experian-data-dictionary 1.0 → 1.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (80) hide show
  1. checksums.yaml +4 -4
  2. data/docs/DataDictionary_NonProfit_Experian.pdf +0 -0
  3. data/experian_data_dictionary.gemspec +1 -1
  4. data/lib/element_numbers/en_0000.rb +4 -1
  5. data/lib/element_numbers/en_0100.rb +10 -3
  6. data/lib/element_numbers/en_0103.rb +4 -1
  7. data/lib/element_numbers/en_0107.rb +6 -3
  8. data/lib/element_numbers/en_0108.rb +36 -7
  9. data/lib/element_numbers/en_0110.rb +4 -1
  10. data/lib/element_numbers/en_0112.rb +4 -1
  11. data/lib/element_numbers/en_0113.rb +4 -1
  12. data/lib/element_numbers/en_0118.rb +4 -0
  13. data/lib/element_numbers/en_0119.rb +6 -3
  14. data/lib/element_numbers/en_0130.rb +4 -1
  15. data/lib/element_numbers/en_0131.rb +4 -1
  16. data/lib/element_numbers/en_0132.rb +9 -0
  17. data/lib/element_numbers/en_0133.rb +4 -1
  18. data/lib/element_numbers/en_0134.rb +9 -5
  19. data/lib/element_numbers/en_0135.rb +9 -6
  20. data/lib/element_numbers/en_0136.rb +9 -6
  21. data/lib/element_numbers/en_0137.rb +8 -5
  22. data/lib/element_numbers/en_0138.rb +8 -5
  23. data/lib/element_numbers/en_0139.rb +8 -5
  24. data/lib/element_numbers/en_0140.rb +8 -4
  25. data/lib/element_numbers/en_0141.rb +9 -5
  26. data/lib/element_numbers/en_0155.rb +5 -1
  27. data/lib/element_numbers/en_0156.rb +5 -1
  28. data/lib/element_numbers/en_0160.rb +6 -3
  29. data/lib/element_numbers/en_0162.rb +5 -2
  30. data/lib/element_numbers/en_0164.rb +5 -2
  31. data/lib/element_numbers/en_0174.rb +5 -2
  32. data/lib/element_numbers/en_0711.rb +6 -3
  33. data/lib/element_numbers/en_0715.rb +6 -3
  34. data/lib/element_numbers/en_0716.rb +5 -2
  35. data/lib/element_numbers/en_0717.rb +6 -3
  36. data/lib/element_numbers/en_310M.rb +5 -2
  37. data/lib/element_numbers/en_8502.rb +11 -5
  38. data/lib/element_numbers/en_8503.rb +11 -5
  39. data/lib/element_numbers/en_8504.rb +11 -5
  40. data/lib/element_numbers/en_8505.rb +11 -3
  41. data/lib/element_numbers/en_8519.rb +11 -3
  42. data/lib/element_numbers/en_8525.rb +11 -3
  43. data/lib/element_numbers/en_8526.rb +11 -3
  44. data/lib/element_numbers/en_8528.rb +11 -3
  45. data/lib/element_numbers/en_8531.rb +11 -3
  46. data/lib/element_numbers/en_8532.rb +11 -3
  47. data/lib/element_numbers/en_8533.rb +9 -2
  48. data/lib/element_numbers/en_8538.rb +11 -3
  49. data/lib/element_numbers/en_8574.rb +11 -3
  50. data/lib/element_numbers/en_A107.rb +4 -0
  51. data/lib/element_numbers/en_B000.rb +5 -1
  52. data/lib/element_numbers/en_B2185.rb +5 -1
  53. data/lib/element_numbers/en_B3010.rb +5 -1
  54. data/lib/element_numbers/en_B5011.rb +5 -1
  55. data/lib/element_numbers/en_B5013.rb +5 -1
  56. data/lib/element_numbers/en_B5014.rb +5 -1
  57. data/lib/element_numbers/en_B5016.rb +5 -1
  58. data/lib/element_numbers/en_D105N.rb +5 -1
  59. data/lib/element_numbers/en_D200.rb +5 -1
  60. data/lib/element_numbers/en_F031.rb +5 -1
  61. data/lib/element_numbers/en_G2001.rb +7 -3
  62. data/lib/element_numbers/en_G2514.rb +5 -1
  63. data/lib/element_numbers/en_G2516.rb +5 -1
  64. data/lib/element_numbers/en_G2601.rb +5 -1
  65. data/lib/element_numbers/en_G2602.rb +5 -1
  66. data/lib/element_numbers/en_G2603.rb +5 -1
  67. data/lib/element_numbers/en_GE06.rb +6 -2
  68. data/lib/element_numbers/en_L000.rb +7 -3
  69. data/lib/element_numbers/en_P213E.rb +6 -2
  70. data/lib/element_numbers/en_P213H.rb +6 -2
  71. data/lib/element_numbers/en_P213W.rb +6 -2
  72. data/lib/element_numbers/en_P400.rb +12 -4
  73. data/lib/element_numbers/en_T200.rb +6 -2
  74. data/lib/element_numbers/en_V000.rb +5 -1
  75. data/lib/element_numbers/en_Y000.rb +5 -1
  76. data/lib/experian.rb +8 -4
  77. data/spec/functional/en_0000_spec.rb +2 -1
  78. data/spec/functional/en_0100_spec.rb +3 -1
  79. data/spec/functional/en_0103_spec.rb +2 -1
  80. metadata +2 -2
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 6a14db34da8f87cbe73a54b96832780f048bf3c5
4
- data.tar.gz: c0c77765ecaf53e07a680e3b1463112ed4cd1e55
3
+ metadata.gz: 3b5d55c95443c12e6522d8922302de719df11b2b
4
+ data.tar.gz: 3b388b325a67d291423be4751db447347c47da49
5
5
  SHA512:
6
- metadata.gz: ccfd71cc01539400e655d521174b0d306a14ec308a872284ecf492c1624a74933524dd14407da4789b08ecae707d091c1099c52ac209fd50098e02067963ecf3
7
- data.tar.gz: 8e67e2b2bb6f52dba20032d7079452533921e945bf80026c6943641b2b0d5f41eb6ed4f30c7494ada40a1125a33d79dc0b58e7e899688087ef75712c05204ce9
6
+ metadata.gz: c710f689d7907243ea1664633909c9ef5ac21f633b772a87bf4123e8661e84b403edf702923fa28a968c24c795e9be08b10788a3daad5b6d24377a99b4f01182
7
+ data.tar.gz: 41066909b312a32c7e07c3f6945666b003e760bc36be9eca76fbc281b9de12b7bfedbdbbbd7deb4062a840d693ac0513790010d33e132166c457243781b874b1
@@ -1,6 +1,6 @@
1
1
  Gem::Specification.new do |s|
2
2
  PROJECT_GEM = 'experian-data-dictionary'
3
- PROJECT_GEM_VERSION = '1.0'
3
+ PROJECT_GEM_VERSION = '1.2'
4
4
 
