gmath3D 0.2.4 → 0.2.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/lib/quat.rb CHANGED
@@ -1,170 +1,170 @@
1
- require 'gmath3D'
2
-
3
- module GMath3D
4
- #
5
- # Quat represents quaternion.
6
- #
7
- class Quat
8
- public
9
- attr_accessor :x
10
- attr_accessor :y
11
- attr_accessor :z
12
- attr_accessor :w
13
-
14
- # [Input]
15
- # _x_, _y_, _z_, _w_should be Numeric.
16
- # [Output]
17
- # return new instance of Quat.
18
- def initialize(x=0.0,y=0.0,z=0.0,w=0.0)
19
- Util3D.check_arg_type(Numeric, x)
20
- Util3D.check_arg_type(Numeric, y)
21
- Util3D.check_arg_type(Numeric, z)
22
- Util3D.check_arg_type(Numeric, w)
23
- super()
24
- @x = x
25
- @y = y
26
- @z = z
27
- @w = w
28
- end
29
-
30
- # [Input]
31
- # _axsi_ should be Vector3 and _angle_ should be Numeric.
32
- # [Output]
33
- # return new instance of Quat.
34
- def self.from_axis(axis, angle)
35
- Util3D.check_arg_type(Vector3, axis)
36
- Util3D.check_arg_type(Numeric, angle)
37
- s = Math.sin(0.5*angle)
38
- x = s * axis.x
39
- y = s * axis.y
40
- z = s * axis.z
41
- w = Math.cos(0.5*angle)
42
- return Quat.new(x,y,z,w)
43
- end
44
-
45
- # [Input]
46
- # _matrix_ should be Matrix which row and column size are 3.
47
- # [Output]
48
- # return new instance of Quat.
49
- def self.from_matrix(mat)
50
- fourWSquaredMinus1 = mat[0,0] + mat[1,1] + mat[2,2]
51
- fourXSquaredMinus1 = mat[0,0] - mat[1,1] - mat[2,2]
52
- fourYSquaredMinus1 = mat[1,1] - mat[0,0] - mat[2,2]
53
- fourZSquaredMinus1 = mat[2,2] - mat[0,0] - mat[1,1]
54
-
55
- biggestIndex = 0
56
- fourBiggestSquaredMinus1 = fourWSquaredMinus1
57
- if(fourXSquaredMinus1 > fourBiggestSquaredMinus1)
58
- fourBiggestSquaredMinus1 = fourXSquaredMinus1
59
- biggestIndex = 1
60
- end
61
- if(fourYSquaredMinus1 > fourBiggestSquaredMinus1)
62
- fourBiggestSquaredMinus1 = fourYSquaredMinus1
63
- biggestIndex = 2
64
- end
65
- if(fourZSquaredMinus1 > fourBiggestSquaredMinus1)
66
- fourBiggestSquaredMinus1 = fourZSquaredMinus1
67
- biggestIndex = 3
68
- end
69
-
70
- biggestVal = Math.sqrt(fourBiggestSquaredMinus1 + 1.0) * 0.5
71
- multi = 0.25 / biggestVal
72
-
73
- case biggestIndex
74
- when 0
75
- w = biggestVal
76
- x = (mat[1,2] - mat[2,1]) *multi
77
- y = (mat[2,0] - mat[0,2]) *multi
78
- z = (mat[0,1] - mat[1,0]) *multi
79
- when 1
80
- x = biggestVal;
81
- w = (mat[1,2] - mat[2,1]) *multi
82
- y = (mat[0,1] + mat[1,0]) *multi
83
- z = (mat[2,0] + mat[0,2]) *multi
84
- when 2
85
- y = biggestVal;
86
- w = (mat[2,0] - mat[0,2]) *multi
87
- x = (mat[0,1] + mat[1,0]) *multi
88
- z = (mat[1,2] + mat[2,1]) *multi
89
- when 3
90
- z = biggestVal;
91
- w = (mat[0,1] - mat[1,0]) *multi
92
- x = (mat[2,0] + mat[0,2]) *multi
93
- y = (mat[1,2] + mat[2,1]) *multi
94
- end
95
- return Quat.new(x,y,z,w)
96
- end
97
-
98
- def to_element_s
99
- "[#{@x}, #{@y}, #{@z}, #{@w}]"
100
- end
101
-
102
- def to_s
103
- "Quat" + to_element_s
104
- end
105
-
106
- # [Input]
107
- # _rhs_ should be Quat.
