graph_matching 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +20 -0
- data/.rubocop.yml +112 -0
- data/.ruby-version +1 -0
- data/.travis.yml +9 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +205 -0
- data/Rakefile +9 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/benchmark.rb +33 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/compare.gnuplot +19 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/edges_times_vertexes.data +500 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/plot.gnuplot +21 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/plot.png +0 -0
- data/benchmark/mcm_bipartite/complete_bigraphs/time.data +499 -0
- data/benchmark/mcm_general/complete_graphs/benchmark.rb +30 -0
- data/benchmark/mcm_general/complete_graphs/plot.gnuplot +19 -0
- data/benchmark/mcm_general/complete_graphs/plot.png +0 -0
- data/benchmark/mcm_general/complete_graphs/time.data +499 -0
- data/benchmark/mcm_general/complete_graphs/v_cubed.data +500 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/benchmark.rb +43 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/nmN.data +499 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/nmN.xlsx +0 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/plot.gnuplot +22 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/plot.png +0 -0
- data/benchmark/mwm_bipartite/complete_bigraphs/time.data +299 -0
- data/benchmark/mwm_bipartite/misc/calc_d2/benchmark.rb +29 -0
- data/benchmark/mwm_general/complete_graphs/benchmark.rb +32 -0
- data/benchmark/mwm_general/complete_graphs/compare.gnuplot +19 -0
- data/benchmark/mwm_general/complete_graphs/mn_log_n.data +299 -0
- data/benchmark/mwm_general/complete_graphs/mn_log_n.xlsx +0 -0
- data/benchmark/mwm_general/complete_graphs/plot.gnuplot +22 -0
- data/benchmark/mwm_general/complete_graphs/plot.png +0 -0
- data/benchmark/mwm_general/complete_graphs/time.data +299 -0
- data/benchmark/mwm_general/incomplete_graphs/benchmark.rb +39 -0
- data/benchmark/mwm_general/incomplete_graphs/plot.gnuplot +22 -0
- data/benchmark/mwm_general/incomplete_graphs/plot.png +0 -0
- data/benchmark/mwm_general/incomplete_graphs/time_10_pct.data +299 -0
- data/benchmark/mwm_general/incomplete_graphs/time_20_pct.data +299 -0
- data/benchmark/mwm_general/incomplete_graphs/time_30_pct.data +299 -0
- data/graph_matching.gemspec +35 -0
- data/lib/graph_matching.rb +15 -0
- data/lib/graph_matching/algorithm/matching_algorithm.rb +23 -0
- data/lib/graph_matching/algorithm/mcm_bipartite.rb +118 -0
- data/lib/graph_matching/algorithm/mcm_general.rb +289 -0
- data/lib/graph_matching/algorithm/mwm_bipartite.rb +147 -0
- data/lib/graph_matching/algorithm/mwm_general.rb +1086 -0
- data/lib/graph_matching/algorithm/mwmg_delta_assertions.rb +94 -0
- data/lib/graph_matching/assertion.rb +41 -0
- data/lib/graph_matching/core_ext/set.rb +36 -0
- data/lib/graph_matching/directed_edge_set.rb +31 -0
- data/lib/graph_matching/errors.rb +23 -0
- data/lib/graph_matching/graph/bigraph.rb +37 -0
- data/lib/graph_matching/graph/graph.rb +63 -0
- data/lib/graph_matching/graph/weighted.rb +112 -0
- data/lib/graph_matching/graph/weighted_bigraph.rb +17 -0
- data/lib/graph_matching/graph/weighted_graph.rb +17 -0
- data/lib/graph_matching/integer_vertexes.rb +29 -0
- data/lib/graph_matching/matching.rb +120 -0
- data/lib/graph_matching/ordered_set.rb +59 -0
- data/lib/graph_matching/version.rb +6 -0
- data/lib/graph_matching/visualize.rb +93 -0
- data/profile/mcm_bipartite/compare.sh +15 -0
- data/profile/mcm_bipartite/publish.sh +12 -0