5
5
  s.name = PROJECT_GEM
6
6
  s.version = PROJECT_GEM_VERSION
@@ -1,7 +1,10 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Enhancement Mandatory Append
4
+ def self.en_0000_column_name
5
+ 'Enhancement Mandatory Append'
6
+ end
7
+
5
8
  def self.en_0000_description
6
9
  'The enrichment mandatory append is required when any data from the enrichment master file is appended. It consists of a match type.'
7
10
  end
@@ -1,14 +1,21 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Date of Birth/Combined Adult Age
4
+ def self.en_0100_column_name
5
+ 'Date of Birth'
6
+ end
7
+
5
8
  def self.en_0100_description
6
9
  'Date of Birth is acquired from public and proprietary files. These sources provide, at a minimum, the year of birth. The birth month is provided where available. Estimated ages are acquired from proprietary data sources and Experian models which estimate the adult age.'
7
10
  end
11
+
12
+ def self.en_0100c_column_name
13
+ 'Combined Adult Age'
14
+ end
8
15
 
9
16
  def self.en_0100c_description
10
17
  self.en_0100_description
11
- end
18
+ end
12
19
 
13
20
  # CCYYMM
14
21
  def self.en_0100(key)
@@ -26,7 +33,7 @@ module Experian
26
33
  when 'i' then 'Estimated age'
27
34
  when 'u' then 'Unknown age'
28
35
  else nil
29
- end
36
+ end
30
37
  return [key[1..key.length-1], text].compact.join(' - ')
31
38
  end
32
39
 
@@ -1,7 +1,10 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Gender Code
4
+ def self.en_0103_column_name
5
+ 'Gender Code'
6
+ end
7
+
5
8
  def self.en_0103_description
6
9
  'Gender information is applied during the convert prior to enhancement. Approximately five to eight percent of the client records are coded as gender unknown because of ambiguous or unisex names. Records coded as gender both include those with prefixes of Mr. & Mrs. and/or first names like John & Mary.'
7
10
  end
@@ -1,9 +1,12 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Marital Status
4
+ def self.en_0107a_column_name
5
+ 'Marital Status'
6
+ end
7
+
5
8
  def self.en_0107a_description
6
- "Marital status is determined based on the composition of the Living unit or through the application of a predictive model. Note: Single refers to an individual that has never married and not single because of divorce or spouse's death."
9
+ 'Marital status is determined based on the composition of the Living unit or through the application of a predictive model. Note: Single refers to an individual that has never married and not single because of divorce or spouse\'s death.'
7
10
  end
8
11
 