108
- # [Output]
109
- # return true if rhs equals myself.
110
- def ==(rhs)
111
- return false if( !rhs.kind_of?(Quat) )
112
- return false if(self.x != rhs.x)
113
- return false if(self.y != rhs.y)
114
- return false if(self.z != rhs.z)
115
- return false if(self.w != rhs.w)
116
- true
117
- end
118
-
119
- # [Output]
120
- # return conjugated Quat.
121
- def conjugate
122
- return Quat.new( -self.x, -self.y, -self.z, self.w)
123
- end
124
-
125
- # [Output]
126
- # return normalized result as Quat.
127
- def normalize()
128
- mag = Math.sqrt(self.x*self.x + self.y*self.y + self.z*self.z)
129
- return Quat.new(self.x/mag, self.y/mag, self.z/mag, self.w/mag)
130
- end
131
-
132
- # [Input]
133
- # _rhs_ should be Quat.
134
- # [Output]
135
- # return added result as Quat.
136
- def +(rhs)
137
- Util3D.check_arg_type(Quat, rhs)
138
- t1 = Vector3.new(self.x, self.y, self.z)
139
- t2 = Vector3.new(rhs.x, rhs.y, rhs.z)
140
- dot = t1.dot(t2)
141
- t3 = t2.cross(t1)
142
-
143
- t1 *= rhs.w
144
- t2 *= self.w
145
-
146
- tf = t1 + t2 + t3
147
- rtn_w = self.w * rhs.w - dot
148
-
149
- return Quat.new(tf.x, tf.y, tf.z, rtn_w)
150
- end
151
-
152
- # [Input]
153
- # _rsh_ should be Quat.
154
- # [Output]
155
- # return (outer products) multiplyed result as Quat.
156
- def *(rhs)
157
- Util3D.check_arg_type(Quat, rhs)
158
-
159
- pw = self.w; px = self.x; py = self.y; pz = self.z;
160
- qw = rhs.w ; qx = rhs.x ; qy = rhs.y ; qz = rhs.z;
161
-
162
- w = pw * qw - px * qx - py * qy - pz * qz
163
- x = pw * qx + px * qw + py * qz - pz * qy
164
- y = pw * qy - px * qz + py * qw + pz * qx
165
- z = pw * qz + px * qy - py * qx + pz * qw
166
- return Quat.new( x,y,z,w )
167
- end
168
- end
169
- end
170
-
1
+ require 'gmath3D'
2
+
3
+ module GMath3D
4
+ #
5
+ # Quat represents quaternion.
6
+ #
7
+ class Quat
8
+ public
9
+ attr_accessor :x
10
+ attr_accessor :y
11
+ attr_accessor :z
12
+ attr_accessor :w
13
+
14
+ # [Input]
15
+ # _x_, _y_, _z_, _w_should be Numeric.
16
+ # [Output]
17
+ # return new instance of Quat.
18
+ def initialize(x=0.0,y=0.0,z=0.0,w=0.0)
19
+ Util3D.check_arg_type(Numeric, x)
20
+ Util3D.check_arg_type(Numeric, y)
21
+ Util3D.check_arg_type(Numeric, z)
22
+ Util3D.check_arg_type(Numeric, w)
23
+ super()
24
+ @x = x
25
+ @y = y
26
+ @z = z
27
+ @w = w
28
+ end
29
+
30
+ # [Input]
31
+ # _axsi_ should be Vector3 and _angle_ should be Numeric.
32
+ # [Output]
33
+ # return new instance of Quat.
34
+ def self.from_axis(axis, angle)
35
+ Util3D.check_arg_type(Vector3, axis)
36
+ Util3D.check_arg_type(Numeric, angle)
37
+ s = Math.sin(0.5*angle)
38
+ x = s * axis.x
39
+ y = s * axis.y
40
+ z = s * axis.z
41
+ w = Math.cos(0.5*angle)
42
+ return Quat.new(x,y,z,w)
43
+ end
44
+
45
+ # [Input]
46
+ # _matrix_ should be Matrix which row and column size are 3.
47
+ # [Output]
48
+ # return new instance of Quat.