- data/profile/mwm_general/compare.sh +15 -0
- data/profile/mwm_general/profile.rb +28 -0
- data/profile/mwm_general/publish.sh +12 -0
- data/research/1965_edmonds.pdf +0 -0
- data/research/1975_even_kariv.pdf +0 -0
- data/research/1976_gabow.pdf +0 -0
- data/research/1980_micali_vazirani.pdf +0 -0
- data/research/1985_gabow.pdf +0 -0
- data/research/2002_tarjan.pdf +0 -0
- data/research/2013_zwick.pdf +0 -0
- data/research/examples/unweighted_general/1.txt +86 -0
- data/research/goodwin.pdf +0 -0
- data/research/kavathekar-scribe.pdf +0 -0
- data/research/kusner.pdf +0 -0
- data/research/van_rantwijk/mwm_example.py +19 -0
- data/research/van_rantwijk/mwmatching.py +945 -0
- data/spec/graph_matching/algorithm/matching_algorithm_spec.rb +14 -0
- data/spec/graph_matching/algorithm/mcm_bipartite_spec.rb +98 -0
- data/spec/graph_matching/algorithm/mcm_general_spec.rb +159 -0
- data/spec/graph_matching/algorithm/mwm_bipartite_spec.rb +82 -0
- data/spec/graph_matching/algorithm/mwm_general_spec.rb +439 -0
- data/spec/graph_matching/graph/bigraph_spec.rb +73 -0
- data/spec/graph_matching/graph/graph_spec.rb +53 -0
- data/spec/graph_matching/graph/weighted_spec.rb +29 -0
- data/spec/graph_matching/integer_vertexes_spec.rb +21 -0
- data/spec/graph_matching/matching_spec.rb +89 -0
- data/spec/graph_matching/visualize_spec.rb +38 -0
- data/spec/graph_matching_spec.rb +9 -0
- data/spec/spec_helper.rb +26 -0
- metadata +263 -0
@@ -0,0 +1,14 @@
|
|
1
|
+
# encoding: utf-8
|
2
|
+
|
3
|
+
require 'spec_helper'
|
4
|
+
|
5
|
+
RSpec.describe GraphMatching::Algorithm::MatchingAlgorithm do
|
6
|
+
let(:algorithm) { described_class.new(double) }
|
7
|
+
|
8
|
+
describe '#assert' do
|
9
|
+
it 'returns an Assertion' do
|
10
|
+
expect(algorithm.assert('banana')).to \
|
11
|
+
be_a(GraphMatching::Assertion)
|
12
|
+
end
|
13
|
+
end
|
14
|
+
end
|
@@ -0,0 +1,98 @@
|
|
1
|
+
# encoding: utf-8
|
2
|
+
|
3
|
+
require 'spec_helper'
|
4
|
+
|
5
|
+
RSpec.describe GraphMatching::Algorithm::MCMBipartite do
|
6
|
+
let(:g) { GraphMatching::Graph::Bigraph.new }
|
7
|
+
|
8
|
+
describe '.new' do
|
9
|
+
it 'requires a Bigraph' do
|
10
|
+
expect { described_class.new("banana") }.to raise_error(TypeError)
|
11
|
+
end
|
12
|
+
end
|
13
|
+
|
14
|
+
describe '#augment' do
|
15
|
+
it 'augments the matching' do
|
16
|
+
mcm = described_class.new(g)
|
17
|
+
m = [nil, nil, 3, 2]
|
18
|
+
m = mcm.send(:augment, m, [1, 2, 3, 4])
|
19
|
+
expect(m).to eq([nil, 2, 1, 4, 3])
|
20
|
+
m = mcm.send(:augment, m, [1, 2, 4, 5, 6, 7])
|
21
|
+
expect(m).to eq([nil, 2, 1, nil, 5, 4, 7, 6])
|
22
|
+
end
|
23
|
+
end
|
24
|
+
|
25
|
+
describe '#match' do
|
26
|
+
context 'empty graph' do
|
27
|
+
it 'returns empty set' do
|
28
|
+
m = described_class.new(g).match
|
29
|
+
expect(m).to be_empty
|
30
|
+
end
|
31
|
+
end
|
32
|
+
|
33
|
+
context 'single vertex' do
|
34
|
+
it 'returns empty set' do
|
35
|
+
g.add_vertex(0)
|
36
|
+
expect(described_class.new(g).match).to be_empty
|
37
|
+
end
|
38
|
+
end
|
39
|
+
|
40
|
+
context 'single edge' do
|
41
|
+
it 'returns set with one edge' do
|
42
|
+
e = [1, 2]
|
43
|
+
g.add_edge(*e)
|
44
|
+
m = described_class.new(g).match
|
45
|
+
expect(m.size).to eq(1)
|
46
|
+
expect(m.edge?(e)).to eq(true)
|
47
|
+
end
|
48
|
+
end
|
49
|
+
|
50
|
+
context 'complete bigraph with four vertexes' do
|
51
|
+
let(:edges) { [[1, 3], [1, 4], [2, 3], [2, 4]] }
|
52
|
+
|
53
|
+
it 'returns one of the two correct results' do
|
54
|
+
edges.each { |e| g.add_edge(*e) }
|
55
|
