faiss 0.2.4 → 0.2.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +23 -21
- data/ext/faiss/extconf.rb +11 -0
- data/ext/faiss/index.cpp +4 -4
- data/ext/faiss/index_binary.cpp +6 -6
- data/ext/faiss/product_quantizer.cpp +4 -4
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +13 -0
- data/vendor/faiss/faiss/IVFlib.cpp +101 -2
- data/vendor/faiss/faiss/IVFlib.h +26 -2
- data/vendor/faiss/faiss/Index.cpp +36 -3
- data/vendor/faiss/faiss/Index.h +43 -6
- data/vendor/faiss/faiss/Index2Layer.cpp +6 -2
- data/vendor/faiss/faiss/Index2Layer.h +6 -1
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +219 -16
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.h +63 -5
- data/vendor/faiss/faiss/IndexAdditiveQuantizerFastScan.cpp +299 -0
- data/vendor/faiss/faiss/IndexAdditiveQuantizerFastScan.h +199 -0
- data/vendor/faiss/faiss/IndexBinary.cpp +20 -4
- data/vendor/faiss/faiss/IndexBinary.h +18 -3
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +9 -2
- data/vendor/faiss/faiss/IndexBinaryFlat.h +4 -2
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +4 -1
- data/vendor/faiss/faiss/IndexBinaryFromFloat.h +2 -1
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +5 -1
- data/vendor/faiss/faiss/IndexBinaryHNSW.h +2 -1
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +17 -4
- data/vendor/faiss/faiss/IndexBinaryHash.h +8 -4
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +28 -13
- data/vendor/faiss/faiss/IndexBinaryIVF.h +10 -7
- data/vendor/faiss/faiss/IndexFastScan.cpp +626 -0
- data/vendor/faiss/faiss/IndexFastScan.h +145 -0
- data/vendor/faiss/faiss/IndexFlat.cpp +34 -21
- data/vendor/faiss/faiss/IndexFlat.h +7 -4
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +35 -1
- data/vendor/faiss/faiss/IndexFlatCodes.h +12 -0
- data/vendor/faiss/faiss/IndexHNSW.cpp +66 -138
- data/vendor/faiss/faiss/IndexHNSW.h +4 -2
- data/vendor/faiss/faiss/IndexIDMap.cpp +247 -0
- data/vendor/faiss/faiss/IndexIDMap.h +107 -0
- data/vendor/faiss/faiss/IndexIVF.cpp +121 -33
- data/vendor/faiss/faiss/IndexIVF.h +35 -16
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +84 -7
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +63 -1
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.cpp +590 -0
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.h +171 -0
- data/vendor/faiss/faiss/IndexIVFFastScan.cpp +1290 -0
- data/vendor/faiss/faiss/IndexIVFFastScan.h +213 -0
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +37 -17
- data/vendor/faiss/faiss/IndexIVFFlat.h +4 -2
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +234 -50
- data/vendor/faiss/faiss/IndexIVFPQ.h +5 -1
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +23 -852
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +7 -112
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +3 -3
- data/vendor/faiss/faiss/IndexIVFPQR.h +1 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +3 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +2 -1
- data/vendor/faiss/faiss/IndexLSH.cpp +4 -2
- data/vendor/faiss/faiss/IndexLSH.h +2 -1
- data/vendor/faiss/faiss/IndexLattice.cpp +7 -1
- data/vendor/faiss/faiss/IndexLattice.h +3 -1
- data/vendor/faiss/faiss/IndexNNDescent.cpp +4 -3
- data/vendor/faiss/faiss/IndexNNDescent.h +2 -1
- data/vendor/faiss/faiss/IndexNSG.cpp +37 -3
- data/vendor/faiss/faiss/IndexNSG.h +25 -1
- data/vendor/faiss/faiss/IndexPQ.cpp +106 -69
- data/vendor/faiss/faiss/IndexPQ.h +19 -5
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +15 -450
- data/vendor/faiss/faiss/IndexPQFastScan.h +15 -78
- data/vendor/faiss/faiss/IndexPreTransform.cpp +47 -8
- data/vendor/faiss/faiss/IndexPreTransform.h +15 -3
- data/vendor/faiss/faiss/IndexRefine.cpp +8 -4
- data/vendor/faiss/faiss/IndexRefine.h +4 -2
- data/vendor/faiss/faiss/IndexReplicas.cpp +4 -2
- data/vendor/faiss/faiss/IndexReplicas.h +2 -1
- data/vendor/faiss/faiss/IndexRowwiseMinMax.cpp +438 -0
- data/vendor/faiss/faiss/IndexRowwiseMinMax.h +92 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +26 -15
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +6 -7
- data/vendor/faiss/faiss/IndexShards.cpp +4 -1
- data/vendor/faiss/faiss/IndexShards.h +2 -1
- data/vendor/faiss/faiss/MetaIndexes.cpp +5 -178
- data/vendor/faiss/faiss/MetaIndexes.h +3 -81
- data/vendor/faiss/faiss/VectorTransform.cpp +43 -0
- data/vendor/faiss/faiss/VectorTransform.h +22 -4
- data/vendor/faiss/faiss/clone_index.cpp +23 -1
- data/vendor/faiss/faiss/clone_index.h +3 -0
- data/vendor/faiss/faiss/cppcontrib/SaDecodeKernels.h +300 -0
- data/vendor/faiss/faiss/cppcontrib/detail/CoarseBitType.h +24 -0