49
+ def self.from_matrix(mat)
50
+ fourWSquaredMinus1 = mat[0,0] + mat[1,1] + mat[2,2]
51
+ fourXSquaredMinus1 = mat[0,0] - mat[1,1] - mat[2,2]
52
+ fourYSquaredMinus1 = mat[1,1] - mat[0,0] - mat[2,2]
53
+ fourZSquaredMinus1 = mat[2,2] - mat[0,0] - mat[1,1]
54
+
55
+ biggestIndex = 0
56
+ fourBiggestSquaredMinus1 = fourWSquaredMinus1
57
+ if(fourXSquaredMinus1 > fourBiggestSquaredMinus1)
58
+ fourBiggestSquaredMinus1 = fourXSquaredMinus1
59
+ biggestIndex = 1
60
+ end
61
+ if(fourYSquaredMinus1 > fourBiggestSquaredMinus1)
62
+ fourBiggestSquaredMinus1 = fourYSquaredMinus1
63
+ biggestIndex = 2
64
+ end
65
+ if(fourZSquaredMinus1 > fourBiggestSquaredMinus1)
66
+ fourBiggestSquaredMinus1 = fourZSquaredMinus1
67
+ biggestIndex = 3
68
+ end
69
+
70
+ biggestVal = Math.sqrt(fourBiggestSquaredMinus1 + 1.0) * 0.5
71
+ multi = 0.25 / biggestVal
72
+
73
+ case biggestIndex
74
+ when 0
75
+ w = biggestVal
76
+ x = (mat[1,2] - mat[2,1]) *multi
77
+ y = (mat[2,0] - mat[0,2]) *multi
78
+ z = (mat[0,1] - mat[1,0]) *multi
79
+ when 1
80
+ x = biggestVal;
81
+ w = (mat[1,2] - mat[2,1]) *multi
82
+ y = (mat[0,1] + mat[1,0]) *multi
83
+ z = (mat[2,0] + mat[0,2]) *multi
84
+ when 2
85
+ y = biggestVal;
86
+ w = (mat[2,0] - mat[0,2]) *multi
87
+ x = (mat[0,1] + mat[1,0]) *multi
88
+ z = (mat[1,2] + mat[2,1]) *multi
89
+ when 3
90
+ z = biggestVal;
91
+ w = (mat[0,1] - mat[1,0]) *multi
92
+ x = (mat[2,0] + mat[0,2]) *multi
93
+ y = (mat[1,2] + mat[2,1]) *multi
94
+ end
95
+ return Quat.new(x,y,z,w)
96
+ end
97
+
98
+ def to_element_s
99
+ "[#{@x}, #{@y}, #{@z}, #{@w}]"
100
+ end
101
+
102
+ def to_s
103
+ "Quat" + to_element_s
104
+ end
105
+
106
+ # [Input]
107
+ # _rhs_ should be Quat.
108
+ # [Output]
109
+ # return true if rhs equals myself.
110
+ def ==(rhs)
111
+ return false if( !rhs.kind_of?(Quat) )
112
+ return false if(self.x != rhs.x)
113
+ return false if(self.y != rhs.y)
114
+ return false if(self.z != rhs.z)
115
+ return false if(self.w != rhs.w)
116
+ true
117
+ end
118
+
119
+ # [Output]
120
+ # return conjugated Quat.
121
+ def conjugate
122
+ return Quat.new( -self.x, -self.y, -self.z, self.w)
123
+ end
124
+
125
+ # [Output]
126
+ # return normalized result as Quat.
127
+ def normalize()
128
+ mag = Math.sqrt(self.x*self.x + self.y*self.y + self.z*self.z)
129
+ return Quat.new(self.x/mag, self.y/mag, self.z/mag, self.w/mag)
130
+ end
131
+
132
+ # [Input]
133
+ # _rhs_ should be Quat.
134
+ # [Output]
135
+ # return added result as Quat.
136
+ def +(rhs)
137
+ Util3D.check_arg_type(Quat, rhs)
138
+ t1 = Vector3.new(self.x, self.y, self.z)
139
+ t2 = Vector3.new(rhs.x, rhs.y, rhs.z)
140
+ dot = t1.dot(t2)
141
+ t3 = t2.cross(t1)
142
+
143
+ t1 *= rhs.w
144
+ t2 *= self.w
145
+
146
+ tf = t1 + t2 + t3
147
+ rtn_w = self.w * rhs.w - dot
148
+
149
+ return Quat.new(tf.x, tf.y, tf.z, rtn_w)
150
+ end
151
+
152
+ # [Input]
153
+ # _rsh_ should be Quat.
