experian-data-dictionary 1.0 → 1.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/docs/DataDictionary_NonProfit_Experian.pdf +0 -0
- data/experian_data_dictionary.gemspec +1 -1
- data/lib/element_numbers/en_0000.rb +4 -1
- data/lib/element_numbers/en_0100.rb +10 -3
- data/lib/element_numbers/en_0103.rb +4 -1
- data/lib/element_numbers/en_0107.rb +6 -3
- data/lib/element_numbers/en_0108.rb +36 -7
- data/lib/element_numbers/en_0110.rb +4 -1
- data/lib/element_numbers/en_0112.rb +4 -1
- data/lib/element_numbers/en_0113.rb +4 -1
- data/lib/element_numbers/en_0118.rb +4 -0
- data/lib/element_numbers/en_0119.rb +6 -3
- data/lib/element_numbers/en_0130.rb +4 -1
- data/lib/element_numbers/en_0131.rb +4 -1
- data/lib/element_numbers/en_0132.rb +9 -0
- data/lib/element_numbers/en_0133.rb +4 -1
- data/lib/element_numbers/en_0134.rb +9 -5
- data/lib/element_numbers/en_0135.rb +9 -6
- data/lib/element_numbers/en_0136.rb +9 -6
- data/lib/element_numbers/en_0137.rb +8 -5
- data/lib/element_numbers/en_0138.rb +8 -5
- data/lib/element_numbers/en_0139.rb +8 -5
- data/lib/element_numbers/en_0140.rb +8 -4
- data/lib/element_numbers/en_0141.rb +9 -5
- data/lib/element_numbers/en_0155.rb +5 -1
- data/lib/element_numbers/en_0156.rb +5 -1
- data/lib/element_numbers/en_0160.rb +6 -3
- data/lib/element_numbers/en_0162.rb +5 -2
- data/lib/element_numbers/en_0164.rb +5 -2
- data/lib/element_numbers/en_0174.rb +5 -2
- data/lib/element_numbers/en_0711.rb +6 -3
- data/lib/element_numbers/en_0715.rb +6 -3
- data/lib/element_numbers/en_0716.rb +5 -2
- data/lib/element_numbers/en_0717.rb +6 -3
- data/lib/element_numbers/en_310M.rb +5 -2
- data/lib/element_numbers/en_8502.rb +11 -5
- data/lib/element_numbers/en_8503.rb +11 -5
- data/lib/element_numbers/en_8504.rb +11 -5
- data/lib/element_numbers/en_8505.rb +11 -3
- data/lib/element_numbers/en_8519.rb +11 -3
- data/lib/element_numbers/en_8525.rb +11 -3
- data/lib/element_numbers/en_8526.rb +11 -3
- data/lib/element_numbers/en_8528.rb +11 -3
- data/lib/element_numbers/en_8531.rb +11 -3
- data/lib/element_numbers/en_8532.rb +11 -3
- data/lib/element_numbers/en_8533.rb +9 -2
- data/lib/element_numbers/en_8538.rb +11 -3
- data/lib/element_numbers/en_8574.rb +11 -3
- data/lib/element_numbers/en_A107.rb +4 -0
- data/lib/element_numbers/en_B000.rb +5 -1
- data/lib/element_numbers/en_B2185.rb +5 -1
- data/lib/element_numbers/en_B3010.rb +5 -1
- data/lib/element_numbers/en_B5011.rb +5 -1
- data/lib/element_numbers/en_B5013.rb +5 -1
- data/lib/element_numbers/en_B5014.rb +5 -1
- data/lib/element_numbers/en_B5016.rb +5 -1
- data/lib/element_numbers/en_D105N.rb +5 -1
- data/lib/element_numbers/en_D200.rb +5 -1
- data/lib/element_numbers/en_F031.rb +5 -1
- data/lib/element_numbers/en_G2001.rb +7 -3
- data/lib/element_numbers/en_G2514.rb +5 -1
- data/lib/element_numbers/en_G2516.rb +5 -1
- data/lib/element_numbers/en_G2601.rb +5 -1
- data/lib/element_numbers/en_G2602.rb +5 -1
- data/lib/element_numbers/en_G2603.rb +5 -1
- data/lib/element_numbers/en_GE06.rb +6 -2
- data/lib/element_numbers/en_L000.rb +7 -3
- data/lib/element_numbers/en_P213E.rb +6 -2
- data/lib/element_numbers/en_P213H.rb +6 -2
- data/lib/element_numbers/en_P213W.rb +6 -2
- data/lib/element_numbers/en_P400.rb +12 -4
- data/lib/element_numbers/en_T200.rb +6 -2
- data/lib/element_numbers/en_V000.rb +5 -1
- data/lib/element_numbers/en_Y000.rb +5 -1
- data/lib/experian.rb +8 -4
- data/spec/functional/en_0000_spec.rb +2 -1
- data/spec/functional/en_0100_spec.rb +3 -1
- data/spec/functional/en_0103_spec.rb +2 -1
- metadata +2 -2