+
m = described_class.new(g).match
|
56
|
+
expect(m.size).to eq(2)
|
57
|
+
outcomes = [
|
58
|
+
RGL::AdjacencyGraph[1, 3, 2, 4],
|
59
|
+
RGL::AdjacencyGraph[1, 4, 2, 3]
|
60
|
+
]
|
61
|
+
reconstructed = RGL::AdjacencyGraph.new
|
62
|
+
m.to_a.each { |edge| reconstructed.add_edge(*edge) }
|
63
|
+
expect(outcomes).to include(reconstructed)
|
64
|
+
end
|
65
|
+
end
|
66
|
+
|
67
|
+
# The following example is by Derrick Stolee
|
68
|
+
# http://www.youtube.com/watch?v=C9c8zEZXboA
|
69
|
+
context 'incomplete bigraph with twelve vertexes' do
|
70
|
+
let(:edges) {
|
71
|
+
[
|
72
|
+
[1, 8],
|
73
|
+
[2, 9], [2, 10],
|
74
|
+
[3, 7], [3, 9], [3, 12],
|
75
|
+
[4, 8], [4, 10],
|
76
|
+
[5, 10], [5, 11],
|
77
|
+
[6, 11]
|
78
|
+
]
|
79
|
+
}
|
80
|
+
|
81
|
+
it 'returns one of the five correct results' do
|
82
|
+
edges.each { |e| g.add_edge(*e) }
|
83
|
+
m = described_class.new(g).match
|
84
|
+
expect(m.size).to eq(5)
|
85
|
+
outcomes = [
|
86
|
+
RGL::AdjacencyGraph[1, 8, 2, 9, 3, 7, 5, 10, 6, 11],
|
87
|
+
RGL::AdjacencyGraph[1, 8, 2, 9, 3, 7, 4, 10, 5, 11],
|
88
|
+
RGL::AdjacencyGraph[1, 8, 2, 9, 3, 7, 4, 10, 6, 11],
|
89
|
+
RGL::AdjacencyGraph[1, 8, 2, 9, 3, 12, 4, 10, 5, 11],
|
90
|
+
RGL::AdjacencyGraph[2, 9, 3, 7, 4, 8, 5, 10, 6, 11]
|
91
|
+
]
|
92
|
+
reconstructed = RGL::AdjacencyGraph.new
|
93
|
+
m.to_a.each { |edge| reconstructed.add_edge(*edge) }
|
94
|
+
expect(outcomes).to include(reconstructed)
|
95
|
+
end
|
96
|
+
end
|
97
|
+
end
|
98
|
+
end
|
@@ -0,0 +1,159 @@
|
|
1
|
+
# encoding: utf-8
|
2
|
+
|
3
|
+
require 'spec_helper'
|
4
|
+
|
5
|
+
RSpec.describe GraphMatching::Algorithm::MCMGeneral do
|
6
|
+
let(:graph_class) { GraphMatching::Graph::Graph }
|
7
|
+
let(:g) { graph_class.new }
|
8
|
+
|
9
|
+
describe '.new' do
|
10
|
+
it 'requires a Graph' do
|
11
|
+
expect { described_class.new("banana") }.to raise_error(TypeError)
|
12
|
+
end
|
13
|
+
end
|
14
|
+
|
15
|
+
describe '#match' do
|
16
|
+
def complete_graph(n)
|
17
|
+
g = graph_class.new
|
18
|
+
1.upto(n - 1) do |i|
|
19
|
+
(i + 1).upto(n) do |j|
|
20
|
+
g.add_edge(i, j)
|
21
|
+
end
|
22
|
+
end
|
23
|
+
g
|
24
|
+
end
|
25
|
+
|
26
|
+
context 'empty graph' do
|
27
|
+
it 'returns empty set' do
|
28
|
+
expect(described_class.new(g).match).to be_empty
|
29
|
+
end
|
30
|
+
end
|
31
|
+
|
32
|
+
context 'single vertex' do
|
33
|
+
it 'returns empty set' do
|
34
|
+
g.add_vertex(1)
|
35
|
+
expect(described_class.new(g).match).to be_empty
|
36
|
+
end
|
37
|
+
end
|
38
|
+
|
39
|
+
context 'two vertexes' do
|
40
|
+
let(:g) { graph_class[1, 2] }
|
41
|
+
|
42
|
+
it 'returns one edge' do
|
43
|
+
m = described_class.new(g).match
|
44
|
+
expect(m.size).to eq(1)
|
45
|
+
expect(m).to match_edges [[1, 2]]
|
46
|
+
end
|
47
|
+
end
|
48
|
+
|
49
|
+
context 'complete graph with four vertexes' do
|
50
|
+
it 'returns two disjoint edges' do
|
51
|
+
g = graph_class[
|
52
|
+
1, 2,
|
53
|
+
1, 3,
|
54
|
+
1, 4,
|
55
|
+
2, 3,
|
56
|
+
2, 4,
|
57
|
+
3, 4
|
58
|
+
]
|
59
|
+
m = described_class.new(g).match
|
60
|
+
expect(m.size).to eq(2)
|
61
|
+
expect(m.vertexes).to match_array([1, 2, 3, 4])
|
62
|
+
end
|
63
|
+
end
|
64
|
+
|
65
|
+
context 'graph with stem (123) and blossom (456)' do
|
66
|
+
it 'returns an expected result' do
|
67
|
+
g = graph_class[
|
68
|
+
1, 2,
|
69
|
+
2, 3,
|
70
|
+
3, 4,
|
71
|
+
4, 5,
|
72
|
+
5, 6,
|
73
|
+
6, 4
|
74
|
+
]
|
75
|
+
m = described_class.new(g).match
|
76
|
+
expect(m.size).to eq(3)
|
77
|
+
expect(m).to match_edges [[1, 2], [3, 4], [5, 6]]