- data/vendor/faiss/faiss/cppcontrib/detail/UintReader.h +195 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-avx2-inl.h +2058 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-inl.h +408 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-neon-inl.h +2147 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/MinMax-inl.h +460 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/MinMaxFP16-inl.h +465 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-avx2-inl.h +1618 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-inl.h +251 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-neon-inl.h +1452 -0
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +1 -0
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +0 -4
- data/vendor/faiss/faiss/gpu/GpuIndex.h +28 -4
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +2 -1
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +10 -8
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +75 -14
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +19 -32
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +22 -31
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +22 -28
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +14 -0
- data/vendor/faiss/faiss/gpu/GpuResources.h +16 -3
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +3 -3
- data/vendor/faiss/faiss/gpu/impl/IndexUtils.h +32 -0
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +1 -0
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +311 -75
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +10 -0
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +3 -0
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +2 -2
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +5 -4
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +116 -47
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +44 -13
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +0 -54
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +0 -76
- data/vendor/faiss/faiss/impl/DistanceComputer.h +64 -0
- data/vendor/faiss/faiss/impl/HNSW.cpp +123 -27
- data/vendor/faiss/faiss/impl/HNSW.h +19 -16
- data/vendor/faiss/faiss/impl/IDSelector.cpp +125 -0
- data/vendor/faiss/faiss/impl/IDSelector.h +135 -0
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +6 -28
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +6 -1
- data/vendor/faiss/faiss/impl/LookupTableScaler.h +77 -0
- data/vendor/faiss/faiss/impl/NNDescent.cpp +1 -0
- data/vendor/faiss/faiss/impl/NSG.cpp +1 -1
- data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.cpp +383 -0
- data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.h +154 -0
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +225 -145
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +29 -10
- data/vendor/faiss/faiss/impl/Quantizer.h +43 -0
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +192 -36
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +40 -20
- data/vendor/faiss/faiss/impl/ResultHandler.h +96 -0
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +97 -173
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +18 -18
- data/vendor/faiss/faiss/impl/index_read.cpp +240 -9
- data/vendor/faiss/faiss/impl/index_write.cpp +237 -5
- data/vendor/faiss/faiss/impl/kmeans1d.cpp +6 -4
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +56 -16
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +25 -8
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +66 -25
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +75 -27
- data/vendor/faiss/faiss/index_factory.cpp +196 -7
- data/vendor/faiss/faiss/index_io.h +5 -0
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +1 -0
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +4 -1
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +2 -1
- data/vendor/faiss/faiss/python/python_callbacks.cpp +27 -0
- data/vendor/faiss/faiss/python/python_callbacks.h +15 -0
- data/vendor/faiss/faiss/utils/Heap.h +31 -15
- data/vendor/faiss/faiss/utils/distances.cpp +380 -56
- data/vendor/faiss/faiss/utils/distances.h +113 -15
- data/vendor/faiss/faiss/utils/distances_simd.cpp +726 -6
- data/vendor/faiss/faiss/utils/extra_distances.cpp +12 -7
- data/vendor/faiss/faiss/utils/extra_distances.h +3 -1
- data/vendor/faiss/faiss/utils/fp16-fp16c.h +21 -0
- data/vendor/faiss/faiss/utils/fp16-inl.h +101 -0
- data/vendor/faiss/faiss/utils/fp16.h +11 -0
- data/vendor/faiss/faiss/utils/hamming-inl.h +54 -0
- data/vendor/faiss/faiss/utils/hamming.cpp +0 -48
- data/vendor/faiss/faiss/utils/ordered_key_value.h +10 -0
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +62 -0
- data/vendor/faiss/faiss/utils/quantize_lut.h +20 -0
- data/vendor/faiss/faiss/utils/random.cpp +53 -0