@@ -2,13 +2,21 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Religion & Religion Propensity, Self reported data
|
5
|
+
def self.en_8525_column_name
|
6
|
+
'Religion & Religion Propensity, Self reported data'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_8525_description
|
6
|
-
|
10
|
+
'Z religion & religion propensities indicates a household\'s self reported interest in religion. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
7
11
|
end
|
8
12
|
|
9
13
|
# Religion & Religion Propensity, Quick Predict Code
|
14
|
+
def self.en_8525p_column_name
|
15
|
+
'Religion & Religion Propensity, Quick Predict Code'
|
16
|
+
end
|
17
|
+
|
10
18
|
def self.en_8525p_description
|
11
|
-
|
19
|
+
'Z religion & religion propensities indicates a household\'s self reported interest in religion. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
20
|
end
|
13
21
|
|
14
22
|
def self.en_8525(key)
|
@@ -28,7 +36,7 @@ module Experian
|
|
28
36
|
'9' => 'Extremely Unlikely interest in religion',
|
29
37
|
'0' => 'Unknown / Not Attempted',
|
30
38
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
39
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
40
|
[charity[key[0]], code[key[1]]].join(' - ')
|
33
41
|
end
|
34
42
|
|
@@ -2,13 +2,21 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Grandparent & Grandparent Propensity, Self reported data
|
5
|
+
def self.en_8526_column_name
|
6
|
+
'Grandparent & Grandparent Propensity, Self reported data'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_8526_description
|
6
|
-
|
10
|
+
'Z grandparent & grandparent propensities indicates a household\'s self reported grandparent. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
7
11
|
end
|
8
12
|
|
9
13
|
# Grandparent & Grandparent Propensity, Quick Predict Code
|
14
|
+
def self.en_8526p_column_name
|
15
|
+
'Grandparent & Grandparent Propensity, Quick Predict Code'
|
16
|
+
end
|
17
|
+
|
10
18
|
def self.en_8526p_description
|
11
|
-
|
19
|
+
'Z grandparent & grandparent propensities indicates a household\'s self reported grandparent. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response.The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
20
|
end
|
13
21
|
|
14
22
|
def self.en_8526(key)
|
@@ -28,7 +36,7 @@ module Experian
|
|
28
36
|
'9' => 'Extremely Unlikely grandparent',
|
29
37
|
'0' => 'Unknown / Not Attempted',
|
30
38
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
39
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
40
|
[charity[key[0]], code[key[1]]].join(' - ')
|
33
41
|
end
|
34
42
|
|
@@ -2,13 +2,21 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Environmental Donor & Envir Donor Prop, Self reported data
|
5
|
+
def self.en_8528_column_name
|
6
|
+
'Environmental Donor & Envir Donor Prop, Self reported data'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_8528_description
|
6
|
-
|
10
|
+
'Z environmental donor & environmental donor propensities indicates a household\'s self reported as donating to environmental causes. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
7
11
|
end
|
8
12
|
|
9
13
|
# Environmental Donor & Environ Donor Prop, Quick Predict Code
|
14
|
+
def self.en_8528p_column_name
|
15
|
+
'Environmental Donor & Envir Donor Prop, Quick Predict Code'
|
16
|
+
end
|
17
|
+
|
10
18
|
def self.en_8528p_description
|
11
|
-
|
19
|
+
'Z environmental donor & environmental donor propensities indicates a household\'s self reported as donating to environmental causes. Valid Values :BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
20
|
end
|
13
21
|
|
14
22
|
def self.en_8528(key)
|
@@ -28,7 +36,7 @@ module Experian
|
|
28
36
|