|
78
|
+
end
|
79
|
+
end
|
80
|
+
|
81
|
+
# TODO: Other algorithms (e.g. both MWM) support disconnected
|
82
|
+
# graphs. MCM General should too.
|
83
|
+
context 'disconnected graph' do
|
84
|
+
it 'raises a DisconnectedGraph error' do
|
85
|
+
2.times { g.add_vertex(double) }
|
86
|
+
expect { described_class.new(g).match }.to \
|
87
|
+
raise_error(GraphMatching::DisconnectedGraph)
|
88
|
+
end
|
89
|
+
end
|
90
|
+
|
91
|
+
it 'simple example: graph with blossom (234)' do
|
92
|
+
g = graph_class[
|
93
|
+
1, 2,
|
94
|
+
2, 3,
|
95
|
+
2, 4,
|
96
|
+
3, 4,
|
97
|
+
4, 5,
|
98
|
+
5, 6
|
99
|
+
]
|
100
|
+
m = described_class.new(g).match
|
101
|
+
expect(m.size).to eq(3)
|
102
|
+
expect(m).to match_edges [[1, 2], [3, 4], [5, 6]]
|
103
|
+
end
|
104
|
+
|
105
|
+
it 'example from West\'s Introduction to Graph Theory, p. 143' do
|
106
|
+
g = graph_class[
|
107
|
+
1, 2,
|
108
|
+
1, 8,
|
109
|
+
2, 3,
|
110
|
+
3, 4,
|
111
|
+
3, 7,
|
112
|
+
4, 5,
|
113
|
+
4, 7,
|
114
|
+
5, 6,
|
115
|
+
7, 9,
|
116
|
+
8, 9,
|
117
|
+
10, 8
|
118
|
+
]
|
119
|
+
m = described_class.new(g).match
|
120
|
+
expect(m.size).to eq(5)
|
121
|
+
expect(m).to match_edges [[1, 2], [3, 4], [5, 6], [7, 9], [8, 10]]
|
122
|
+
end
|
123
|
+
|
124
|
+
it 'example from Gabow (1976)' do
|
125
|
+
g = graph_class[
|
126
|
+
1, 2,
|
127
|
+
2, 3,
|
128
|
+
1, 3,
|
129
|
+
1, 10,
|
130
|
+
3, 9,
|
131
|
+
3, 4,
|
132
|
+
4, 7,
|
133
|
+
4, 8,
|
134
|
+
7, 8,
|
135
|
+
9, 5,
|
136
|
+
5, 6,
|
137
|
+
6, 7
|
138
|
+
]
|
139
|
+
m = described_class.new(g).match
|
140
|
+
expect(m).to match_edges [[10, 1], [2, 3], [4, 8], [7, 6], [5, 9]]
|
141
|
+
end
|
142
|
+
|
143
|
+
it 'various complete graphs' do
|
144
|
+
[
|
145
|
+
[1, 0], # size of graph, expected size of matching
|
146
|
+
[2, 1],
|
147
|
+
[3, 1],
|
148
|
+
[4, 2],
|
149
|
+
[5, 2],
|
150
|
+
[6, 3],
|
151
|
+
[20, 10]
|
152
|
+
].each do |test|
|
153
|
+
g = complete_graph(test[0])
|
154
|
+
m = described_class.new(g).match
|
155
|
+
expect(m.size).to eq(test[1])
|
156
|
+
end
|
157
|
+
end
|
158
|
+
end
|
159
|
+
end
|
@@ -0,0 +1,82 @@
|
|
1
|
+
# encoding: utf-8
|
2
|
+
|
3
|
+
require 'spec_helper'
|
4
|
+
|
5
|
+
RSpec.describe GraphMatching::Algorithm::MWMBipartite do
|
6
|
+
let(:graph_class) { GraphMatching::Graph::WeightedBigraph }
|
7
|
+
|
8
|
+
describe '.new' do
|
9
|
+
it 'requires a WeightedBigraph' do
|
10
|
+
expect { described_class.new("banana") }.to raise_error(TypeError)
|
11
|
+
end
|
12
|
+
end
|
13
|
+
|
14
|
+
describe '#match' do
|
15
|
+
context 'empty graph' do
|
16
|
+
it 'returns the expected matching' do
|
17
|
+
g = graph_class.new
|
18
|
+
m = described_class.new(g).match
|
19
|
+
expect(m.size).to eq(0)
|
20
|
+
expect(m.weight(g)).to eq(0)
|
21
|
+
end
|
22
|
+
end
|
23
|
+
|
24
|
+
context 'trivial bigraph with two vertexes' do
|
25
|
+
it 'returns the expected matching' do
|
26
|
+
g = graph_class[[1, 2, 7]]
|
27
|
+
m = described_class.new(g).match
|
28
|
+
expect(m.size).to eq(1)
|
29
|
+
expect(m).to match_edges [[1, 2]]
|
30
|
+
expect(m.weight(g)).to eq(7)
|
31
|
+
end
|
32
|
+
end
|
33
|
+
|
34
|
+
context 'complete bigraph with three vertexes' do
|
35
|
+
it 'returns the expected matching' do
|
36
|
+
g = graph_class[
|
37
|
+
[1, 2, 1],
|
38
|
+
[1, 3, 2]
|
39
|
+
]
|
40
|
+
m = described_class.new(g).match
|
41
|
+
expect(m).to match_edges [[1, 3]]
|
42
|
+
expect(m.weight(g)).to eq(2)
|
43
|
+
end
|
44
|
