graph_matching 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +20 -0
- data/.rubocop.yml +112 -0
- data/.ruby-version +1 -0
- data/.travis.yml +9 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +205 -0
- data/Rakefile +9 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/benchmark.rb +33 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/compare.gnuplot +19 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/edges_times_vertexes.data +500 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/plot.gnuplot +21 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/plot.png +0 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/time.data +499 -0
- data/benchmark/mcm_general/complete_graphs/benchmark.rb +30 -0
- data/benchmark/mcm_general/complete_graphs/plot.gnuplot +19 -0
- data/benchmark/mcm_general/complete_graphs/plot.png +0 -0
- data/benchmark/mcm_general/complete_graphs/time.data +499 -0
- data/benchmark/mcm_general/complete_graphs/v_cubed.data +500 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/benchmark.rb +43 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/nmN.data +499 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/nmN.xlsx +0 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/plot.gnuplot +22 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/plot.png +0 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/time.data +299 -0
- data/benchmark/mwm_bipartite/misc/calc_d2/benchmark.rb +29 -0
- data/benchmark/mwm_general/complete_graphs/benchmark.rb +32 -0
- data/benchmark/mwm_general/complete_graphs/compare.gnuplot +19 -0
- data/benchmark/mwm_general/complete_graphs/mn_log_n.data +299 -0
- data/benchmark/mwm_general/complete_graphs/mn_log_n.xlsx +0 -0
- data/benchmark/mwm_general/complete_graphs/plot.gnuplot +22 -0
- data/benchmark/mwm_general/complete_graphs/plot.png +0 -0
- data/benchmark/mwm_general/complete_graphs/time.data +299 -0
- data/benchmark/mwm_general/incomplete_graphs/benchmark.rb +39 -0
- data/benchmark/mwm_general/incomplete_graphs/plot.gnuplot +22 -0
- data/benchmark/mwm_general/incomplete_graphs/plot.png +0 -0
- data/benchmark/mwm_general/incomplete_graphs/time_10_pct.data +299 -0
- data/benchmark/mwm_general/incomplete_graphs/time_20_pct.data +299 -0
- data/benchmark/mwm_general/incomplete_graphs/time_30_pct.data +299 -0
- data/graph_matching.gemspec +35 -0
- data/lib/graph_matching.rb +15 -0
- data/lib/graph_matching/algorithm/matching_algorithm.rb +23 -0
- data/lib/graph_matching/algorithm/mcm_bipartite.rb +118 -0
- data/lib/graph_matching/algorithm/mcm_general.rb +289 -0
- data/lib/graph_matching/algorithm/mwm_bipartite.rb +147 -0
- data/lib/graph_matching/algorithm/mwm_general.rb +1086 -0
- data/lib/graph_matching/algorithm/mwmg_delta_assertions.rb +94 -0
- data/lib/graph_matching/assertion.rb +41 -0
- data/lib/graph_matching/core_ext/set.rb +36 -0
- data/lib/graph_matching/directed_edge_set.rb +31 -0
- data/lib/graph_matching/errors.rb +23 -0
- data/lib/graph_matching/graph/bigraph.rb +37 -0
- data/lib/graph_matching/graph/graph.rb +63 -0
- data/lib/graph_matching/graph/weighted.rb +112 -0
- data/lib/graph_matching/graph/weighted_bigraph.rb +17 -0
- data/lib/graph_matching/graph/weighted_graph.rb +17 -0
- data/lib/graph_matching/integer_vertexes.rb +29 -0
- data/lib/graph_matching/matching.rb +120 -0
- data/lib/graph_matching/ordered_set.rb +59 -0
- data/lib/graph_matching/version.rb +6 -0
- data/lib/graph_matching/visualize.rb +93 -0
- data/profile/mcm_bipartite/compare.sh +15 -0
- data/profile/mcm_bipartite/publish.sh +12 -0
- data/profile/mwm_general/compare.sh +15 -0
- data/profile/mwm_general/profile.rb +28 -0
- data/profile/mwm_general/publish.sh +12 -0
- data/research/1965_edmonds.pdf +0 -0
- data/research/1975_even_kariv.pdf +0 -0
- data/research/1976_gabow.pdf +0 -0
- data/research/1980_micali_vazirani.pdf +0 -0
- data/research/1985_gabow.pdf +0 -0
- data/research/2002_tarjan.pdf +0 -0
- data/research/2013_zwick.pdf +0 -0
- data/research/examples/unweighted_general/1.txt +86 -0
- data/research/goodwin.pdf +0 -0
- data/research/kavathekar-scribe.pdf +0 -0
- data/research/kusner.pdf +0 -0
- data/research/van_rantwijk/mwm_example.py +19 -0
- data/research/van_rantwijk/mwmatching.py +945 -0
- data/spec/graph_matching/algorithm/matching_algorithm_spec.rb +14 -0
- data/spec/graph_matching/algorithm/mcm_bipartite_spec.rb +98 -0
- data/spec/graph_matching/algorithm/mcm_general_spec.rb +159 -0
- data/spec/graph_matching/algorithm/mwm_bipartite_spec.rb +82 -0
- data/spec/graph_matching/algorithm/mwm_general_spec.rb +439 -0
- data/spec/graph_matching/graph/bigraph_spec.rb +73 -0
- data/spec/graph_matching/graph/graph_spec.rb +53 -0
- data/spec/graph_matching/graph/weighted_spec.rb +29 -0
- data/spec/graph_matching/integer_vertexes_spec.rb +21 -0
- data/spec/graph_matching/matching_spec.rb +89 -0
- data/spec/graph_matching/visualize_spec.rb +38 -0
- data/spec/graph_matching_spec.rb +9 -0
- data/spec/spec_helper.rb +26 -0
- metadata +263 -0
@@ -0,0 +1,147 @@
|
|
1
|
+
# encoding: utf-8
|
2
|
+
|
3
|
+
require_relative '../graph/weighted_bigraph'
|
4
|
+
require_relative '../matching'
|
5
|
+
require_relative 'matching_algorithm'
|
6
|
+
|
7
|
+
module GraphMatching
|
8
|
+
module Algorithm
|
9
|
+
|
10
|
+
# `MWMBipartite` implements Maximum Weighted Matching in
|
11
|
+
# bipartite graphs. It extends Maximum Cardinality
|
12
|
+
# Matching for `Weighted` graphs.
|
13
|
+
class MWMBipartite < MCMBipartite
|
14
|
+
|
15
|
+
def initialize(graph)
|
16
|
+
assert(graph).is_a(Graph::WeightedBigraph)
|
17
|
+
super
|
18
|
+
|
19
|
+
# Optimization: Keeping a reference to the graph's weights
|
20
|
+
# in the instance, instead of calling `Weighted#w`
|
21
|
+
# thousands of times, is twice as fast.
|
22
|
+
@weight = graph.weight
|
23
|
+
end
|
24
|
+
|
25
|
+
def match
|
26
|
+
m = []
|
27
|
+
dogs, cats = g.partition
|
28
|
+
u = init_duals(cats, dogs)
|
29
|
+
|
30
|
+
# For each stage
|
31
|
+
while true do
|
32
|
+
|
33
|
+
# Clear all labels and marks
|
34
|
+
# Label all single dogs with S
|
35
|
+
aug_path = nil
|
36
|
+
predecessors = {}
|
37
|
+
t = Set.new
|
38
|
+
s = Set.new(dogs) - m
|
39
|
+
q = s.dup.to_a
|
40
|
+
|
41
|
+
# While searching
|
42
|
+
while aug_path.nil? && i = q.pop do
|
43
|
+
|
44
|
+
# Follow the unmatched edges (if any) to free (unlabeled)
|
45
|
+
# cats. Only consider edges with slack (π) of 0.
|
46
|
+
unlabeled_across_unmatched_edges_from(i, g, m ,t).each do |j|
|
47
|
+
if π(u, i, j) == 0
|
48
|
+
t << j
|
49
|
+
predecessors[j] = i
|
50
|
+
|
51
|
+
# If there are matched edges, follow each to a dog and
|
52
|
+
# label the dog with S. Otherwise, backtrack to
|
53
|
+
# construct an augmenting path.
|
54
|
+
m_dogs = matched_adjacent(j, i, g, m)
|
55
|
+
|
56
|
+
m_dogs.each do |md|
|
57
|
+
s << md
|
58
|
+
predecessors[md] = j
|
59
|
+
end
|
60
|
+
|
61
|
+
if m_dogs.empty?