'9' => 'Extremely Unlikely donates to environmental causes',
|
29
37
|
'0' => 'Unknown / Not Attempted',
|
30
38
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
39
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
40
|
[code[key[1]], charity[key[0]]].join(' - ')
|
33
41
|
end
|
34
42
|
|
@@ -2,13 +2,21 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Buys By Phone & Buys By Phone Propensity, Self reported data
|
5
|
+
def self.en_8531_column_name
|
6
|
+
'Buys By Phone & Buys By Phone Propensity, Self reported data'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_8531_description
|
6
|
-
|
10
|
+
'Z buys by phone & buys by phone propensities indicates a household has self reported to purchase via phone. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
7
11
|
end
|
8
12
|
|
9
13
|
# Buys By Phone & Buys By Phone Propensity, Quick Predict Code
|
14
|
+
def self.en_8531p_column_name
|
15
|
+
'Buys By Phone & Buys By Phone Propensity, Quick Predict Code'
|
16
|
+
end
|
17
|
+
|
10
18
|
def self.en_8531p_description
|
11
|
-
|
19
|
+
'Z buys by phone & buys by phone propensities indicates a household has self reported to purchase via phone. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
20
|
end
|
13
21
|
|
14
22
|
def self.en_8531(key)
|
@@ -28,7 +36,7 @@ module Experian
|
|
28
36
|
'9' => 'Extremely Unlikely to purchase via phone',
|
29
37
|
'0' => 'Unknown / Not Attempted',
|
30
38
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
39
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
40
|
[code[key[1]], charity[key[0]]].join(' - ')
|
33
41
|
end
|
34
42
|
|
@@ -2,13 +2,21 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Buys By TV & Buys By TV Propensity, Self reported data
|
5
|
+
def self.en_8532_column_name
|
6
|
+
'Buys By TV & Buys By TV Propensity, Self reported data'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_8532_description
|
6
|
-
|
10
|
+
'Z buys by TV & buys by TV propensities indicates a household has self reported to purchase via television. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
7
11
|
end
|
8
12
|
|
9
13
|
# Buys By TV & Buys By TV Propensity, Quick Predict Code
|
14
|
+
def self.en_8532_column_name
|
15
|
+
'Buys By TV & Buys By TV Propensity, Quick Predict Code'
|
16
|
+
end
|
17
|
+
|
10
18
|
def self.en_8532p_description
|
11
|
-
|
19
|
+
'Z buys by TV & buys by TV propensities indicates a household has self reported to purchase via television. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
20
|
end
|
13
21
|
|
14
22
|
def self.en_8532(key)
|
@@ -28,7 +36,7 @@ module Experian
|
|
28
36
|
'9' => 'Extremely Unlikely to purchase via television',
|
29
37
|
'0' => 'Unknown / Not Attempted',
|
30
38
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
39
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
40
|
[code[key[1]], charity[key[0]]].join(' - ')
|
33
41
|
end
|
34
42
|
|
@@ -1,14 +1,21 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_8533_column_name
|
5
|
+
'Mailorder Multibuyer & MO Multi Prop, Self reported data'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_8533_description
|
6
9
|
'Mailorder Multibuyer & MO Multi Prop, Self reported data'
|
7
10
|
end
|
8
11
|
|
12
|
+
def self.en_8533p_column_name
|
13
|
+
'Mailorder Multibuyer & MO Multi Prop, Quick Predict Code'
|
14
|
+
end
|
15
|
+
|
9
16
|
def self.en_8533p_description
|
10
17
|
self.en_8533_description
|
11
|
-
end
|
18
|
+
end
|
12
19
|
|
13
20
|
# CCYYMM
|
14
21
|
def self.en_8533(key)
|
@@ -2,13 +2,21 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Health & Health Propensity, Self reported data
