faiss 0.2.4 → 0.2.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +23 -21
- data/ext/faiss/extconf.rb +11 -0
- data/ext/faiss/index.cpp +4 -4
- data/ext/faiss/index_binary.cpp +6 -6
- data/ext/faiss/product_quantizer.cpp +4 -4
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +13 -0
- data/vendor/faiss/faiss/IVFlib.cpp +101 -2
- data/vendor/faiss/faiss/IVFlib.h +26 -2
- data/vendor/faiss/faiss/Index.cpp +36 -3
- data/vendor/faiss/faiss/Index.h +43 -6
- data/vendor/faiss/faiss/Index2Layer.cpp +6 -2
- data/vendor/faiss/faiss/Index2Layer.h +6 -1
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +219 -16
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.h +63 -5
- data/vendor/faiss/faiss/IndexAdditiveQuantizerFastScan.cpp +299 -0
- data/vendor/faiss/faiss/IndexAdditiveQuantizerFastScan.h +199 -0
- data/vendor/faiss/faiss/IndexBinary.cpp +20 -4
- data/vendor/faiss/faiss/IndexBinary.h +18 -3
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +9 -2
- data/vendor/faiss/faiss/IndexBinaryFlat.h +4 -2
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +4 -1
- data/vendor/faiss/faiss/IndexBinaryFromFloat.h +2 -1
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +5 -1
- data/vendor/faiss/faiss/IndexBinaryHNSW.h +2 -1
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +17 -4
- data/vendor/faiss/faiss/IndexBinaryHash.h +8 -4
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +28 -13
- data/vendor/faiss/faiss/IndexBinaryIVF.h +10 -7
- data/vendor/faiss/faiss/IndexFastScan.cpp +626 -0
- data/vendor/faiss/faiss/IndexFastScan.h +145 -0
- data/vendor/faiss/faiss/IndexFlat.cpp +34 -21
- data/vendor/faiss/faiss/IndexFlat.h +7 -4
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +35 -1
- data/vendor/faiss/faiss/IndexFlatCodes.h +12 -0
- data/vendor/faiss/faiss/IndexHNSW.cpp +66 -138
- data/vendor/faiss/faiss/IndexHNSW.h +4 -2
- data/vendor/faiss/faiss/IndexIDMap.cpp +247 -0
- data/vendor/faiss/faiss/IndexIDMap.h +107 -0
- data/vendor/faiss/faiss/IndexIVF.cpp +121 -33
- data/vendor/faiss/faiss/IndexIVF.h +35 -16
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +84 -7
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +63 -1
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.cpp +590 -0
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.h +171 -0
- data/vendor/faiss/faiss/IndexIVFFastScan.cpp +1290 -0
- data/vendor/faiss/faiss/IndexIVFFastScan.h +213 -0
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +37 -17
- data/vendor/faiss/faiss/IndexIVFFlat.h +4 -2
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +234 -50
- data/vendor/faiss/faiss/IndexIVFPQ.h +5 -1
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +23 -852
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +7 -112
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +3 -3
- data/vendor/faiss/faiss/IndexIVFPQR.h +1 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +3 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +2 -1
- data/vendor/faiss/faiss/IndexLSH.cpp +4 -2
- data/vendor/faiss/faiss/IndexLSH.h +2 -1
- data/vendor/faiss/faiss/IndexLattice.cpp +7 -1
- data/vendor/faiss/faiss/IndexLattice.h +3 -1
- data/vendor/faiss/faiss/IndexNNDescent.cpp +4 -3
- data/vendor/faiss/faiss/IndexNNDescent.h +2 -1
- data/vendor/faiss/faiss/IndexNSG.cpp +37 -3
- data/vendor/faiss/faiss/IndexNSG.h +25 -1
- data/vendor/faiss/faiss/IndexPQ.cpp +106 -69
- data/vendor/faiss/faiss/IndexPQ.h +19 -5
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +15 -450
- data/vendor/faiss/faiss/IndexPQFastScan.h +15 -78
- data/vendor/faiss/faiss/IndexPreTransform.cpp +47 -8
- data/vendor/faiss/faiss/IndexPreTransform.h +15 -3
- data/vendor/faiss/faiss/IndexRefine.cpp +8 -4
- data/vendor/faiss/faiss/IndexRefine.h +4 -2
- data/vendor/faiss/faiss/IndexReplicas.cpp +4 -2
- data/vendor/faiss/faiss/IndexReplicas.h +2 -1
- data/vendor/faiss/faiss/IndexRowwiseMinMax.cpp +438 -0
- data/vendor/faiss/faiss/IndexRowwiseMinMax.h +92 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +26 -15
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +6 -7
- data/vendor/faiss/faiss/IndexShards.cpp +4 -1
- data/vendor/faiss/faiss/IndexShards.h +2 -1
- data/vendor/faiss/faiss/MetaIndexes.cpp +5 -178
- data/vendor/faiss/faiss/MetaIndexes.h +3 -81
- data/vendor/faiss/faiss/VectorTransform.cpp +43 -0
- data/vendor/faiss/faiss/VectorTransform.h +22 -4
- data/vendor/faiss/faiss/clone_index.cpp +23 -1
- data/vendor/faiss/faiss/clone_index.h +3 -0
- data/vendor/faiss/faiss/cppcontrib/SaDecodeKernels.h +300 -0
- data/vendor/faiss/faiss/cppcontrib/detail/CoarseBitType.h +24 -0
