grpc 1.10.0.pre1 → 1.10.0.pre2
Sign up to get free protection for your applications and to get access to all the features.
Potentially problematic release.
This version of grpc might be problematic. Click here for more details.
- checksums.yaml +4 -4
- data/Makefile +3 -3
- data/src/core/ext/filters/max_age/max_age_filter.cc +3 -0
- data/src/core/lib/surface/version.cc +1 -1
- data/src/ruby/lib/grpc/version.rb +1 -1
- data/third_party/boringssl/crypto/fipsmodule/aes/aes.c +1100 -0
- data/third_party/boringssl/crypto/fipsmodule/aes/key_wrap.c +138 -0
- data/third_party/boringssl/crypto/fipsmodule/aes/mode_wrappers.c +112 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/add.c +375 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/asm/x86_64-gcc.c +537 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/bn.c +370 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/bytes.c +269 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/cmp.c +239 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/ctx.c +303 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/div.c +726 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/exponentiation.c +1233 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/gcd.c +627 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/generic.c +715 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/jacobi.c +146 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/montgomery.c +430 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/montgomery_inv.c +207 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/mul.c +869 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/prime.c +894 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/random.c +283 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/rsaz_exp.c +254 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/shift.c +307 -0
- data/third_party/boringssl/crypto/fipsmodule/bn/sqrt.c +502 -0
- data/third_party/boringssl/crypto/fipsmodule/cipher/aead.c +284 -0
- data/third_party/boringssl/crypto/fipsmodule/cipher/cipher.c +613 -0
- data/third_party/boringssl/crypto/fipsmodule/cipher/e_aes.c +1437 -0
- data/third_party/boringssl/crypto/fipsmodule/cipher/e_des.c +233 -0
- data/third_party/boringssl/crypto/fipsmodule/des/des.c +785 -0
- data/third_party/boringssl/crypto/fipsmodule/digest/digest.c +256 -0
- data/third_party/boringssl/crypto/fipsmodule/digest/digests.c +280 -0
- data/third_party/boringssl/crypto/fipsmodule/ec/ec.c +842 -0
- data/third_party/boringssl/crypto/fipsmodule/ec/ec_key.c +517 -0
- data/third_party/boringssl/crypto/fipsmodule/ec/ec_montgomery.c +304 -0
- data/third_party/boringssl/crypto/fipsmodule/ec/oct.c +404 -0
- data/third_party/boringssl/crypto/fipsmodule/ec/p224-64.c +1165 -0
- data/third_party/boringssl/crypto/fipsmodule/ec/p256-64.c +1708 -0
- data/third_party/boringssl/crypto/fipsmodule/ec/p256-x86_64.c +561 -0
- data/third_party/boringssl/crypto/fipsmodule/ec/simple.c +1113 -0
- data/third_party/boringssl/crypto/fipsmodule/ec/util-64.c +109 -0
- data/third_party/boringssl/crypto/fipsmodule/ec/wnaf.c +456 -0
- data/third_party/boringssl/crypto/fipsmodule/ecdsa/ecdsa.c +444 -0
- data/third_party/boringssl/crypto/fipsmodule/hmac/hmac.c +228 -0
- data/third_party/boringssl/crypto/fipsmodule/md4/md4.c +254 -0
- data/third_party/boringssl/crypto/fipsmodule/md5/md5.c +298 -0
- data/third_party/boringssl/crypto/fipsmodule/modes/cbc.c +212 -0
- data/third_party/boringssl/crypto/fipsmodule/modes/cfb.c +230 -0
- data/third_party/boringssl/crypto/fipsmodule/modes/ctr.c +219 -0
- data/third_party/boringssl/crypto/fipsmodule/modes/gcm.c +1074 -0
- data/third_party/boringssl/crypto/fipsmodule/modes/ofb.c +95 -0
- data/third_party/boringssl/crypto/fipsmodule/modes/polyval.c +91 -0
- data/third_party/boringssl/crypto/fipsmodule/rand/ctrdrbg.c +200 -0
- data/third_party/boringssl/crypto/fipsmodule/rand/rand.c +358 -0
- data/third_party/boringssl/crypto/fipsmodule/rand/urandom.c +302 -0
- data/third_party/boringssl/crypto/fipsmodule/rsa/blinding.c +263 -0
- data/third_party/boringssl/crypto/fipsmodule/rsa/padding.c +692 -0
- data/third_party/boringssl/crypto/fipsmodule/rsa/rsa.c +855 -0
- data/third_party/boringssl/crypto/fipsmodule/rsa/rsa_impl.c +1061 -0
- data/third_party/boringssl/crypto/fipsmodule/sha/sha1-altivec.c +361 -0
- data/third_party/boringssl/crypto/fipsmodule/sha/sha1.c +375 -0
- data/third_party/boringssl/crypto/fipsmodule/sha/sha256.c +337 -0
- data/third_party/boringssl/crypto/fipsmodule/sha/sha512.c +608 -0
- metadata +62 -2
@@ -0,0 +1,1061 @@
|
|
1
|
+
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
2
|
+
* All rights reserved.
|
3
|
+
*
|
4
|
+
* This package is an SSL implementation written
|
5
|
+
* by Eric Young (eay@cryptsoft.com).
|
6
|
+
* The implementation was written so as to conform with Netscapes SSL.
|
7
|
+
*
|
8
|
+
* This library is free for commercial and non-commercial use as long as
|
9
|
+
* the following conditions are aheared to. The following conditions
|
10
|
+
* apply to all code found in this distribution, be it the RC4, RSA,
|
11
|
+
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
12
|
+
* included with this distribution is covered by the same copyright terms
|
13
|
+
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
14
|
+
*
|
15
|
+
* Copyright remains Eric Young's, and as such any Copyright notices in
|
16
|
+
* the code are not to be removed.
|
17
|
+
* If this package is used in a product, Eric Young should be given attribution
|
18
|
+
* as the author of the parts of the library used.
|
19
|
+
* This can be in the form of a textual message at program startup or
|
20
|
+
* in documentation (online or textual) provided with the package.
|
21
|
+
*
|
22
|
+
* Redistribution and use in source and binary forms, with or without
|
23
|
+
* modification, are permitted provided that the following conditions
|
24
|
+
* are met:
|
25
|
+
* 1. Redistributions of source code must retain the copyright
|
26
|
+
* notice, this list of conditions and the following disclaimer.
|
27
|
+
* 2. Redistributions in binary form must reproduce the above copyright
|
28
|
+
* notice, this list of conditions and the following disclaimer in the
|
29
|
+
* documentation and/or other materials provided with the distribution.
