faiss 0.2.4 → 0.2.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +23 -21
- data/ext/faiss/extconf.rb +11 -0
- data/ext/faiss/index.cpp +4 -4
- data/ext/faiss/index_binary.cpp +6 -6
- data/ext/faiss/product_quantizer.cpp +4 -4
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +13 -0
- data/vendor/faiss/faiss/IVFlib.cpp +101 -2
- data/vendor/faiss/faiss/IVFlib.h +26 -2
- data/vendor/faiss/faiss/Index.cpp +36 -3
- data/vendor/faiss/faiss/Index.h +43 -6
- data/vendor/faiss/faiss/Index2Layer.cpp +6 -2
- data/vendor/faiss/faiss/Index2Layer.h +6 -1
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +219 -16
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.h +63 -5
- data/vendor/faiss/faiss/IndexAdditiveQuantizerFastScan.cpp +299 -0
- data/vendor/faiss/faiss/IndexAdditiveQuantizerFastScan.h +199 -0
- data/vendor/faiss/faiss/IndexBinary.cpp +20 -4
- data/vendor/faiss/faiss/IndexBinary.h +18 -3
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +9 -2
- data/vendor/faiss/faiss/IndexBinaryFlat.h +4 -2
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +4 -1
- data/vendor/faiss/faiss/IndexBinaryFromFloat.h +2 -1
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +5 -1
- data/vendor/faiss/faiss/IndexBinaryHNSW.h +2 -1
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +17 -4
- data/vendor/faiss/faiss/IndexBinaryHash.h +8 -4
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +28 -13
- data/vendor/faiss/faiss/IndexBinaryIVF.h +10 -7
- data/vendor/faiss/faiss/IndexFastScan.cpp +626 -0
- data/vendor/faiss/faiss/IndexFastScan.h +145 -0
- data/vendor/faiss/faiss/IndexFlat.cpp +34 -21
- data/vendor/faiss/faiss/IndexFlat.h +7 -4
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +35 -1
- data/vendor/faiss/faiss/IndexFlatCodes.h +12 -0
- data/vendor/faiss/faiss/IndexHNSW.cpp +66 -138
- data/vendor/faiss/faiss/IndexHNSW.h +4 -2
- data/vendor/faiss/faiss/IndexIDMap.cpp +247 -0
- data/vendor/faiss/faiss/IndexIDMap.h +107 -0
- data/vendor/faiss/faiss/IndexIVF.cpp +121 -33
- data/vendor/faiss/faiss/IndexIVF.h +35 -16
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +84 -7
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +63 -1
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.cpp +590 -0
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.h +171 -0
- data/vendor/faiss/faiss/IndexIVFFastScan.cpp +1290 -0
- data/vendor/faiss/faiss/IndexIVFFastScan.h +213 -0
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +37 -17
- data/vendor/faiss/faiss/IndexIVFFlat.h +4 -2
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +234 -50
- data/vendor/faiss/faiss/IndexIVFPQ.h +5 -1
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +23 -852
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +7 -112
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +3 -3
- data/vendor/faiss/faiss/IndexIVFPQR.h +1 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +3 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +2 -1
- data/vendor/faiss/faiss/IndexLSH.cpp +4 -2
- data/vendor/faiss/faiss/IndexLSH.h +2 -1
- data/vendor/faiss/faiss/IndexLattice.cpp +7 -1
- data/vendor/faiss/faiss/IndexLattice.h +3 -1
- data/vendor/faiss/faiss/IndexNNDescent.cpp +4 -3
- data/vendor/faiss/faiss/IndexNNDescent.h +2 -1
- data/vendor/faiss/faiss/IndexNSG.cpp +37 -3
- data/vendor/faiss/faiss/IndexNSG.h +25 -1
- data/vendor/faiss/faiss/IndexPQ.cpp +106 -69
- data/vendor/faiss/faiss/IndexPQ.h +19 -5
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +15 -450
- data/vendor/faiss/faiss/IndexPQFastScan.h +15 -78
- data/vendor/faiss/faiss/IndexPreTransform.cpp +47 -8
- data/vendor/faiss/faiss/IndexPreTransform.h +15 -3
- data/vendor/faiss/faiss/IndexRefine.cpp +8 -4
- data/vendor/faiss/faiss/IndexRefine.h +4 -2
- data/vendor/faiss/faiss/IndexReplicas.cpp +4 -2
- data/vendor/faiss/faiss/IndexReplicas.h +2 -1
- data/vendor/faiss/faiss/IndexRowwiseMinMax.cpp +438 -0
- data/vendor/faiss/faiss/IndexRowwiseMinMax.h +92 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +26 -15
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +6 -7
- data/vendor/faiss/faiss/IndexShards.cpp +4 -1