|
62
|
+
aug_path = backtrack_from(j, predecessors)
|
63
|
+
break
|
64
|
+
end
|
65
|
+
end
|
66
|
+
end
|
67
|
+
end
|
68
|
+
|
69
|
+
# We have looked at every S-dog.
|
70
|
+
# If no `aug_path` was found, the search failed.
|
71
|
+
# Adjust the duals and search again.
|
72
|
+
if aug_path.nil?
|
73
|
+
d1 = calc_d1(s, u)
|
74
|
+
d2 = calc_d2(s, t, u)
|
75
|
+
d = [d1, d2].compact.min
|
76
|
+
|
77
|
+
# If d == d1, then the smallest dual is equal to the
|
78
|
+
# smallest slack, and the duals of all single dogs are
|
79
|
+
# zero. Therefore, we're totally done.
|
80
|
+
#
|
81
|
+
# Otherwise, adjust the duals by subtracting d from S-dog
|
82
|
+
# duals and adding d to T-cat duals.
|
83
|
+
if d == d1
|
84
|
+
break
|
85
|
+
else
|
86
|
+
s.each do |si| u[si] = u[si] - d end
|
87
|
+
t.each do |ti| u[ti] = u[ti] + d end
|
88
|
+
end
|
89
|
+
|
90
|
+
else
|
91
|
+
m = augment(m, aug_path)
|
92
|
+
end
|
93
|
+
end
|
94
|
+
|
95
|
+
Matching.gabow(m)
|
96
|
+
end
|
97
|
+
|
98
|
+
private
|
99
|
+
|
100
|
+
def assert_weighted_bipartite(graph)
|
101
|
+
unless weighted_bipartite?(graph)
|
102
|
+
raise ArgumentError, 'Expected a weighted bipartite graph'
|
103
|
+
end
|
104
|
+
end
|
105
|
+
|
106
|
+
# Returns d1, min of S-dog duals
|
107
|
+
def calc_d1(s, u)
|
108
|
+
u.values_at(*s).min
|
109
|
+
end
|
110
|
+
|
111
|
+
# Returns d2, the smallest slack between S-dogs and free
|
112
|
+
# cats. This is a fairly expensive method, due to the
|
113
|
+
# nested loop.
|
114
|
+
def calc_d2(s, t, u)
|
115
|
+
slacks = []
|
116
|
+
s.each do |s_dog|
|
117
|
+
g.each_adjacent(s_dog) do |cat|
|
118
|
+
unless t.include?(cat)
|
119
|
+
slacks.push π(u, s_dog, cat)
|
120
|
+
end
|
121
|
+
end
|
122
|
+
end
|
123
|
+
slacks.min
|
124
|
+
end
|
125
|
+
|
126
|
+
# Initialize the "dual" values
|
127
|
+
def init_duals(cats, dogs)
|
128
|
+
u = []
|
129
|
+
ui = g.max_w
|
130
|
+
dogs.each do |i| u[i] = ui end
|
131
|
+
cats.each do |j| u[j] = 0 end
|
132
|
+
u
|
133
|
+
end
|
134
|
+
|
135
|
+
def weighted_bipartite?(graph)
|
136
|
+
graph.respond_to?(:partition) && graph.respond_to?(:w)
|
137
|
+
end
|
138
|
+
|
139
|
+
# Returns the "slack" of an edge (Galil, 1986, p.30), the
|
140
|
+
# difference between an edge's duals and its weight.
|
141
|
+
def π(u, i, j)
|
142
|
+
u[i] + u[j] - @weight[i - 1][j - 1]
|
143
|
+
end
|
144
|
+
|
145
|
+
end
|
146
|
+
end
|
147
|
+
end
|
@@ -0,0 +1,1086 @@
|
|
1
|
+
# encoding: utf-8
|
2
|
+
|
3
|
+
require_relative '../graph/weighted_graph'
|
4
|
+
require_relative '../matching'
|
5
|
+
require_relative 'matching_algorithm'
|
6
|
+
|
7
|
+
module GraphMatching
|
8
|
+
module Algorithm
|
9
|
+
|
10
|
+
# `MWMGeneral` implements Maximum Weighted Matching in
|
11
|
+
# general graphs.
|
12
|
+
class MWMGeneral < MatchingAlgorithm
|
13
|
+
|
14
|
+
# If b is a top-level blossom,
|
15
|
+
# label[b] is 0 if b is unlabeled (free);
|
16
|
+
# 1 if b is an S-vertex/blossom;
|
17
|
+
# 2 if b is a T-vertex/blossom.
|
18
|
+
LBL_FREE = 0
|
19
|
+
LBL_S = 1
|
20
|
+
LBL_T = 2
|
21
|
+
LBL_CRUMB = 5
|
22
|
+
LBL_NAMES = ['Free', 'S', 'T', 'Crumb']
|
23
|
+
|
24
|
+
def initialize(graph)
|
25
|
+
assert(graph).is_a(Graph::WeightedGraph)
|
26
|
+
super
|
27
|
+
init_graph_structures
|
28
|
+
init_algorithm_structures
|
29
|
+
end
|
30
|
+
|
31
|
+
# > As in Problem 3, the algorithm consists of O(n) *stages*.
|
32
|
+
# > In each stage we look for an augmenting path using the
|
33
|
+
# > labeling R12 and the two cases C1, C2 as in the simple
|
34
|
+
# > algorithm for Problem 2, except that we only use edges
|
35
|
+
# > with π<sub>ij</sub> = 0. (Galil, 1986, p. 32)
|
36
|
+
#
|
37
|
+
# Van Rantwijk's implementation (and, consequently, this port)
|
38
|
+
# supports both maximum cardinality maximum weight matching
|
39
|
+
# and MWM irrespective of cardinality.
|
40
|
+
def match(max_cardinality)
|
41
|
+
return Matching.new if g.num_edges == 0
|
42
|
+
|
43
|
+
# Iterative *stages*. Each stage augments the matching.
|
44
|
+
# There can be at most n stages, where n is num. vertexes.
|
45
|
+
while true do
|
46
|
+
init_stage
|
47
|
+
|
48
|
+
# *sub-stages* either augment or scale the duals.
|
49
|
+
augmented = false
|
50
|
+
while true do
|
51
|
+
|
52
|
+
# > The search is conducted by scanning the S-vertices
|
53
|
+
# > in turn. (Galil, 1986, p. 26)
|
54
|
+
until augmented || @queue.empty?
|
55
|
+
augmented = scan_vertex(@queue.pop)
|
56
|
+
end
|
57
|
+
|
58
|
+
break if augmented
|
59
|
+
|
60
|
+
# > There is no augmenting path under these constraints;
|
61
|
+
# > compute delta and reduce slack in the optimization problem.
|
62
|
+
# > (Van Rantwijk, mwmatching.py, line 732)
|
63
|
+
delta, delta_type, delta_edge, delta_blossom = calc_delta(max_cardinality)
|
64
|
+
update_duals(delta)
|
65
|
+
optimum = act_on_minimum_delta(delta_type, delta_edge, delta_blossom)
|
66
|
+
break if optimum
|
67
|
+
end
|
68
|
+
|
69
|
+
# > Stop when no more augmenting path can be found.
|
70
|
+
# > (Van Rantwijk, mwmatching.py)
|
71
|
+
break unless augmented
|
72
|
+
|
73
|
+
expand_tight_s_blossoms
|
74
|
+
end
|
75
|
+
|
76
|
+
Matching.from_endpoints(@endpoint, @mate)
|
77
|
+
end
|
78
|
+
|
79
|
+
private
|
80
|
+
|
81
|
+
# > Take action at the point where minimum delta occurred.
|
82
|
+
# > (Van Rantwijk, mwmatching.py)
|
83
|
+
def act_on_minimum_delta(delta_type, delta_edge, delta_blossom)
|
84
|
+
optimum = false
|
85
|
+
case delta_type
|
86
|
+
when 1
|
87
|
+
# > No further improvement possible; optimum reached.
|
88
|
+
optimum = true
|
89
|
+
when 2
|
90
|
+
# > Use the least-slack edge to continue the search.
|
91
|
+
@tight_edge[delta_edge] = true
|
92
|
+
i, j = @edges[delta_edge].to_a
|
93
|
+
if @label[@in_blossom[i]] == LBL_FREE
|
94
|
+
i, j = j, i
|
95
|
+
end
|
96
|
+
assert_label(@in_blossom[i], LBL_S)
|
97
|
+
@queue.push(i)
|
98
|
+
when 3
|
99
|
+
# > Use the least-slack edge to continue the search.
|
100
|
+
@tight_edge[delta_edge] = true
|
101
|
+
i, j = @edges[delta_edge].to_a
|
102
|
+
assert_label(@in_blossom[i], LBL_S)
|
103
|
+
@queue.push(i)