- data/vendor/faiss/faiss/cppcontrib/detail/UintReader.h +195 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-avx2-inl.h +2058 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-inl.h +408 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-neon-inl.h +2147 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/MinMax-inl.h +460 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/MinMaxFP16-inl.h +465 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-avx2-inl.h +1618 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-inl.h +251 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-neon-inl.h +1452 -0
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +1 -0
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +0 -4
- data/vendor/faiss/faiss/gpu/GpuIndex.h +28 -4
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +2 -1
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +10 -8
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +75 -14
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +19 -32
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +22 -31
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +22 -28
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +14 -0
- data/vendor/faiss/faiss/gpu/GpuResources.h +16 -3
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +3 -3
- data/vendor/faiss/faiss/gpu/impl/IndexUtils.h +32 -0
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +1 -0
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +311 -75
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +10 -0
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +3 -0
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +2 -2
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +5 -4
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +116 -47
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +44 -13
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +0 -54
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +0 -76
- data/vendor/faiss/faiss/impl/DistanceComputer.h +64 -0
- data/vendor/faiss/faiss/impl/HNSW.cpp +123 -27
- data/vendor/faiss/faiss/impl/HNSW.h +19 -16
- data/vendor/faiss/faiss/impl/IDSelector.cpp +125 -0
- data/vendor/faiss/faiss/impl/IDSelector.h +135 -0
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +6 -28
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +6 -1
- data/vendor/faiss/faiss/impl/LookupTableScaler.h +77 -0
- data/vendor/faiss/faiss/impl/NNDescent.cpp +1 -0
- data/vendor/faiss/faiss/impl/NSG.cpp +1 -1
- data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.cpp +383 -0
- data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.h +154 -0
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +225 -145
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +29 -10
- data/vendor/faiss/faiss/impl/Quantizer.h +43 -0
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +192 -36
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +40 -20
- data/vendor/faiss/faiss/impl/ResultHandler.h +96 -0
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +97 -173
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +18 -18
- data/vendor/faiss/faiss/impl/index_read.cpp +240 -9
- data/vendor/faiss/faiss/impl/index_write.cpp +237 -5
- data/vendor/faiss/faiss/impl/kmeans1d.cpp +6 -4
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +56 -16
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +25 -8
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +66 -25
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +75 -27
- data/vendor/faiss/faiss/index_factory.cpp +196 -7
- data/vendor/faiss/faiss/index_io.h +5 -0
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +1 -0
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +4 -1
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +2 -1
- data/vendor/faiss/faiss/python/python_callbacks.cpp +27 -0
- data/vendor/faiss/faiss/python/python_callbacks.h +15 -0
- data/vendor/faiss/faiss/utils/Heap.h +31 -15
- data/vendor/faiss/faiss/utils/distances.cpp +380 -56
- data/vendor/faiss/faiss/utils/distances.h +113 -15
- data/vendor/faiss/faiss/utils/distances_simd.cpp +726 -6
- data/vendor/faiss/faiss/utils/extra_distances.cpp +12 -7
- data/vendor/faiss/faiss/utils/extra_distances.h +3 -1
- data/vendor/faiss/faiss/utils/fp16-fp16c.h +21 -0
- data/vendor/faiss/faiss/utils/fp16-inl.h +101 -0
- data/vendor/faiss/faiss/utils/fp16.h +11 -0
- data/vendor/faiss/faiss/utils/hamming-inl.h +54 -0
- data/vendor/faiss/faiss/utils/hamming.cpp +0 -48
- data/vendor/faiss/faiss/utils/ordered_key_value.h +10 -0
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +62 -0
- data/vendor/faiss/faiss/utils/quantize_lut.h +20 -0
- data/vendor/faiss/faiss/utils/random.cpp +53 -0
- data/vendor/faiss/faiss/utils/random.h +5 -0
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +4 -0
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +6 -1
- data/vendor/faiss/faiss/utils/simdlib_neon.h +7 -2
- metadata +37 -3
@@ -5,21 +5,15 @@
|
|
5
5
|
* LICENSE file in the root directory of this source tree.