154
+ # [Output]
155
+ # return (outer products) multiplyed result as Quat.
156
+ def *(rhs)
157
+ Util3D.check_arg_type(Quat, rhs)
158
+
159
+ pw = self.w; px = self.x; py = self.y; pz = self.z;
160
+ qw = rhs.w ; qx = rhs.x ; qy = rhs.y ; qz = rhs.z;
161
+
162
+ w = pw * qw - px * qx - py * qy - pz * qz
163
+ x = pw * qx + px * qw + py * qz - pz * qy
164
+ y = pw * qy - px * qz + py * qw + pz * qx
165
+ z = pw * qz + px * qy - py * qx + pz * qw
166
+ return Quat.new( x,y,z,w )
167
+ end
168
+ end
169
+ end
170
+
data/lib/rectangle.rb CHANGED
@@ -1,155 +1,155 @@
1
- require 'matrix'
2
-
3
- require 'gmath3D'
4
-
5
- module GMath3D
6
- #
7
- # Rectangle represents a four edged finite plane on 3D space.
8
- #
9
- class Rectangle < Geom
10
- public
11
- attr_accessor:base_point
12
- attr_accessor:u_vector
13
- attr_accessor:v_vector
14
-
15
- include BoxAvailable
16
-
17
- # [Input]
18
- # _base_point_ , _u_vector_, _v_vector_ should be Vector3.
19
- # _u_vector_ and _v_vector_ should be orthogonalized.
20
- # [Output]
21
- # return new instance of Rectangle.
22
- def initialize(base_point_arg = Vector3.new(), u_vector_arg = Vector3.new(1,0,0), v_vector_arg = Vector3.new(0,1,0))
23
- Util3D.check_arg_type(::Vector3, base_point_arg)
24
- Util3D.check_arg_type(::Vector3, u_vector_arg)
25
- Util3D.check_arg_type(::Vector3, v_vector_arg)
26
- super()
27
- self.base_point = base_point_arg
28
- self.u_vector = u_vector_arg
29
- self.v_vector = v_vector_arg
30
- end
31
-
32
- def initialize_copy( original_obj )
33
- @base_point = original_obj.base_point.dup
34
- @u_vector = original_obj.u_vector.dup
35
- @v_vector = original_obj.v_vector.dup
36
- end
37
-
38
- # [Input]
39
- # _rhs_ is Rectangle.
40
- # [Output]
41
- # return true if rhs equals myself.
42
- def ==(rhs)
43
- return false if rhs == nil
44
- return false if( !rhs.kind_of?(Rectangle) )
45
- return false if( self.base_point != rhs.base_point)
46
- return false if( self.u_vector != rhs.u_vector)
47
- return false if( self.v_vector != rhs.v_vector)
48
- return true
49
- end
50
-
51
- def to_s
52
- "Rectangle[base#{@base_point.to_element_s}, u#{@u_vector.to_element_s}, v#{@v_vector.to_element_s}"
53
- end
54
-
55
- # [Input]
56
- # _u_, _v_ should be Numeric.
57
- # [Output]
58
- # return point on rectangle as Vector3.
59
- def point(u, v)
60
- Util3D.check_arg_type(::Numeric, u)
61
- Util3D.check_arg_type(::Numeric, v)
62
- return base_point + u_vector*u + v_vector*v
63
- end
64
-
65
- # [Output]
66
- # return edges of rectangle as Array of FiniteLine.
67
- def edges
68
- edge_ary = Array.new(4)
69
- edge_ary[0] = FiniteLine.new( base_point, base_point+u_vector)
70
- edge_ary[1] = FiniteLine.new( base_point+u_vector, base_point+u_vector+v_vector)
71
- edge_ary[2] = FiniteLine.new( base_point+u_vector+v_vector, base_point+v_vector)
72
- edge_ary[3] = FiniteLine.new( base_point+v_vector, base_point)
73
- return edge_ary
74
- end
75
-
76
- # [Output]
77
- # return vertices of rectangle as Array of Vector3.