|
104
|
+
when 4
|
105
|
+
# > Expand the least-z blossom.
|
106
|
+
expand_blossom(delta_blossom, false)
|
107
|
+
else
|
108
|
+
fail "Invalid delta_type: #{delta_type}"
|
109
|
+
end
|
110
|
+
optimum
|
111
|
+
end
|
112
|
+
|
113
|
+
# > Construct a new blossom with given base, containing edge
|
114
|
+
# > k which connects a pair of S vertices. Label the new
|
115
|
+
# > blossom as S; set its dual variable to zero; relabel its
|
116
|
+
# > T-vertices to S and add them to the queue.
|
117
|
+
# > (Van Rantwijk, mwmatching.py, line 270)
|
118
|
+
def add_blossom(base, k)
|
119
|
+
v, w = @edges[k].to_a
|
120
|
+
bb = @in_blossom[base]
|
121
|
+
bv = @in_blossom[v]
|
122
|
+
bw = @in_blossom[w]
|
123
|
+
|
124
|
+
# Create a new top-level blossom.
|
125
|
+
b = @unused_blossoms.pop
|
126
|
+
@blossom_base[b] = base
|
127
|
+
@blossom_parent[b] = nil
|
128
|
+
@blossom_parent[bb] = b
|
129
|
+
|
130
|
+
# > Make list of sub-blossoms and their interconnecting
|
131
|
+
# > edge endpoints.
|
132
|
+
# > (Van Rantwijk, mwmatching.py, line 284)
|
133
|
+
#
|
134
|
+
# 1. Clear the existing lists
|
135
|
+
# 2. Trace back from v to base
|
136
|
+
# 3. Reverse lists, add endpoint that connects the pair of S vertices
|
137
|
+
# 4. Trace back from w to base
|
138
|
+
#
|
139
|
+
@blossom_children[b] = []
|
140
|
+
@blossom_endps[b] = []
|
141
|
+
trace_to_base(bv, bb) do |bv|
|
142
|
+
@blossom_parent[bv] = b
|
143
|
+
@blossom_children[b] << bv
|
144
|
+
@blossom_endps[b] << @label_end[bv]
|
145
|
+
end
|
146
|
+
@blossom_children[b] << bb
|
147
|
+
@blossom_children[b].reverse!
|
148
|
+
@blossom_endps[b].reverse!
|
149
|
+
@blossom_endps[b] << 2 * k
|
150
|
+
trace_to_base(bw, bb) do |bw|
|
151
|
+
@blossom_parent[bw] = b
|
152
|
+
@blossom_children[b] << bw
|
153
|
+
@blossom_endps[b] << (@label_end[bw] ^ 1)
|
154
|
+
end
|
155
|
+
|
156
|
+
# > Set label to S
|
157
|
+
assert(@label[bb]).eq(LBL_S)
|
158
|
+
@label[b] = LBL_S
|
159
|
+
@label_end[b] = @label_end[bb]
|
160
|
+
|
161
|
+
# > Set dual variable to zero.
|
162
|
+
@dual[b] = 0
|
163
|
+
|
164
|
+
# > Relabel vertices.
|
165
|
+
blossom_leaves(b).each do |v|
|
166
|
+
if @label[@in_blossom[v]] == LBL_T
|
167
|
+
# > This T-vertex now turns into an S-vertex because it
|
168
|
+
# > becomes part of an S-blossom; add it to the queue.
|
169
|
+
@queue << v
|
170
|
+
end
|
171
|
+
@in_blossom[v] = b
|
172
|
+
end
|
173
|
+
|
174
|
+
# > Compute blossombestedges[b].
|
175
|
+
best_edge_to = rantwijk_array(nil)
|
176
|
+
@blossom_children[b].each do |bv|
|
177
|
+
if @blossom_best_edges[bv].nil?
|
178
|
+
# > This subblossom [bv] does not have a list of least-
|
179
|
+
# > slack edges. Get the information from the vertices.
|
180
|
+
nblists = blossom_leaves(bv).map { |v|
|
181
|
+
@neighb_end[v].map { |p|
|
182
|
+
p / 2 # floor division
|
183
|
+
}
|
184
|
+
}
|
185
|
+
else
|
186
|
+
# > Walk this subblossom's least-slack edges.
|
187
|
+
nblists = [@blossom_best_edges[bv]]
|
188
|
+
end
|
189
|
+
|
190
|
+
nblists.each do |nblist|
|
191
|
+
nblist.each do |k|
|
192
|
+
i, j = @edges[k].to_a
|
193
|
+
if @in_blossom[j] == b
|
194
|
+
i, j = j, i
|
195
|
+
end
|
196
|
+
bj = @in_blossom[j]
|
197
|
+
if bj != b &&
|
198
|
+
@label[bj] == LBL_S &&
|
199
|
+
(best_edge_to[bj] == nil || slack(k) < slack(best_edge_to[bj]))
|
200
|
+
best_edge_to[bj] = k
|
201
|
+
end
|
202
|
+
end
|
203
|
+
end
|
204
|
+
|
205
|
+
# > Forget about least-slack edges of the subblossom.
|
206
|
+
@blossom_best_edges[bv] = nil
|
207
|
+
@best_edge[bv] = nil
|
208
|
+
end
|
209
|
+
|
210
|
+
@blossom_best_edges[b] = best_edge_to.compact
|
211
|
+
|
212
|
+
# > Select bestedge[b]
|
213
|
+
@best_edge[b] = nil
|
214
|
+
@blossom_best_edges[b].each do |k|
|
215
|
+
if @best_edge[b].nil? || slack(k) < slack(@best_edge[b])
|
216
|
+
@best_edge[b] = k
|
217
|
+
end
|
218
|
+
end
|
219
|
+
end
|
220
|
+
|
221
|
+
def assert_blossom_trace(b)
|
222
|
+
t = @label[b] == LBL_T
|
223
|
+
s = @label[b] == LBL_S
|
224
|
+
m = @label_end[b] == @mate[@blossom_base[b]]
|
225
|
+
unless t || s && m
|
226
|
+
fail <<-EOS
|
227
|
+
Assertion failed: Expected either:
|
228
|
+
1. Current Bv to be a T-blossom, or
|
229
|
+
2. Bv is an S-blossom and its base is matched to @label_end[bv]
|
230
|
+
EOS
|
231
|
+
end
|
232
|
+
end
|
233
|
+
|
234
|
+
def assert_label(ix, lbl)
|
235
|
+
unless @label[ix] == lbl
|
236
|
+
fail "Expected label at #{ix} to be #{LBL_NAMES[lbl]}"
|
237
|
+
end
|
238
|
+
end
|
239
|
+
|
240
|
+
# > Assign label t to the top-level blossom containing vertex w
|
241
|
+
# > and record the fact that w was reached through the edge with
|
242
|
+
# > remote endpoint p.
|
243
|
+
# > (Van Rantwijk, mwmatching.py)
|
244
|
+
#
|
245
|
+
def assign_label(w, t, p = nil)
|
246
|
+
b = @in_blossom[w]
|
247
|
+
assert_label(w, LBL_FREE)
|
248
|
+
assert_label(b, LBL_FREE)
|
249
|
+
@label[w] = @label[b] = t
|
250
|
+
@label_end[w] = @label_end[b] = p
|
251
|
+
@best_edge[w] = @best_edge[b] = nil
|
252
|
+
if t == LBL_S
|
253
|
+
# b became an S-vertex/blossom; add it(s vertices) to the queue.
|
254
|
+
@queue.concat(blossom_leaves(b))
|
255
|
+
elsif t == LBL_T
|
256
|
+
# b became a T-vertex/blossom; assign label S to its mate.
|
257
|
+
# (If b is a non-trivial blossom, its base is the only vertex
|
258
|
+
# with an external mate.)
|
259
|
+
base = @blossom_base[b]
|
260
|
+
if @mate[base].nil?