|
6
6
|
*/
|
7
7
|
|
8
|
-
// -*- c++ -*-
|
9
|
-
|
10
8
|
#include <faiss/impl/ResidualQuantizer.h>
|
11
9
|
|
12
10
|
#include <algorithm>
|
11
|
+
#include <cmath>
|
13
12
|
#include <cstddef>
|
14
13
|
#include <cstdio>
|
15
14
|
#include <cstring>
|
16
15
|
#include <memory>
|
17
16
|
|
18
|
-
#include <faiss/impl/FaissAssert.h>
|
19
|
-
#include <faiss/impl/ResidualQuantizer.h>
|
20
|
-
#include <faiss/utils/utils.h>
|
21
|
-
|
22
|
-
#include <faiss/Clustering.h>
|
23
17
|
#include <faiss/IndexFlat.h>
|
24
18
|
#include <faiss/VectorTransform.h>
|
25
19
|
#include <faiss/impl/AuxIndexStructures.h>
|
@@ -27,7 +21,6 @@
|
|
27
21
|
#include <faiss/utils/Heap.h>
|
28
22
|
#include <faiss/utils/distances.h>
|
29
23
|
#include <faiss/utils/hamming.h>
|
30
|
-
#include <faiss/utils/simdlib.h>
|
31
24
|
#include <faiss/utils/utils.h>
|
32
25
|
|
33
26
|
extern "C" {
|
@@ -47,15 +40,34 @@ int sgemm_(
|
|
47
40
|
float* beta,
|
48
41
|
float* c,
|
49
42
|
FINTEGER* ldc);
|
43
|
+
|
44
|
+
// http://www.netlib.org/clapack/old/single/sgels.c
|
45
|
+
// solve least squares
|
46
|
+
|
47
|
+
int sgelsd_(
|
48
|
+
FINTEGER* m,
|
49
|
+
FINTEGER* n,
|
50
|
+
FINTEGER* nrhs,
|
51
|
+
float* a,
|
52
|
+
FINTEGER* lda,
|
53
|
+
float* b,
|
54
|
+
FINTEGER* ldb,
|
55
|
+
float* s,
|
56
|
+
float* rcond,
|
57
|
+
FINTEGER* rank,
|
58
|
+
float* work,
|
59
|
+
FINTEGER* lwork,
|
60
|
+
FINTEGER* iwork,
|
61
|
+
FINTEGER* info);
|
50
62
|
}
|
51
63
|
|
52
64
|
namespace faiss {
|
53
65
|
|
54
66
|
ResidualQuantizer::ResidualQuantizer()
|
55
67
|
: train_type(Train_progressive_dim),
|
68
|
+
niter_codebook_refine(5),
|
56
69
|
max_beam_size(5),
|
57
70
|
use_beam_LUT(0),
|
58
|
-
max_mem_distances(5 * (size_t(1) << 30)), // 5 GiB
|
59
71
|
assign_index_factory(nullptr) {
|
60
72
|
d = 0;
|
61
73
|
M = 0;
|
@@ -81,6 +93,39 @@ ResidualQuantizer::ResidualQuantizer(
|
|
81
93
|
Search_type_t search_type)
|
82
94
|
: ResidualQuantizer(d, std::vector<size_t>(M, nbits), search_type) {}
|
83
95
|
|
96
|
+
void ResidualQuantizer::initialize_from(
|
97
|
+
const ResidualQuantizer& other,
|
98
|
+
int skip_M) {
|
99
|
+
FAISS_THROW_IF_NOT(M + skip_M <= other.M);
|
100
|
+
FAISS_THROW_IF_NOT(skip_M >= 0);
|
101
|
+
|
102
|
+
Search_type_t this_search_type = search_type;
|
103
|
+
int this_M = M;
|
104
|
+
|
105
|
+
// a first good approximation: override everything
|
106
|
+
*this = other;
|
107
|
+
|
108
|
+
// adjust derived values
|
109
|
+
M = this_M;
|
110
|
+
search_type = this_search_type;
|
111
|
+
nbits.resize(M);
|
112
|
+
memcpy(nbits.data(),
|
113
|
+
other.nbits.data() + skip_M,
|
114
|
+
nbits.size() * sizeof(nbits[0]));
|
115
|
+
|
116
|
+
set_derived_values();
|
117
|
+
|
118
|
+
// resize codebooks if trained
|
119
|
+
if (codebooks.size() > 0) {
|
120
|
+
FAISS_THROW_IF_NOT(codebooks.size() == other.total_codebook_size * d);
|
121
|
+
codebooks.resize(total_codebook_size * d);
|
122
|
+
memcpy(codebooks.data(),
|
123
|
+
other.codebooks.data() + other.codebook_offsets[skip_M] * d,
|
124
|
+
codebooks.size() * sizeof(codebooks[0]));
|
125
|
+
// TODO: norm_tabs?