9
12
  def self.en_0107a(key)
@@ -17,7 +20,7 @@ module Experian
17
20
  'S' => 'Single',
18
21
  'U' => 'Unknown Status'
19
22
  }
20
- return 'Unknown' if key.size != 2 or marital_status[key[1]].nil? or likely[key[0]].nil?
23
+ return 'Unknown' if key.size != 2 or marital_status[key[1]].nil? or likely[key[0]].nil?
21
24
  [marital_status[key[1]], likely[key[0]]].join(' - ')
22
25
  end
23
26
  end
@@ -2,37 +2,66 @@ module Experian
2
2
  class DataDictionary
3
3
 
4
4
  # Country of Origin
5
+ def self.en_0108c_column_name
6
+ 'Country of Origin'
7
+ end
8
+
5
9
  def self.en_0108c_description
6
- "Indicates Country of Origin using a sophisticated program that analyzes first name, last name, expert system rules and geography."
10
+ 'Indicates Country of Origin using a sophisticated program that analyzes first name, last name, expert system rules and geography.'
7
11
  end
8
12
 
9
13
  # Ethnicity Detail
14
+ def self.en_0108d_column_name
15
+ 'Ethnicity Detail'
16
+ end
17
+
10
18
  def self.en_0108d_description
11
- "Indicates the likely ethnicity using a sophisticated program that analyzes first name, last name, expert system rules and geography."
19
+ 'Indicates the likely ethnicity using a sophisticated program that analyzes first name, last name, expert system rules and geography.'
20
+ end
21
+
22
+ # Ethnicity Insight
23
+ def self.en_0108e_column_name
24
+ 'Ethnic Insight'
12
25
  end
13
26
 
14
27
  def self.en_0108e_description
15
- "Ethnic Insight Elements. Ethnic Insight is a comprehensive predictive name analysis process which identifies ethnic origin, probable religion, and the language preference of individuals. Experian can now code and identify 177 ethnicities, 33 groups, 10 religions, 79 language groups and 22 Country of Origin codes.The Ethnic Insight software utilizes over 550,000 surnames by ethnicity, over 75,000 first names unique to a given ethnicity, and over 3000 expert system rules. Also utilized are a group of geographic reference tables for determining the proper codes to apply to an individual. Each record passed through the process uses the above files as references while examining the individuals first name, last names, and the zip code of the record. Note: Element 0108E calls elements 0108C, 0108D, 0108G, 0108L, 0108R, 0108T"
28
+ 'Ethnic Insight Elements. Ethnic Insight is a comprehensive predictive name analysis process which identifies ethnic origin, probable religion, and the language preference of individuals. Experian can now code and identify 177 ethnicities, 33 groups, 10 religions, 79 language groups and 22 Country of Origin codes.The Ethnic Insight software utilizes over 550,000 surnames by ethnicity, over 75,000 first names unique to a given ethnicity, and over 3000 expert system rules. Also utilized are a group of geographic reference tables for determining the proper codes to apply to an individual. Each record passed through the process uses the above files as references while examining the individuals first name, last names, and the zip code of the record. Note: Element 0108E calls elements 0108C, 0108D, 0108G, 0108L, 0108R, 0108T'
16
29
  end
17
30
 
18
31
  # Ethnic Group Code
32
+ def self.en_0108g_column_name
33
+ 'Ethnic Group Code'
34
+ end
35
+
19
36
  def self.en_0108g_description
20
- "Experian derived code that groups ethnicities in general categories."
37
+ 'Experian derived code that groups ethnicities in general categories.'
21
38
  end
22
39
 
23
40
  # Language
41
+ def self.en_0108l_column_name
42
+ 'Language'
43
+ end
44
+
24
45
  def self.en_0108l_description
25
- "Ethnic Insight Language indicates the language preference."
46
+ 'Ethnic Insight Language indicates the language preference.'
26
47
  end
27
48
 
28
49
  # Religion
50
+ def self.en_0108r_column_name
51
+ 'Religion'
52
+ end
53
+
29
54
  def self.en_0108r_description
30
- "Ethnic Insights Religion indicates the likely religion."
55
+ 'Ethnic Insights Religion indicates the likely religion.'
31
56
  end
32
57
 