+
|
45
|
+
it 'supports negative weights' do
|
46
|
+
g = graph_class[
|
47
|
+
[1, 2, -1],
|
48
|
+
[1, 3, -3]
|
49
|
+
]
|
50
|
+
m = described_class.new(g).match
|
51
|
+
expect(m).to match_edges [[1, 2]]
|
52
|
+
expect(m.weight(g)).to eq(-1)
|
53
|
+
end
|
54
|
+
end
|
55
|
+
|
56
|
+
context 'bigraph with two connected components' do
|
57
|
+
it 'returns one of two expected matchings' do
|
58
|
+
g = graph_class[
|
59
|
+
[1, 5, 3],
|
60
|
+
[2, 4, 2],
|
61
|
+
[2, 6, 2],
|
62
|
+
[3, 5, 3]
|
63
|
+
]
|
64
|
+
m = described_class.new(g).match
|
65
|
+
expect(m.size).to eq(2)
|
66
|
+
expect(m.weight(g)).to eq(5)
|
67
|
+
end
|
68
|
+
|
69
|
+
it 'returns the expected matching' do
|
70
|
+
g = graph_class[
|
71
|
+
[1, 5, 4],
|
72
|
+
[2, 4, 2],
|
73
|
+
[2, 6, 1],
|
74
|
+
[3, 5, 3]
|
75
|
+
]
|
76
|
+
m = described_class.new(g).match
|
77
|
+
expect(m).to match_edges [[1, 5], [2, 4]]
|
78
|
+
expect(m.weight(g)).to eq(6)
|
79
|
+
end
|
80
|
+
end
|
81
|
+
end
|
82
|
+
end
|
@@ -0,0 +1,439 @@
|
|
1
|
+
# encoding: utf-8
|
2
|
+
|
3
|
+
require 'spec_helper'
|
4
|
+
|
5
|
+
RSpec.describe GraphMatching::Algorithm::MWMGeneral do
|
6
|
+
let(:graph_class) { GraphMatching::Graph::WeightedGraph }
|
7
|
+
|
8
|
+
describe '.new' do
|
9
|
+
it 'requires a WeightedGraph' do
|
10
|
+
expect { described_class.new("banana") }.to raise_error(TypeError)
|
11
|
+
end
|
12
|
+
end
|
13
|
+
|
14
|
+
describe '#blossom_leaves' do
|
15
|
+
context 'five vertexes, one blossom' do
|
16
|
+
it 'returns array of leaves' do
|
17
|
+
g = graph_class[
|
18
|
+
[0, 1, 0],
|
19
|
+
[1, 2, 0],
|
20
|
+
[1, 3, 0],
|
21
|
+
[2, 3, 0],
|
22
|
+
[3, 4, 0]
|
23
|
+
]
|
24
|
+
a = described_class.new(g)
|
25
|
+
a.instance_variable_set(:@blossom_children, [
|
26
|
+
nil,
|
27
|
+
nil,
|
28
|
+
nil,
|
29
|
+
nil,
|
30
|
+
nil,
|
31
|
+
[2, 3, 4]
|
32
|
+
])
|
33
|
+
expect(a.send(:blossom_leaves, 0)).to eq([0])
|
34
|
+
expect(a.send(:blossom_leaves, 4)).to eq([4])
|
35
|
+
expect(a.send(:blossom_leaves, 5)).to eq([2, 3, 4])
|
36
|
+
end
|
37
|
+
end
|
38
|
+
end
|
39
|
+
|
40
|
+
describe '#match' do
|
41
|
+
context 'empty graph' do
|
42
|
+
it 'returns empty matching' do
|
43
|
+
g = graph_class.new
|
44
|
+
m = described_class.new(g).match(true)
|
45
|
+
expect(m).to be_empty
|
46
|
+
end
|
47
|
+
end
|
48
|
+
|
49
|
+
context 'single vertex' do
|
50
|
+
it 'returns empty matching' do
|
51
|
+
g = graph_class.new
|
52
|
+
g.add_vertex(0)
|
53
|
+
m = described_class.new(g).match(true)
|
54
|
+
expect(m).to be_empty
|
55
|
+
end
|
56
|
+
end
|
57
|
+
|
58
|
+
context 'two vertexes, but no edge' do
|
59
|
+
it 'returns empty matching' do
|
60
|
+
g = graph_class.new
|
61
|
+
g.add_vertex(0)
|
62
|
+
g.add_vertex(1)
|
63
|
+
m = described_class.new(g).match(true)
|
64
|
+
expect(m).to be_empty
|
65
|
+
end
|
66
|
+
end
|
67
|
+
|
68
|
+
context 'two vertexes' do
|
69
|
+
it 'returns matching of size 1' do
|
70
|
+
g = graph_class[[0, 1, 7]]
|
71
|
+
m = described_class.new(g).match(true)
|
72
|
+
expect(m).to match_edges [[0, 1]]
|
73
|
+
expect(m.weight(g)).to eq(7)
|
74
|
+
end
|
75
|
+
end
|
76
|
+
|
77
|
+
context 'three vertexes' do
|
78
|
+
it 'matches the edge with greater weight' do
|
79
|
+
g = graph_class[
|
80
|
+
[0, 1, 1],
|
81
|
+
[1, 2, 2],
|
82
|
+
[2, 0, 3]
|
83
|
+
]
|
84
|
+
m = described_class.new(g).match(true)
|
85
|
+
expect(m).to match_edges [[0, 2]]
|
86
|
+
expect(m.weight(g)).to eq(3)