|
126
|
+
}
|
127
|
+
}
|
128
|
+
|
84
129
|
void beam_search_encode_step(
|
85
130
|
size_t d,
|
86
131
|
size_t K,
|
@@ -245,8 +290,6 @@ void ResidualQuantizer::train(size_t n, const float* x) {
|
|
245
290
|
}
|
246
291
|
train_residuals = residuals1;
|
247
292
|
}
|
248
|
-
train_type_t tt = train_type_t(train_type & 1023);
|
249
|
-
|
250
293
|
std::vector<float> codebooks;
|
251
294
|
float obj = 0;
|
252
295
|
|
@@ -259,7 +302,7 @@ void ResidualQuantizer::train(size_t n, const float* x) {
|
|
259
302
|
|
260
303
|
double t1 = getmillisecs();
|
261
304
|
|
262
|
-
if (
|
305
|
+
if (!(train_type & Train_progressive_dim)) { // regular kmeans
|
263
306
|
Clustering clus(d, K, cp);
|
264
307
|
clus.train(
|
265
308
|
train_residuals.size() / d,
|
@@ -268,7 +311,7 @@ void ResidualQuantizer::train(size_t n, const float* x) {
|
|
268
311
|
codebooks.swap(clus.centroids);
|
269
312
|
assign_index->reset();
|
270
313
|
obj = clus.iteration_stats.back().obj;
|
271
|
-
} else
|
314
|
+
} else { // progressive dim clustering
|
272
315
|
ProgressiveDimClustering clus(d, K, cp);
|
273
316
|
ProgressiveDimIndexFactory default_fac;
|
274
317
|
clus.train(
|
@@ -277,8 +320,6 @@ void ResidualQuantizer::train(size_t n, const float* x) {
|
|
277
320
|
assign_index_factory ? *assign_index_factory : default_fac);
|
278
321
|
codebooks.swap(clus.centroids);
|
279
322
|
obj = clus.iteration_stats.back().obj;
|
280
|
-
} else {
|
281
|
-
FAISS_THROW_MSG("train type not supported");
|
282
323
|
}
|
283
324
|
clustering_time += (getmillisecs() - t1) / 1000;
|
284
325
|
|
@@ -350,6 +391,19 @@ void ResidualQuantizer::train(size_t n, const float* x) {
|
|
350
391
|
cur_beam_size = new_beam_size;
|
351
392
|
}
|
352
393
|
|
394
|
+
is_trained = true;
|
395
|
+
|
396
|
+
if (train_type & Train_refine_codebook) {
|
397
|
+
for (int iter = 0; iter < niter_codebook_refine; iter++) {
|
398
|
+
if (verbose) {
|
399
|
+
printf("re-estimating the codebooks to minimize "
|
400
|
+
"quantization errors (iter %d).\n",
|
401
|
+
iter);
|
402
|
+
}
|
403
|
+
retrain_AQ_codebook(n, x);
|
404
|
+
}
|
405
|
+
}
|
406
|
+
|
353
407
|
// find min and max norms
|
354
408
|
std::vector<float> norms(n);
|
355
409
|
|
@@ -359,33 +413,128 @@ void ResidualQuantizer::train(size_t n, const float* x) {
|
|
359
413
|
}
|
360
414
|
|
361
415
|
// fvec_norms_L2sqr(norms.data(), x, d, n);
|
416
|
+
train_norm(n, norms.data());
|
417
|
+
|
418
|
+
if (!(train_type & Skip_codebook_tables)) {
|
419
|
+
compute_codebook_tables();
|
420
|
+
}
|
421
|
+
}
|
422
|
+
|
423
|
+
float ResidualQuantizer::retrain_AQ_codebook(size_t n, const float* x) {
|
424
|
+
FAISS_THROW_IF_NOT_MSG(n >= total_codebook_size, "too few training points");
|
425
|
+
|
426
|
+
if (verbose) {
|
427
|
+
printf(" encoding %zd training vectors\n", n);
|
428
|
+
}
|
429
|
+
std::vector<uint8_t> codes(n * code_size);
|
430
|
+
compute_codes(x, codes.data(), n);
|
362
431
|