|
261
|
+
fail "Expected blossom #{b}'s base (#{base}) to be matched"
|
262
|
+
end
|
263
|
+
|
264
|
+
# Assign label S to the mate of blossom b's base.
|
265
|
+
# Remember, `mate` elements are pointers to "endpoints".
|
266
|
+
# The bitwise XOR is very clever. `mate[x]` and `mate[x] ^ 1`
|
267
|
+
# are connected "endpoints".
|
268
|
+
base_edge_endpoints = [@mate[base], @mate[base] ^ 1]
|
269
|
+
assign_label(@endpoint[base_edge_endpoints[0]], LBL_S, base_edge_endpoints[1])
|
270
|
+
else
|
271
|
+
fail ArgumentError, "Unexpected label: #{t}"
|
272
|
+
end
|
273
|
+
end
|
274
|
+
|
275
|
+
# > Swap matched/unmatched edges over an alternating path
|
276
|
+
# > through blossom b between vertex v and the base vertex.
|
277
|
+
# > Keep blossom bookkeeping consistent.
|
278
|
+
# > (Van Rantwijk, mwmatching.py, line 448)
|
279
|
+
def augment_blossom(b, v)
|
280
|
+
t = immediate_subblossom_of(b, v)
|
281
|
+
|
282
|
+
# > Recursively deal with the first sub-blossom.
|
283
|
+
if t >= @nvertex
|
284
|
+
augment_blossom(t, v)
|
285
|
+
end
|
286
|
+
|
287
|
+
# > Move along the blossom until we get to the base.
|
288
|
+
j, jstep, endptrick = blossom_loop_direction(b, t)
|
289
|
+
i = j
|
290
|
+
while j != 0
|
291
|
+
# > Step to the next sub-blossom and augment it recursively.
|
292
|
+
j += jstep
|
293
|
+
p = @blossom_endps[b][j - endptrick] ^ endptrick
|
294
|
+
x = @endpoint[p]
|
295
|
+
augment_blossom_step(b, j, x)
|
296
|
+
|
297
|
+
# > Step to the next sub-blossom and augment it recursively.
|
298
|
+
j += jstep
|
299
|
+
x = @endpoint[p ^ 1]
|
300
|
+
augment_blossom_step(b, j, x)
|
301
|
+
|
302
|
+
# > Match the edge connecting those sub-blossoms.
|
303
|
+
match_endpoint(p)
|
304
|
+
end
|
305
|
+
|
306
|
+
# > Rotate the list of sub-blossoms to put the new base at
|
307
|
+
# > the front.
|
308
|
+
@blossom_children[b].rotate!(i)
|
309
|
+
@blossom_endps[b].rotate!(i)
|
310
|
+
@blossom_base[b] = @blossom_base[@blossom_children[b][0]]
|
311
|
+
assert(@blossom_base[b]).eq(v)
|
312
|
+
end
|
313
|
+
|
314
|
+
def augment_blossom_step(b, j, x)
|
315
|
+
t = @blossom_children[b][j]
|
316
|
+
if t >= @nvertex
|
317
|
+
augment_blossom(t, x)
|
318
|
+
end
|
319
|
+
end
|
320
|
+
|
321
|
+
# > Swap matched/unmatched edges over an alternating path
|
322
|
+
# > between two single vertices. The augmenting path runs
|
323
|
+
# > through edge k, which connects a pair of S vertices.
|
324
|
+
# > (Van Rantwijk, mwmatching.py, line 494)
|
325
|
+
def augment_matching(k)
|
326
|
+
v, w = @edges[k].to_a
|
327
|
+
[[v, 2 * k + 1], [w, 2 * k]].each do |(s, p)|
|
328
|
+
# > Match vertex s to remote endpoint p. Then trace back from s
|
329
|
+
# > until we find a single vertex, swapping matched and unmatched
|
330
|
+
# > edges as we go.
|
331
|
+
# > (Van Rantwijk, mwmatching.py, line 504)
|
332
|
+
while true
|
333
|
+
bs = @in_blossom[s]
|
334
|
+
assert_label(bs, LBL_S)
|
335
|
+
assert(@label_end[bs]).eq(@mate[@blossom_base[bs]])
|
336
|
+
# > Augment through the S-blossom from s to base.
|
337
|
+
if bs >= @nvertex
|
338
|
+
augment_blossom(bs, s)
|
339
|
+
end
|
340
|
+
@mate[s] = p
|
341
|
+
# > Trace one step back.
|
342
|
+
# If we reach a single vertex, stop
|
343
|
+
break if @label_end[bs].nil?
|
344
|
+
t = @endpoint[@label_end[bs]]
|
345
|
+
bt = @in_blossom[t]
|
346
|
+
assert_label(bt, LBL_T)
|
347
|
+
# > Trace one step back.
|
348
|
+
assert(@label_end[bt]).not_nil
|
349
|
+
s = @endpoint[@label_end[bt]]
|
350
|
+
j = @endpoint[@label_end[bt] ^ 1]
|
351
|
+
# > Augment through the T-blossom from j to base.
|
352
|
+
assert(@blossom_base[bt]).eq(t)
|
353
|
+
if bt >= @nvertex
|
354
|
+
augment_blossom(bt, j)
|
355
|
+
end
|
356
|
+
@mate[j] = @label_end[bt]
|
357
|
+
# > Keep the opposite endpoint;
|
358
|
+
# > it will be assigned to mate[s] in the next step.
|
359
|
+
p = @label_end[bt] ^ 1
|
360
|
+
end
|
361
|
+
end
|
362
|
+
end
|
363
|
+
|
364
|
+
# TODO: Optimize by returning lazy iterator
|
365
|
+
def blossom_leaves(b, ary = [])
|
366
|
+
if b < @nvertex
|
367
|
+
ary.push(b)
|
368
|
+
else
|
369
|
+
@blossom_children[b].each do |c|
|
370
|
+
if c < @nvertex
|
371
|
+
ary.push(c)
|
372
|
+
else
|
373
|
+
ary.concat(blossom_leaves(c))
|
374
|
+
end
|
375
|
+
end
|
376
|
+
end
|
377
|
+
ary
|
378
|
+
end
|
379
|
+
|
380
|
+
# > Decide in which direction we will go round the blossom.
|
381
|
+
# > (Van Rantwijk, mwmatching.py, lines 385, 460)
|
382
|
+
def blossom_loop_direction(b, t)
|
383
|
+
j = @blossom_children[b].index(t)
|
384
|
+
if j.odd?
|
385
|
+
# > go forward and wrap
|
386
|
+
j -= @blossom_children[b].length
|
387
|
+
jstep = 1
|
388
|
+
endptrick = 0
|
389
|
+
else
|
390
|
+
# > go backward
|
391
|
+
jstep = -1
|
392
|
+
endptrick = 1
|
393
|
+
end
|
394
|
+
return j, jstep, endptrick
|
395
|
+
end
|
396
|
+
|
397
|
+
def calc_delta(max_cardinality)
|
398
|
+
delta = nil
|
399
|
+
delta_type = nil
|
400
|
+
delta_edge = nil
|
401
|
+
delta_blossom = nil
|
402
|
+
|
403
|
+
# > Compute delta1: the minumum value of any vertex dual.
|
404
|
+
# > (Van Rantwijk, mwmatching.py)
|
405
|
+
unless max_cardinality
|
406
|
+
delta_type = 1
|
407
|
+
delta = @dual[0, @nvertex].min
|
408
|
+
end
|
409
|
+
|
410
|
+
# > Compute delta2: the minimum slack on any edge between
|
411
|
+
# > an S-vertex and a free vertex.
|
412
|
+
# > (Van Rantwijk, mwmatching.py)
|
413
|
+
(0 ... @nvertex).each do |v|
|
414
|
+
if @label[@in_blossom[v]] == LBL_FREE && !@best_edge[v].nil?
|
415
|
+
d = slack(@best_edge[v])
|
416
|
+
if delta_type == nil || d < delta
|
417
|
+
delta = d
|
418
|
+
delta_type = 2
|
419
|
+
delta_edge = @best_edge[v]
|
420
|
+
end
|
421
|
+
end
|
422
|
+
end
|
423
|
+
|
424
|
+
# > Compute delta3: half the minimum slack on any edge between
|
425
|
+
# > a pair of S-blossoms.
|
426
|
+
# > (Van Rantwijk, mwmatching.py)
|
427
|
+
(0 ... 2 * @nvertex).each do |b|
|
428
|
+
if @blossom_parent[b].nil? && @label[b] == LBL_S && !@best_edge[b].nil?
|
429
|
+
kslack = slack(@best_edge[b])
|
430
|
+
d = kslack / 2 # Van Rantwijk had some type checking here. Why?
|
431
|
+
if delta_type.nil? || d < delta
|
432
|
+
delta = d
|
433
|
+
delta_type = 3
|
434
|
+
delta_edge = @best_edge[b]
|
435
|
+
end
|
436
|
+
end
|
437
|
+
end
|
438
|
+
|
439
|
+
# > Compute delta4: minimum z variable of any T-blossom.
|
440
|
+
# > (Van Rantwijk, mwmatching.py)
|
441
|
+
(@nvertex ... 2 * @nvertex).each do |b|
|
442
|
+
top_t_blossom = top_level_blossom?(b) && @label[b] == LBL_T
|
443
|
+
if top_t_blossom && (delta_type.nil? || @dual[b] < delta)
|
444
|
+
delta = @dual[b]
|
445
|
+
delta_type = 4
|
446
|
+
delta_blossom = b
|
447
|
+
end
|
448
|
+
end
|
449
|
+
|
450
|
+
if delta_type.nil?