|
30
|
+
* 3. All advertising materials mentioning features or use of this software
|
31
|
+
* must display the following acknowledgement:
|
32
|
+
* "This product includes cryptographic software written by
|
33
|
+
* Eric Young (eay@cryptsoft.com)"
|
34
|
+
* The word 'cryptographic' can be left out if the rouines from the library
|
35
|
+
* being used are not cryptographic related :-).
|
36
|
+
* 4. If you include any Windows specific code (or a derivative thereof) from
|
37
|
+
* the apps directory (application code) you must include an acknowledgement:
|
38
|
+
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
39
|
+
*
|
40
|
+
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
41
|
+
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
42
|
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
43
|
+
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
44
|
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
45
|
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
46
|
+
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
47
|
+
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
48
|
+
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
49
|
+
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
50
|
+
* SUCH DAMAGE.
|
51
|
+
*
|
52
|
+
* The licence and distribution terms for any publically available version or
|
53
|
+
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
54
|
+
* copied and put under another distribution licence
|
55
|
+
* [including the GNU Public Licence.] */
|
56
|
+
|
57
|
+
#include <openssl/rsa.h>
|
58
|
+
|
59
|
+
#include <assert.h>
|
60
|
+
#include <limits.h>
|
61
|
+
#include <string.h>
|
62
|
+
|
63
|
+
#include <openssl/bn.h>
|
64
|
+
#include <openssl/err.h>
|
65
|
+
#include <openssl/mem.h>
|
66
|
+
#include <openssl/thread.h>
|
67
|
+
#include <openssl/type_check.h>
|
68
|
+
|
69
|
+
#include "internal.h"
|
70
|
+
#include "../bn/internal.h"
|
71
|
+
#include "../../internal.h"
|
72
|
+
#include "../delocate.h"
|
73
|
+
|
74
|
+
|
75
|
+
static int check_modulus_and_exponent_sizes(const RSA *rsa) {
|
76
|
+
unsigned rsa_bits = BN_num_bits(rsa->n);
|
77
|
+
|
78
|
+
if (rsa_bits > 16 * 1024) {
|
79
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
|
80
|
+
return 0;
|
81
|
+
}
|
82
|
+
|
83
|
+
// Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen as
|
84
|
+
// the limit based on the recommendations in [1] and [2]. Windows CryptoAPI
|
85
|
+
// doesn't support values larger than 32 bits [3], so it is unlikely that
|
86
|
+
// exponents larger than 32 bits are being used for anything Windows commonly
|
87
|
+
// does.
|
88
|
+
//
|
89
|
+
// [1] https://www.imperialviolet.org/2012/03/16/rsae.html
|
90
|
+
// [2] https://www.imperialviolet.org/2012/03/17/rsados.html
|
91
|
+
// [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
|
92
|
+
static const unsigned kMaxExponentBits = 33;
|
93
|
+
|
94
|
+
if (BN_num_bits(rsa->e) > kMaxExponentBits) {
|
95
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
|
96
|
+
return 0;
|
97
|
+
}
|
98
|
+
|
99
|
+
// Verify |n > e|. Comparing |rsa_bits| to |kMaxExponentBits| is a small
|
100
|
+
// shortcut to comparing |n| and |e| directly. In reality, |kMaxExponentBits|
|
101
|
+
// is much smaller than the minimum RSA key size that any application should
|
102
|
+
// accept.
|
103
|
+
if (rsa_bits <= kMaxExponentBits) {
|
104
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
105
|
+
return 0;
|
106
|
+
}
|
107
|
+
assert(BN_ucmp(rsa->n, rsa->e) > 0);
|
108
|
+
|
109
|
+
return 1;
|
110
|
+
}
|
111
|
+
|
112
|
+
size_t rsa_default_size(const RSA *rsa) {
|
113
|
+
return BN_num_bytes(rsa->n);
|
114
|
+
}
|
115
|
+
|
116
|
+
int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
117
|
+
const uint8_t *in, size_t in_len, int padding) {
|
118
|
+
if (rsa->n == NULL || rsa->e == NULL) {
|
119
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
120
|
+
return 0;
|
121
|
+
}
|
122
|
+
|
123
|
+
const unsigned rsa_size = RSA_size(rsa);
|
124
|
+
BIGNUM *f, *result;
|
125
|
+
uint8_t *buf = NULL;
|
126
|
+
BN_CTX *ctx = NULL;
|
127
|
+
int i, ret = 0;
|
128
|
+
|
129
|
+
if (max_out < rsa_size) {
|
130
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
131
|
+
return 0;
|
132
|
+
}
|
133
|
+
|
134
|
+
if (!check_modulus_and_exponent_sizes(rsa)) {
|
135
|
+
return 0;
|
136
|
+
}
|
137
|
+
|
138
|
+
ctx = BN_CTX_new();
|
139
|
+
if (ctx == NULL) {
|
140
|
+
goto err;
|
141
|
+
}
|
142
|
+
|
143
|
+
BN_CTX_start(ctx);
|
144
|
+
f = BN_CTX_get(ctx);
|
145
|
+
result = BN_CTX_get(ctx);
|
146
|
+
buf = OPENSSL_malloc(rsa_size);
|
147
|
+
if (!f || !result || !buf) {
|
148
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
149
|
+
goto err;
|
150
|
+
}
|
151
|
+
|
152
|
+
switch (padding) {
|
153
|
+
case RSA_PKCS1_PADDING:
|
154
|
+
i = RSA_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len);
|
155
|
+
break;
|
156
|
+
case RSA_PKCS1_OAEP_PADDING:
|
157
|
+
// Use the default parameters: SHA-1 for both hashes and no label.
|
158
|
+
i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len,
|
159
|
+
NULL, 0, NULL, NULL);
|
160
|
+
break;
|
161
|
+
case RSA_NO_PADDING:
|
162
|
+
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
|
163
|
+
break;
|
164
|
+
default:
|
165
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
166
|
+
goto err;
|
167
|
+
}
|
168
|
+
|
169
|
+
if (i <= 0) {
|
170
|
+
goto err;
|
171
|
+
}
|
172
|
+
|
173
|
+
if (BN_bin2bn(buf, rsa_size, f) == NULL) {
|
174
|
+
goto err;
|
175
|
+
}
|
176
|
+
|
177
|
+
if (BN_ucmp(f, rsa->n) >= 0) {
|
178
|
+
// usually the padding functions would catch this
|
179
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
180
|
+
goto err;
|
181
|
+
}
|
182
|
+
|
183
|
+
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
|
184
|
+
!BN_mod_exp_mont(result, f, rsa->e, rsa->n, ctx, rsa->mont_n)) {
|
185
|
+
goto err;
|
186
|
+
}
|
187
|
+
|
188
|
+
// put in leading 0 bytes if the number is less than the length of the
|
189
|
+
// modulus
|
190
|
+
if (!BN_bn2bin_padded(out, rsa_size, result)) {
|
191
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
192
|
+
goto err;
|
193
|
+
}
|
194
|
+
|
195
|
+
*out_len = rsa_size;
|
196
|
+
ret = 1;
|
197
|
+
|
198
|
+
err:
|
199
|
+
if (ctx != NULL) {
|
200
|
+
BN_CTX_end(ctx);
|
201
|
+
BN_CTX_free(ctx);
|
202
|
+
}
|
203
|
+
OPENSSL_free(buf);
|
204
|
+
|
205
|
+
return ret;
|
206
|
+
}
|
207
|
+
|
208
|
+
// MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per
|
209
|
+
// RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and
|
210
|
+
// destroyed as needed.