|
87
|
+
end
|
88
|
+
end
|
89
|
+
|
90
|
+
context 'greatest weight edge cannot be used in complete matching' do
|
91
|
+
it 'returns the complete matching with max. weight' do
|
92
|
+
# In the following graph, edge 1=3 has the greatest weight,
|
93
|
+
# but that edge cannot be used in a complete matching.
|
94
|
+
g = graph_class[
|
95
|
+
[0, 1, 2],
|
96
|
+
[1, 2, 0],
|
97
|
+
[1, 3, 6],
|
98
|
+
[2, 3, 4],
|
99
|
+
[3, 4, 2]
|
100
|
+
]
|
101
|
+
m = described_class.new(g).match(true)
|
102
|
+
expect(m).to match_edges [[0, 1], [2, 3]]
|
103
|
+
expect(m.weight(g)).to eq(6)
|
104
|
+
end
|
105
|
+
end
|
106
|
+
|
107
|
+
it "passes Van Rantwijk test 12" do
|
108
|
+
g = graph_class[[1, 2, 10], [2, 3, 11]]
|
109
|
+
m = described_class.new(g).match(false)
|
110
|
+
expect(m).to match_edges [[2, 3]]
|
111
|
+
expect(m.weight(g)).to eq(11)
|
112
|
+
end
|
113
|
+
|
114
|
+
it "passes Van Rantwijk test 13" do
|
115
|
+
g = graph_class[
|
116
|
+
[1, 2, 5],
|
117
|
+
[2, 3, 11],
|
118
|
+
[3, 4, 5]
|
119
|
+
]
|
120
|
+
m = described_class.new(g).match(false)
|
121
|
+
expect(m).to match_edges [[2, 3]]
|
122
|
+
expect(m.weight(g)).to eq(11)
|
123
|
+
end
|
124
|
+
|
125
|
+
it "passes Van Rantwijk test 14: max. cardinality" do
|
126
|
+
g = graph_class[
|
127
|
+
[1, 2, 5],
|
128
|
+
[2, 3, 11],
|
129
|
+
[3, 4, 5]
|
130
|
+
]
|
131
|
+
m = described_class.new(g).match(true)
|
132
|
+
expect(m).to match_edges [[1, 2], [3, 4]]
|
133
|
+
expect(m.weight(g)).to eq(10)
|
134
|
+
end
|
135
|
+
|
136
|
+
it "passes Van Rantwijk test 15: floating-point weights" do
|
137
|
+
g = graph_class[
|
138
|
+
[1, 2, Math::PI],
|
139
|
+
[2, 3, Math.exp(1)],
|
140
|
+
[1, 3, 3.0],
|
141
|
+
[1, 4, Math.sqrt(2.0)]
|
142
|
+
]
|
143
|
+
m = described_class.new(g).match(false)
|
144
|
+
expect(m).to match_edges [[1, 4], [2, 3]]
|
145
|
+
expect(m.weight(g)).to be_within(0.00001).of(Math.sqrt(2.0) + Math.exp(1))
|
146
|
+
end
|
147
|
+
|
148
|
+
it "passes Van Rantwijk test 16: negative weights" do
|
149
|
+
g = graph_class[
|
150
|
+
[1, 2, 2],
|
151
|
+
[1, 3, -2],
|
152
|
+
[2, 3, 1],
|
153
|
+
[2, 4, -1],
|
154
|
+
[3, 4, -6]
|
155
|
+
]
|
156
|
+
m = described_class.new(g).match(false)
|
157
|
+
expect(m).to match_edges [[1, 2]]
|
158
|
+
expect(m.weight(g)).to eq(2)
|
159
|
+
m = described_class.new(g).match(true)
|
160
|
+
expect(m).to match_edges [[1, 3], [2, 4]]
|
161
|
+
expect(m.weight(g)).to eq(-3)
|
162
|
+
end
|
163
|
+
|
164
|
+
context "Van Rantwijk test 20: Uses S-blossom for augmentation" do
|
165
|
+
it "passes test 20-A" do
|
166
|
+
g = graph_class[
|
167
|
+
[1, 2, 8],
|
168
|
+
[1, 3, 9],
|
169
|
+
[2, 3, 10],
|
170
|
+
[3, 4, 7]
|
171
|
+
]
|
172
|
+
m = described_class.new(g).match(false)
|
173
|
+
expect(m).to match_edges [[1, 2], [3, 4]]
|
174
|
+
expect(m.weight(g)).to eq(15)
|
175
|
+
end
|
176
|
+
|
177
|
+
it "passes test 20-B" do
|
178
|
+
g = graph_class[
|
179
|
+
[1, 2, 8],
|
180
|
+
[1, 3, 9],
|
181
|
+
[2, 3, 10],
|
182
|
+
[3, 4, 7],
|
183
|
+
[1, 6, 5],
|
184
|
+
[4, 5, 6]
|
185
|
+
]
|
186
|
+
m = described_class.new(g).match(false)
|
187
|
+
expect(m).to match_edges [[1, 6], [2, 3], [4, 5]]
|
188
|
+
expect(m.weight(g)).to eq(21)
|
189
|
+
end
|
190
|
+
end
|
191
|
+
|
192
|
+
# Van Rantwijk test 21
|
193
|
+
context "create S-blossom, relabel as T-blossom, use for augmentation" do