|
451
|
+
# > No further improvement possible; max-cardinality optimum
|
452
|
+
# > reached. Do a final delta update to make the optimum
|
453
|
+
# > verifyable.
|
454
|
+
# > (Van Rantwijk, mwmatching.py)
|
455
|
+
assert(max_cardinality).eq(true)
|
456
|
+
delta_type = 1
|
457
|
+
delta = [0, @dual[0, @nvertex].min].max
|
458
|
+
end
|
459
|
+
|
460
|
+
return delta, delta_type, delta_edge, delta_blossom
|
461
|
+
end
|
462
|
+
|
463
|
+
# Returns nil if `k` is known to be an endpoint of a tight
|
464
|
+
# edge. Otherwise, calculates and returns the slack of `k`,
|
465
|
+
# and updates the `tight_edge` cache.
|
466
|
+
def calc_slack(k)
|
467
|
+
if @tight_edge[k]
|
468
|
+
nil
|
469
|
+
else
|
470
|
+
kslack = slack(k)
|
471
|
+
if kslack <= 0
|
472
|
+
@tight_edge[k] = true
|
473
|
+
end
|
474
|
+
kslack
|
475
|
+
end
|
476
|
+
end
|
477
|
+
|
478
|
+
# > w is a free vertex (or an unreached vertex inside
|
479
|
+
# > a T-blossom) but we can not reach it yet;
|
480
|
+
# > keep track of the least-slack edge that reaches w.
|
481
|
+
# > (Van Rantwijk, mwmatching.py, line 725)
|
482
|
+
def consider_loose_edge_to_free_vertex(w, k, kslack)
|
483
|
+
if @best_edge[w].nil? || kslack < slack(@best_edge[w])
|
484
|
+
@best_edge[w] = k
|
485
|
+
end
|
486
|
+
end
|
487
|
+
|
488
|
+
# While scanning neighbors of `v`, a loose edge to an
|
489
|
+
# S-blossom is found, and the `@best_edge` cache may
|
490
|
+
# be updated.
|
491
|
+
#
|
492
|
+
# > keep track of the least-slack non-allowable [loose] edge
|
493
|
+
# > to a different S-blossom.
|
494
|
+
# > (Van Rantwijk, mwmatching.py, line 717)
|
495
|
+
#
|
496
|
+
def consider_loose_edge_to_s_blossom(v, k, kslack)
|
497
|
+
b = @in_blossom[v]
|
498
|
+
if @best_edge[b].nil? || kslack < slack(@best_edge[b])
|
499
|
+
@best_edge[b] = k
|
500
|
+
end
|
501
|
+
end
|
502
|
+
|
503
|
+
# > If we scan the S-vertex *i* and consider the edge (i,j),
|
504
|
+
# > there are two cases:
|
505
|
+
# >
|
506
|
+
# > * (C1) j is free; or
|
507
|
+
# > * (C2) j is an S-vertex
|
508
|
+
# >
|
509
|
+
# > C2 cannot occur in the bipartite case. The case in
|
510
|
+
# > which j is a T-vertex is discarded.
|
511
|
+
# > (Galil, 1986, p. 26-27)
|
512
|
+
#
|
513
|
+
def consider_tight_edge(k, w, p, v)
|
514
|
+
augmented = false
|
515
|
+
|
516
|
+
if @label[@in_blossom[w]] == LBL_FREE
|
517
|
+
|
518
|
+
# > (C1) w is a free vertex;
|
519
|
+
# > label w with T and label its mate with S (R12).
|
520
|
+
# > (Van Rantwijk, mwmatching.py, line 690)
|
521
|
+
#
|
522
|
+
# > In case C1 we apply R12. (Galil, 1986, p. 27)
|
523
|
+
#
|
524
|
+
# > * (R1) If (i, j) is not matched and i is an S-person
|
525
|
+
# > and j a free (unlabeled) person then label j by T; and
|
526
|
+
# > * (R2) If (i, j) is matched and j is a T-person
|
527
|
+
# > and i a free person, then label i by S.
|
528
|
+
# >
|
529
|
+
# > Modified from (Galil, 1986, p. 25) as follows:
|
530
|
+
#
|
531
|
+
# > Any time R1 is used and j is labeled by T, R2 is
|
532
|
+
# > immediately used to label the spouse of j with S.
|
533
|
+
# > (Since j was not labeled before, it must be married
|
534
|
+
# > and its spouse must be unlabeled.) We call this
|
535
|
+
# > rule R12. (Galil, 1986, p. 26)
|
536
|
+
#
|
537
|
+
assign_label(w, LBL_T, p ^ 1)
|
538
|
+
|
539
|
+
elsif @label[@in_blossom[w]] == LBL_S
|
540
|
+
|
541
|
+
# > (C2) w is an S-vertex (not in the same blossom);
|
542
|
+
# > follow back-links to discover either an
|
543
|
+
# > augmenting path or a new blossom.
|
544
|
+
# > (Van Rantwijk, mwmatching.py, line 694)
|
545
|
+
#
|
546
|
+
base = scan_blossom(v, w)
|
547
|
+
if base.nil?
|
548
|
+
# > Found an augmenting path; augment the
|
549
|
+
# > matching and end this stage.
|
550
|
+
# > (Van Rantwijk, mwmatching.py, line 703)
|
551
|
+
augment_matching(k)
|
552
|
+
augmented = true
|
553
|
+
else
|
554
|
+
# > Found a new blossom; add it to the blossom
|
555
|
+
# > bookkeeping and turn it into an S-blossom.
|
556
|
+
# > (Van Rantwijk, mwmatching.py, line 699)
|
557
|
+
add_blossom(base, k)
|
558
|
+
end
|
559
|
+
|
560
|
+
elsif @label[w] == LBL_FREE
|
561
|
+
|
562
|
+
# > w is inside a T-blossom, but w itself has not
|
563
|
+
# > yet been reached from outside the blossom;
|
564
|
+
# > mark it as reached (we need this to relabel
|
565
|
+
# > during T-blossom expansion).
|
566
|
+
# > (Van Rantwijk, mwmatching.py, line 709)
|
567
|
+
#
|
568
|
+
assert_label(@in_blossom[w], LBL_T)
|
569
|
+
@label[w] = LBL_T
|
570
|
+
@label_end[w] = p ^ 1
|
571
|
+
|
572
|
+
end
|
573
|
+
|
574
|
+
augmented
|
575
|
+
end
|
576
|
+
|
577
|
+
# > Expand the given top-level blossom.
|
578
|
+
# > (Van Rantwijk, mwmatching.py, line 361)
|
579
|
+
#
|
580
|
+
# Blossoms are expanded during slack adjustment delta type 4,
|
581
|
+
# and after all stages are complete (endstage will be true).
|
582
|
+
#
|
583
|
+
def expand_blossom(b, endstage)
|
584
|
+
promote_sub_blossoms_of(b, endstage)
|
585
|
+
|
586
|
+
# > If we expand a T-blossom during a stage, its sub-blossoms
|
587
|
+
# > must be relabeled.
|
588
|
+
if !endstage && @label[b] == LBL_T
|
589
|
+
expand_t_blossom(b)
|
590
|
+
end
|
591
|
+
|
592
|
+
recycle_blossom_number(b)
|
593
|
+
end
|
594
|
+
|
595
|
+
# > Start at the sub-blossom through which the expanding
|
596
|
+
# > blossom obtained its label, and relabel sub-blossoms until
|
597
|
+
# > we reach the base.
|
598
|
+
# > Figure out through which sub-blossom the expanding blossom
|
599
|
+
# > obtained its label initially.
|
600
|
+
# > (Van Rantwijk, mwmatching.py, line 378)
|
601
|
+
def expand_t_blossom(b)
|
602
|
+
assert(@label_end[b]).not_nil
|
603
|
+
entry_child = @in_blossom[@endpoint[@label_end[b] ^ 1]]
|
604
|
+
|
605
|
+
# > Move along the blossom until we get to the base.
|
606
|
+
j, jstep, endptrick = blossom_loop_direction(b, entry_child)
|
607
|
+
p = @label_end[b]