- data/vendor/faiss/faiss/IndexShards.h +2 -1
- data/vendor/faiss/faiss/MetaIndexes.cpp +5 -178
- data/vendor/faiss/faiss/MetaIndexes.h +3 -81
- data/vendor/faiss/faiss/VectorTransform.cpp +43 -0
- data/vendor/faiss/faiss/VectorTransform.h +22 -4
- data/vendor/faiss/faiss/clone_index.cpp +23 -1
- data/vendor/faiss/faiss/clone_index.h +3 -0
- data/vendor/faiss/faiss/cppcontrib/SaDecodeKernels.h +300 -0
- data/vendor/faiss/faiss/cppcontrib/detail/CoarseBitType.h +24 -0
- data/vendor/faiss/faiss/cppcontrib/detail/UintReader.h +195 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-avx2-inl.h +2058 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-inl.h +408 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-neon-inl.h +2147 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/MinMax-inl.h +460 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/MinMaxFP16-inl.h +465 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-avx2-inl.h +1618 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-inl.h +251 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-neon-inl.h +1452 -0
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +1 -0
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +0 -4
- data/vendor/faiss/faiss/gpu/GpuIndex.h +28 -4
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +2 -1
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +10 -8
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +75 -14
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +19 -32
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +22 -31
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +22 -28
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +14 -0
- data/vendor/faiss/faiss/gpu/GpuResources.h +16 -3
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +3 -3
- data/vendor/faiss/faiss/gpu/impl/IndexUtils.h +32 -0
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +1 -0
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +311 -75
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +10 -0
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +3 -0
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +2 -2
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +5 -4
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +116 -47
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +44 -13
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +0 -54
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +0 -76
- data/vendor/faiss/faiss/impl/DistanceComputer.h +64 -0
- data/vendor/faiss/faiss/impl/HNSW.cpp +123 -27
- data/vendor/faiss/faiss/impl/HNSW.h +19 -16
- data/vendor/faiss/faiss/impl/IDSelector.cpp +125 -0
- data/vendor/faiss/faiss/impl/IDSelector.h +135 -0
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +6 -28
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +6 -1
- data/vendor/faiss/faiss/impl/LookupTableScaler.h +77 -0
- data/vendor/faiss/faiss/impl/NNDescent.cpp +1 -0
- data/vendor/faiss/faiss/impl/NSG.cpp +1 -1
- data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.cpp +383 -0
- data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.h +154 -0
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +225 -145
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +29 -10
- data/vendor/faiss/faiss/impl/Quantizer.h +43 -0
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +192 -36
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +40 -20
- data/vendor/faiss/faiss/impl/ResultHandler.h +96 -0
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +97 -173
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +18 -18
- data/vendor/faiss/faiss/impl/index_read.cpp +240 -9
- data/vendor/faiss/faiss/impl/index_write.cpp +237 -5
- data/vendor/faiss/faiss/impl/kmeans1d.cpp +6 -4
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +56 -16
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +25 -8
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +66 -25
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +75 -27
- data/vendor/faiss/faiss/index_factory.cpp +196 -7
- data/vendor/faiss/faiss/index_io.h +5 -0
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +1 -0