|
211
|
+
#define MAX_BLINDINGS_PER_RSA 1024
|
212
|
+
|
213
|
+
// rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by
|
214
|
+
// allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If
|
215
|
+
// none are free, the cache will be extended by a extra element and the new
|
216
|
+
// BN_BLINDING is returned.
|
217
|
+
//
|
218
|
+
// On success, the index of the assigned BN_BLINDING is written to
|
219
|
+
// |*index_used| and must be passed to |rsa_blinding_release| when finished.
|
220
|
+
static BN_BLINDING *rsa_blinding_get(RSA *rsa, unsigned *index_used,
|
221
|
+
BN_CTX *ctx) {
|
222
|
+
assert(ctx != NULL);
|
223
|
+
assert(rsa->mont_n != NULL);
|
224
|
+
|
225
|
+
BN_BLINDING *ret = NULL;
|
226
|
+
BN_BLINDING **new_blindings;
|
227
|
+
uint8_t *new_blindings_inuse;
|
228
|
+
char overflow = 0;
|
229
|
+
|
230
|
+
CRYPTO_MUTEX_lock_write(&rsa->lock);
|
231
|
+
|
232
|
+
unsigned i;
|
233
|
+
for (i = 0; i < rsa->num_blindings; i++) {
|
234
|
+
if (rsa->blindings_inuse[i] == 0) {
|
235
|
+
rsa->blindings_inuse[i] = 1;
|
236
|
+
ret = rsa->blindings[i];
|
237
|
+
*index_used = i;
|
238
|
+
break;
|
239
|
+
}
|
240
|
+
}
|
241
|
+
|
242
|
+
if (ret != NULL) {
|
243
|
+
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
244
|
+
return ret;
|
245
|
+
}
|
246
|
+
|
247
|
+
overflow = rsa->num_blindings >= MAX_BLINDINGS_PER_RSA;
|
248
|
+
|
249
|
+
// We didn't find a free BN_BLINDING to use so increase the length of
|
250
|
+
// the arrays by one and use the newly created element.
|
251
|
+
|
252
|
+
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
253
|
+
ret = BN_BLINDING_new();
|
254
|
+
if (ret == NULL) {
|
255
|
+
return NULL;
|
256
|
+
}
|
257
|
+
|
258
|
+
if (overflow) {
|
259
|
+
// We cannot add any more cached BN_BLINDINGs so we use |ret|
|
260
|
+
// and mark it for destruction in |rsa_blinding_release|.
|
261
|
+
*index_used = MAX_BLINDINGS_PER_RSA;
|
262
|
+
return ret;
|
263
|
+
}
|
264
|
+
|
265
|
+
CRYPTO_MUTEX_lock_write(&rsa->lock);
|
266
|
+
|
267
|
+
new_blindings =
|
268
|
+
OPENSSL_malloc(sizeof(BN_BLINDING *) * (rsa->num_blindings + 1));
|
269
|
+
if (new_blindings == NULL) {
|
270
|
+
goto err1;
|
271
|
+
}
|
272
|
+
OPENSSL_memcpy(new_blindings, rsa->blindings,
|
273
|
+
sizeof(BN_BLINDING *) * rsa->num_blindings);
|
274
|
+
new_blindings[rsa->num_blindings] = ret;
|
275
|
+
|
276
|
+
new_blindings_inuse = OPENSSL_malloc(rsa->num_blindings + 1);
|
277
|
+
if (new_blindings_inuse == NULL) {
|
278
|
+
goto err2;
|
279
|
+
}
|
280
|
+
OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings);
|
281
|
+
new_blindings_inuse[rsa->num_blindings] = 1;
|
282
|
+
*index_used = rsa->num_blindings;
|
283
|
+
|
284
|
+
OPENSSL_free(rsa->blindings);
|
285
|
+
rsa->blindings = new_blindings;
|
286
|
+
OPENSSL_free(rsa->blindings_inuse);
|
287
|
+
rsa->blindings_inuse = new_blindings_inuse;
|
288
|
+
rsa->num_blindings++;
|
289
|
+
|
290
|
+
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
291
|
+
return ret;
|
292
|
+
|
293
|
+
err2:
|
294
|
+
OPENSSL_free(new_blindings);
|
295
|
+
|
296
|
+
err1:
|
297
|
+
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
298
|
+
BN_BLINDING_free(ret);
|
299
|
+
return NULL;
|
300
|
+
}
|
301
|
+
|
302
|
+
// rsa_blinding_release marks the cached BN_BLINDING at the given index as free
|
303
|
+
// for other threads to use.
|
304
|
+
static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding,
|
305
|
+
unsigned blinding_index) {
|
306
|
+
if (blinding_index == MAX_BLINDINGS_PER_RSA) {
|
307
|
+
// This blinding wasn't cached.