|
608
|
+
while j != 0
|
609
|
+
|
610
|
+
# > Relabel the T-sub-blossom.
|
611
|
+
@label[@endpoint[p ^ 1]] = LBL_FREE
|
612
|
+
@label[@endpoint[@blossom_endps[b][j - endptrick] ^ endptrick ^ 1]] = LBL_FREE
|
613
|
+
assign_label(@endpoint[p ^ 1], LBL_T, p)
|
614
|
+
|
615
|
+
# > Step to the next S-sub-blossom and note its forward endpoint.
|
616
|
+
@tight_edge[@blossom_endps[b][j - endptrick] / 2] = true # floor division
|
617
|
+
j += jstep
|
618
|
+
p = @blossom_endps[b][j - endptrick] ^ endptrick
|
619
|
+
|
620
|
+
# > Step to the next T-sub-blossom.
|
621
|
+
@tight_edge[p / 2] = true # floor division
|
622
|
+
j += jstep
|
623
|
+
end
|
624
|
+
|
625
|
+
# > Relabel the base T-sub-blossom WITHOUT stepping through to
|
626
|
+
# > its mate (so don't call assignLabel).
|
627
|
+
bv = @blossom_children[b][j]
|
628
|
+
@label[@endpoint[p ^ 1]] = @label[bv] = LBL_T
|
629
|
+
@label_end[@endpoint[p ^ 1]] = @label_end[bv] = p
|
630
|
+
@best_edge[bv] = nil
|
631
|
+
|
632
|
+
# > Continue along the blossom until we get back to entrychild.
|
633
|
+
j += jstep
|
634
|
+
while @blossom_children[b][j] != entry_child
|
635
|
+
|
636
|
+
# > Examine the vertices of the sub-blossom to see whether
|
637
|
+
# > it is reachable from a neighbouring S-vertex outside the
|
638
|
+
# > expanding blossom.
|
639
|
+
bv = @blossom_children[b][j]
|
640
|
+
if @label[bv] == LBL_S
|
641
|
+
# > This sub-blossom just got label S through one of its
|
642
|
+
# > neighbours; leave it.
|
643
|
+
j += jstep
|
644
|
+
next
|
645
|
+
end
|
646
|
+
|
647
|
+
# > If the sub-blossom contains a reachable vertex, assign
|
648
|
+
# > label T to the sub-blossom.
|
649
|
+
v = first_labeled_blossom_leaf(bv)
|
650
|
+
unless v.nil?
|
651
|
+
assert_label(v, LBL_T)
|
652
|
+
assert(@in_blossom[v]).eq(bv)
|
653
|
+
@label[v] = LBL_FREE
|
654
|
+
@label[@endpoint[@mate[@blossom_base[bv]]]] = LBL_FREE
|
655
|
+
assign_label(v, LBL_T, @label_end[v])
|
656
|
+
end
|
657
|
+
|
658
|
+
j += jstep
|
659
|
+
end
|
660
|
+
end
|
661
|
+
|
662
|
+
# > End of a stage; expand all S-blossoms which have dualvar = 0.
|
663
|
+
# > (Van Rantwijk, mwmatching.py)
|
664
|
+
def expand_tight_s_blossoms
|
665
|
+
(@nvertex ... 2 * @nvertex).each do |b|
|
666
|
+
if top_level_blossom?(b) && @label[b] == LBL_S && @dual[b] == 0
|
667
|
+
expand_blossom(b, true)
|
668
|
+
end
|
669
|
+
end
|
670
|
+
end
|
671
|
+
|
672
|
+
def first_labeled_blossom_leaf(b)
|
673
|
+
blossom_leaves(b).find { |leaf| @label[leaf] != LBL_FREE }
|
674
|
+
end
|
675
|
+
|
676
|
+
# Starting from a vertex `v`, ascend the blossom tree, and
|
677
|
+
# return the sub-blossom immediately below `b`.
|
678
|
+
def immediate_subblossom_of(b, v)
|
679
|
+
t = v
|
680
|
+
while @blossom_parent[t] != b
|
681
|
+
t = @blossom_parent[t]
|
682
|
+
end
|
683
|
+
t
|
684
|
+
end
|
685
|
+
|
686
|
+
# Data structures used throughout the algorithm.
|
687
|
+
def init_algorithm_structures
|
688
|
+
# > If v is a vertex,
|
689
|
+
# > mate[v] is the remote endpoint of its matched edge, or -1 if it is single
|
690
|
+
# > (i.e. endpoint[mate[v]] is v's partner vertex).
|
691
|
+
# > Initially all vertices are single; updated during augmentation.
|
692
|
+
# > (Van Rantwijk, mwmatching.py)
|
693
|
+
#
|
694
|
+
@mate = Array.new(@nvertex, nil)
|
695
|
+
|
696
|
+
# > If b is a top-level blossom,
|
697
|
+
# > label[b] is 0 if b is unlabeled (free);
|
698
|
+
# > 1 if b is an S-vertex/blossom;
|
699
|
+
# > 2 if b is a T-vertex/blossom.
|
700
|
+
# > The label of a vertex is found by looking at the label of its
|
701
|
+
# > top-level containing blossom.
|
702
|
+
# > If v is a vertex inside a T-blossom,
|
703
|
+
# > label[v] is 2 iff v is reachable from an S-vertex outside the blossom.
|
704
|
+
# > Labels are assigned during a stage and reset after each augmentation.
|
705
|
+
# > (Van Rantwijk, mwmatching.py)
|
706
|
+
#
|
707
|
+
@label = rantwijk_array(LBL_FREE)
|
708
|
+
|
709
|
+
# > If b is a labeled top-level blossom,
|
710
|
+
# > labelend[b] is the remote endpoint of the edge through which b obtained
|
711
|
+
# > its label, or -1 if b's base vertex is single.
|
712
|
+
# > If v is a vertex inside a T-blossom and label[v] == 2,
|
713
|
+
# > labelend[v] is the remote endpoint of the edge through which v is
|
714
|
+
# > reachable from outside the blossom.
|
715
|
+
# > (Van Rantwijk, mwmatching.py)
|
716
|
+
#
|
717
|
+
@label_end = rantwijk_array(nil)
|
718
|
+
|
719
|
+
# > If v is a vertex,
|
720
|
+
# > inblossom[v] is the top-level blossom to which v belongs.
|
721
|
+
# > If v is a top-level vertex, v is itself a blossom (a trivial blossom)
|
722
|
+
# > and inblossom[v] == v.
|
723
|
+
# > Initially all vertices are top-level trivial blossoms.
|
724
|
+
# > (Van Rantwijk, mwmatching.py)
|
725
|
+
#
|
726
|
+
@in_blossom = (0 ... @nvertex).to_a
|
727
|
+
|
728
|
+
# > If b is a sub-blossom,
|
729
|
+
# > blossomparent[b] is its immediate parent (sub-)blossom.
|
730
|
+
# > If b is a top-level blossom, blossomparent[b] is -1.
|
731
|
+
# > (Van Rantwijk, mwmatching.py)
|
732
|
+
#
|
733
|
+
@blossom_parent = rantwijk_array(nil)
|
734
|
+
|
735
|
+
# A 2D array representing a tree of blossoms.
|
736
|
+
#
|
737
|
+
# > The blossom structure of a graph is represented by a
|
738
|
+
# > *blossom tree*. Its nodes are the graph G, the blossoms
|
739
|
+
# > of G, and all vertices included in blossoms. The root is
|
740
|
+
# > G, whose children are the maximal blossoms. .. Any
|
741
|
+
# > vertex is a leaf.
|
742
|
+
# > (Gabow, 1985, p. 91)
|
743
|
+
#
|
744
|
+
# Van Rantwijk implements the blossom tree with an array in
|
745
|
+
# two halves. The first half is "trivial" blossoms, vertexes,
|
746
|
+
# the leaves of the tree. The second half are non-trivial blossoms.
|
747
|
+
#
|
748
|
+
# > Vertices are numbered 0 .. (nvertex-1).
|
749
|
+
# > Non-trivial blossoms are numbered nvertex .. (2*nvertex-1)
|
750
|
+
# > (Van Rantwijk, mwmatching.py, line 58)
|
751
|
+
#
|
752
|
+
# > If b is a non-trivial (sub-)blossom, blossomchilds[b]
|
753
|
+
# > is an ordered list of its sub-blossoms, starting with
|
754
|
+
# > the base and going round the blossom.
|
755
|
+
# > (Van Rantwijk, mwmatching.py, line 144)
|
756
|
+
#
|
757
|
+
@blossom_children = rantwijk_array(nil)