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +4 -1
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +2 -1
- data/vendor/faiss/faiss/python/python_callbacks.cpp +27 -0
- data/vendor/faiss/faiss/python/python_callbacks.h +15 -0
- data/vendor/faiss/faiss/utils/Heap.h +31 -15
- data/vendor/faiss/faiss/utils/distances.cpp +380 -56
- data/vendor/faiss/faiss/utils/distances.h +113 -15
- data/vendor/faiss/faiss/utils/distances_simd.cpp +726 -6
- data/vendor/faiss/faiss/utils/extra_distances.cpp +12 -7
- data/vendor/faiss/faiss/utils/extra_distances.h +3 -1
- data/vendor/faiss/faiss/utils/fp16-fp16c.h +21 -0
- data/vendor/faiss/faiss/utils/fp16-inl.h +101 -0
- data/vendor/faiss/faiss/utils/fp16.h +11 -0
- data/vendor/faiss/faiss/utils/hamming-inl.h +54 -0
- data/vendor/faiss/faiss/utils/hamming.cpp +0 -48
- data/vendor/faiss/faiss/utils/ordered_key_value.h +10 -0
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +62 -0
- data/vendor/faiss/faiss/utils/quantize_lut.h +20 -0
- data/vendor/faiss/faiss/utils/random.cpp +53 -0
- data/vendor/faiss/faiss/utils/random.h +5 -0
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +4 -0
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +6 -1
- data/vendor/faiss/faiss/utils/simdlib_neon.h +7 -2
- metadata +37 -3
@@ -12,6 +12,8 @@
|
|
12
12
|
#include <string>
|
13
13
|
|
14
14
|
#include <faiss/impl/AuxIndexStructures.h>
|
15
|
+
#include <faiss/impl/DistanceComputer.h>
|
16
|
+
#include <faiss/impl/IDSelector.h>
|
15
17
|
|
16
18
|
namespace faiss {
|
17
19
|
|
@@ -501,9 +503,19 @@ void HNSW::add_with_locks(
|
|
501
503
|
}
|
502
504
|
}
|
503
505
|
|
506
|
+
/**************************************************************
|
507
|
+
* Searching
|
508
|
+
**************************************************************/
|
509
|
+
|
510
|
+
namespace {
|
511
|
+
|
512
|
+
using idx_t = HNSW::idx_t;
|
513
|
+
using MinimaxHeap = HNSW::MinimaxHeap;
|
514
|
+
using Node = HNSW::Node;
|
504
515
|
/** Do a BFS on the candidates list */
|
505
516
|
|
506
|
-
int
|
517
|
+
int search_from_candidates(
|
518
|
+
const HNSW& hnsw,
|
507
519
|
DistanceComputer& qdis,
|
508
520
|
int k,
|
509
521
|
idx_t* I,
|
@@ -512,22 +524,31 @@ int HNSW::search_from_candidates(
|
|
512
524
|
VisitedTable& vt,
|
513
525
|
HNSWStats& stats,
|
514
526
|
int level,
|
515
|
-
int nres_in
|
527
|
+
int nres_in = 0,
|
528
|
+
const SearchParametersHNSW* params = nullptr) {
|
516
529
|
int nres = nres_in;
|
517
530
|
int ndis = 0;
|
531
|
+
|
532
|
+
// can be overridden by search params
|
533
|
+
bool do_dis_check = params ? params->check_relative_distance
|
534
|
+
: hnsw.check_relative_distance;
|
535
|
+
int efSearch = params ? params->efSearch : hnsw.efSearch;
|
536
|
+
const IDSelector* sel = params ? params->sel : nullptr;
|
537
|
+
|
518
538
|
for (int i = 0; i < candidates.size(); i++) {
|
519
539
|
idx_t v1 = candidates.ids[i];
|
520
540
|
float d = candidates.dis[i];
|
521
541
|
FAISS_ASSERT(v1 >= 0);
|
522
|
-
if (
|
523
|
-
|
524
|
-
|
525
|
-
|
542
|
+
if (!sel || sel->is_member(v1)) {
|
543
|
+
if (nres < k) {
|
544
|
+
faiss::maxheap_push(++nres, D, I, d, v1);
|
545
|
+
} else if (d < D[0]) {
|
546
|
+
faiss::maxheap_replace_top(nres, D, I, d, v1);
|
547
|
+
}
|
526
548
|
}
|
527
549
|
vt.set(v1);
|
528
550
|
}
|
529
551
|
|
530
|
-
bool do_dis_check = check_relative_distance;
|
531
552
|
int nstep = 0;
|
532
553
|
|
533
554
|
while (candidates.size() > 0) {
|
@@ -546,10 +567,10 @@ int HNSW::search_from_candidates(
|
|
546
567
|
}
|
547
568
|
|
548
569
|
size_t begin, end;
|
549
|
-
neighbor_range(v0, level, &begin, &end);
|
570
|
+
hnsw.neighbor_range(v0, level, &begin, &end);
|
550
571
|
|
551
572
|
for (size_t j = begin; j < end; j++) {
|
552
|
-
int v1 = neighbors[j];
|
573
|
+
int v1 = hnsw.neighbors[j];
|
553
574
|
if (v1 < 0)
|
554
575
|
break;
|
555
576
|
if (vt.get(v1)) {
|
@@ -558,10 +579,12 @@ int HNSW::search_from_candidates(
|
|
558
579
|
vt.set(v1);
|
559
580
|
ndis++;
|
560
581
|
float d = qdis(v1);
|
561
|
-
if (
|
562
|
-
|
563
|
-
|
564
|
-
|
582
|
+
if (!sel || sel->is_member(v1)) {
|
583
|
+
if (nres < k) {
|
584
|
+