- data/vendor/faiss/faiss/utils/random.h +5 -0
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +4 -0
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +6 -1
- data/vendor/faiss/faiss/utils/simdlib_neon.h +7 -2
- metadata +37 -3
@@ -40,6 +40,90 @@ IndexAdditiveQuantizer::IndexAdditiveQuantizer(
|
|
40
40
|
|
41
41
|
namespace {
|
42
42
|
|
43
|
+
/************************************************************
|
44
|
+
* DistanceComputer implementation
|
45
|
+
************************************************************/
|
46
|
+
|
47
|
+
template <class VectorDistance>
|
48
|
+
struct AQDistanceComputerDecompress: FlatCodesDistanceComputer {
|
49
|
+
std::vector<float> tmp;
|
50
|
+
const AdditiveQuantizer & aq;
|
51
|
+
VectorDistance vd;
|
52
|
+
size_t d;
|
53
|
+
|
54
|
+
AQDistanceComputerDecompress(const IndexAdditiveQuantizer &iaq, VectorDistance vd):
|
55
|
+
FlatCodesDistanceComputer(iaq.codes.data(), iaq.code_size),
|
56
|
+
tmp(iaq.d * 2),
|
57
|
+
aq(*iaq.aq),
|
58
|
+
vd(vd),
|
59
|
+
d(iaq.d)
|
60
|
+
{}
|
61
|
+
|
62
|
+
const float *q;
|
63
|
+
void set_query(const float* x) final {
|
64
|
+
q = x;
|
65
|
+
}
|
66
|
+
|
67
|
+
float symmetric_dis(idx_t i, idx_t j) final {
|
68
|
+
aq.decode(codes + i * d, tmp.data(), 1);
|
69
|
+
aq.decode(codes + j * d, tmp.data() + d, 1);
|
70
|
+
return vd(tmp.data(), tmp.data() + d);
|
71
|
+
}
|
72
|
+
|
73
|
+
float distance_to_code(const uint8_t *code) final {
|
74
|
+
aq.decode(code, tmp.data(), 1);
|
75
|
+
return vd(q, tmp.data());
|
76
|
+
}
|
77
|
+
|
78
|
+
virtual ~AQDistanceComputerDecompress() {}
|
79
|
+
};
|
80
|
+
|
81
|
+
|
82
|
+
template<bool is_IP, AdditiveQuantizer::Search_type_t st>
|
83
|
+
struct AQDistanceComputerLUT: FlatCodesDistanceComputer {
|
84
|
+
std::vector<float> LUT;
|
85
|
+
const AdditiveQuantizer & aq;
|
86
|
+
size_t d;
|
87
|
+
|
88
|
+
explicit AQDistanceComputerLUT(const IndexAdditiveQuantizer &iaq):
|
89
|
+
FlatCodesDistanceComputer(iaq.codes.data(), iaq.code_size),
|
90
|
+
LUT(iaq.aq->total_codebook_size + iaq.d * 2),
|
91
|
+
aq(*iaq.aq),
|
92
|
+
d(iaq.d)
|
93
|
+
{}
|
94
|
+
|
95
|
+
float bias;
|
96
|
+
void set_query(const float* x) final {
|
97
|
+
// this is quite sub-optimal for multiple queries
|
98
|
+
aq.compute_LUT(1, x, LUT.data());
|
99
|
+
if (is_IP) {
|
100
|
+
bias = 0;
|
101
|
+
} else {
|
102
|
+
bias = fvec_norm_L2sqr(x, d);
|
103
|
+
}
|
104
|
+
}
|
105
|
+
|
106
|
+
float symmetric_dis(idx_t i, idx_t j) final {
|
107
|
+
float *tmp = LUT.data();
|
108
|
+
aq.decode(codes + i * d, tmp, 1);
|
109
|
+
aq.decode(codes + j * d, tmp + d, 1);
|
110
|
+
return fvec_L2sqr(tmp, tmp + d, d);
|
111
|
+
}
|
112
|
+
|
113
|
+
float distance_to_code(const uint8_t *code) final {
|
114
|
+
return bias + aq.compute_1_distance_LUT<is_IP, st>(code, LUT.data());
|
115
|
+
}
|
116
|
+
|
117
|
+
virtual ~AQDistanceComputerLUT() {}
|
118
|
+
};
|
119
|
+
|
120
|
+
|
121
|
+
|
122
|
+
/************************************************************
|
123
|
+
* scanning implementation for search
|
124
|
+
************************************************************/
|
125
|
+
|
126
|
+
|
43
127
|
template <class VectorDistance, class ResultHandler>
|
44
128
|
void search_with_decompress(
|
45
129
|
const IndexAdditiveQuantizer& ir,
|
@@ -111,12 +195,61 @@ void search_with_LUT(
|
|
111
195
|
|
112
196
|
} // anonymous namespace
|
113
197
|
|
198
|
+
|
199
|
+
FlatCodesDistanceComputer * IndexAdditiveQuantizer::get_FlatCodesDistanceComputer() const {
|
200
|
+
|
201
|
+
if (aq->search_type == AdditiveQuantizer::ST_decompress) {
|
202
|
+
if (metric_type == METRIC_L2) {
|
203
|
+
using VD = VectorDistance<METRIC_L2>;
|
204
|
+
VD vd = {size_t(d), metric_arg};
|
205
|
+
return new AQDistanceComputerDecompress<VD>(*this, vd);
|
206
|
+
} else if (metric_type == METRIC_INNER_PRODUCT) {
|
207
|
+
using VD = VectorDistance<METRIC_INNER_PRODUCT>;
|
208
|
+
VD vd = {size_t(d), metric_arg};
|
209
|
+
return new AQDistanceComputerDecompress<VD>(*this, vd);
|
210
|
+
} else {
|
211
|
+
FAISS_THROW_MSG("unsupported metric");
|
212
|
+
}
|
213
|
+
} else {
|
214
|
+
if (metric_type == METRIC_INNER_PRODUCT) {
|
215
|
+
return new AQDistanceComputerLUT<true, AdditiveQuantizer::ST_LUT_nonorm>(*this);
|
216
|
+
} else {
|
217
|
+
switch(aq->search_type) {
|
218
|
+
#define DISPATCH(st) \
|
219
|
+
case AdditiveQuantizer::st: \
|
220
|
+
return new AQDistanceComputerLUT<false, AdditiveQuantizer::st> (*this);\
|
221
|
+
break;
|
222
|
+
DISPATCH(ST_norm_float)
|
223
|
+
DISPATCH(ST_LUT_nonorm)
|
224
|
+
DISPATCH(ST_norm_qint8)
|
225
|
+
DISPATCH(ST_norm_qint4)
|
226
|
+