78
- def vertices
79
- vertices = Array.new(4)
80
- vertices[0] = base_point
81
- vertices[1] = base_point+u_vector
82
- vertices[2] = base_point+u_vector+v_vector
83
- vertices[3] = base_point+v_vector
84
- return vertices
85
- end
86
-
87
- # [Output]
88
- # return normal of rectangle as Vector3.
89
- def normal
90
- return (u_vector.cross(v_vector)).normalize()
91
- end
92
-
93
- # [Output]
94
- # return point of opposite to base_point as Vector3.
95
- def opposite_point
96
- return base_point + u_vector + v_vector
97
- end
98
-
99
- # [Output]
100
- # return center point as Vector3.
101
- def center_point
102
- return base_point + u_vector*0.5 + v_vector*0.5
103
- end
104
-
105
- # [Output]
106
- # return rectangle area as Numeric.
107
- def area
108
- return (u_vector.cross(v_vector)).length
109
- end
110
-
111
- # [Input]
112
- # _check_point_ shold be Vector3.
113
- # [Output]
114
- # return u, v parametes on check_point as [Numeric, Numeric].
115
- def uv_parameter(check_point)
116
- Util3D.check_arg_type(::Vector3, check_point)
117
- mat = Matrix[[u_vector.x, u_vector.y, u_vector.z],
118
- [v_vector.x, v_vector.y, v_vector.z],
119
- [normal.x, normal.y, normal.z]]
120
- vec = (check_point - base_point).to_column_vector
121
- ans = mat.t.inv*vec
122
- return ans[0,0], ans[1,0]
123
- end
124
-
125
- # [Input]
126
- # _target_ shold be Vector3.
127
- # [Output]
128
- # return "distance, point on rectangle" as [Numeric, Vector3].
129
- def distance(target)
130
- # with Point
131
- if(target.kind_of?(Vector3))
132
- return distance_to_point(target)
133
- elsif(target.kind_of?(Line))
134
- #with Line
135
- # return distance_to_line(target)
136
- end
137
- Util3D.raise_argurment_error(target)
138
- end
139
-
140
- private
141
- def distance_to_point(check_point)
142
- u,v = self.uv_parameter(check_point)
143
- if(u >= 0 && u <= 1 && v >= 0 && v <= 1)
144
- point_on_rect = self.point( u, v )
145
- distance = point_on_rect.distance(check_point)
146
- return distance, point_on_rect
147
- end
148
- # rectangle does not contain projected point
149
- # check distance to FiniteLines
150
- finite_lines = self.edges
151
- return FiniteLine.ary_distanc_to_point(finite_lines, check_point)
152
- end
153
- end
154
- end
155
-
1
+ require 'matrix'
2
+
3
+ require 'gmath3D'
4
+
5
+ module GMath3D
6
+ #
7
+ # Rectangle represents a four edged finite plane on 3D space.
8
+ #
9
+ class Rectangle < Geom
10
+ public
11
+ attr_accessor:base_point
12
+ attr_accessor:u_vector
13
+ attr_accessor:v_vector
14
+
15
+ include BoxAvailable
16
+
17
+ # [Input]
18
+ # _base_point_ , _u_vector_, _v_vector_ should be Vector3.
19
+ # _u_vector_ and _v_vector_ should be orthogonalized.
20
+ # [Output]
21
+ # return new instance of Rectangle.
22
+ def initialize(base_point_arg = Vector3.new(), u_vector_arg = Vector3.new(1,0,0), v_vector_arg = Vector3.new(0,1,0))
23
+ Util3D.check_arg_type(::Vector3, base_point_arg)
24
+ Util3D.check_arg_type(::Vector3, u_vector_arg)
25
+ Util3D.check_arg_type(::Vector3, v_vector_arg)
26
+ super()
27
+ self.base_point = base_point_arg
28
+ self.u_vector = u_vector_arg
29
+ self.v_vector = v_vector_arg
30
+ end
31
+
32
+ def initialize_copy( original_obj )
33
+ @base_point = original_obj.base_point.dup
34
+ @u_vector = original_obj.u_vector.dup
35
+ @v_vector = original_obj.v_vector.dup
36
+ end
37
+
38
+ # [Input]
39
+ # _rhs_ is Rectangle.
40
+ # [Output]
41
+ # return true if rhs equals myself.