|
758
|
+
|
759
|
+
# > If b is a (sub-)blossom,
|
760
|
+
# > blossombase[b] is its base VERTEX (i.e. recursive sub-blossom).
|
761
|
+
# > (Van Rantwijk, mwmatching.py, line 153)
|
762
|
+
#
|
763
|
+
@blossom_base = (0 ... @nvertex).to_a + Array.new(@nvertex, nil)
|
764
|
+
|
765
|
+
# > If b is a non-trivial (sub-)blossom,
|
766
|
+
# > blossomendps[b] is a list of endpoints on its connecting edges,
|
767
|
+
# > such that blossomendps[b][i] is the local endpoint of
|
768
|
+
# > blossomchilds[b][i] on the edge that connects it to
|
769
|
+
# > blossomchilds[b][wrap(i+1)].
|
770
|
+
# > (Van Rantwijk, mwmatching.py, line 147)
|
771
|
+
#
|
772
|
+
@blossom_endps = rantwijk_array(nil)
|
773
|
+
|
774
|
+
# > If v is a free vertex (or an unreached vertex inside a T-blossom),
|
775
|
+
# > bestedge[v] is the edge to an S-vertex with least slack,
|
776
|
+
# > or -1 if there is no such edge.
|
777
|
+
# > If b is a (possibly trivial) top-level S-blossom,
|
778
|
+
# > bestedge[b] is the least-slack edge to a different S-blossom,
|
779
|
+
# > or -1 if there is no such edge.
|
780
|
+
# > This is used for efficient computation of delta2 and delta3.
|
781
|
+
# > (Van Rantwijk, mwmatching.py)
|
782
|
+
#
|
783
|
+
@best_edge = rantwijk_array(nil)
|
784
|
+
|
785
|
+
# > If b is a non-trivial top-level S-blossom,
|
786
|
+
# > blossombestedges[b] is a list of least-slack edges to neighbouring
|
787
|
+
# > S-blossoms, or None if no such list has been computed yet.
|
788
|
+
# > This is used for efficient computation of delta3.
|
789
|
+
# > (Van Rantwijk, mwmatching.py, line 168)
|
790
|
+
#
|
791
|
+
@blossom_best_edges = rantwijk_array(nil)
|
792
|
+
|
793
|
+
# > List of currently unused blossom numbers.
|
794
|
+
# > (Van Rantwijk, mwmatching.py, line 174)
|
795
|
+
@unused_blossoms = (@nvertex ... 2 * @nvertex).to_a
|
796
|
+
|
797
|
+
# > If v is a vertex,
|
798
|
+
# > dualvar[v] = 2 * u(v) where u(v) is the v's variable in the dual
|
799
|
+
# > optimization problem (multiplication by two ensures integer values
|
800
|
+
# > throughout the algorithm if all edge weights are integers).
|
801
|
+
# > If b is a non-trivial blossom, dualvar[b] = z(b)
|
802
|
+
# > where z(b) is b's variable in the dual optimization
|
803
|
+
# > problem. (Van Rantwijk, mwmatching.py, line 177)
|
804
|
+
#
|
805
|
+
@dual = Array.new(@nvertex, g.max_w) + Array.new(@nvertex, 0)
|
806
|
+
|
807
|
+
# Optimization: Cache of tight (zero slack) edges. *Tight*
|
808
|
+
# is a term I attribute to Gabow, though it may be earlier.
|
809
|
+
#
|
810
|
+
# > Edge ij is *tight* if equality holds in [its dual
|
811
|
+
# > value function]. (Gabow, 1985, p. 91)
|
812
|
+
#
|
813
|
+
# Van Rantwijk calls this cache `allowedge`, denoting its use
|
814
|
+
# in the algorithm.
|
815
|
+
#
|
816
|
+
# > If allowedge[k] is true, edge k has zero slack in the optimization
|
817
|
+
# > problem; if allowedge[k] is false, the edge's slack may or may not
|
818
|
+
# > be zero.
|
819
|
+
@tight_edge = Array.new(@edges.length, false)
|
820
|
+
|
821
|
+
# Queue of newly discovered S-vertices.
|
822
|
+
@queue = []
|
823
|
+
end
|
824
|
+
|
825
|
+
# Builds data structures about the graph. These structures
|
826
|
+
# are not modified by the algorithm.
|
827
|
+
def init_graph_structures
|
828
|
+
@weight = g.weight
|
829
|
+
|
830
|
+
# The size of the array (or part of an array) used for
|
831
|
+
# vertexes (as opposed to blossoms) throughout this
|
832
|
+
# algorithm. It is *not*, as one might assume from the
|
833
|
+
# name, the number of vertexes in the graph.
|
834
|
+
@nvertex = g.max_v.to_i + 1
|
835
|
+
|
836
|
+
# Make a local copy of the edges. We'll refer to edges
|
837
|
+
# by number throughout throughout the algorithm and it's
|
838
|
+
# important that the order be consistent.
|
839
|
+
@edges = g.edges.map { |e| [e.source, e.target] }
|
840
|
+
|
841
|
+
# In Joris van Rantwijk's implementation, there seems to be
|
842
|
+
# a concept of "edge numbers". His `endpoint` array has two
|
843
|
+
# elements for each edge. His `mate` array "points to" his
|
844
|
+
# `endpoint` array. (See below) I'm sure there's a reason,
|
845
|
+
# but I don't understand yet.
|
846
|
+
#
|
847
|
+
# > If p is an edge endpoint, endpoint[p] is the vertex to
|
848
|
+
# > which endpoint p is attached. Not modified by the
|
849
|
+
# > algorithm. (Van Rantwijk, mwmatching.py, line 93)
|
850
|
+
@endpoint = @edges.flatten
|
851
|
+
|
852
|
+
# > If v is a vertex, neighbend[v] is the list of remote
|
853
|
+
# > endpoints of the edges attached to v. Not modified by
|
854
|
+
# > the algorithm. (Van Rantwijk, mwmatching.py, line 98)
|
855
|
+
@neighb_end = init_neighb_end(@nvertex, @edges)
|
856
|
+
end
|
857
|
+
|
858
|
+
def init_neighb_end(nvertex, edges)
|
859
|
+
neighb_end = Array.new(nvertex) { [] }
|
860
|
+
edges.each_with_index do |(i, j), k|
|
861
|
+
neighb_end[i].push(2 * k + 1)
|
862
|
+
neighb_end[j].push(2 * k)
|
863
|
+
end
|
864
|
+
neighb_end
|
865
|
+
end
|
866
|
+
|
867
|
+
def init_stage
|
868
|
+
init_stage_caches
|
869
|
+
@queue = []
|
870
|
+
init_stage_labels
|
871
|
+
end
|
872
|
+
|
873
|
+
# Clear the Van Rantwijk "best edge" caches
|
874
|
+
def init_stage_caches
|
875
|
+
@best_edge = rantwijk_array(nil)
|
876
|
+
@blossom_best_edges.fill(nil, @nvertex)
|
877
|
+
@tight_edge = Array.new(@edges.length, false)
|
878
|
+
end
|
879
|
+
|
880
|
+
# > We start by labeling all single persons S
|
881
|
+
# > (Galil, 1986, p. 26)
|
882
|
+
#
|
883
|
+
# > Label single blossoms/vertices with S and put them in
|
884
|
+
# > the queue. (Van Rantwijk, mwmatching.py, line 649)
|
885
|
+
def init_stage_labels
|
886
|
+
@label = rantwijk_array(LBL_FREE)
|
887
|
+
(0 ... @nvertex).each do |v|
|
888
|
+
if @mate[v].nil? && @label[@in_blossom[v]] == LBL_FREE
|
889
|
+
assign_label(v, LBL_S)
|
890
|
+
end
|
891
|
+
end
|
892
|
+
end
|
893
|
+
|
894
|
+
# Add endpoint p's edge to the matching.
|
895
|
+
def match_endpoint(p)
|
896
|
+
@mate[@endpoint[p]] = p ^ 1
|
897
|
+
@mate[@endpoint[p ^ 1]] = p
|
898
|
+
end
|
899
|
+
|
900
|
+
# > Convert sub-blossoms [of `b`] into top-level blossoms.
|
901
|
+
# > (Van Rantwijk, mwmatching.py, line 364)
|
902
|
+
def promote_sub_blossoms_of(b, endstage)
|
903
|
+
@blossom_children[b].each do |s|
|
904
|
+
@blossom_parent[s] = nil
|
905
|
+
if s < @nvertex
|
906
|
+
@in_blossom[s] = s
|
907
|
+
elsif endstage && @dual[s] == 0
|
908
|
+
expand_blossom(s, endstage)
|
909
|
+
else
|
910
|
+
blossom_leaves(s).each do |v|
|
911
|
+
@in_blossom[v] = s
|
912
|
+
end
|
913
|
+
end
|
914
|
+
end
|
915
|
+
end
|
916
|
+
|
917
|
+
def recycle_blossom_number(b)
|
918
|
+
@label[b] = nil
|
919
|
+
@label_end[b] = nil
|
920
|
+
@blossom_children[b] = nil
|
921
|
+
@blossom_endps[b] = nil
|
922
|
+
@blossom_base[b] = nil
|
923
|
+
@blossom_best_edges[b] = nil
|
924
|
+
@best_edge[b] = nil
|
925
|
+
@unused_blossoms.push(b)