|
308
|
+
BN_BLINDING_free(blinding);
|
309
|
+
return;
|
310
|
+
}
|
311
|
+
|
312
|
+
CRYPTO_MUTEX_lock_write(&rsa->lock);
|
313
|
+
rsa->blindings_inuse[blinding_index] = 0;
|
314
|
+
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
315
|
+
}
|
316
|
+
|
317
|
+
// signing
|
318
|
+
int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out,
|
319
|
+
size_t max_out, const uint8_t *in, size_t in_len,
|
320
|
+
int padding) {
|
321
|
+
const unsigned rsa_size = RSA_size(rsa);
|
322
|
+
uint8_t *buf = NULL;
|
323
|
+
int i, ret = 0;
|
324
|
+
|
325
|
+
if (max_out < rsa_size) {
|
326
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
327
|
+
return 0;
|
328
|
+
}
|
329
|
+
|
330
|
+
buf = OPENSSL_malloc(rsa_size);
|
331
|
+
if (buf == NULL) {
|
332
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
333
|
+
goto err;
|
334
|
+
}
|
335
|
+
|
336
|
+
switch (padding) {
|
337
|
+
case RSA_PKCS1_PADDING:
|
338
|
+
i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len);
|
339
|
+
break;
|
340
|
+
case RSA_NO_PADDING:
|
341
|
+
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
|
342
|
+
break;
|
343
|
+
default:
|
344
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
345
|
+
goto err;
|
346
|
+
}
|
347
|
+
|
348
|
+
if (i <= 0) {
|
349
|
+
goto err;
|
350
|
+
}
|
351
|
+
|
352
|
+
if (!RSA_private_transform(rsa, out, buf, rsa_size)) {
|
353
|
+
goto err;
|
354
|
+
}
|
355
|
+
|
356
|
+
*out_len = rsa_size;
|
357
|
+
ret = 1;
|
358
|
+
|
359
|
+
err:
|
360
|
+
OPENSSL_free(buf);
|
361
|
+
|
362
|
+
return ret;
|
363
|
+
}
|
364
|
+
|
365
|
+
int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
366
|
+
const uint8_t *in, size_t in_len, int padding) {
|
367
|
+
const unsigned rsa_size = RSA_size(rsa);
|
368
|
+
uint8_t *buf = NULL;
|
369
|
+
int ret = 0;
|
370
|
+
|
371
|
+
if (max_out < rsa_size) {
|
372
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
373
|
+
return 0;
|
374
|
+
}
|
375
|
+
|
376
|
+
if (padding == RSA_NO_PADDING) {
|
377
|
+
buf = out;
|
378
|
+
} else {
|
379
|
+
// Allocate a temporary buffer to hold the padded plaintext.
|
380
|
+
buf = OPENSSL_malloc(rsa_size);
|
381
|
+
if (buf == NULL) {
|
382
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
383
|
+
goto err;
|
384
|
+
}
|
385
|
+
}
|
386
|
+
|
387
|
+
if (in_len != rsa_size) {
|
388
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
|
389
|
+
goto err;
|
390
|
+
}
|
391
|
+
|
392
|
+
if (!RSA_private_transform(rsa, buf, in, rsa_size)) {
|
393
|
+
goto err;
|
394
|
+
}
|
395
|
+
|
396
|
+
switch (padding) {
|
397
|
+
case RSA_PKCS1_PADDING:
|
398
|
+
ret =
|
399
|
+
RSA_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size);
|
400
|
+
break;
|
401
|
+
case RSA_PKCS1_OAEP_PADDING:
|
402
|
+
// Use the default parameters: SHA-1 for both hashes and no label.
|
403
|
+
ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf,
|
404
|
+
rsa_size, NULL, 0, NULL, NULL);
|
405
|
+
break;
|
406
|
+
case RSA_NO_PADDING:
|
407
|
+
*out_len = rsa_size;
|
408
|
+
ret = 1;
|
409
|
+
break;
|
410
|
+
default:
|
411
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
412
|
+
goto err;
|
413
|
+
}
|
414
|
+
|
415
|
+
if (!ret) {
|
416
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
|
417
|
+
}
|
418
|
+
|
419
|
+
err:
|
420
|
+
if (padding != RSA_NO_PADDING) {
|
421
|
+
OPENSSL_free(buf);
|
422
|
+
}
|
423
|
+
|
424
|
+
return ret;
|
425
|
+
}
|
426
|
+
|
427
|
+
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
|
428
|
+
|
429
|
+
int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
430
|
+
const uint8_t *in, size_t in_len, int padding) {
|
431
|
+
if (rsa->n == NULL || rsa->e == NULL) {
|
432
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
433
|
+
return 0;
|
434
|
+
}
|
435
|
+
|
436
|
+
const unsigned rsa_size = RSA_size(rsa);
|
437
|
+
BIGNUM *f, *result;
|
438
|
+
|
439
|
+
if (max_out < rsa_size) {
|
440
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
441
|
+
return 0;
|
442
|
+
}
|
443
|
+
|
444
|
+
if (in_len != rsa_size) {
|
445
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
|
446
|
+
return 0;
|
447
|
+
}
|
448
|
+
|
449
|
+
if (!check_modulus_and_exponent_sizes(rsa)) {
|
450
|
+
return 0;
|
451
|
+
}
|
452
|
+
|
453
|
+
BN_CTX *ctx = BN_CTX_new();
|
454
|
+
if (ctx == NULL) {
|
455
|
+
return 0;
|
456
|
+
}
|
457
|
+
|
458
|
+
int ret = 0;
|
459
|
+
uint8_t *buf = NULL;
|
460
|
+
|
461
|
+
BN_CTX_start(ctx);
|
462
|
+
f = BN_CTX_get(ctx);
|
463
|
+
result = BN_CTX_get(ctx);
|
464
|
+
if (f == NULL || result == NULL) {
|
465
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
466
|
+
goto err;
|
467
|
+
}
|
468
|
+
|
469
|
+
if (padding == RSA_NO_PADDING) {
|
470
|
+
buf = out;
|
471
|
+
} else {
|
472
|
+
// Allocate a temporary buffer to hold the padded plaintext.