DISPATCH(ST_norm_cqint4)
|
227
|
+
case AdditiveQuantizer::ST_norm_cqint8:
|
228
|
+
case AdditiveQuantizer::ST_norm_lsq2x4:
|
229
|
+
case AdditiveQuantizer::ST_norm_rq2x4:
|
230
|
+
return new AQDistanceComputerLUT<false, AdditiveQuantizer::ST_norm_cqint8> (*this);\
|
231
|
+
break;
|
232
|
+
#undef DISPATCH
|
233
|
+
default:
|
234
|
+
FAISS_THROW_FMT("search type %d not supported", aq->search_type);
|
235
|
+
}
|
236
|
+
}
|
237
|
+
}
|
238
|
+
}
|
239
|
+
|
240
|
+
|
241
|
+
|
242
|
+
|
114
243
|
void IndexAdditiveQuantizer::search(
|
115
244
|
idx_t n,
|
116
245
|
const float* x,
|
117
246
|
idx_t k,
|
118
247
|
float* distances,
|
119
|
-
idx_t* labels
|
248
|
+
idx_t* labels,
|
249
|
+
const SearchParameters* params) const {
|
250
|
+
|
251
|
+
FAISS_THROW_IF_NOT_MSG(!params, "search params not supported for this index");
|
252
|
+
|
120
253
|
if (aq->search_type == AdditiveQuantizer::ST_decompress) {
|
121
254
|
if (metric_type == METRIC_L2) {
|
122
255
|
using VD = VectorDistance<METRIC_L2>;
|
@@ -135,20 +268,23 @@ void IndexAdditiveQuantizer::search(
|
|
135
268
|
search_with_LUT<true, AdditiveQuantizer::ST_LUT_nonorm> (*this, x, rh);
|
136
269
|
} else {
|
137
270
|
HeapResultHandler<CMax<float, idx_t> > rh(n, distances, labels, k);
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
271
|
+
switch(aq->search_type) {
|
272
|
+
#define DISPATCH(st) \
|
273
|
+
case AdditiveQuantizer::st: \
|
274
|
+
search_with_LUT<false, AdditiveQuantizer::st> (*this, x, rh);\
|
275
|
+
break;
|
276
|
+
DISPATCH(ST_norm_float)
|
277
|
+
DISPATCH(ST_LUT_nonorm)
|
278
|
+
DISPATCH(ST_norm_qint8)
|
279
|
+
DISPATCH(ST_norm_qint4)
|
280
|
+
DISPATCH(ST_norm_cqint4)
|
281
|
+
case AdditiveQuantizer::ST_norm_cqint8:
|
282
|
+
case AdditiveQuantizer::ST_norm_lsq2x4:
|
283
|
+
case AdditiveQuantizer::ST_norm_rq2x4:
|
148
284
|
search_with_LUT<false, AdditiveQuantizer::ST_norm_cqint8> (*this, x, rh);
|
149
|
-
|
150
|
-
|
151
|
-
|
285
|
+
break;
|
286
|
+
#undef DISPATCH
|
287
|
+
default:
|
152
288
|
FAISS_THROW_FMT("search type %d not supported", aq->search_type);
|
153
289
|
}
|
154
290
|
}
|
@@ -220,6 +356,57 @@ void IndexLocalSearchQuantizer::train(idx_t n, const float* x) {
|
|
220
356
|
is_trained = true;
|
221
357
|
}
|
222
358
|
|
359
|
+
|
360
|
+
/**************************************************************************************
|
361
|
+
* IndexProductResidualQuantizer
|
362
|
+
**************************************************************************************/
|
363
|
+
|
364
|
+
IndexProductResidualQuantizer::IndexProductResidualQuantizer(
|
365
|
+
int d, ///< dimensionality of the input vectors
|
366
|
+
size_t nsplits, ///< number of residual quantizers
|
367
|
+
size_t Msub, ///< number of subquantizers per RQ
|
368
|
+
size_t nbits, ///< number of bit per subvector index
|
369
|
+
MetricType metric,
|
370
|
+
Search_type_t search_type)
|
371
|
+
: IndexAdditiveQuantizer(d, &prq, metric), prq(d, nsplits, Msub, nbits, search_type) {
|
372
|
+
code_size = prq.code_size;
|
373
|
+
is_trained = false;
|
374
|
+
}
|
375
|
+
|
376
|
+
IndexProductResidualQuantizer::IndexProductResidualQuantizer()
|
377
|
+
: IndexProductResidualQuantizer(0, 0, 0, 0) {}
|
378
|
+
|
379
|
+
void IndexProductResidualQuantizer::train(idx_t n, const float* x) {
|
380
|
+
prq.train(n, x);
|
381
|
+
is_trained = true;
|
382
|
+
}
|
383
|
+
|
384
|
+
|
385
|
+
/**************************************************************************************
|
386
|
+
* IndexProductLocalSearchQuantizer
|
387
|
+
**************************************************************************************/
|
388
|
+
|
389
|
+
IndexProductLocalSearchQuantizer::IndexProductLocalSearchQuantizer(
|
390
|
+
int d, ///< dimensionality of the input vectors
|
391
|
+
size_t nsplits, ///< number of local search quantizers
|
392
|
+
size_t Msub, ///< number of subquantizers per LSQ
|
393
|
+
size_t nbits, ///< number of bit per subvector index
|
394
|
+
MetricType metric,
|
395
|
+
Search_type_t search_type)
|
396
|
+
: IndexAdditiveQuantizer(d, &plsq, metric), plsq(d, nsplits, Msub, nbits, search_type) {
|
397
|
+
code_size = plsq.code_size;
|
398
|
+
is_trained = false;
|
399
|
+
}
|
400
|
+
|
401
|
+
IndexProductLocalSearchQuantizer::IndexProductLocalSearchQuantizer()
|
402
|
+
: IndexProductLocalSearchQuantizer(0, 0, 0, 0) {}
|
403
|
+
|
404
|
+
void IndexProductLocalSearchQuantizer::train(idx_t n, const float* x) {
|
405
|
+
plsq.train(n, x);
|
406
|
+
is_trained = true;
|
407
|
+
}
|
408
|
+
|
409
|
+
|
223
410
|
/**************************************************************************************
|
224
411
|