|
926
|
+
end
|
927
|
+
|
928
|
+
# Backtrack to find an augmenting path (returns nil) or the
|
929
|
+
# base of a new blossom (returns base).
|
930
|
+
#
|
931
|
+
# > Backtrack from i and j, using the labels, to the
|
932
|
+
# > single persons s<sub>i</sub> and s<sub>j</sub>
|
933
|
+
# > from which i and j got their S labels. If
|
934
|
+
# > s<sub>i</sub> ≠ s<sub>j</sub>, we find an augmenting
|
935
|
+
# > path from s<sub>i</sub> to s<sub>j</sub> and augment
|
936
|
+
# > the matching. (Galil, 1986, p. 27)
|
937
|
+
#
|
938
|
+
# > Trace back from vertices v and w to discover either a new
|
939
|
+
# > blossom or an augmenting path. Return the base vertex of
|
940
|
+
# > the new blossom or -1. (Van Rantwijk, mwmatching.py, line 233)
|
941
|
+
def scan_blossom(v, w)
|
942
|
+
# > Trace back from v and w, placing breadcrumbs as we go.
|
943
|
+
path = []
|
944
|
+
base = nil
|
945
|
+
until v.nil? && w.nil?
|
946
|
+
# > Look for a breadcrumb in v's blossom or put a new breadcrumb.
|
947
|
+
b = @in_blossom[v]
|
948
|
+
if @label[b] & 4 != 0
|
949
|
+
base = @blossom_base[b]
|
950
|
+
break
|
951
|
+
end
|
952
|
+
assert_label(b, LBL_S)
|
953
|
+
path.push(b)
|
954
|
+
@label[b] = LBL_CRUMB
|
955
|
+
# > Trace one step back.
|
956
|
+
assert(@label_end[b]).eq(@mate[@blossom_base[b]])
|
957
|
+
if @label_end[b].nil?
|
958
|
+
# > The base of blossom b is single; stop tracing this path.
|
959
|
+
v = nil
|
960
|
+
else
|
961
|
+
v = @endpoint[@label_end[b]]
|
962
|
+
b = @in_blossom[v]
|
963
|
+
assert_label(b, LBL_T)
|
964
|
+
# > b is a T-blossom; trace one more step back.
|
965
|
+
assert(@label_end[b]).not_nil
|
966
|
+
v = @endpoint[@label_end[b]]
|
967
|
+
end
|
968
|
+
|
969
|
+
# > Swap v and w so that we alternate between both paths.
|
970
|
+
unless w.nil?
|
971
|
+
v, w = w, v
|
972
|
+
end
|
973
|
+
end
|
974
|
+
remove_breadcrumbs(path)
|
975
|
+
base
|
976
|
+
end
|
977
|
+
|
978
|
+
def remove_breadcrumbs(path)
|
979
|
+
path.each do |b| @label[b] = LBL_S end
|
980
|
+
end
|
981
|
+
|
982
|
+
# Trace a path around a blossom, from sub-blossom `bx` to
|
983
|
+
# blossom base `bb`, by following `@label_end`. At each
|
984
|
+
# step, `yield` the sub-blossom `bx`.
|
985
|
+
def trace_to_base(bx, bb)
|
986
|
+
while bx != bb
|
987
|
+
yield bx
|
988
|
+
assert_blossom_trace(bx)
|
989
|
+
assert(@label_end[bx]).not_nil
|
990
|
+
bx = @in_blossom[@endpoint[@label_end[bx]]]
|
991
|
+
end
|
992
|
+
end
|
993
|
+
|
994
|
+
# Returns an array of size 2n, where n is the number of
|
995
|
+
# vertexes. Common in Van Rantwijk's implementation, but
|
996
|
+
# the idea may come from Gabow (1985) or earlier.
|
997
|
+
def rantwijk_array(fill)
|
998
|
+
Array.new(2 * @nvertex, fill)
|
999
|
+
end
|
1000
|
+
|
1001
|
+
# > Scanning a vertex means considering in turn all its edges
|
1002
|
+
# > except the matched edge. (There will be at most one).
|
1003
|
+
# > (Galil, 1986, p. 26)
|
1004
|
+
def scan_vertex(v)
|
1005
|
+
assert_label(@in_blossom[v], LBL_S)
|
1006
|
+
augmented = false
|
1007
|
+
|
1008
|
+
@neighb_end[v].each do |p|
|
1009
|
+
k = p / 2 # floor division
|
1010
|
+
w = @endpoint[p]
|
1011
|
+
|
1012
|
+
if @in_blossom[v] == @in_blossom[w]
|
1013
|
+
# > this edge is internal to a blossom; ignore it
|
1014
|
+
# > (Van Rantwijk, mwmatching.py, line 681)
|
1015
|
+
next
|
1016
|
+
end
|
1017
|
+
|
1018
|
+
# Calculate slack of `k`'s edge and update tight_edge cache.
|
1019
|
+
kslack = calc_slack(k)
|
1020
|
+
|
1021
|
+
# > .. we only use edges with π<sub>ij</sub> = 0.
|
1022
|
+
# > (Galil, 1986, p. 32)
|
1023
|
+
if @tight_edge[k]
|
1024
|
+
augmented = consider_tight_edge(k, w, p, v)
|
1025
|
+
break if augmented
|
1026
|
+
elsif @label[@in_blossom[w]] == LBL_S
|
1027
|
+
consider_loose_edge_to_s_blossom(v, k, kslack)
|
1028
|
+
elsif @label[w] == LBL_FREE
|
1029
|
+
consider_loose_edge_to_free_vertex(w, k, kslack)
|
1030
|
+
end
|
1031
|
+
end
|
1032
|
+
|
1033
|
+
augmented
|
1034
|
+
end
|
1035
|
+
|
1036
|
+
# Van Rantwijk's implementation of slack does not match Galil's.
|
1037
|
+
#
|
1038
|
+
# > Return 2 * slack of edge k (does not work inside blossoms).
|
1039
|
+
# > (Van Rantwijk, mwmatching.py, line 194)
|
1040
|
+
#
|
1041
|
+
def slack(k)
|
1042
|
+
i, j = @edges[k]
|
1043
|
+
@dual[i] + @dual[j] - 2 * @weight[i - 1][j - 1]
|
1044
|
+
end
|
1045
|
+
|
1046
|
+
def top_level_blossom?(b)
|
1047
|
+
!@blossom_base[b].nil? && @blossom_parent[b].nil?
|
1048
|
+
end
|
1049
|
+
|
1050
|
+
# > .. we make the following changes in the dual
|
1051
|
+
# > variables. (Galil, 1986, p. 32)
|
1052
|
+
def update_duals(delta)
|
1053
|
+
(0 ... @nvertex).each do |v|
|
1054
|
+
case @label[@in_blossom[v]]
|
1055
|
+
when LBL_S
|
1056
|
+
@dual[v] -= delta
|
1057
|
+
when LBL_T
|
1058
|
+
@dual[v] += delta
|
1059
|
+
else
|
1060
|
+
# No change to free vertexes
|
1061
|
+
end
|
1062
|
+
end
|
1063
|
+
(@nvertex ... 2 * @nvertex).each do |b|
|
1064
|
+
if top_level_blossom?(b)
|
1065
|
+
case @label[b]
|
1066
|
+
when LBL_S
|
1067
|
+
@dual[b] += delta
|
1068
|
+
when LBL_T
|
1069
|
+
@dual[b] -= delta
|
1070
|
+
else
|
1071
|
+
# No change to free blossoms
|
1072
|
+
end
|
1073
|
+
end
|
1074
|
+
end
|
1075
|
+
end
|
1076
|
+
|
1077
|
+
# Uncomment to enable assertions. Slows down the algorithm
|
1078
|
+
# to O(n^4), but useful during development.
|
1079
|
+
#
|
1080
|
+
# require_relative 'mwmg_delta_assertions'
|
1081
|
+
# include MWMGDeltaAssertions
|
1082
|
+
# alias_method :calc_delta_without_assertions, :calc_delta
|
1083
|
+
# alias_method :calc_delta, :calc_delta_with_assertions
|
1084
|
+
end
|
1085
|
+
end
|
1086
|
+
end
|