|
473
|
+
buf = OPENSSL_malloc(rsa_size);
|
474
|
+
if (buf == NULL) {
|
475
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
476
|
+
goto err;
|
477
|
+
}
|
478
|
+
}
|
479
|
+
|
480
|
+
if (BN_bin2bn(in, in_len, f) == NULL) {
|
481
|
+
goto err;
|
482
|
+
}
|
483
|
+
|
484
|
+
if (BN_ucmp(f, rsa->n) >= 0) {
|
485
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
486
|
+
goto err;
|
487
|
+
}
|
488
|
+
|
489
|
+
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
|
490
|
+
!BN_mod_exp_mont(result, f, rsa->e, rsa->n, ctx, rsa->mont_n)) {
|
491
|
+
goto err;
|
492
|
+
}
|
493
|
+
|
494
|
+
if (!BN_bn2bin_padded(buf, rsa_size, result)) {
|
495
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
496
|
+
goto err;
|
497
|
+
}
|
498
|
+
|
499
|
+
switch (padding) {
|
500
|
+
case RSA_PKCS1_PADDING:
|
501
|
+
ret =
|
502
|
+
RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size);
|
503
|
+
break;
|
504
|
+
case RSA_NO_PADDING:
|
505
|
+
ret = 1;
|
506
|
+
*out_len = rsa_size;
|
507
|
+
break;
|
508
|
+
default:
|
509
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
510
|
+
goto err;
|
511
|
+
}
|
512
|
+
|
513
|
+
if (!ret) {
|
514
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
|
515
|
+
goto err;
|
516
|
+
}
|
517
|
+
|
518
|
+
err:
|
519
|
+
BN_CTX_end(ctx);
|
520
|
+
BN_CTX_free(ctx);
|
521
|
+
if (buf != out) {
|
522
|
+
OPENSSL_free(buf);
|
523
|
+
}
|
524
|
+
return ret;
|
525
|
+
}
|
526
|
+
|
527
|
+
int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
|
528
|
+
size_t len) {
|
529
|
+
if (rsa->n == NULL || rsa->d == NULL) {
|
530
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
531
|
+
return 0;
|
532
|
+
}
|
533
|
+
|
534
|
+
BIGNUM *f, *result;
|
535
|
+
BN_CTX *ctx = NULL;
|
536
|
+
unsigned blinding_index = 0;
|
537
|
+
BN_BLINDING *blinding = NULL;
|
538
|
+
int ret = 0;
|
539
|
+
|
540
|
+
ctx = BN_CTX_new();
|
541
|
+
if (ctx == NULL) {
|
542
|
+
goto err;
|
543
|
+
}
|
544
|
+
BN_CTX_start(ctx);
|
545
|
+
f = BN_CTX_get(ctx);
|
546
|
+
result = BN_CTX_get(ctx);
|
547
|
+
|
548
|
+
if (f == NULL || result == NULL) {
|
549
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
550
|
+
goto err;
|
551
|
+
}
|
552
|
+
|
553
|
+
if (BN_bin2bn(in, len, f) == NULL) {
|
554
|
+
goto err;
|
555
|
+
}
|
556
|
+
|
557
|
+
if (BN_ucmp(f, rsa->n) >= 0) {
|
558
|
+
// Usually the padding functions would catch this.
|
559
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
560
|
+
goto err;
|
561
|
+
}
|
562
|
+
|
563
|
+
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx)) {
|
564
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
565
|
+
goto err;
|
566
|
+
}
|
567
|
+
|
568
|
+
const int do_blinding = (rsa->flags & RSA_FLAG_NO_BLINDING) == 0;
|
569
|
+
|
570
|
+
if (rsa->e == NULL && do_blinding) {
|
571
|
+
// We cannot do blinding or verification without |e|, and continuing without
|
572
|
+
// those countermeasures is dangerous. However, the Java/Android RSA API
|
573
|
+
// requires support for keys where only |d| and |n| (and not |e|) are known.
|
574
|
+
// The callers that require that bad behavior set |RSA_FLAG_NO_BLINDING|.
|
575
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT);
|
576
|
+
goto err;
|
577
|
+
}
|
578
|
+
|
579
|
+
if (do_blinding) {
|
580
|
+
blinding = rsa_blinding_get(rsa, &blinding_index, ctx);
|
581
|
+
if (blinding == NULL) {
|
582
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
583
|
+
goto err;
|
584
|
+
}
|
585
|
+
if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) {
|
586
|
+
goto err;
|
587
|
+
}
|
588
|
+
}
|
589
|
+
|
590
|
+
if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL &&
|
591
|
+
rsa->dmq1 != NULL && rsa->iqmp != NULL) {
|
592
|
+
if (!mod_exp(result, f, rsa, ctx)) {
|
593
|
+
goto err;
|
594
|
+
}
|
595
|
+
} else if (!BN_mod_exp_mont_consttime(result, f, rsa->d, rsa->n, ctx,
|
596
|
+
rsa->mont_n)) {
|
597
|
+
goto err;
|
598
|
+
}
|
599
|
+
|
600
|
+
// Verify the result to protect against fault attacks as described in the
|
601
|
+
// 1997 paper "On the Importance of Checking Cryptographic Protocols for
|
602
|
+
// Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some
|
603
|
+
// implementations do this only when the CRT is used, but we do it in all
|
604
|
+
// cases. Section 6 of the aforementioned paper describes an attack that
|
605
|
+
// works when the CRT isn't used. That attack is much less likely to succeed
|
606
|
+
// than the CRT attack, but there have likely been improvements since 1997.
|
607
|
+
//
|
608
|
+
// This check is cheap assuming |e| is small; it almost always is.
|
609
|
+
if (rsa->e != NULL) {
|
610
|
+
BIGNUM *vrfy = BN_CTX_get(ctx);
|
611
|
+
if (vrfy == NULL ||
|
612
|
+
!BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) ||
|
613
|
+
!BN_equal_consttime(vrfy, f)) {
|
614
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
615
|
+
goto err;
|
616
|
+
}
|
617
|
+
|
618
|
+
}
|
619
|
+
|
620
|
+
if (do_blinding &&
|
621
|
+
!BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) {
|
622
|
+
goto err;
|
623
|
+
}
|
624
|
+
|
625
|
+
if (!BN_bn2bin_padded(out, len, result)) {
|
626
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
627
|
+
goto err;
|
628
|
+
}
|
629
|
+
|
630
|
+
ret = 1;
|
631
|
+
|
632
|
+
err:
|
633
|
+
if (ctx != NULL) {
|
634
|
+
BN_CTX_end(ctx);
|
635
|
+
BN_CTX_free(ctx);
|
636
|
+
}
|
637
|
+
if (blinding != NULL) {
|
638
|
+
rsa_blinding_release(rsa, blinding, blinding_index);
|
639
|
+
}
|
640
|
+
|
641
|
+
return ret;
|
642
|
+
}
|
643
|
+
|
644
|
+
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
|
645
|
+
assert(ctx != NULL);
|
646
|
+
|
647
|
+
assert(rsa->n != NULL);
|
648
|
+
assert(rsa->e != NULL);
|
649
|
+
assert(rsa->d != NULL);
|
650
|
+
assert(rsa->p != NULL);
|
651
|
+
assert(rsa->q != NULL);
|
652
|
+
assert(rsa->dmp1 != NULL);
|
653