* AdditiveCoarseQuantizer
|
225
412
|
**************************************************************************************/
|
@@ -248,6 +435,13 @@ void AdditiveCoarseQuantizer::train(idx_t n, const float* x) {
|
|
248
435
|
if (verbose) {
|
249
436
|
printf("AdditiveCoarseQuantizer::train: training on %zd vectors\n", size_t(n));
|
250
437
|
}
|
438
|
+
size_t norms_size = sizeof(float) << aq->tot_bits;
|
439
|
+
|
440
|
+
FAISS_THROW_IF_NOT_MSG (
|
441
|
+
norms_size <= aq->max_mem_distances,
|
442
|
+
"the RCQ norms matrix will become too large, please reduce the number of quantization steps"
|
443
|
+
);
|
444
|
+
|
251
445
|
aq->train(n, x);
|
252
446
|
is_trained = true;
|
253
447
|
ntotal = (idx_t)1 << aq->tot_bits;
|
@@ -268,7 +462,11 @@ void AdditiveCoarseQuantizer::search(
|
|
268
462
|
const float* x,
|
269
463
|
idx_t k,
|
270
464
|
float* distances,
|
271
|
-
idx_t* labels
|
465
|
+
idx_t* labels,
|
466
|
+
const SearchParameters * params) const {
|
467
|
+
|
468
|
+
FAISS_THROW_IF_NOT_MSG(!params, "search params not supported for this index");
|
469
|
+
|
272
470
|
if (metric_type == METRIC_INNER_PRODUCT) {
|
273
471
|
aq->knn_centroids_inner_product(n, x, k, distances, labels);
|
274
472
|
} else if (metric_type == METRIC_L2) {
|
@@ -321,7 +519,12 @@ void ResidualCoarseQuantizer::search(
|
|
321
519
|
const float* x,
|
322
520
|
idx_t k,
|
323
521
|
float* distances,
|
324
|
-
idx_t* labels
|
522
|
+
idx_t* labels,
|
523
|
+
const SearchParameters * params
|
524
|
+
) const {
|
525
|
+
|
526
|
+
FAISS_THROW_IF_NOT_MSG(!params, "search params not supported for this index");
|
527
|
+
|
325
528
|
if (beam_factor < 0) {
|
326
529
|
AdditiveCoarseQuantizer::search(n, x, k, distances, labels);
|
327
530
|
return;
|
@@ -15,6 +15,7 @@
|
|
15
15
|
|
16
16
|
#include <faiss/IndexFlatCodes.h>
|
17
17
|
#include <faiss/impl/LocalSearchQuantizer.h>
|
18
|
+
#include <faiss/impl/ProductAdditiveQuantizer.h>
|
18
19
|
#include <faiss/impl/ResidualQuantizer.h>
|
19
20
|
#include <faiss/impl/platform_macros.h>
|
20
21
|
|
@@ -28,8 +29,8 @@ struct IndexAdditiveQuantizer : IndexFlatCodes {
|
|
28
29
|
using Search_type_t = AdditiveQuantizer::Search_type_t;
|
29
30
|
|
30
31
|
explicit IndexAdditiveQuantizer(
|
31
|
-
idx_t d
|
32
|
-
AdditiveQuantizer* aq
|
32
|
+
idx_t d,
|
33
|
+
AdditiveQuantizer* aq,
|
33
34
|
MetricType metric = METRIC_L2);
|
34
35
|
|
35
36
|
void search(
|
@@ -37,12 +38,15 @@ struct IndexAdditiveQuantizer : IndexFlatCodes {
|
|
37
38
|
const float* x,
|
38
39
|
idx_t k,
|
39
40
|
float* distances,
|
40
|
-
idx_t* labels
|
41
|
+
idx_t* labels,
|
42
|
+
const SearchParameters* params = nullptr) const override;
|
41
43
|
|
42
44
|
/* The standalone codec interface */
|
43
45
|
void sa_encode(idx_t n, const float* x, uint8_t* bytes) const override;
|
44
46
|
|
45
47
|
void sa_decode(idx_t n, const uint8_t* bytes, float* x) const override;
|
48
|
+
|
49
|
+
FlatCodesDistanceComputer* get_FlatCodesDistanceComputer() const override;
|
46
50
|
};
|
47
51
|
|
48
52
|
/** Index based on a residual quantizer. Stored vectors are
|
@@ -98,6 +102,58 @@ struct IndexLocalSearchQuantizer : IndexAdditiveQuantizer {
|
|
98
102
|
void train(idx_t n, const float* x) override;
|
99
103
|
};
|
100
104
|
|
105
|
+
/** Index based on a product residual quantizer.
|
106
|
+
*/
|
107
|
+
struct IndexProductResidualQuantizer : IndexAdditiveQuantizer {
|
108
|
+
/// The product residual quantizer used to encode the vectors
|
109
|
+
ProductResidualQuantizer prq;
|
110
|
+
|
111
|
+
/** Constructor.
|
112
|
+
*
|
113
|
+
* @param d dimensionality of the input vectors
|
114
|
+
* @param nsplits number of residual quantizers
|
115
|
+
* @param Msub number of subquantizers per RQ
|
116
|
+
* @param nbits number of bit per subvector index
|
117
|
+
*/
|
118
|
+
IndexProductResidualQuantizer(
|
119
|
+
int d, ///< dimensionality of the input vectors
|
120
|
+
size_t nsplits, ///< number of residual quantizers
|
121
|
+
size_t Msub, ///< number of subquantizers per RQ
|
122
|
+
size_t nbits, ///< number of bit per subvector index
|
123
|
+
MetricType metric = METRIC_L2,
|
124
|
+
Search_type_t search_type = AdditiveQuantizer::ST_decompress);
|
125
|
+
|
126
|
+
IndexProductResidualQuantizer();
|
127
|
+
|
128
|
+
void train(idx_t n, const float* x) override;
|
129
|
+
};
|
130
|
+
|
131
|
+
/** Index based on a product local search quantizer.
|
132
|
+
*/
|
133
|
+
struct IndexProductLocalSearchQuantizer : IndexAdditiveQuantizer {
|
134
|
+
/// The product local search quantizer used to encode the vectors
|
135
|
+
ProductLocalSearchQuantizer plsq;
|
136
|
+
|
137
|
+
/** Constructor.