faiss::maxheap_push(++nres, D, I, d, v1);
|
585
|
+
} else if (d < D[0]) {
|
586
|
+
faiss::maxheap_replace_top(nres, D, I, d, v1);
|
587
|
+
}
|
565
588
|
}
|
566
589
|
candidates.push(v1, d);
|
567
590
|
}
|
@@ -583,16 +606,13 @@ int HNSW::search_from_candidates(
|
|
583
606
|
return nres;
|
584
607
|
}
|
585
608
|
|
586
|
-
|
587
|
-
|
588
|
-
**************************************************************/
|
589
|
-
|
590
|
-
std::priority_queue<HNSW::Node> HNSW::search_from_candidate_unbounded(
|
609
|
+
std::priority_queue<HNSW::Node> search_from_candidate_unbounded(
|
610
|
+
const HNSW& hnsw,
|
591
611
|
const Node& node,
|
592
612
|
DistanceComputer& qdis,
|
593
613
|
int ef,
|
594
614
|
VisitedTable* vt,
|
595
|
-
HNSWStats& stats)
|
615
|
+
HNSWStats& stats) {
|
596
616
|
int ndis = 0;
|
597
617
|
std::priority_queue<Node> top_candidates;
|
598
618
|
std::priority_queue<Node, std::vector<Node>, std::greater<Node>> candidates;
|
@@ -614,10 +634,10 @@ std::priority_queue<HNSW::Node> HNSW::search_from_candidate_unbounded(
|
|
614
634
|
candidates.pop();
|
615
635
|
|
616
636
|
size_t begin, end;
|
617
|
-
neighbor_range(v0, 0, &begin, &end);
|
637
|
+
hnsw.neighbor_range(v0, 0, &begin, &end);
|
618
638
|
|
619
639
|
for (size_t j = begin; j < end; ++j) {
|
620
|
-
int v1 = neighbors[j];
|
640
|
+
int v1 = hnsw.neighbors[j];
|
621
641
|
|
622
642
|
if (v1 < 0) {
|
623
643
|
break;
|
@@ -651,14 +671,19 @@ std::priority_queue<HNSW::Node> HNSW::search_from_candidate_unbounded(
|
|
651
671
|
return top_candidates;
|
652
672
|
}
|
653
673
|
|
674
|
+
} // anonymous namespace
|
675
|
+
|
654
676
|
HNSWStats HNSW::search(
|
655
677
|
DistanceComputer& qdis,
|
656
678
|
int k,
|
657
679
|
idx_t* I,
|
658
680
|
float* D,
|
659
|
-
VisitedTable& vt
|
681
|
+
VisitedTable& vt,
|
682
|
+
const SearchParametersHNSW* params) const {
|
660
683
|
HNSWStats stats;
|
661
|
-
|
684
|
+
if (entry_point == -1) {
|
685
|
+
return stats;
|
686
|
+
}
|
662
687
|
if (upper_beam == 1) {
|
663
688
|
// greedy search on upper levels
|
664
689
|
storage_idx_t nearest = entry_point;
|
@@ -669,16 +694,22 @@ HNSWStats HNSW::search(
|
|
669
694
|
}
|
670
695
|
|
671
696
|
int ef = std::max(efSearch, k);
|
672
|
-
if (search_bounded_queue) {
|
697
|
+
if (search_bounded_queue) { // this is the most common branch
|
673
698
|
MinimaxHeap candidates(ef);
|
674
699
|
|
675
700
|
candidates.push(nearest, d_nearest);
|
676
701
|
|
677
|
-
search_from_candidates(
|
702
|
+
search_from_candidates(
|
703
|
+
*this, qdis, k, I, D, candidates, vt, stats, 0, 0, params);
|
678
704
|
} else {
|
679
705
|
std::priority_queue<Node> top_candidates =
|
680
706
|
search_from_candidate_unbounded(
|
681
|
-
|
707
|
+
*this,
|
708
|
+
Node(d_nearest, nearest),
|
709
|
+
qdis,
|
710
|
+
ef,
|
711
|
+
&vt,
|
712
|
+
stats);
|
682
713
|
|
683
714
|
while (top_candidates.size() > k) {
|
684
715
|
top_candidates.pop();
|
@@ -718,9 +749,10 @@ HNSWStats HNSW::search(
|
|
718
749
|
|
719
750
|
if (level == 0) {
|
720
751
|
nres = search_from_candidates(
|
721
|
-
qdis, k, I, D, candidates, vt, stats, 0);
|
752
|
+
*this, qdis, k, I, D, candidates, vt, stats, 0);
|
722
753
|
} else {
|
723
754
|
nres = search_from_candidates(
|
755
|
+
*this,
|
724
756
|
qdis,
|
725
757
|
candidates_size,
|
726
758
|
I_to_next.data(),
|
@@ -737,6 +769,70 @@ HNSWStats HNSW::search(
|
|
737
769
|
return stats;
|
738
770
|
}
|
739
771
|
|
772
|
+
void HNSW::search_level_0(
|
773
|
+
DistanceComputer& qdis,
|
774
|
+
int k,
|
775
|
+
idx_t* idxi,
|
776
|
+
float* simi,
|
777
|
+
idx_t nprobe,
|
778
|
+
const storage_idx_t* nearest_i,
|
779
|
+
const float* nearest_d,
|
780
|
+
int search_type,
|
781
|
+
HNSWStats& search_stats,
|
782
|
+
VisitedTable& vt) const {
|
783
|
+
const HNSW& hnsw = *this;
|
784
|
+
|
785
|
+
if (search_type == 1) {
|
786
|
+
int nres = 0;
|
787
|
+
|
788
|
+
for (int j = 0; j < nprobe; j++) {
|
789
|
+
storage_idx_t cj = nearest_i[j];
|
790
|
+
|
791
|
+
if (cj < 0)
|
792
|
+
break;
|
793
|
+
|
794
|
+
if (vt.get(cj))
|
795
|
+
continue;
|
796
|
+
|
797
|
+
int candidates_size = std::max(hnsw.efSearch, int(k));
|