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
|
432
|
+
// compute reconstruction error
|
433
|
+
float input_recons_error;
|
434
|
+
{
|
435
|
+
std::vector<float> x_recons(n * d);
|
436
|
+
decode(codes.data(), x_recons.data(), n);
|
437
|
+
input_recons_error = fvec_L2sqr(x, x_recons.data(), n * d);
|
438
|
+
if (verbose) {
|
439
|
+
printf(" input quantization error %g\n", input_recons_error);
|
368
440
|
}
|
369
|
-
|
370
|
-
|
441
|
+
}
|
442
|
+
|
443
|
+
// build matrix of the linear system
|
444
|
+
std::vector<float> C(n * total_codebook_size);
|
445
|
+
for (size_t i = 0; i < n; i++) {
|
446
|
+
BitstringReader bsr(codes.data() + i * code_size, code_size);
|
447
|
+
for (int m = 0; m < M; m++) {
|
448
|
+
int idx = bsr.read(nbits[m]);
|
449
|
+
C[i + (codebook_offsets[m] + idx) * n] = 1;
|
450
|
+
}
|
451
|
+
}
|
452
|
+
|
453
|
+
// transpose training vectors
|
454
|
+
std::vector<float> xt(n * d);
|
455
|
+
|
456
|
+
for (size_t i = 0; i < n; i++) {
|
457
|
+
for (size_t j = 0; j < d; j++) {
|
458
|
+
xt[j * n + i] = x[i * d + j];
|
371
459
|
}
|
372
460
|
}
|
373
461
|
|
374
|
-
|
375
|
-
|
376
|
-
|
377
|
-
|
462
|
+
{ // solve least squares
|
463
|
+
FINTEGER lwork = -1;
|
464
|
+
FINTEGER di = d, ni = n, tcsi = total_codebook_size;
|
465
|
+
FINTEGER info = -1, rank = -1;
|
466
|
+
|
467
|
+
float rcond = 1e-4; // this is an important parameter because the code
|
468
|
+
// matrix can be rank deficient for small problems,
|
469
|
+
// the default rcond=-1 does not work
|
470
|
+
float worksize;
|
471
|
+
std::vector<float> sing_vals(total_codebook_size);
|
472
|
+
FINTEGER nlvl = 1000; // formula is a bit convoluted so let's take an
|
473
|
+
// upper bound
|
474
|
+
std::vector<FINTEGER> iwork(
|
475
|
+
3 * total_codebook_size * nlvl + 11 * total_codebook_size);
|
476
|
+
|
477
|
+
// worksize query
|
478
|
+
sgelsd_(&ni,
|
479
|
+
&tcsi,
|
480
|
+
&di,
|
481
|
+
C.data(),
|
482
|
+
&ni,
|
483
|
+
xt.data(),
|
484
|
+
&ni,
|
485
|
+
sing_vals.data(),
|
486
|
+
&rcond,
|
487
|
+
&rank,
|
488
|
+
&worksize,
|
489
|
+
&lwork,
|
490
|
+
iwork.data(),
|
491
|
+
&info);
|
492
|
+
FAISS_THROW_IF_NOT(info == 0);
|
493
|
+
|
494
|
+
lwork = worksize;
|
495
|
+
std::vector<float> work(lwork);
|
496
|
+
// actual call
|
497
|
+
sgelsd_(&ni,
|
498
|
+
&tcsi,
|
499
|
+
&di,
|
500
|
+
C.data(),
|
501
|
+
&ni,
|
502
|
+
xt.data(),
|
503
|
+
&ni,
|
504
|
+
sing_vals.data(),
|
505
|
+
&rcond,
|
506
|
+
&rank,
|
507
|
+
work.data(),
|
508
|
+
&lwork,
|
509
|
+
iwork.data(),
|
510
|
+
&info);
|
511
|
+
FAISS_THROW_IF_NOT_FMT(info == 0, "SGELS returned info=%d", int(info));
|
512
|
+
if (verbose) {
|
513
|
+
printf(" sgelsd rank=%d/%d\n",
|
514
|
+
int(rank),
|
515
|
+
int(total_codebook_size));
|
378
516
|
}
|
379
|
-
Clustering1D clus(k);
|
380
|
-
clus.train_exact(n, norms.data());
|
381
|
-
qnorm.add(clus.k, clus.centroids.data());
|
382
517
|
}
|
383
518
|
|
384
|
-
|
519
|
+