|
138
|
+
*
|
139
|
+
* @param d dimensionality of the input vectors
|
140
|
+
* @param nsplits number of local search quantizers
|
141
|
+
* @param Msub number of subquantizers per LSQ
|
142
|
+
* @param nbits number of bit per subvector index
|
143
|
+
*/
|
144
|
+
IndexProductLocalSearchQuantizer(
|
145
|
+
int d, ///< dimensionality of the input vectors
|
146
|
+
size_t nsplits, ///< number of local search quantizers
|
147
|
+
size_t Msub, ///< number of subquantizers per LSQ
|
148
|
+
size_t nbits, ///< number of bit per subvector index
|
149
|
+
MetricType metric = METRIC_L2,
|
150
|
+
Search_type_t search_type = AdditiveQuantizer::ST_decompress);
|
151
|
+
|
152
|
+
IndexProductLocalSearchQuantizer();
|
153
|
+
|
154
|
+
void train(idx_t n, const float* x) override;
|
155
|
+
};
|
156
|
+
|
101
157
|
/** A "virtual" index where the elements are the residual quantizer centroids.
|
102
158
|
*
|
103
159
|
* Intended for use as a coarse quantizer in an IndexIVF.
|
@@ -121,7 +177,8 @@ struct AdditiveCoarseQuantizer : Index {
|
|
121
177
|
const float* x,
|
122
178
|
idx_t k,
|
123
179
|
float* distances,
|
124
|
-
idx_t* labels
|
180
|
+
idx_t* labels,
|
181
|
+
const SearchParameters* params = nullptr) const override;
|
125
182
|
|
126
183
|
void reconstruct(idx_t key, float* recons) const override;
|
127
184
|
void train(idx_t n, const float* x) override;
|
@@ -166,7 +223,8 @@ struct ResidualCoarseQuantizer : AdditiveCoarseQuantizer {
|
|
166
223
|
const float* x,
|
167
224
|
idx_t k,
|
168
225
|
float* distances,
|
169
|
-
idx_t* labels
|
226
|
+
idx_t* labels,
|
227
|
+
const SearchParameters* params = nullptr) const override;
|
170
228
|
|
171
229
|
ResidualCoarseQuantizer();
|
172
230
|
};
|
@@ -0,0 +1,299 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
#include <faiss/IndexAdditiveQuantizerFastScan.h>
|
9
|
+
|
10
|
+
#include <limits.h>
|
11
|
+
#include <cassert>
|
12
|
+
#include <memory>
|
13
|
+
|
14
|
+
#include <omp.h>
|
15
|
+
|
16
|
+
#include <faiss/impl/FaissAssert.h>
|
17
|
+
#include <faiss/impl/LocalSearchQuantizer.h>
|
18
|
+
#include <faiss/impl/LookupTableScaler.h>
|
19
|
+
#include <faiss/impl/ResidualQuantizer.h>
|
20
|
+
#include <faiss/impl/pq4_fast_scan.h>
|
21
|
+
#include <faiss/utils/quantize_lut.h>
|
22
|
+
#include <faiss/utils/utils.h>
|
23
|
+
|
24
|
+
namespace faiss {
|
25
|
+
|
26
|
+
inline size_t roundup(size_t a, size_t b) {
|
27
|
+
return (a + b - 1) / b * b;
|
28
|
+
}
|
29
|
+
|
30
|
+
IndexAdditiveQuantizerFastScan::IndexAdditiveQuantizerFastScan(
|
31
|
+
AdditiveQuantizer* aq,
|
32
|
+
MetricType metric,
|
33
|
+
int bbs) {
|
34
|
+
init(aq, metric, bbs);
|
35
|
+
}
|
36
|
+
|
37
|
+
void IndexAdditiveQuantizerFastScan::init(
|
38
|
+
AdditiveQuantizer* aq,
|
39
|
+
MetricType metric,
|
40
|
+
int bbs) {
|
41
|
+
FAISS_THROW_IF_NOT(aq != nullptr);
|
42
|
+
FAISS_THROW_IF_NOT(!aq->nbits.empty());
|
43
|
+
FAISS_THROW_IF_NOT(aq->nbits[0] == 4);
|
44
|
+
if (metric == METRIC_INNER_PRODUCT) {
|
45
|
+
FAISS_THROW_IF_NOT_MSG(
|
46
|
+
aq->search_type == AdditiveQuantizer::ST_LUT_nonorm,
|
47
|
+
"Search type must be ST_LUT_nonorm for IP metric");
|
48
|
+
} else {
|
49
|
+
FAISS_THROW_IF_NOT_MSG(
|
50
|
+
aq->search_type == AdditiveQuantizer::ST_norm_lsq2x4 ||
|
51
|
+
aq->search_type == AdditiveQuantizer::ST_norm_rq2x4,
|
52
|
+
"Search type must be lsq2x4 or rq2x4 for L2 metric");
|
53
|
+
}
|
54
|
+
|
55
|
+
this->aq = aq;
|
56
|
+
if (metric == METRIC_L2) {
|
57
|
+
M = aq->M + 2; // 2x4 bits AQ
|
58
|
+
} else {
|
59
|
+
M = aq->M;
|
60
|
+
}
|
61
|
+
init_fastscan(aq->d, M, 4, metric, bbs);
|
62
|
+
|
63
|
+
max_train_points = 1024 * ksub * M;
|
64
|
+
}
|
65
|
+
|
66
|
+
IndexAdditiveQuantizerFastScan::IndexAdditiveQuantizerFastScan()
|
67
|
+
: IndexFastScan() {
|
68
|
+
is_trained = false;
|
69
|
+
aq = nullptr;
|
70
|
+
}
|
71
|
+
|
72
|
+
IndexAdditiveQuantizerFastScan::IndexAdditiveQuantizerFastScan(
|
73
|
+
const IndexAdditiveQuantizer& orig,
|
74
|
+
int bbs) {
|
75
|
+
init(orig.aq, orig.metric_type, bbs);
|
76
|
+
|
77
|
+
ntotal = orig.ntotal;
|
78
|
+
is_trained = orig.is_trained;
|
79
|
+