798
|
+
MinimaxHeap candidates(candidates_size);
|
799
|
+
|
800
|
+
candidates.push(cj, nearest_d[j]);
|
801
|
+
|
802
|
+
nres = search_from_candidates(
|
803
|
+
hnsw,
|
804
|
+
qdis,
|
805
|
+
k,
|
806
|
+
idxi,
|
807
|
+
simi,
|
808
|
+
candidates,
|
809
|
+
vt,
|
810
|
+
search_stats,
|
811
|
+
0,
|
812
|
+
nres);
|
813
|
+
}
|
814
|
+
} else if (search_type == 2) {
|
815
|
+
int candidates_size = std::max(hnsw.efSearch, int(k));
|
816
|
+
candidates_size = std::max(candidates_size, int(nprobe));
|
817
|
+
|
818
|
+
MinimaxHeap candidates(candidates_size);
|
819
|
+
for (int j = 0; j < nprobe; j++) {
|
820
|
+
storage_idx_t cj = nearest_i[j];
|
821
|
+
|
822
|
+
if (cj < 0)
|
823
|
+
break;
|
824
|
+
candidates.push(cj, nearest_d[j]);
|
825
|
+
}
|
826
|
+
|
827
|
+
search_from_candidates(
|
828
|
+
hnsw, qdis, k, idxi, simi, candidates, vt, search_stats, 0);
|
829
|
+
}
|
830
|
+
}
|
831
|
+
|
832
|
+
/**************************************************************
|
833
|
+
* MinimaxHeap
|
834
|
+
**************************************************************/
|
835
|
+
|
740
836
|
void HNSW::MinimaxHeap::push(storage_idx_t i, float v) {
|
741
837
|
if (k == n) {
|
742
838
|
if (v >= dis[0])
|
@@ -43,6 +43,13 @@ struct VisitedTable;
|
|
43
43
|
struct DistanceComputer; // from AuxIndexStructures
|
44
44
|
struct HNSWStats;
|
45
45
|
|
46
|
+
struct SearchParametersHNSW : SearchParameters {
|
47
|
+
int efSearch = 16;
|
48
|
+
bool check_relative_distance = true;
|
49
|
+
|
50
|
+
~SearchParametersHNSW() {}
|
51
|
+
};
|
52
|
+
|
46
53
|
struct HNSW {
|
47
54
|
/// internal storage of vectors (32 bits: this is expensive)
|
48
55
|
typedef int storage_idx_t;
|
@@ -188,30 +195,26 @@ struct HNSW {
|
|
188
195
|
std::vector<omp_lock_t>& locks,
|
189
196
|
VisitedTable& vt);
|
190
197
|
|
191
|
-
|
198
|
+
/// search interface for 1 point, single thread
|
199
|
+
HNSWStats search(
|
192
200
|
DistanceComputer& qdis,
|
193
201
|
int k,
|
194
202
|
idx_t* I,
|
195
203
|
float* D,
|
196
|
-
MinimaxHeap& candidates,
|
197
204
|
VisitedTable& vt,
|
198
|
-
|
199
|
-
int level,
|
200
|
-
int nres_in = 0) const;
|
205
|
+
const SearchParametersHNSW* params = nullptr) const;
|
201
206
|
|
202
|
-
|
203
|
-
|
204
|
-
DistanceComputer& qdis,
|
205
|
-
int ef,
|
206
|
-
VisitedTable* vt,
|
207
|
-
HNSWStats& stats) const;
|
208
|
-
|
209
|
-
/// search interface
|
210
|
-
HNSWStats search(
|
207
|
+
/// search only in level 0 from a given vertex
|
208
|
+
void search_level_0(
|
211
209
|
DistanceComputer& qdis,
|
212
210
|
int k,
|
213
|
-
idx_t*
|
214
|
-
float*
|
211
|
+
idx_t* idxi,
|
212
|
+
float* simi,
|
213
|
+
idx_t nprobe,
|
214
|
+
const storage_idx_t* nearest_i,
|
215
|
+
const float* nearest_d,
|
216
|
+
int search_type,
|
217
|
+
HNSWStats& search_stats,
|
215
218
|
VisitedTable& vt) const;
|
216
219
|
|
217
220
|
void reset();
|
@@ -0,0 +1,125 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
#include <faiss/impl/FaissAssert.h>
|
9
|
+
#include <faiss/impl/IDSelector.h>
|
10
|
+
|
11
|
+
namespace faiss {
|
12
|
+
|
13
|
+
/***********************************************************************
|
14
|
+
* IDSelectorRange
|
15
|
+
***********************************************************************/
|
16
|
+
|
17
|
+
IDSelectorRange::IDSelectorRange(idx_t imin, idx_t imax, bool assume_sorted)
|
18
|
+
: imin(imin), imax(imax), assume_sorted(assume_sorted) {}
|
19
|
+
|
20
|
+
bool IDSelectorRange::is_member(idx_t id) const {
|
21
|
+
return id >= imin && id < imax;
|
22
|
+
}
|
23
|
+
|
24
|
+
void IDSelectorRange::find_sorted_ids_bounds(
|
25
|
+
size_t list_size,
|
26
|
+
const idx_t* ids,
|
27
|
+
size_t* jmin_out,
|
28
|
+
size_t* jmax_out) const {
|
29
|
+
FAISS_ASSERT(assume_sorted);
|
30
|
+
if (list_size == 0 || imax <= ids[0] || imin > ids[list_size - 1]) {
|
31
|
+
*jmin_out = *jmax_out = 0;
|
32
|
+
return;
|
33
|
+
}
|
34
|
+
// bissection to find imin
|
35
|
+
if (ids[0] >= imin) {
|
36
|
+
*jmin_out = 0;
|
37
|
+
} else {
|
38
|
+
size_t j0 = 0, j1 = list_size;
|
39
|
+
while (j1 > j0 + 1) {
|
40
|
+
size_t jmed = (j0 + j1) / 2;
|
41
|
+