// result is in xt, re-transpose to codebook
|
385
520
|
|
386
|
-
|
387
|
-
|
521
|
+
for (size_t i = 0; i < total_codebook_size; i++) {
|
522
|
+
for (size_t j = 0; j < d; j++) {
|
523
|
+
codebooks[i * d + j] = xt[j * n + i];
|
524
|
+
FAISS_THROW_IF_NOT(std::isfinite(codebooks[i * d + j]));
|
525
|
+
}
|
526
|
+
}
|
527
|
+
|
528
|
+
float output_recons_error = 0;
|
529
|
+
for (size_t j = 0; j < d; j++) {
|
530
|
+
output_recons_error += fvec_norm_L2sqr(
|
531
|
+
xt.data() + total_codebook_size + n * j,
|
532
|
+
n - total_codebook_size);
|
388
533
|
}
|
534
|
+
if (verbose) {
|
535
|
+
printf(" output quantization error %g\n", output_recons_error);
|
536
|
+
}
|
537
|
+
return output_recons_error;
|
389
538
|
}
|
390
539
|
|
391
540
|
size_t ResidualQuantizer::memory_per_point(int beam_size) const {
|
@@ -400,10 +549,11 @@ size_t ResidualQuantizer::memory_per_point(int beam_size) const {
|
|
400
549
|
return mem;
|
401
550
|
}
|
402
551
|
|
403
|
-
void ResidualQuantizer::
|
552
|
+
void ResidualQuantizer::compute_codes_add_centroids(
|
404
553
|
const float* x,
|
405
554
|
uint8_t* codes_out,
|
406
|
-
size_t n
|
555
|
+
size_t n,
|
556
|
+
const float* centroids) const {
|
407
557
|
FAISS_THROW_IF_NOT_MSG(is_trained, "RQ is not trained yet.");
|
408
558
|
|
409
559
|
size_t mem = memory_per_point();
|
@@ -415,7 +565,12 @@ void ResidualQuantizer::compute_codes(
|
|
415
565
|
}
|
416
566
|
for (size_t i0 = 0; i0 < n; i0 += bs) {
|
417
567
|
size_t i1 = std::min(n, i0 + bs);
|
418
|
-
|
568
|
+
const float* cent = nullptr;
|
569
|
+
if (centroids != nullptr) {
|
570
|
+
cent = centroids + i0 * d;
|
571
|
+
}
|
572
|
+
compute_codes_add_centroids(
|
573
|
+
x + i0 * d, codes_out + i0 * code_size, i1 - i0, cent);
|
419
574
|
}
|
420
575
|
return;
|
421
576
|
}
|
@@ -489,7 +644,8 @@ void ResidualQuantizer::compute_codes(
|
|
489
644
|
codes.data(),
|
490
645
|
codes_out,
|
491
646
|
M * max_beam_size,
|
492
|
-
norms.size() > 0 ? norms.data() : nullptr
|
647
|
+
norms.size() > 0 ? norms.data() : nullptr,
|
648
|
+
centroids);
|
493
649
|
}
|
494
650
|
|
495
651
|
void ResidualQuantizer::refine_beam(
|
@@ -24,25 +24,31 @@ namespace faiss {
|
|
24
24
|
|
25
25
|
struct ResidualQuantizer : AdditiveQuantizer {
|
26
26
|
/// initialization
|
27
|
-
enum train_type_t {
|
28
|
-
Train_default = 0, ///< regular k-means
|
29
|
-
Train_progressive_dim = 1, ///< progressive dim clustering
|
30
|
-
Train_default_Train_top_beam = 1024,
|
31
|
-
Train_progressive_dim_Train_top_beam = 1025,
|
32
|
-
Train_default_Skip_codebook_tables = 2048,
|
33
|
-
Train_progressive_dim_Skip_codebook_tables = 2049,
|
34
|
-
Train_default_Train_top_beam_Skip_codebook_tables = 3072,
|
35
|
-
Train_progressive_dim_Train_top_beam_Skip_codebook_tables = 3073,
|
36
|
-
};
|
37
27
|
|
28
|
+
// Was enum but that does not work so well with bitmasks
|
29
|
+
using train_type_t = int;
|
30
|
+
|
31
|
+
/// Binary or of the Train_* flags below
|
38