orig_codes = orig.codes.data();
|
80
|
+
|
81
|
+
ntotal2 = roundup(ntotal, bbs);
|
82
|
+
codes.resize(ntotal2 * M2 / 2);
|
83
|
+
pq4_pack_codes(orig_codes, ntotal, M, ntotal2, bbs, M2, codes.get());
|
84
|
+
}
|
85
|
+
|
86
|
+
IndexAdditiveQuantizerFastScan::~IndexAdditiveQuantizerFastScan() {}
|
87
|
+
|
88
|
+
void IndexAdditiveQuantizerFastScan::train(idx_t n, const float* x_in) {
|
89
|
+
if (is_trained) {
|
90
|
+
return;
|
91
|
+
}
|
92
|
+
|
93
|
+
const int seed = 0x12345;
|
94
|
+
size_t nt = n;
|
95
|
+
const float* x = fvecs_maybe_subsample(
|
96
|
+
d, &nt, max_train_points, x_in, verbose, seed);
|
97
|
+
n = nt;
|
98
|
+
if (verbose) {
|
99
|
+
printf("training additive quantizer on %zd vectors\n", nt);
|
100
|
+
}
|
101
|
+
|
102
|
+
aq->verbose = verbose;
|
103
|
+
aq->train(n, x);
|
104
|
+
if (metric_type == METRIC_L2) {
|
105
|
+
estimate_norm_scale(n, x);
|
106
|
+
}
|
107
|
+
|
108
|
+
is_trained = true;
|
109
|
+
}
|
110
|
+
|
111
|
+
void IndexAdditiveQuantizerFastScan::estimate_norm_scale(
|
112
|
+
idx_t n,
|
113
|
+
const float* x_in) {
|
114
|
+
FAISS_THROW_IF_NOT(metric_type == METRIC_L2);
|
115
|
+
|
116
|
+
constexpr int seed = 0x980903;
|
117
|
+
constexpr size_t max_points_estimated = 65536;
|
118
|
+
size_t ns = n;
|
119
|
+
const float* x = fvecs_maybe_subsample(
|
120
|
+
d, &ns, max_points_estimated, x_in, verbose, seed);
|
121
|
+
n = ns;
|
122
|
+
std::unique_ptr<float[]> del_x;
|
123
|
+
if (x != x_in) {
|
124
|
+
del_x.reset((float*)x);
|
125
|
+
}
|
126
|
+
|
127
|
+
std::vector<float> dis_tables(n * M * ksub);
|
128
|
+
compute_float_LUT(dis_tables.data(), n, x);
|
129
|
+
|
130
|
+
// here we compute the mean of scales for each query
|
131
|
+
// TODO: try max of scales
|
132
|
+
double scale = 0;
|
133
|
+
|
134
|
+
#pragma omp parallel for reduction(+ : scale)
|
135
|
+
for (idx_t i = 0; i < n; i++) {
|
136
|
+
const float* lut = dis_tables.data() + i * M * ksub;
|
137
|
+
scale += quantize_lut::aq_estimate_norm_scale(M, ksub, 2, lut);
|
138
|
+
}
|
139
|
+
scale /= n;
|
140
|
+
norm_scale = (int)std::roundf(std::max(scale, 1.0));
|
141
|
+
|
142
|
+
if (verbose) {
|
143
|
+
printf("estimated norm scale: %lf\n", scale);
|
144
|
+
printf("rounded norm scale: %d\n", norm_scale);
|
145
|
+
}
|
146
|
+
}
|
147
|
+
|
148
|
+
void IndexAdditiveQuantizerFastScan::compute_codes(
|
149
|
+
uint8_t* tmp_codes,
|
150
|
+
idx_t n,
|
151
|
+
const float* x) const {
|
152
|
+
aq->compute_codes(x, tmp_codes, n);
|
153
|
+
}
|
154
|
+
|
155
|
+
void IndexAdditiveQuantizerFastScan::compute_float_LUT(
|
156
|
+
float* lut,
|
157
|
+
idx_t n,
|
158
|
+
const float* x) const {
|
159
|
+
if (metric_type == METRIC_INNER_PRODUCT) {
|
160
|
+
aq->compute_LUT(n, x, lut, 1.0f);
|
161
|
+
} else {
|
162
|
+
// compute inner product look-up tables
|
163
|
+
const size_t ip_dim12 = aq->M * ksub;
|
164
|
+
const size_t norm_dim12 = 2 * ksub;
|
165
|
+
std::vector<float> ip_lut(n * ip_dim12);
|
166
|
+
aq->compute_LUT(n, x, ip_lut.data(), -2.0f);
|
167
|
+
|
168
|
+
// copy and rescale norm look-up tables
|
169
|
+
auto norm_tabs = aq->norm_tabs;
|
170
|
+
if (rescale_norm && norm_scale > 1 && metric_type == METRIC_L2) {
|
171
|
+
for (size_t i = 0; i < norm_tabs.size(); i++) {
|
172
|
+
norm_tabs[i] /= norm_scale;
|
173
|
+
}
|
174
|
+
}
|
175
|
+
const float* norm_lut = norm_tabs.data();
|
176
|
+
FAISS_THROW_IF_NOT(norm_tabs.size() == norm_dim12);
|
177
|
+
|
178
|
+
// combine them
|
179
|
+
for (idx_t i = 0; i < n; i++) {
|
180
|
+
memcpy(lut, ip_lut.data() + i * ip_dim12, ip_dim12 * sizeof(*lut));
|
181
|
+
lut += ip_dim12;
|
182
|
+
memcpy(lut, norm_lut, norm_dim12 * sizeof(*lut));
|
183
|
+
lut += norm_dim12;
|
184
|
+
}
|
185
|
+
}
|
186
|
+
}
|
187
|
+
|
188
|
+
void IndexAdditiveQuantizerFastScan::search(
|
189
|
+
idx_t n,
|
190
|
+
const float* x,
|
191
|
+
idx_t k,
|
192
|
+
float* distances,
|
193
|
+
idx_t* labels,
|
194
|
+
const SearchParameters* params) const {
|
195
|
+
FAISS_THROW_IF_NOT_MSG(
|
196
|
+
!params, "search params not supported for this index");
|
197
|
+
FAISS_THROW_IF_NOT(k > 0);
|
198
|
+