if (ids[jmed] >= imin) {
|
42
|
+
j1 = jmed;
|
43
|
+
} else {
|
44
|
+
j0 = jmed;
|
45
|
+
}
|
46
|
+
}
|
47
|
+
*jmin_out = j1;
|
48
|
+
}
|
49
|
+
// bissection to find imax
|
50
|
+
if (*jmin_out == list_size || ids[*jmin_out] >= imax) {
|
51
|
+
*jmax_out = *jmin_out;
|
52
|
+
} else {
|
53
|
+
size_t j0 = *jmin_out, j1 = list_size;
|
54
|
+
while (j1 > j0 + 1) {
|
55
|
+
size_t jmed = (j0 + j1) / 2;
|
56
|
+
if (ids[jmed] >= imax) {
|
57
|
+
j1 = jmed;
|
58
|
+
} else {
|
59
|
+
j0 = jmed;
|
60
|
+
}
|
61
|
+
}
|
62
|
+
*jmax_out = j1;
|
63
|
+
}
|
64
|
+
}
|
65
|
+
|
66
|
+
/***********************************************************************
|
67
|
+
* IDSelectorArray
|
68
|
+
***********************************************************************/
|
69
|
+
|
70
|
+
IDSelectorArray::IDSelectorArray(size_t n, const idx_t* ids) : n(n), ids(ids) {}
|
71
|
+
|
72
|
+
bool IDSelectorArray::is_member(idx_t id) const {
|
73
|
+
for (idx_t i = 0; i < n; i++) {
|
74
|
+
if (ids[i] == id)
|
75
|
+
return true;
|
76
|
+
}
|
77
|
+
return false;
|
78
|
+
}
|
79
|
+
|
80
|
+
/***********************************************************************
|
81
|
+
* IDSelectorBatch
|
82
|
+
***********************************************************************/
|
83
|
+
|
84
|
+
IDSelectorBatch::IDSelectorBatch(size_t n, const idx_t* indices) {
|
85
|
+
nbits = 0;
|
86
|
+
while (n > ((idx_t)1 << nbits)) {
|
87
|
+
nbits++;
|
88
|
+
}
|
89
|
+
nbits += 5;
|
90
|
+
// for n = 1M, nbits = 25 is optimal, see P56659518
|
91
|
+
|
92
|
+
mask = ((idx_t)1 << nbits) - 1;
|
93
|
+
bloom.resize((idx_t)1 << (nbits - 3), 0);
|
94
|
+
for (idx_t i = 0; i < n; i++) {
|
95
|
+
Index::idx_t id = indices[i];
|
96
|
+
set.insert(id);
|
97
|
+
id &= mask;
|
98
|
+
bloom[id >> 3] |= 1 << (id & 7);
|
99
|
+
}
|
100
|
+
}
|
101
|
+
|
102
|
+
bool IDSelectorBatch::is_member(idx_t i) const {
|
103
|
+
long im = i & mask;
|
104
|
+
if (!(bloom[im >> 3] & (1 << (im & 7)))) {
|
105
|
+
return 0;
|
106
|
+
}
|
107
|
+
return set.count(i);
|
108
|
+
}
|
109
|
+
|
110
|
+
/***********************************************************************
|
111
|
+
* IDSelectorBitmap
|
112
|
+
***********************************************************************/
|
113
|
+
|
114
|
+
IDSelectorBitmap::IDSelectorBitmap(size_t n, const uint8_t* bitmap)
|
115
|
+
: n(n), bitmap(bitmap) {}
|
116
|
+
|
117
|
+
bool IDSelectorBitmap::is_member(idx_t ii) const {
|
118
|
+
uint64_t i = ii;
|
119
|
+
if ((i >> 3) >= n) {
|
120
|
+
return false;
|
121
|
+
}
|
122
|
+
return (bitmap[i >> 3] >> (i & 7)) & 1;
|
123
|
+
}
|
124
|
+
|
125
|
+
} // namespace faiss
|
@@ -0,0 +1,135 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
#pragma once
|
9
|
+
|
10
|
+
#include <unordered_set>
|
11
|
+
#include <vector>
|
12
|
+
|
13
|
+
#include <faiss/Index.h>
|
14
|
+
|
15
|
+
/** IDSelector is intended to define a subset of vectors to handle (for removal
|
16
|
+
* or as subset to search) */
|
17
|
+
|
18
|
+
namespace faiss {
|
19
|
+
|
20
|
+
/** Encapsulates a set of ids to handle. */
|
21
|
+
struct IDSelector {
|
22
|
+
using idx_t = Index::idx_t;
|
23
|
+
virtual bool is_member(idx_t id) const = 0;
|
24
|
+
virtual ~IDSelector() {}
|
25
|
+
};
|
26
|
+
|
27
|
+
/** ids between [imin, imax) */
|
28
|
+
struct IDSelectorRange : IDSelector {
|
29
|
+
idx_t imin, imax;
|
30
|
+
|
31
|
+
/// Assume that the ids to handle are sorted. In some cases this can speed
|
32
|
+
/// up processing
|
33
|
+
bool assume_sorted;
|
34
|
+
|
35
|
+
IDSelectorRange(idx_t imin, idx_t imax, bool assume_sorted = false);
|
36
|
+
|
37
|
+
bool is_member(idx_t id) const final;
|
38
|
+
|
39
|
+
/// for sorted ids, find the range of list indices where the valid ids are
|
40
|
+
/// stored
|
41
|
+
void find_sorted_ids_bounds(
|
42
|
+
size_t list_size,
|
43
|
+
const idx_t* ids,
|
44
|
+
size_t* jmin,
|
45
|
+
size_t* jmax) const;
|
46
|
+
|
47
|
+
~IDSelectorRange() override {}
|
48
|
+
};
|
49
|
+
|
50
|
+
/** Simple array of elements
|
51
|
+
*
|
52
|
+
* is_member calls are very inefficient, but some operations can use the ids
|
53
|
+
* directly.
