-representability of 2^1024 if M = 1024
659
+ */
660
+
661
+ resdb.d = res;
662
+ resdb.i[HI] += M << 20;
663
+ return resdb.d;
664
+ } /* Accurate phase launched after rounding test*/
665
+ }
666
+
667
+
668
+ /*************************************************************
669
+ *************************************************************
670
+ * ROUNDED DOWNWARDS *
671
+ *************************************************************
672
+ *************************************************************/
673
+ double exp_rd(double x) {
674
+ double rh, rm, rl, tbl1h, tbl1m, tbl1l;
675
+ double tbl2h, tbl2m, tbl2l;
676
+ double xMultLog2InvMult2L, shiftedXMult, kd;
677
+ double msLog2Div2LMultKh, msLog2Div2LMultKm, msLog2Div2LMultKl;
678
+ double t1, t2, t3, t4, polyTblh, polyTblm, polyTbll;
679
+ db_number shiftedXMultdb, twoPowerMdb, xdb, t4db, t4db2, resdb;
680
+ int k, M, index1, index2, xIntHi, mightBeDenorm, roundable;
681
+ double t5, t6, t7, t8, t9, t10, t11, t12, t13;
682
+ double rhSquare, rhSquareHalf, rhC3, rhFour, monomialCube;
683
+ double highPoly, highPolyWithSquare, monomialFour;
684
+ double tablesh, tablesl;
685
+ double s1, s2, s3, s4, s5;
686
+ double res;
687
+
688
+ /* Argument reduction and filtering for special cases */
689
+
690
+ /* Compute k as a double and as an int */
691
+ xdb.d = x;
692
+ xMultLog2InvMult2L = x * log2InvMult2L;
693
+ shiftedXMult = xMultLog2InvMult2L + shiftConst;
694
+ kd = shiftedXMult - shiftConst;
695
+ shiftedXMultdb.d = shiftedXMult;
696
+
697
+ /* Special cases tests */
698
+ xIntHi = xdb.i[HI];
699
+ mightBeDenorm = 0;
700
+ /* Test if argument is a denormal or zero */
701
+ if ((xIntHi & 0x7ff00000) == 0) {
702
+ /* If the argument is exactly zero, we just return 1.0
703
+ which is the mathematical image of the function
704
+ */
705
+ if (x == 0.0) return 1.0;
706
+
707
+ /* If the argument is a positive denormal, we
708
+ must return 1.0 and raise the inexact flag.
709
+ */
710
+
711
+ if (x > 0.0) return 1.0 + SMALLEST;
712
+
713
+ /* Otherwise, we return 1.0 - 1ulp since
714
+ exp(-greatest denorm) > 1.0 - 1ulp
715
+ We must do the addition dynamically for
716
+ raising the inexact flag.
717
+ */
718
+
719
+ return 1.0 + mTwoM53;
720
+
721
+ }
722
+
723
+ /* Test if argument is greater than approx. 709 in magnitude */
724
+ if ((xIntHi & 0x7fffffff) >= OVRUDRFLWSMPLBOUND) {
725
+ /* If we are here, the result might be overflowed, underflowed, inf, or NaN */
726
+
727
+ /* Test if +/- Inf or NaN */
728
+ if ((xIntHi & 0x7fffffff) >= 0x7ff00000) {
729
+ /* Either NaN or Inf in this case since exponent is maximal */
730
+
731
+ /* Test if NaN: mantissa is not 0 */
732
+ if (((xIntHi & 0x000fffff) | xdb.i[LO]) != 0) {
733
+ /* x = NaN, return NaN */
734
+ return x + x;
735
+ } else {
736
+ /* +/- Inf */
737
+
738
+ /* Test sign */
739
+ if ((xIntHi & 0x80000000)==0)
740
+ /* x = +Inf, return +Inf */
741
+ return x;
742
+ else
743
+ /* x = -Inf, return 0 */
744
+ return 0;
745
+ } /* End which in NaN, Inf */
746
+ } /* End NaN or Inf ? */
747
+
748
+ /* If we are here, we might be overflowed, denormalized or underflowed in the result
749
+ but there is no special case (NaN, Inf) left */
750
+
751
+ /* Test if actually overflowed */
752
+ if (x > OVRFLWBOUND) {
753
+ /* We would be overflowed but as we are rounding downwards
754
+ the nearest number lesser than the exact result is the greatest
755
+ normal. In any case, we must raise the inexact flag.
756
+ */
757
+ return LARGEST * (1.0 + SMALLEST);
758
+ }
759
+
760
+ /* Test if surely underflowed */
761
+ if (x <= UNDERFLWBOUND) {
762
+ /* We are actually sure to be underflowed and not denormalized any more
763
+ (at least where computing makes sense); since we are in the round
764
+ upwards case, we return the smallest denormal possible.