|
+
assert(rsa->dmq1 != NULL);
|
654
|
+
assert(rsa->iqmp != NULL);
|
655
|
+
|
656
|
+
BIGNUM *r1, *m1, *vrfy;
|
657
|
+
int ret = 0;
|
658
|
+
|
659
|
+
BN_CTX_start(ctx);
|
660
|
+
r1 = BN_CTX_get(ctx);
|
661
|
+
m1 = BN_CTX_get(ctx);
|
662
|
+
vrfy = BN_CTX_get(ctx);
|
663
|
+
if (r1 == NULL ||
|
664
|
+
m1 == NULL ||
|
665
|
+
vrfy == NULL) {
|
666
|
+
goto err;
|
667
|
+
}
|
668
|
+
|
669
|
+
if (!BN_MONT_CTX_set_locked(&rsa->mont_p, &rsa->lock, rsa->p, ctx) ||
|
670
|
+
!BN_MONT_CTX_set_locked(&rsa->mont_q, &rsa->lock, rsa->q, ctx)) {
|
671
|
+
goto err;
|
672
|
+
}
|
673
|
+
|
674
|
+
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx)) {
|
675
|
+
goto err;
|
676
|
+
}
|
677
|
+
|
678
|
+
// compute I mod q
|
679
|
+
if (!BN_mod(r1, I, rsa->q, ctx)) {
|
680
|
+
goto err;
|
681
|
+
}
|
682
|
+
|
683
|
+
// compute r1^dmq1 mod q
|
684
|
+
if (!BN_mod_exp_mont_consttime(m1, r1, rsa->dmq1, rsa->q, ctx, rsa->mont_q)) {
|
685
|
+
goto err;
|
686
|
+
}
|
687
|
+
|
688
|
+
// compute I mod p
|
689
|
+
if (!BN_mod(r1, I, rsa->p, ctx)) {
|
690
|
+
goto err;
|
691
|
+
}
|
692
|
+
|
693
|
+
// compute r1^dmp1 mod p
|
694
|
+
if (!BN_mod_exp_mont_consttime(r0, r1, rsa->dmp1, rsa->p, ctx, rsa->mont_p)) {
|
695
|
+
goto err;
|
696
|
+
}
|
697
|
+
|
698
|
+
if (!BN_sub(r0, r0, m1)) {
|
699
|
+
goto err;
|
700
|
+
}
|
701
|
+
// This will help stop the size of r0 increasing, which does
|
702
|
+
// affect the multiply if it optimised for a power of 2 size
|
703
|
+
if (BN_is_negative(r0)) {
|
704
|
+
if (!BN_add(r0, r0, rsa->p)) {
|
705
|
+
goto err;
|
706
|
+
}
|
707
|
+
}
|
708
|
+
|
709
|
+
if (!BN_mul(r1, r0, rsa->iqmp, ctx)) {
|
710
|
+
goto err;
|
711
|
+
}
|
712
|
+
|
713
|
+
if (!BN_mod(r0, r1, rsa->p, ctx)) {
|
714
|
+
goto err;
|
715
|
+
}
|
716
|
+
|
717
|
+
// If p < q it is occasionally possible for the correction of
|
718
|
+
// adding 'p' if r0 is negative above to leave the result still
|
719
|
+
// negative. This can break the private key operations: the following
|
720
|
+
// second correction should *always* correct this rare occurrence.
|
721
|
+
// This will *never* happen with OpenSSL generated keys because
|
722
|
+
// they ensure p > q [steve]
|
723
|
+
if (BN_is_negative(r0)) {
|
724
|
+
if (!BN_add(r0, r0, rsa->p)) {
|
725
|
+
goto err;
|
726
|
+
}
|
727
|
+
}
|
728
|
+
if (!BN_mul(r1, r0, rsa->q, ctx)) {
|
729
|
+
goto err;
|
730
|
+
}
|
731
|
+
if (!BN_add(r0, r1, m1)) {
|
732
|
+
goto err;
|
733
|
+
}
|
734
|
+
|
735
|
+
ret = 1;
|
736
|
+
|
737
|
+
err:
|
738
|
+
BN_CTX_end(ctx);
|
739
|
+
return ret;
|
740
|
+
}
|
741
|
+
|
742
|
+
static int ensure_bignum(BIGNUM **out) {
|
743
|
+
if (*out == NULL) {
|
744
|
+
*out = BN_new();
|
745
|
+
}
|
746
|
+
return *out != NULL;
|
747
|
+
}
|
748
|
+
|
749
|
+
// kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2¹⁵³⁵×√2⌋. This is
|
750
|
+
// chosen to give enough precision for 3072-bit RSA, the largest key size FIPS
|
751
|
+
// specifies. Key sizes beyond this will round up.
|
752
|
+
//
|
753
|
+
// To verify this number, check that n² < 2³⁰⁷¹ < (n+1)², where n is value
|
754
|
+
// represented here. Note the components are listed in little-endian order. Here
|
755
|
+
// is some sample Python code to check:
|
756
|
+
//
|
757
|
+
// >>> TOBN = lambda a, b: a << 32 | b
|
758
|
+
// >>> l = [ <paste the contents of kSqrtTwo> ]
|
759
|
+
// >>> n = sum(a * 2**(64*i) for i, a in enumerate(l))
|
760
|
+
// >>> n**2 < 2**3071 < (n+1)**2
|
761
|
+
// True
|
762
|
+
const BN_ULONG kBoringSSLRSASqrtTwo[] = {
|
763
|
+
TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307),
|
764
|
+
TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f),
|
765
|
+
TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651),
|
766
|
+
TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd),
|
767
|
+
TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e),
|
768
|
+
TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc),
|
769
|
+
TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a),
|
770
|
+
TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e),
|
771
|
+
TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a),
|
772
|
+
TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3),
|
773
|
+
TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c),
|
774
|
+
TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484),
|
775
|
+
};
|
776
|
+
const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo);
|
777
|
+
|
778
|
+
int rsa_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len) {
|
779
|
+
OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
|
780
|
+
crypto_word_t_too_small);
|
781
|
+
int ret = 0;
|
782
|
+
// Process the words in little-endian order.
|
783
|
+
for (size_t i = 0; i < len; i++) {
|
784
|
+
crypto_word_t eq = constant_time_eq_w(a[i], b[i]);
|
785
|
+
crypto_word_t lt = constant_time_lt_w(a[i], b[i]);
|
786
|
+
ret = constant_time_select_int(eq, ret, constant_time_select_int(lt, 1, 0));
|
787
|
+
}
|
788
|
+
return ret;
|
789
|
+
}
|
790
|
+
|
791
|
+
int rsa_greater_than_pow2(const BIGNUM *b, int n) {
|
792
|
+
if (BN_is_negative(b) || n == INT_MAX) {
|
793
|
+
return 0;
|
794
|
+
}
|
795
|
+
|
796
|
+
int b_bits = BN_num_bits(b);
|
797
|
+
return b_bits > n + 1 || (b_bits == n + 1 && !BN_is_pow2(b));
|
798
|
+
}
|
799
|
+
|
800
|
+
// generate_prime sets |out| to a prime with length |bits| such that |out|-1 is
|
801
|
+
// relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to
|
802
|
+
// |p|.
|
803
|
+
static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e,
|
804
|
+
const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb) {
|
805
|
+
if (bits < 128 || (bits % BN_BITS2) != 0) {
|
806
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
807
|
+
return 0;
|
808
|
+
}
|
809
|
+
|
810
|
+
// Ensure the bound on |tries| does not overflow.