42
+ def ==(rhs)
43
+ return false if rhs == nil
44
+ return false if( !rhs.kind_of?(Rectangle) )
45
+ return false if( self.base_point != rhs.base_point)
46
+ return false if( self.u_vector != rhs.u_vector)
47
+ return false if( self.v_vector != rhs.v_vector)
48
+ return true
49
+ end
50
+
51
+ def to_s
52
+ "Rectangle[base#{@base_point.to_element_s}, u#{@u_vector.to_element_s}, v#{@v_vector.to_element_s}"
53
+ end
54
+
55
+ # [Input]
56
+ # _u_, _v_ should be Numeric.
57
+ # [Output]
58
+ # return point on rectangle as Vector3.
59
+ def point(u, v)
60
+ Util3D.check_arg_type(::Numeric, u)
61
+ Util3D.check_arg_type(::Numeric, v)
62
+ return base_point + u_vector*u + v_vector*v
63
+ end
64
+
65
+ # [Output]
66
+ # return edges of rectangle as Array of FiniteLine.
67
+ def edges
68
+ edge_ary = Array.new(4)
69
+ edge_ary[0] = FiniteLine.new( base_point, base_point+u_vector)
70
+ edge_ary[1] = FiniteLine.new( base_point+u_vector, base_point+u_vector+v_vector)
71
+ edge_ary[2] = FiniteLine.new( base_point+u_vector+v_vector, base_point+v_vector)
72
+ edge_ary[3] = FiniteLine.new( base_point+v_vector, base_point)
73
+ return edge_ary
74
+ end
75
+
76
+ # [Output]
77
+ # return vertices of rectangle as Array of Vector3.
78
+ def vertices
79
+ vertices = Array.new(4)
80
+ vertices[0] = base_point
81
+ vertices[1] = base_point+u_vector
82
+ vertices[2] = base_point+u_vector+v_vector
83
+ vertices[3] = base_point+v_vector
84
+ return vertices
85
+ end
86
+
87
+ # [Output]
88
+ # return normal of rectangle as Vector3.
89
+ def normal
90
+ return (u_vector.cross(v_vector)).normalize()
91
+ end
92
+
93
+ # [Output]
94
+ # return point of opposite to base_point as Vector3.
95
+ def opposite_point
96
+ return base_point + u_vector + v_vector
97
+ end
98
+
99
+ # [Output]
100
+ # return center point as Vector3.
101
+ def center_point
102
+ return base_point + u_vector*0.5 + v_vector*0.5
103
+ end
104
+
105
+ # [Output]
106
+ # return rectangle area as Numeric.
107
+ def area
108
+ return (u_vector.cross(v_vector)).length
109
+ end
110
+
111
+ # [Input]
112
+ # _check_point_ shold be Vector3.
113
+ # [Output]
114
+ # return u, v parametes on check_point as [Numeric, Numeric].
115
+ def uv_parameter(check_point)
116
+ Util3D.check_arg_type(::Vector3, check_point)
117
+ mat = Matrix[[u_vector.x, u_vector.y, u_vector.z],
118
+ [v_vector.x, v_vector.y, v_vector.z],
119
+ [normal.x, normal.y, normal.z]]
120
+ vec = (check_point - base_point).to_column_vector
121
+ ans = mat.t.inv*vec
122
+ return ans[0,0], ans[1,0]
123
+ end
124
+
125
+ # [Input]
126
+ # _target_ shold be Vector3.
127
+ # [Output]
128
+ # return "distance, point on rectangle" as [Numeric, Vector3].
129
+ def distance(target)
130
+ # with Point
131
+ if(target.kind_of?(Vector3))
132
+ return distance_to_point(target)
133
+ elsif(target.kind_of?(Line))
134
+ #with Line
135
+ # return distance_to_line(target)
136
+ end
137
+ Util3D.raise_argurment_error(target)
138
+ end
139
+
140
+ private
141
+ def distance_to_point(check_point)
142
+ u,v = self.uv_parameter(check_point)
143
+ if(u >= 0 && u <= 1 && v >= 0 && v <= 1)
144
+ point_on_rect = self.point( u, v )
145
+ distance = point_on_rect.distance(check_point)
146
+ return distance, point_on_rect
147
+ end
148
+ # rectangle does not contain projected point
149
+ # check distance to FiniteLines
150
+ finite_lines = self.edges
151
+ return FiniteLine.ary_distanc_to_point(finite_lines, check_point)
152
+ end
153
+ end
154
+ end
155
+