|
5
|
+
def self.en_8538_column_name
|
6
|
+
'Health & Health Propensity, Self reported data'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_8538_description
|
6
|
-
|
10
|
+
'Z health & health propensities indicates a household\'s self reported interest in healthy living. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
7
11
|
end
|
8
12
|
|
9
13
|
# Health & Health Propensity, Quick Predict Code
|
14
|
+
def self.en_8538p_column_name
|
15
|
+
'Health & Health Propensity, Quick Predict Code'
|
16
|
+
end
|
17
|
+
|
10
18
|
def self.en_8538p_description
|
11
|
-
|
19
|
+
'Z health & health propensities indicates a household\'s self reported interest in healthy living. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
20
|
end
|
13
21
|
|
14
22
|
def self.en_8538(key)
|
@@ -28,7 +36,7 @@ module Experian
|
|
28
36
|
'9' => 'Extremely Unlikely interest in healthy living',
|
29
37
|
'0' => 'Unknown / Not Attempted',
|
30
38
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
39
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
40
|
[code[key[1]], charity[key[0]]].join(' - ')
|
33
41
|
end
|
34
42
|
|
@@ -2,13 +2,21 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Volunteer & Volunteer Propensity, Self reported data
|
5
|
+
def self.en_8574_column_name
|
6
|
+
'Volunteer & Volunteer Propensity, Self reported data'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_8574_description
|
6
|
-
|
10
|
+
'Z Volunteer & Volunteer Propensity indicates a household\'s self-reported behavior to be a Volunteer. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
7
11
|
end
|
8
12
|
|
9
13
|
# Volunteer & Volunteer Propensity, Quick Predict Code
|
14
|
+
def self.en_8574p_column_name
|
15
|
+
'Volunteer & Volunteer Propensity, Quick Predict Code'
|
16
|
+
end
|
17
|
+
|
10
18
|
def self.en_8574p_description
|
11
|
-
|
19
|
+
'Z Volunteer & Volunteer Propensity indicates a household\'s self-reported behavior to be a Volunteer. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
20
|
end
|
13
21
|
|
14
22
|
def self.en_8574(key)
|
@@ -28,7 +36,7 @@ module Experian
|
|
28
36
|
'9' => 'Extremely Unlikely to be a Volunteer',
|
29
37
|
'0' => 'Unknown / Not Attempted',
|
30
38
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
39
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
40
|
[code[key[1]], charity[key[0]]].join(' - ')
|
33
41
|
end
|
34
42
|
|
@@ -2,6 +2,10 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Luxury Car - Domestic
|
5
|
+
def self.en_a107_column_name
|
6
|
+
'Luxury Car - Domestic'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_a107_description
|
6
10
|
'Auto Purchase Model Luxury Car Domestic Auto Purchase Model Luxury Car Domestic is an Experian model which predicts the likelihood that a living unit will purchase this type of vehicle in the next 6 months. Auto Purchase Models rank living units from 1 to 9 for each auto category using living unit and area level demographics. Field values beginning with 1 indicate the strongest probability. Vehicles examples in the Luxury Car Domestic category include: Cadillac CTS, Cadillac DeVille, Cadillac DTS, Cadillac STS, Lincoln MKS, Lincoln MKZ, and Lincoln Town Car'
|
7
11
|
end
|
@@ -2,6 +2,10 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Behavior Bank Mandatory Append
|
5
|
+
def self.en_B000_column_name
|
6
|
+
'Behavior Bank Mandatory Append'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_B000_description
|
6
10
|
'The Behavior Bank mandatory append is required when any data from the Behavior Bank master file is appended. It consists of a match code.'