bool rescale = (rescale_norm && norm_scale > 1 && metric_type == METRIC_L2);
|
199
|
+
if (!rescale) {
|
200
|
+
IndexFastScan::search(n, x, k, distances, labels);
|
201
|
+
return;
|
202
|
+
}
|
203
|
+
|
204
|
+
NormTableScaler scaler(norm_scale);
|
205
|
+
if (metric_type == METRIC_L2) {
|
206
|
+
search_dispatch_implem<true>(n, x, k, distances, labels, scaler);
|
207
|
+
} else {
|
208
|
+
search_dispatch_implem<false>(n, x, k, distances, labels, scaler);
|
209
|
+
}
|
210
|
+
}
|
211
|
+
|
212
|
+
void IndexAdditiveQuantizerFastScan::sa_decode(
|
213
|
+
idx_t n,
|
214
|
+
const uint8_t* bytes,
|
215
|
+
float* x) const {
|
216
|
+
aq->decode(bytes, x, n);
|
217
|
+
}
|
218
|
+
|
219
|
+
/**************************************************************************************
|
220
|
+
* IndexResidualQuantizerFastScan
|
221
|
+
**************************************************************************************/
|
222
|
+
|
223
|
+
IndexResidualQuantizerFastScan::IndexResidualQuantizerFastScan(
|
224
|
+
int d, ///< dimensionality of the input vectors
|
225
|
+
size_t M, ///< number of subquantizers
|
226
|
+
size_t nbits, ///< number of bit per subvector index
|
227
|
+
MetricType metric,
|
228
|
+
Search_type_t search_type,
|
229
|
+
int bbs)
|
230
|
+
: rq(d, M, nbits, search_type) {
|
231
|
+
init(&rq, metric, bbs);
|
232
|
+
}
|
233
|
+
|
234
|
+
IndexResidualQuantizerFastScan::IndexResidualQuantizerFastScan() {
|
235
|
+
aq = &rq;
|
236
|
+
}
|
237
|
+
|
238
|
+
/**************************************************************************************
|
239
|
+
* IndexLocalSearchQuantizerFastScan
|
240
|
+
**************************************************************************************/
|
241
|
+
|
242
|
+
IndexLocalSearchQuantizerFastScan::IndexLocalSearchQuantizerFastScan(
|
243
|
+
int d,
|
244
|
+
size_t M, ///< number of subquantizers
|
245
|
+
size_t nbits, ///< number of bit per subvector index
|
246
|
+
MetricType metric,
|
247
|
+
Search_type_t search_type,
|
248
|
+
int bbs)
|
249
|
+
: lsq(d, M, nbits, search_type) {
|
250
|
+
init(&lsq, metric, bbs);
|
251
|
+
}
|
252
|
+
|
253
|
+
IndexLocalSearchQuantizerFastScan::IndexLocalSearchQuantizerFastScan() {
|
254
|
+
aq = &lsq;
|
255
|
+
}
|
256
|
+
|
257
|
+
/**************************************************************************************
|
258
|
+
* IndexProductResidualQuantizerFastScan
|
259
|
+
**************************************************************************************/
|
260
|
+
|
261
|
+
IndexProductResidualQuantizerFastScan::IndexProductResidualQuantizerFastScan(
|
262
|
+
int d, ///< dimensionality of the input vectors
|
263
|
+
size_t nsplits, ///< number of residual quantizers
|
264
|
+
size_t Msub, ///< number of subquantizers per RQ
|
265
|
+
size_t nbits, ///< number of bit per subvector index
|
266
|
+
MetricType metric,
|
267
|
+
Search_type_t search_type,
|
268
|
+
int bbs)
|
269
|
+
: prq(d, nsplits, Msub, nbits, search_type) {
|
270
|
+
init(&prq, metric, bbs);
|
271
|
+
}
|
272
|
+
|
273
|
+
IndexProductResidualQuantizerFastScan::IndexProductResidualQuantizerFastScan() {
|
274
|
+
aq = &prq;
|
275
|
+
}
|
276
|
+
|
277
|
+
/**************************************************************************************
|
278
|
+
* IndexProductLocalSearchQuantizerFastScan
|
279
|
+
**************************************************************************************/
|
280
|
+
|
281
|
+
IndexProductLocalSearchQuantizerFastScan::
|
282
|
+
IndexProductLocalSearchQuantizerFastScan(
|
283
|
+
int d, ///< dimensionality of the input vectors
|
284
|
+
size_t nsplits, ///< number of local search quantizers
|
285
|
+
size_t Msub, ///< number of subquantizers per LSQ
|
286
|
+
size_t nbits, ///< number of bit per subvector index
|
287
|
+
MetricType metric,
|
288
|
+
Search_type_t search_type,
|
289
|
+
int bbs)
|
290
|
+
: plsq(d, nsplits, Msub, nbits, search_type) {
|
291
|
+
init(&plsq, metric, bbs);
|
292
|
+
}
|
293
|
+
|
294
|
+
IndexProductLocalSearchQuantizerFastScan::
|
295
|
+
IndexProductLocalSearchQuantizerFastScan() {
|
296
|
+
aq = &plsq;
|
297
|
+
}
|
298
|
+
|
299
|
+
} // namespace faiss
|