|
54
|
+
*/
|
55
|
+
struct IDSelectorArray : IDSelector {
|
56
|
+
size_t n;
|
57
|
+
const idx_t* ids;
|
58
|
+
|
59
|
+
/** Construct with an array of ids to process
|
60
|
+
*
|
61
|
+
* @param n number of ids to store
|
62
|
+
* @param ids elements to store. The pointer should remain valid during
|
63
|
+
* IDSelectorArray's lifetime
|
64
|
+
*/
|
65
|
+
IDSelectorArray(size_t n, const idx_t* ids);
|
66
|
+
bool is_member(idx_t id) const final;
|
67
|
+
~IDSelectorArray() override {}
|
68
|
+
};
|
69
|
+
|
70
|
+
/** Ids from a set.
|
71
|
+
*
|
72
|
+
* Repetitions of ids in the indices set passed to the constructor does not hurt
|
73
|
+
* performance.
|
74
|
+
*
|
75
|
+
* The hash function used for the bloom filter and GCC's implementation of
|
76
|
+
* unordered_set are just the least significant bits of the id. This works fine
|
77
|
+
* for random ids or ids in sequences but will produce many hash collisions if
|
78
|
+
* lsb's are always the same
|
79
|
+
*/
|
80
|
+
struct IDSelectorBatch : IDSelector {
|
81
|
+
std::unordered_set<idx_t> set;
|
82
|
+
|
83
|
+
// Bloom filter to avoid accessing the unordered set if it is unlikely
|
84
|
+
// to be true
|
85
|
+
std::vector<uint8_t> bloom;
|
86
|
+
int nbits;
|
87
|
+
idx_t mask;
|
88
|
+
|
89
|
+
/** Construct with an array of ids to process
|
90
|
+
*
|
91
|
+
* @param n number of ids to store
|
92
|
+
* @param ids elements to store. The pointer can be released after
|
93
|
+
* construction
|
94
|
+
*/
|
95
|
+
IDSelectorBatch(size_t n, const idx_t* indices);
|
96
|
+
bool is_member(idx_t id) const final;
|
97
|
+
~IDSelectorBatch() override {}
|
98
|
+
};
|
99
|
+
|
100
|
+
/** One bit per element. Constructed with a bitmap, size ceil(n / 8).
|
101
|
+
*/
|
102
|
+
struct IDSelectorBitmap : IDSelector {
|
103
|
+
size_t n;
|
104
|
+
const uint8_t* bitmap;
|
105
|
+
|
106
|
+
/** Construct with a binary mask
|
107
|
+
*
|
108
|
+
* @param n size of the bitmap array
|
109
|
+
* @param bitmap id will be selected iff id / 8 < n and bit number
|
110
|
+
* (i%8) of bitmap[floor(i / 8)] is 1.