|
7
11
|
end
|
@@ -15,6 +19,6 @@ module Experian
|
|
15
19
|
return 'Person Match'
|
16
20
|
end
|
17
21
|
end
|
18
|
-
|
22
|
+
|
19
23
|
end
|
20
24
|
end
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Crafts: Crafts
|
5
|
+
def self.en_b2185_column_name
|
6
|
+
'Crafts: Crafts'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_b2185_description
|
6
|
-
|
10
|
+
'Activities and Interests/Crafts. Direct reported survey data that represents a household\'s interest in Crafts.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_b2185(key)
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Lifestyle: Enjoys Smoking Cigars
|
5
|
+
def self.en_b3010_column_name
|
6
|
+
'Lifestyle: Enjoys Smoking Cigars'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_b3010_description
|
6
|
-
|
10
|
+
'Lifestyles/Cigar Smoking. Direct reported survey data that represents household\'s that Enjoys Smoking Cigars.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_b3010(key)
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Ailments Ind: Emphysema
|
5
|
+
def self.en_b5011_column_name
|
6
|
+
'Ailments Ind: Emphysema'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_b5011_description
|
6
|
-
|
10
|
+
'Ailments and Medications/Ailments. Direct reported survey data that represents respondent\'s that suffer from Emphysema.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_b5011(key)
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Ailments Ind: Erectile Dysfunction
|
5
|
+
def self.en_b5013_column_name
|
6
|
+
'Ailments Ind: Erectile Dysfunction'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_b5013_description
|
6
|
-
|
10
|
+
'Ailments and Medications/Ailments. Direct reported survey data that represents respondent\'s that suffer from Erectile Dysfunction.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_b5013(key)
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Ailments Ind: Frequent Headaches
|
5
|
+
def self.en_b5014_column_name
|
6
|
+
'Ailments Ind: Frequent Headaches'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_b5014_description
|
6
|
-
|
10
|
+
'Ailments and Medications/Ailments. Direct reported survey data that represents respondent\'s that suffer from Frequent Headaches.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_b5014(key)
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Ailments Ind: Gastritis
|
5
|
+
def self.en_b5016_column_name
|
6
|
+
'Ailments Ind: Gastritis'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_b5016_description
|
6
|
-
|
10
|
+
'Ailments and Medications/Ailments. Direct reported survey data that represents respondent\'s that suffer from Gastritis.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_b5016(key)
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# EST HOUSEHOLD INCOME RANGES V4
|
5
|
+
def self.en_d105n_column_name
|
6
|
+
'EST HOUSEHOLD INCOME RANGES V4'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_d105n_description
|
6
|
-
|
10
|
+
'Estimated Income is the total estimated income for a living unit, and incorporates several highly predictive individual and household level variables. The income estimation is determined using multiple statistical methodologies to predict which of 12 income range a living unit is most likely to be assigned. When there is insufficient data to match a customer\'s record to ConsumerView for estimated income, a median estimated income based on the Experian modeled incomes assigned to other living units in the same ZIP+4 area is used. In the rare case that the ZIP+4 is not on the record, median income is based on the incomes assigned to other records in that ZIP region.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_d105n(key)
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Working Couples
|
5
|
+
def self.en_d200_column_name
|
6
|
+
'Working Couples'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_d200_description
|
6
|
-
|
10
|
+
'Working Couples is a model which works to predict Living Units that are likely to have two incomes. The value appended of 2 identifies living units that are married between the ages of 19-80 and are likely to have two incomes. The value of 1 identifies living units that are either married with only 1 income, living units where there is not known data to identify if the couple is married, or living units that only have 1 adult between the ages 19-80. The value of 0 represents the individuals within the Living Unit are over the age of 80 and are not eligible to be scored.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_d200(key)
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# ConsumerView Profitability Score
|
5
|
+
def self.en_f031_column_name
|
6
|
+
'Working Couples'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_f031_description
|
6
|
-
|
10
|
+
'ConsumerView Profitability Score works to identifying households likely to pay their debts and ranks households that allow marketers to target the best prospects based on: profitability approval rates response rates likelihood to perform as prescribed'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_f031(key)
|
@@ -2,13 +2,17 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# 2000 % Population Age < 4
|
5
|
+
def self.en_g2001_column_name
|
6
|
+
'2000 % Population Age < 4'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_g2001_description
|
6
|
-
|
10
|
+
'% Population Age < 4 is a 2000 Census demographic statistic. 2000 Census data reflects information collected on 118 million housing units and 281 million people by the US Census Bureau about households and individuals within a geographic area. These statistics are provided at the lowest possible geographical level (i.e. census tract or block group). This element represents a 100-percent characteristic (short form), where a limited number of questions were asked of every person and housing unit in the United States. Information such as: household relationship, sex, age, Hispanic or Latino origin, race, tenure (whether the home is owned or rented) and vacancy characteristics.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_g2001(key)
|
10
|
-
return 'Unknown' if key.size != 4 or key[0...3].to_i < 0000 or key[0...3].to_i > 1000
|
11
|
-
((key.to_i.to_f)/10)
|
14
|
+
return 'Unknown' if key.size != 4 or key[0...3].to_i < 0000 or key[0...3].to_i > 1000
|
15
|
+
((key.to_i.to_f)/10)
|
12
16
|
end
|
13
17
|
|
14
18
|
end
|