|
811
|
+
if (bits >= INT_MAX/5) {
|
812
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
|
813
|
+
return 0;
|
814
|
+
}
|
815
|
+
|
816
|
+
int ret = 0, tries = 0, rand_tries = 0;
|
817
|
+
BN_CTX_start(ctx);
|
818
|
+
BIGNUM *tmp = BN_CTX_get(ctx);
|
819
|
+
if (tmp == NULL) {
|
820
|
+
goto err;
|
821
|
+
}
|
822
|
+
|
823
|
+
// See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is
|
824
|
+
// nlen/2.
|
825
|
+
for (;;) {
|
826
|
+
// Generate a random number of length |bits| where the bottom bit is set
|
827
|
+
// (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the
|
828
|
+
// bound checked below in steps 4.4 and 5.5).
|
829
|
+
if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) ||
|
830
|
+
!BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) {
|
831
|
+
goto err;
|
832
|
+
}
|
833
|
+
|
834
|
+
if (p != NULL) {
|
835
|
+
// If |p| and |out| are too close, try again (step 5.4).
|
836
|
+
if (!BN_sub(tmp, out, p)) {
|
837
|
+
goto err;
|
838
|
+
}
|
839
|
+
BN_set_negative(tmp, 0);
|
840
|
+
if (!rsa_greater_than_pow2(tmp, bits - 100)) {
|
841
|
+
continue;
|
842
|
+
}
|
843
|
+
}
|
844
|
+
|
845
|
+
// If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5).
|
846
|
+
//
|
847
|
+
// We check the most significant words, so we retry if ⌊out/2^k⌋ <= ⌊b/2^k⌋,
|
848
|
+
// where b = 2^(bits-1)×√2 and k = max(0, bits - 1536). For key sizes up to
|
849
|
+
// 3072 (bits = 1536), k = 0, so we are testing that ⌊out⌋ <= ⌊b⌋. out is an
|
850
|
+
// integer and b is not, so this is equivalent to out < b. That is, the
|
851
|
+
// comparison is exact for FIPS key sizes.
|
852
|
+
//
|
853
|
+
// For larger keys, the comparison is approximate, leaning towards
|
854
|
+
// retrying. That is, we reject a negligible fraction of primes that are
|
855
|
+
// within the FIPS bound, but we will never accept a prime outside the
|
856
|
+
// bound, ensuring the resulting RSA key is the right size. Specifically, if
|
857
|
+
// the FIPS bound holds, we have ⌊out/2^k⌋ < out/2^k < b/2^k. This implies
|
858
|
+
// ⌊out/2^k⌋ <= ⌊b/2^k⌋. That is, the FIPS bound implies our bound and so we
|
859
|
+
// are slightly tighter.
|
860
|
+
size_t out_len = (size_t)out->top;
|
861
|
+
assert(out_len == (size_t)bits / BN_BITS2);
|
862
|
+
size_t to_check = kBoringSSLRSASqrtTwoLen;
|
863
|
+
if (to_check > out_len) {
|
864
|
+
to_check = out_len;
|
865
|
+
}
|
866
|
+
if (!rsa_less_than_words(
|
867
|
+
kBoringSSLRSASqrtTwo + kBoringSSLRSASqrtTwoLen - to_check,
|
868
|
+
out->d + out_len - to_check, to_check)) {
|
869
|
+
continue;
|
870
|
+
}
|
871
|
+
|
872
|
+
// Check gcd(out-1, e) is one (steps 4.5 and 5.6).
|
873
|
+
if (!BN_sub(tmp, out, BN_value_one()) ||
|
874
|
+
!BN_gcd(tmp, tmp, e, ctx)) {
|
875
|
+
goto err;
|
876
|
+
}
|
877
|
+
if (BN_is_one(tmp)) {
|
878
|
+
// Test |out| for primality (steps 4.5.1 and 5.6.1).
|
879
|
+
int is_probable_prime;
|
880
|
+
if (!BN_primality_test(&is_probable_prime, out, BN_prime_checks, ctx, 1,
|
881
|
+
cb)) {
|
882
|
+
goto err;
|
883
|
+
}
|
884
|
+
if (is_probable_prime) {
|
885
|
+
ret = 1;
|
886
|
+
goto err;
|
887
|
+
}
|
888
|
+
}
|
889
|
+
|
890
|
+
// If we've tried too many times to find a prime, abort (steps 4.7 and
|
891
|
+
// 5.8).
|
892
|
+
tries++;
|
893
|
+
if (tries >= bits * 5) {
|
894
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
|
895
|
+
goto err;
|
896
|
+
}
|
897
|
+
if (!BN_GENCB_call(cb, 2, tries)) {
|
898
|
+
goto err;
|
899
|
+
}
|
900
|
+
}
|
901
|
+
|
902
|
+
err:
|
903
|
+
BN_CTX_end(ctx);
|
904
|
+
return ret;
|
905
|
+
}
|
906
|
+
|
907
|
+
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) {
|
908
|
+
// See FIPS 186-4 appendix B.3. This function implements a generalized version
|
909
|
+
// of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks
|
910
|
+
// for FIPS-compliant key generation.
|
911
|
+
|
912
|
+
// Always generate RSA keys which are a multiple of 128 bits. Round |bits|
|
913
|
+
// down as needed.
|
914
|
+
bits &= ~127;
|
915
|
+
|
916
|
+
// Reject excessively small keys.
|
917
|
+
if (bits < 256) {
|
918
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
919
|
+
return 0;
|
920
|
+
}
|
921
|
+
|
922
|
+
int ret = 0;
|
923
|
+
BN_CTX *ctx = BN_CTX_new();
|
924
|
+
if (ctx == NULL) {
|
925
|
+
goto bn_err;
|
926
|
+
}
|
927
|
+
BN_CTX_start(ctx);
|
928
|
+
BIGNUM *totient = BN_CTX_get(ctx);
|
929
|
+
BIGNUM *pm1 = BN_CTX_get(ctx);
|
930
|
+
BIGNUM *qm1 = BN_CTX_get(ctx);
|
931
|
+
BIGNUM *gcd = BN_CTX_get(ctx);
|
932
|
+
if (totient == NULL || pm1 == NULL || qm1 == NULL || gcd == NULL) {
|
933
|
+
goto bn_err;
|
934
|
+
}
|
935
|
+
|
936
|
+
// We need the RSA components non-NULL.