765
+ */
766
+ return SMALLEST * SMALLEST;
767
+ }
768
+
769
+ /* Test if possibly denormalized */
770
+ if (x <= DENORMBOUND) {
771
+ /* We know now that we are not sure to be normalized in the result
772
+ We just set an internal flag for a further test
773
+ */
774
+ mightBeDenorm = 1;
775
+ }
776
+ } /* End might be a special case */
777
+
778
+ /* If we are here, we are sure to be neither +/- Inf nor NaN nor overflowed nor denormalized in the argument
779
+ but we might be denormalized in the result
780
+
781
+ We continue the argument reduction for the quick phase and table reads for both phases
782
+ */
783
+
784
+ Mul12(&s1,&s2,msLog2Div2Lh,kd);
785
+ s3 = kd * msLog2Div2Lm;
786
+ s4 = s2 + s3;
787
+ s5 = x + s1;
788
+ Add12Cond(rh,rm,s5,s4);
789
+
790
+ k = shiftedXMultdb.i[LO];
791
+ M = k >> L;
792
+ index1 = k & INDEXMASK1;
793
+ index2 = (k & INDEXMASK2) >> LHALF;
794
+
795
+ /* Table reads */
796
+ tbl1h = twoPowerIndex1[index1].hi;
797
+ tbl1m = twoPowerIndex1[index1].mi;
798
+ tbl2h = twoPowerIndex2[index2].hi;
799
+ tbl2m = twoPowerIndex2[index2].mi;
800
+
801
+ /* Test now if it is sure to launch the quick phase because no denormalized result is possible */
802
+ if (mightBeDenorm == 1) {
803
+ /* The result might be denormalized, we launch the accurate phase in all cases */
804
+
805
+ /* Rest of argument reduction for accurate phase */
806
+
807
+ Mul133(&msLog2Div2LMultKh,&msLog2Div2LMultKm,&msLog2Div2LMultKl,kd,msLog2Div2Lh,msLog2Div2Lm,msLog2Div2Ll);
808
+ t1 = x + msLog2Div2LMultKh;
809
+ Add12Cond(rh,t2,t1,msLog2Div2LMultKm);
810
+ Add12Cond(rm,rl,t2,msLog2Div2LMultKl);
811
+
812
+ /* Table reads for accurate phase */
813
+ tbl1l = twoPowerIndex1[index1].lo;
814
+ tbl2l = twoPowerIndex2[index2].lo;
815
+
816
+ /* Call accurate phase */
817
+ exp_td_accurate(&polyTblh, &polyTblm, &polyTbll, rh, rm, rl, tbl1h, tbl1m, tbl1l, tbl2h, tbl2m, tbl2l);
818
+
819
+ /* Final rounding and multiplication with 2^M
820
+
821
+ We first multiply the highest significant byte by 2^M in two steps
822
+ and adjust it then depending on the lower significant parts.
823
+
824
+ We cannot multiply directly by 2^M since M is less than -1022.
825
+ We first multiply by 2^(-1000) and then by 2^(M+1000).
826
+
827
+ */
828
+
829
+ t3 = polyTblh * twoPowerM1000;
830
+
831
+ /* Form now twoPowerM with adjusted M */
832
+ twoPowerMdb.i[LO] = 0;
833
+ twoPowerMdb.i[HI] = (M + 2023) << 20;
834
+
835
+
836
+ /* Multiply with the rest of M, the result will be denormalized */
837
+ t4 = t3 * twoPowerMdb.d;
838
+
839
+ /* For x86, force the compiler to pass through memory for having the right rounding */
840
+
841
+ t4db.d = t4; /* Do not #if-ify this line, we need the copy */
842
+ #if defined(CRLIBM_TYPECPU_AMD64) || defined(CRLIBM_TYPECPU_X86)
843
+ t4db2.i[HI] = t4db.i[HI];
844
+ t4db2.i[LO] = t4db.i[LO];
845
+ t4 = t4db2.d;
846
+ #endif
847
+
848
+ /* Remultiply by 2^(-M) for manipulating the rounding error and the lower significant parts */
849
+ M *= -1;
850
+ twoPowerMdb.i[LO] = 0;
851
+ twoPowerMdb.i[HI] = (M + 23) << 20;
852
+ t5 = t4 * twoPowerMdb.d;
853
+ t6 = t5 * twoPower1000;
854
+ t7 = polyTblh - t6;
855
+
856
+ /* The rounding can be decided using the sign of the arithmetical sum of the
857
+ round-to-nearest-error (i.e. t7) and the lower part(s) of the final result.