|
194
|
+
it "passes test 21-A" do
|
195
|
+
g = graph_class[
|
196
|
+
[1, 2, 9],
|
197
|
+
[1, 3, 8],
|
198
|
+
[2, 3, 10],
|
199
|
+
[1, 4, 5],
|
200
|
+
[4, 5, 4],
|
201
|
+
[1, 6, 3]
|
202
|
+
]
|
203
|
+
m = described_class.new(g).match(false)
|
204
|
+
expect(m).to match_edges [[1, 6], [2, 3], [4, 5]]
|
205
|
+
end
|
206
|
+
|
207
|
+
it "passes test 21-B" do
|
208
|
+
g = graph_class[
|
209
|
+
[1, 2, 9],
|
210
|
+
[1, 3, 8],
|
211
|
+
[2, 3, 10],
|
212
|
+
[1, 4, 5],
|
213
|
+
[4, 5, 3],
|
214
|
+
[1, 6, 4]
|
215
|
+
]
|
216
|
+
m = described_class.new(g).match(false)
|
217
|
+
expect(m).to match_edges [[1, 6], [2, 3], [4, 5]]
|
218
|
+
end
|
219
|
+
|
220
|
+
it "passes test 21-C" do
|
221
|
+
g = graph_class[
|
222
|
+
[1, 2, 9],
|
223
|
+
[1, 3, 8],
|
224
|
+
[2, 3, 10],
|
225
|
+
[1, 4, 5],
|
226
|
+
[4, 5, 3],
|
227
|
+
[3, 6, 4]
|
228
|
+
]
|
229
|
+
m = described_class.new(g).match(false)
|
230
|
+
expect(m).to match_edges [[1, 2], [3, 6], [4, 5]]
|
231
|
+
end
|
232
|
+
end
|
233
|
+
|
234
|
+
context "Van Rantwijk test 22" do
|
235
|
+
it "creates nested S-blossom, uses for augmentation" do
|
236
|
+
g = graph_class[
|
237
|
+
[1, 2, 9],
|
238
|
+
[1, 3, 9],
|
239
|
+
[2, 3, 10],
|
240
|
+
[2, 4, 8],
|
241
|
+
[3, 5, 8],
|
242
|
+
[4, 5, 10],
|
243
|
+
[5, 6, 6]
|
244
|
+
]
|
245
|
+
m = described_class.new(g).match(false)
|
246
|
+
expect(m).to match_edges [[1, 3], [2, 4], [5, 6]]
|
247
|
+
end
|
248
|
+
end
|
249
|
+
|
250
|
+
context "Van Rantwijk test 23" do
|
251
|
+
it "create S-blossom, relabel as S, include in nested S-blossom" do
|
252
|
+
g = graph_class[
|
253
|
+
[1, 2, 10],
|
254
|
+
[1, 7, 10],
|
255
|
+
[2, 3, 12],
|
256
|
+
[3, 4, 20],
|
257
|
+
[3, 5, 20],
|
258
|
+
[4, 5, 25],
|
259
|
+
[5, 6, 10],
|
260
|
+
[6, 7, 10],
|
261
|
+
[7, 8, 8]
|
262
|
+
]
|
263
|
+
m = described_class.new(g).match(false)
|
264
|
+
expect(m).to match_edges [[1, 2], [3, 4], [5, 6], [7, 8]]
|
265
|
+
end
|
266
|
+
end
|
267
|
+
|
268
|
+
context "Van Rantwijk test 24" do
|
269
|
+
it "create nested S-blossom, augment, expand recursively" do
|
270
|
+
g = graph_class[
|
271
|
+
[1, 2, 8],
|
272
|
+
[1, 3, 8],
|
273
|
+
[2, 3, 10],
|
274
|
+
[2, 4, 12],
|
275
|
+
[3, 5, 12],
|
276
|
+
[4, 5, 14],
|
277
|
+
[4, 6, 12],
|
278
|
+
[5, 7, 12],
|
279
|
+
[6, 7, 14],
|
280
|
+
[7, 8, 12]
|
281
|
+
]
|
282
|
+
m = described_class.new(g).match(false)
|
283
|
+
expect(m).to match_edges [[1, 2], [3, 5], [4, 6], [7, 8]]
|
284
|
+
end
|
285
|
+
end
|
286
|
+
|
287
|
+
context "Van Rantwijk test 25" do
|
288
|
+
it "create S-blossom, relabel as T, expand" do
|
289
|
+
g = graph_class[
|
290
|
+
[1, 2, 23],
|
291
|
+
[1, 5, 22],
|
292
|
+
[1, 6, 15],
|
293
|
+
[2, 3, 25],
|
294
|
+
[3, 4, 22],
|
295
|
+
[4, 5, 25],
|
296
|
+
[4, 8, 14],
|
297
|
+
[5, 7, 13]
|
298
|
+
]
|
299
|
+
m = described_class.new(g).match(false)
|
300
|
+
expect(m).to match_edges [[1, 6], [2, 3], [4, 8], [5, 7]]
|
301
|
+
end
|
302
|
+
end
|
303
|
+
|
304
|
+
context "Van Rantwijk test 26" do
|
305
|
+
it "create nested S-blossom, relabel as T, expand" do
|
306
|
+
g = graph_class[
|
307
|
+
[1, 2, 19],
|
308
|
+
[1, 3, 20],
|
309
|
+
[1, 8, 8],
|
310
|
+
[2, 3, 25],
|
311
|
+
[2, 4, 18],
|
312
|
+
[3, 5, 18],
|
313
|
+
[4, 5, 13],
|
314
|
+
[4, 7, 7],
|
315
|
+
[5, 6, 7]
|
316
|
+
]
|
317
|
+
m = described_class.new(g).match(false)