|
937
|
+
if (!ensure_bignum(&rsa->n) ||
|
938
|
+
!ensure_bignum(&rsa->d) ||
|
939
|
+
!ensure_bignum(&rsa->e) ||
|
940
|
+
!ensure_bignum(&rsa->p) ||
|
941
|
+
!ensure_bignum(&rsa->q) ||
|
942
|
+
!ensure_bignum(&rsa->dmp1) ||
|
943
|
+
!ensure_bignum(&rsa->dmq1) ||
|
944
|
+
!ensure_bignum(&rsa->iqmp)) {
|
945
|
+
goto bn_err;
|
946
|
+
}
|
947
|
+
|
948
|
+
if (!BN_copy(rsa->e, e_value)) {
|
949
|
+
goto bn_err;
|
950
|
+
}
|
951
|
+
|
952
|
+
int prime_bits = bits / 2;
|
953
|
+
do {
|
954
|
+
// Generate p and q, each of size |prime_bits|, using the steps outlined in
|
955
|
+
// appendix FIPS 186-4 appendix B.3.3.
|
956
|
+
if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, ctx, cb) ||
|
957
|
+
!BN_GENCB_call(cb, 3, 0) ||
|
958
|
+
!generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, ctx, cb) ||
|
959
|
+
!BN_GENCB_call(cb, 3, 1)) {
|
960
|
+
goto bn_err;
|
961
|
+
}
|
962
|
+
|
963
|
+
if (BN_cmp(rsa->p, rsa->q) < 0) {
|
964
|
+
BIGNUM *tmp = rsa->p;
|
965
|
+
rsa->p = rsa->q;
|
966
|
+
rsa->q = tmp;
|
967
|
+
}
|
968
|
+
|
969
|
+
// Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs
|
970
|
+
// from typical RSA implementations which use (p-1)*(q-1).
|
971
|
+
//
|
972
|
+
// Note this means the size of d might reveal information about p-1 and
|
973
|
+
// q-1. However, we do operations with Chinese Remainder Theorem, so we only
|
974
|
+
// use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient
|
975
|
+
// does not affect those two values.
|
976
|
+
if (!BN_sub(pm1, rsa->p, BN_value_one()) ||
|
977
|
+
!BN_sub(qm1, rsa->q, BN_value_one()) ||
|
978
|
+
!BN_mul(totient, pm1, qm1, ctx) ||
|
979
|
+
!BN_gcd(gcd, pm1, qm1, ctx) ||
|
980
|
+
!BN_div(totient, NULL, totient, gcd, ctx) ||
|
981
|
+
!BN_mod_inverse(rsa->d, rsa->e, totient, ctx)) {
|
982
|
+
goto bn_err;
|
983
|
+
}
|
984
|
+
|
985
|
+
// Check that |rsa->d| > 2^|prime_bits| and try again if it fails. See
|
986
|
+
// appendix B.3.1's guidance on values for d.
|
987
|
+
} while (!rsa_greater_than_pow2(rsa->d, prime_bits));
|
988
|
+
|
989
|
+
if (// Calculate n.
|
990
|
+
!BN_mul(rsa->n, rsa->p, rsa->q, ctx) ||
|
991
|
+
// Calculate d mod (p-1).
|
992
|
+
!BN_mod(rsa->dmp1, rsa->d, pm1, ctx) ||
|
993
|
+
// Calculate d mod (q-1)
|
994
|
+
!BN_mod(rsa->dmq1, rsa->d, qm1, ctx)) {
|
995
|
+
goto bn_err;
|
996
|
+
}
|
997
|
+
|
998
|
+
// Sanity-check that |rsa->n| has the specified size. This is implied by
|
999
|
+
// |generate_prime|'s bounds.
|
1000
|
+
if (BN_num_bits(rsa->n) != (unsigned)bits) {
|
1001
|
+
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
1002
|
+
goto err;
|
1003
|
+
}
|
1004
|
+
|
1005
|
+
// Calculate inverse of q mod p. Note that although RSA key generation is far
|
1006
|
+
// from constant-time, |bn_mod_inverse_secret_prime| uses the same modular
|
1007
|
+
// exponentation logic as in RSA private key operations and, if the RSAZ-1024
|
1008
|
+
// code is enabled, will be optimized for common RSA prime sizes.
|
1009
|
+
if (!BN_MONT_CTX_set_locked(&rsa->mont_p, &rsa->lock, rsa->p, ctx) ||
|
1010
|
+
!bn_mod_inverse_secret_prime(rsa->iqmp, rsa->q, rsa->p, ctx,
|
1011
|
+
rsa->mont_p)) {
|
1012
|
+
goto bn_err;
|
1013
|
+
}
|
1014
|
+
|
1015
|
+
// The key generation process is complex and thus error-prone. It could be
|
1016
|
+
// disastrous to generate and then use a bad key so double-check that the key
|
1017
|
+
// makes sense.
|
1018
|
+
if (!RSA_check_key(rsa)) {
|
1019
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
|
1020
|
+
goto err;
|
1021
|
+
}
|
1022
|
+
|
1023
|
+
ret = 1;
|
1024
|
+
|
1025
|
+
bn_err:
|
1026
|
+
if (!ret) {
|
1027
|
+
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
|
1028
|
+
}
|
1029
|
+
err:
|
1030
|
+
if (ctx != NULL) {
|
1031
|
+
BN_CTX_end(ctx);
|
1032
|
+
BN_CTX_free(ctx);
|
1033
|
+
}
|
1034
|
+
return ret;
|
1035
|
+
}
|
1036
|
+
|
1037
|
+
int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) {
|
1038
|
+
// FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit
|
1039
|
+
// primes, respectively) with the prime generation method we use.
|
1040
|
+
if (bits != 2048 && bits != 3072) {
|
1041
|
+
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
|
1042
|
+
return 0;
|
1043
|
+
}
|
1044
|
+
|
1045
|
+
BIGNUM *e = BN_new();
|
1046
|
+
int ret = e != NULL &&
|
1047
|
+
BN_set_word(e, RSA_F4) &&
|
1048
|
+
RSA_generate_key_ex(rsa, bits, e, cb) &&
|
1049
|
+
RSA_check_fips(rsa);
|
1050
|
+
BN_free(e);
|
1051
|
+
return ret;
|
1052
|
+
}
|
1053
|
+
|
1054
|
+
DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) {
|
1055
|
+
// All of the methods are NULL to make it easier for the compiler/linker to
|
1056
|
+
// drop unused functions. The wrapper functions will select the appropriate
|
1057
|
+
// |rsa_default_*| implementation.
|
1058
|
+
OPENSSL_memset(out, 0, sizeof(RSA_METHOD));
|
1059
|
+
out->common.is_static = 1;
|
1060
|
+
out->flags = RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE;
|
1061
|
+
}
|