858
+ We add first the lower parts and add the result to the error in t7. We have to
859
+ keep in mind that everything is scaled by 2^(-M).
860
+ t8 can never be exactly 0 since we filter out the cases where the image of the
861
+ function is algebraic and the implementation is exacter than the TMD worst case.
862
+ */
863
+
864
+ polyTblm = polyTblm + polyTbll;
865
+ t8 = t7 + polyTblm;
866
+
867
+ /* Since we are rounding downwards, the round-to-nearest-rounding result in t4 is
868
+ equal to the final result if the rounding error (i.e. the error plus the lower parts)
869
+ is positive, i.e. if the rounding-to-nearest was downwards.
870
+ */
871
+
872
+ if (t8 > 0.0) return t4;
873
+
874
+ /* If we are here, we must adjust the final result by +1ulp
875
+ Relying on the fact that the exponential is always positive, we can simplify this
876
+ adjustment
877
+ */
878
+
879
+ t4db.l--;
880
+ return t4db.d;
881
+ } /* End accurate phase launched as there might be a denormalized result */
882
+
883
+ /* No more underflow nor denormal is possible. There may be the case where
884
+ M is 1024 and the value 2^M is to be multiplied may be less than 1
885
+ So the final result will be normalized and representable by the multiplication must be
886
+ made in 2 steps
887
+ */
888
+
889
+ /* Quick phase starts here */
890
+
891
+ rhSquare = rh * rh;
892
+ rhC3 = c3 * rh;
893
+
894
+ rhSquareHalf = 0.5 * rhSquare;
895
+ monomialCube = rhC3 * rhSquare;
896
+ rhFour = rhSquare * rhSquare;
897
+
898
+ monomialFour = c4 * rhFour;
899
+
900
+ highPoly = monomialCube + monomialFour;
901
+
902
+ highPolyWithSquare = rhSquareHalf + highPoly;
903
+
904
+ Mul22(&tablesh,&tablesl,tbl1h,tbl1m,tbl2h,tbl2m);
905
+
906
+ t8 = rm + highPolyWithSquare;
907
+ t9 = rh + t8;
908
+
909
+ t10 = tablesh * t9;
910
+
911
+ Add12(t11,t12,tablesh,t10);
912
+ t13 = t12 + tablesl;
913
+ Add12(polyTblh,polyTblm,t11,t13);
914
+
915
+ /* Rounding test
916
+ Since we know that the result of the final multiplication with 2^M
917
+ will always be representable, we can do the rounding test on the
918
+ factors and multiply only the final result.
919
+ We implement the multiplication in integer computations to overcome
920
+ the problem of the non-representability of 2^1024 if M = 1024
921
+ */
922
+
923
+ TEST_AND_COPY_RD(roundable,res,polyTblh,polyTblm,RDROUNDCST);
924
+
925
+ if (roundable) {
926
+ resdb.d = res;
927
+ resdb.i[HI] += M << 20;
928
+ return resdb.d;
929
+ } else {
930
+ /* Rest of argument reduction for accurate phase */
931
+
932
+ Mul133(&msLog2Div2LMultKh,&msLog2Div2LMultKm,&msLog2Div2LMultKl,kd,msLog2Div2Lh,msLog2Div2Lm,msLog2Div2Ll);
933
+ t1 = x + msLog2Div2LMultKh;
934
+ Add12Cond(rh,t2,t1,msLog2Div2LMultKm);
935
+ Add12Cond(rm,rl,t2,msLog2Div2LMultKl);
936
+
937
+ /* Table reads for accurate phase */
938
+ tbl1l = twoPowerIndex1[index1].lo;
939
+ tbl2l = twoPowerIndex2[index2].lo;
940
+
941
+ /* Call accurate phase */
942
+ exp_td_accurate(&polyTblh, &polyTblm, &polyTbll, rh, rm, rl, tbl1h, tbl1m, tbl1l, tbl2h, tbl2m, tbl2l);
943
+
944
+ /* Since the final multiplication is exact, we can do the final rounding before multiplying
945
+ We overcome this way also the cases where the final result is not underflowed whereas the
946
+ lower parts of the intermediate final result are.
947
+ */
948
+
949
+ RoundDownwards3(&res,polyTblh,polyTblm,polyTbll);
950
+
951
+ /* Final multiplication with 2^M
952
+ We implement the multiplication in integer computations to overcome
953
+ the problem of the non-representability of 2^1024 if M = 1024
954
+ */
955
+
956
+ resdb.d = res;
957
+ resdb.i[HI] += M << 20;
958
+ return resdb.d;
959
+ } /* Accurate phase launched after rounding test*/
960
+ }
961
+
962
+