|
318
|
+
expect(m).to match_edges [[1, 8], [2, 3], [4, 7], [5, 6]]
|
319
|
+
end
|
320
|
+
end
|
321
|
+
|
322
|
+
context "Van Rantwijk test 30" do
|
323
|
+
it "create blossom, relabel as T in more than one way, expand, augment" do
|
324
|
+
g = graph_class[
|
325
|
+
[1, 2, 45],
|
326
|
+
[1, 5, 45],
|
327
|
+
[2, 3, 50],
|
328
|
+
[3, 4, 45],
|
329
|
+
[4, 5, 50],
|
330
|
+
[1, 6, 30],
|
331
|
+
[3, 9, 35],
|
332
|
+
[4, 8, 35],
|
333
|
+
[5, 7, 26],
|
334
|
+
[9, 10, 5]
|
335
|
+
]
|
336
|
+
m = described_class.new(g).match(false)
|
337
|
+
expect(m).to match_edges [[1, 6], [2, 3], [4, 8], [5, 7], [9, 10]]
|
338
|
+
end
|
339
|
+
end
|
340
|
+
|
341
|
+
context "Van Rantwijk test 31" do
|
342
|
+
it "similar to test 30, but slightly different" do
|
343
|
+
g = graph_class[
|
344
|
+
[1, 2, 45],
|
345
|
+
[1, 5, 45],
|
346
|
+
[2, 3, 50],
|
347
|
+
[3, 4, 45],
|
348
|
+
[4, 5, 50],
|
349
|
+
[1, 6, 30],
|
350
|
+
[3, 9, 35],
|
351
|
+
[4, 8, 26], # differs from test 30
|
352
|
+
[5, 7, 40], # differs from test 30
|
353
|
+
[9, 10, 5]
|
354
|
+
]
|
355
|
+
m = described_class.new(g).match(false)
|
356
|
+
expect(m).to match_edges [[1, 6], [2, 3], [4, 8], [5, 7], [9, 10]]
|
357
|
+
end
|
358
|
+
end
|
359
|
+
|
360
|
+
context "Van Rantwijk test 32" do
|
361
|
+
# create blossom, relabel as T, expand such that a new
|
362
|
+
# least-slack S-to-free edge is produced, augment
|
363
|
+
it "see comment" do
|
364
|
+
g = graph_class[
|
365
|
+
[1, 2, 45],
|
366
|
+
[1, 5, 45],
|
367
|
+
[2, 3, 50],
|
368
|
+
[3, 4, 45],
|
369
|
+
[4, 5, 50],
|
370
|
+
[1, 6, 30],
|
371
|
+
[3, 9, 35],
|
372
|
+
[4, 8, 28],
|
373
|
+
[5, 7, 26],
|
374
|
+
[9, 10, 5]
|
375
|
+
]
|
376
|
+
m = described_class.new(g).match(false)
|
377
|
+
expect(m).to match_edges [[1, 6], [2, 3], [4, 8], [5, 7], [9, 10]]
|
378
|
+
end
|
379
|
+
end
|
380
|
+
|
381
|
+
context "Van Rantwijk test 33" do
|
382
|
+
# create nested blossom, relabel as T in more than one way,
|
383
|
+
# expand outer blossom such that inner blossom ends up on
|
384
|
+
# an augmenting path
|
385
|
+
it "see comment" do
|
386
|
+
g = graph_class[
|
387
|
+
[1, 2, 45],
|
388
|
+
[1, 7, 45],
|
389
|
+
[2, 3, 50],
|
390
|
+
[3, 4, 45],
|
391
|
+
[4, 5, 95],
|
392
|
+
[4, 6, 94],
|
393
|
+
[5, 6, 94],
|
394
|
+
[6, 7, 50],
|
395
|
+
[1, 8, 30],
|
396
|
+
[3, 11, 35],
|
397
|
+
[5, 9, 36],
|
398
|
+
[7, 10, 26],
|
399
|
+
[11, 12, 5]
|
400
|
+
]
|
401
|
+
m = described_class.new(g).match(false)
|
402
|
+
expect(m).to match_edges [
|
403
|
+
[1, 8],
|
404
|
+
[2, 3],
|
405
|
+
[4, 6],
|
406
|
+
[5, 9],
|
407
|
+
[7, 10],
|
408
|
+
[11, 12]
|
409
|
+
]
|
410
|
+
end
|
411
|
+
end
|
412
|
+
|
413
|
+
context "Van Rantwijk test 34: nest, relabel, expand" do
|
414
|
+
it "create nested S-blossom, relabel as S, expand recursively" do
|
415
|
+
g = graph_class[
|
416
|
+
[1, 2, 40],
|
417
|
+
[1, 3, 40],
|
418
|
+
[2, 3, 60],
|
419
|
+
[2, 4, 55],
|
420
|
+
[3, 5, 55],
|
421
|
+
[4, 5, 50],
|
422
|
+
[1, 8, 15],
|
423
|
+
[5, 7, 30],
|
424
|
+
[7, 6, 10],
|
425
|
+
[8, 10, 10],
|
426
|
+
[4, 9, 30]
|
427
|
+
]
|
428
|
+
m = described_class.new(g).match(false)
|
429
|
+
expect(m).to match_edges [
|
430
|
+
[1, 2],
|
431
|
+
[3, 5],
|
432
|
+
[4, 9],
|
433
|
+
[6, 7],
|
434
|
+
[8, 10]
|
435
|
+
]
|
436
|
+
end
|
437
|
+
end
|
438
|
+
end
|
439
|
+
end
|