32
|
train_type_t train_type;
|
39
33
|
|
40
|
-
|
41
|
-
|
34
|
+
/// regular k-means (minimal amount of computation)
|
35
|
+
static const int Train_default = 0;
|
36
|
+
|
37
|
+
/// progressive dim clustering (set by default)
|
38
|
+
static const int Train_progressive_dim = 1;
|
39
|
+
|
40
|
+
/// do a few iterations of codebook refinement after first level estimation
|
41
|
+
static const int Train_refine_codebook = 2;
|
42
|
+
|
43
|
+
/// number of iterations for codebook refinement.
|
44
|
+
int niter_codebook_refine;
|
45
|
+
|
46
|
+
/** set this bit on train_type if beam is to be trained only on the
|
47
|
+
* first element of the beam (faster but less accurate) */
|
42
48
|
static const int Train_top_beam = 1024;
|
43
49
|
|
44
|
-
|
45
|
-
|
50
|
+
/** set this bit to *not* autmatically compute the codebook tables
|
51
|
+
* after training */
|
46
52
|
static const int Skip_codebook_tables = 2048;
|
47
53
|
|
48
54
|
/// beam size used for training and for encoding
|
@@ -51,10 +57,6 @@ struct ResidualQuantizer : AdditiveQuantizer {
|
|
51
57
|
/// use LUT for beam search
|
52
58
|
int use_beam_LUT;
|
53
59
|
|
54
|
-
/// distance matrixes with beam search can get large, so use this
|
55
|
-
/// to batch computations at encoding time.
|
56
|
-
size_t max_mem_distances;
|
57
|
-
|
58
60
|
/// clustering parameters
|
59
61
|
ProgressiveDimClusteringParameters cp;
|
60
62
|
|
@@ -74,15 +76,33 @@ struct ResidualQuantizer : AdditiveQuantizer {
|
|
74
76
|
|
75
77
|
ResidualQuantizer();
|
76
78
|
|
77
|
-
|
79
|
+
/// Train the residual quantizer
|
78
80
|
void train(size_t n, const float* x) override;
|
79
81
|
|
82
|
+
/// Copy the M codebook levels from other, starting from skip_M
|
83
|
+
void initialize_from(const ResidualQuantizer& other, int skip_M = 0);
|
84
|
+
|
85
|
+
/** Encode the vectors and compute codebook that minimizes the quantization
|
86
|
+
* error on these codes
|
87
|
+
*
|
88
|
+
* @param x training vectors, size n * d
|
89
|
+
* @param n nb of training vectors, n >= total_codebook_size
|
90
|
+
* @return returns quantization error for the new codebook with old
|
91
|
+
* codes
|
92
|
+
*/
|
93
|
+
float retrain_AQ_codebook(size_t n, const float* x);
|
94
|
+
|
80
95
|
/** Encode a set of vectors
|
81
96
|
*
|
82
97
|
* @param x vectors to encode, size n * d
|
83
98
|
* @param codes output codes, size n * code_size
|
99
|
+
* @param centroids centroids to be added to x, size n * d
|
84
100
|
*/
|
85
|
-
void
|
101
|
+
void compute_codes_add_centroids(
|
102
|
+
const float* x,
|
103
|
+
uint8_t* codes,
|
104
|
+
size_t n,
|
105
|
+
const float* centroids = nullptr) const override;
|
86
106
|
|
87
107
|
/** lower-level encode function
|
88
108
|
*
|
@@ -413,4 +413,100 @@ struct RangeSearchResultHandler {
|
|
413
413
|
}
|
414
414
|
};
|
415
415
|
|
416
|
+
/*****************************************************************
|
417
|
+
* Single best result handler.