|
111
|
+
*/
|
112
|
+
IDSelectorBitmap(size_t n, const uint8_t* bitmap);
|
113
|
+
bool is_member(idx_t id) const final;
|
114
|
+
~IDSelectorBitmap() override {}
|
115
|
+
};
|
116
|
+
|
117
|
+
/** reverts the membership test of another selector */
|
118
|
+
struct IDSelectorNot : IDSelector {
|
119
|
+
const IDSelector* sel;
|
120
|
+
IDSelectorNot(const IDSelector* sel) : sel(sel) {}
|
121
|
+
bool is_member(idx_t id) const final {
|
122
|
+
return !sel->is_member(id);
|
123
|
+
}
|
124
|
+
virtual ~IDSelectorNot() {}
|
125
|
+
};
|
126
|
+
|
127
|
+
/// selects all entries (useful for benchmarking)
|
128
|
+
struct IDSelectorAll : IDSelector {
|
129
|
+
bool is_member(idx_t id) const final {
|
130
|
+
return true;
|
131
|
+
}
|
132
|
+
virtual ~IDSelectorAll() {}
|
133
|
+
};
|
134
|
+
|
135
|
+
} // namespace faiss
|
@@ -15,7 +15,6 @@
|
|
15
15
|
|
16
16
|
#include <algorithm>
|
17
17
|
|
18
|
-
#include <faiss/Clustering.h>
|
19
18
|
#include <faiss/impl/AuxIndexStructures.h>
|
20
19
|
#include <faiss/impl/FaissAssert.h>
|
21
20
|
#include <faiss/utils/distances.h>
|
@@ -151,9 +150,6 @@ LocalSearchQuantizer::LocalSearchQuantizer(
|
|
151
150
|
size_t nbits,
|
152
151
|
Search_type_t search_type)
|
153
152
|
: AdditiveQuantizer(d, std::vector<size_t>(M, nbits), search_type) {
|
154
|
-
is_trained = false;
|
155
|
-
verbose = false;
|
156
|
-
|
157
153
|
K = (1 << nbits);
|
158
154
|
|
159
155
|
train_iters = 25;
|
@@ -182,7 +178,7 @@ LocalSearchQuantizer::LocalSearchQuantizer() : LocalSearchQuantizer(0, 0, 0) {}
|
|
182
178
|
|
183
179
|
void LocalSearchQuantizer::train(size_t n, const float* x) {
|
184
180
|
FAISS_THROW_IF_NOT(K == (1 << nbits[0]));
|
185
|
-
|
181
|
+
nperts = std::min(nperts, M);
|
186
182
|
|
187
183
|
lsq_timer.reset();
|
188
184
|
LSQTimerScope scope(&lsq_timer, "train");
|
@@ -264,26 +260,7 @@ void LocalSearchQuantizer::train(size_t n, const float* x) {
|
|
264
260
|
decode_unpacked(codes.data(), x_recons.data(), n);
|
265
261
|
fvec_norms_L2sqr(norms.data(), x_recons.data(), d, n);
|
266
262
|
|
267
|
-
|
268
|
-
norm_max = -HUGE_VALF;
|
269
|
-
for (idx_t i = 0; i < n; i++) {
|
270
|
-
if (norms[i] < norm_min) {
|
271
|
-
norm_min = norms[i];
|
272
|
-
}
|
273
|
-
if (norms[i] > norm_max) {
|
274
|
-
norm_max = norms[i];
|
275
|
-
}
|
276
|
-
}
|
277
|
-
|
278
|
-
if (search_type == ST_norm_cqint8 || search_type == ST_norm_cqint4) {
|
279
|
-
size_t k = (1 << 8);
|
280
|
-
if (search_type == ST_norm_cqint4) {
|
281
|
-
k = (1 << 4);
|
282
|
-
}
|
283
|
-
Clustering1D clus(k);
|
284
|
-
clus.train_exact(n, norms.data());
|
285
|
-
qnorm.add(clus.k, clus.centroids.data());
|
286
|
-
}
|
263
|
+
train_norm(n, norms.data());
|
287
264
|
}
|
288
265
|
|
289
266
|
if (verbose) {
|
@@ -318,10 +295,11 @@ void LocalSearchQuantizer::perturb_codebooks(
|
|
318
295
|
}
|
319
296
|
}
|
320
297
|
|
321
|
-
void LocalSearchQuantizer::
|
298
|
+
void LocalSearchQuantizer::compute_codes_add_centroids(
|
322
299
|
const float* x,
|
323
300
|
uint8_t* codes_out,
|
324
|
-
size_t n
|
301
|
+
size_t n,
|
302
|
+
const float* centroids) const {
|
325
303
|
FAISS_THROW_IF_NOT_MSG(is_trained, "LSQ is not trained yet.");
|
326
304
|
|
327
305
|
lsq_timer.reset();
|
@@ -335,7 +313,7 @@ void LocalSearchQuantizer::compute_codes(
|
|
335
313
|
random_int32(codes, 0, K - 1, gen);
|
336
314
|
|
337
315
|
icm_encode(codes.data(), x, n, encode_ils_iters, gen);
|
338
|
-
pack_codes(n, codes.data(), codes_out);
|
316
|
+
pack_codes(n, codes.data(), codes_out, -1, nullptr, centroids);
|
339
317
|
|
340
318
|
if (verbose) {
|
341
319
|
scope.finish();
|
@@ -83,8 +83,13 @@ struct LocalSearchQuantizer : AdditiveQuantizer {
|
|
83
83
|
* @param x vectors to encode, size n * d
|
84
84
|
* @param codes output codes, size n * code_size
|
85
85
|
* @param n number of vectors
|
86
|
+
* @param centroids centroids to be added to x, size n * d
|
86
87
|
*/
|
87
|
-
void
|
88
|
+
void compute_codes_add_centroids(
|
89
|
+
const float* x,
|
90
|
+
uint8_t* codes,
|
91
|
+
size_t n,
|
92
|
+
const float* centroids = nullptr) const override;
|
88
93
|
|
89
94
|
/** Update codebooks given encodings
|
90
95
|
*
|