|
418
|
+
* Tracks the only best result, thus avoiding storing
|
419
|
+
* some temporary data in memory.
|
420
|
+
*****************************************************************/
|
421
|
+
|
422
|
+
template <class C>
|
423
|
+
struct SingleBestResultHandler {
|
424
|
+
using T = typename C::T;
|
425
|
+
using TI = typename C::TI;
|
426
|
+
|
427
|
+
int nq;
|
428
|
+
// contains exactly nq elements
|
429
|
+
T* dis_tab;
|
430
|
+
// contains exactly nq elements
|
431
|
+
TI* ids_tab;
|
432
|
+
|
433
|
+
SingleBestResultHandler(size_t nq, T* dis_tab, TI* ids_tab)
|
434
|
+
: nq(nq), dis_tab(dis_tab), ids_tab(ids_tab) {}
|
435
|
+
|
436
|
+
struct SingleResultHandler {
|
437
|
+
SingleBestResultHandler& hr;
|
438
|
+
|
439
|
+
T min_dis;
|
440
|
+
TI min_idx;
|
441
|
+
size_t current_idx = 0;
|
442
|
+
|
443
|
+
SingleResultHandler(SingleBestResultHandler& hr) : hr(hr) {}
|
444
|
+
|
445
|
+
/// begin results for query # i
|
446
|
+
void begin(const size_t current_idx) {
|
447
|
+
this->current_idx = current_idx;
|
448
|
+
min_dis = HUGE_VALF;
|
449
|
+
min_idx = 0;
|
450
|
+
}
|
451
|
+
|
452
|
+
/// add one result for query i
|
453
|
+
void add_result(T dis, TI idx) {
|
454
|
+
if (C::cmp(min_dis, dis)) {
|
455
|
+
min_dis = dis;
|
456
|
+
min_idx = idx;
|
457
|
+
}
|
458
|
+
}
|
459
|
+
|
460
|
+
/// series of results for query i is done
|
461
|
+
void end() {
|
462
|
+
hr.dis_tab[current_idx] = min_dis;
|
463
|
+
hr.ids_tab[current_idx] = min_idx;
|
464
|
+
}
|
465
|
+
};
|
466
|
+
|
467
|
+
size_t i0, i1;
|
468
|
+
|
469
|
+
/// begin
|
470
|
+
void begin_multiple(size_t i0, size_t i1) {
|
471
|
+
this->i0 = i0;
|
472
|
+
this->i1 = i1;
|
473
|
+
|
474
|
+
for (size_t i = i0; i < i1; i++) {
|
475
|
+
this->dis_tab[i] = HUGE_VALF;
|
476
|
+
}
|
477
|
+
}
|
478
|
+
|
479
|
+
/// add results for query i0..i1 and j0..j1
|
480
|
+
void add_results(size_t j0, size_t j1, const T* dis_tab) {
|
481
|
+
for (int64_t i = i0; i < i1; i++) {
|
482
|
+
const T* dis_tab_i = dis_tab + (j1 - j0) * (i - i0) - j0;
|
483
|
+
|
484
|
+
auto& min_distance = this->dis_tab[i];
|
485
|
+
auto& min_index = this->ids_tab[i];
|
486
|
+
|
487
|
+
for (size_t j = j0; j < j1; j++) {
|
488
|
+
const T distance = dis_tab_i[j];
|
489
|
+
|
490
|
+
if (C::cmp(min_distance, distance)) {
|
491
|
+
min_distance = distance;
|
492
|
+
min_index = j;
|
493
|
+
}
|
494
|
+
}
|
495
|
+
}
|
496
|
+
}
|
497
|
+
|
498
|
+
void add_result(const size_t i, const T dis, const TI idx) {
|
499
|
+
auto& min_distance = this->dis_tab[i];
|
500
|
+
auto& min_index = this->ids_tab[i];
|
501
|
+
|
502
|
+
if (C::cmp(min_distance, dis)) {
|
503
|
+
min_distance = dis;
|
504
|
+
min_index = idx;
|
505
|
+
}
|
506
|
+
}
|
507
|
+
|
508
|
+
/// series of results for queries i0..i1 is done
|
509
|
+
void end_multiple() {}
|
510
|
+
};
|
511
|
+
|
416
512
|
} // namespace faiss
|