33
58
  # e-Tech Group
59
+ def self.en_0108t_column_name
60
+ 'e-Tech Group'
61
+ end
62
+
34
63
  def self.en_0108t_description
35
- "e-Tech derived code that groups ethnicities in general categories."
64
+ 'e-Tech derived code that groups ethnicities in general categories.'
36
65
  end
37
66
 
38
67
  def self.en_0108c(key)
@@ -1,7 +1,10 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Person Type
4
+ def self.en_0110p_column_name
5
+ 'Person Type'
6
+ end
7
+
5
8
  def self.en_0110p_description
6
9
  'Assignment of person type in the living unit based on age and activity.'
7
10
  end
@@ -1,7 +1,10 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Deceased Indicator
4
+ def self.en_0112_column_name
5
+ 'Deceased Indicator'
6
+ end
7
+
5
8
  def self.en_0112_description
6
9
  'Deceased Indicator identifies client input records that Experian believes are deceased individuals. This information is sourced primarily from Social Security records and other proprietary sources, as well as consumers who may have contacted Experian directly. The deceased indicator communicates that we have reason to believe that the individual is deceased based on this source information.'
7
10
  end
@@ -1,7 +1,10 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Combined Homeowner
4
+ def self.en_0113a_column_name
5
+ 'Combined Homeowner'
6
+ end
7
+
5
8
  def self.en_0113a_description
6
9
  'Combined homeowner is a mixture of several data elements / fields. This element provides these separate data components in a single position. Homeowner information indicates the likelihood of a consumer owning a home, and is received from tax assessor and deed information. For records where exact Homeownership information is not available, homeownership propensity is calculated using a proprietary statistical model which predicts the likelihood of homeownership. Renter status is derived from self reported data. Unit numbers are not used to infer rented status because units may be owner condominium/coop. Probable Renter is calculated using an algorithm based on lack of Homeowner, the Address Type, and Census Percent Renter.'
7
10
  end
@@ -2,6 +2,10 @@ module Experian
2
2
  class DataDictionary
3
3
 
4
4
  # Dwelling Type
5
+ def self.en_0118_column_name
6
+ 'Dwelling Type'
7
+ end
8
+
5
9
  def self.en_0118_description
6
10
  'Each household is assigned a dwelling type code based on United States Postal Service (USPS) information. Single Family Dwelling Units are residences for one family or living unit (S). If the address contains an apartment number or has a small dwelling size (5 units or less), the code is set to Multi-Family (A). Marginal Multi Family Dwelling Units lack an apartment number and are considered of questionable deliverability (M). Values also include P.O. Boxes (P) and Unknown dwelling types (U).'
7
11
  end
@@ -2,15 +2,18 @@ module Experian
2
2
  class DataDictionary
3
3
 
4
4
  # Length Of Residence
5
+ def self.en_0119_column_name
6
+ 'Length Of Residence'
7
+ end
8
+
5
9
  def self.en_0119_description
6
- "Length of Residence (LOR) is the length of time a Living Unit has resided at their current address. A primary source of LOR is public source white page compilation initiating a counter showing the first time a name and number appear in the directory. LOR information is also received from proprietary sources and through updates of our source files against the USPS National Change of Address* file. For all sources, LOR data is aged over time.\n\nWhen there is insufficient data to match a customer's record to our Enrichment master for Length of Residence, a median LOR based on the LOR's assigned to other living units in the same ZIP+4 area is used. In the rare case that the ZIP+4 is not on the record, median LOR is based on the LOR's assigned to other records in that ZIP region.\n\nThe median level data applied to records for this element can be identified through the Enrichment Mandatory Append - Total Enrichment Match Type indicator (E)."
10
+ 'Length of Residence (LOR) is the length of time a Living Unit has resided at their current address. A primary source of LOR is public source white page compilation initiating a counter showing the first time a name and number appear in the directory. LOR information is also received from proprietary sources and through updates of our source files against the USPS National Change of Address* file. For all sources, LOR data is aged over time.\n\nWhen there is insufficient data to match a customer\'s record to our Enrichment master for Length of Residence, a median LOR based on the LOR\'s assigned to other living units in the same ZIP+4 area is used. In the rare case that the ZIP+4 is not on the record, median LOR is based on the LOR\'s assigned to other records in that ZIP region.\n\nThe median level data applied to records for this element can be identified through the Enrichment Mandatory Append - Total Enrichment Match Type indicator (E).'
7
11
  end
8
12
 
9
13
  def self.en_0119(key)
10
- return nil unless /[0-9]+/ =~ key
14
+ return nil unless /[0-9]+/ =~ key
11
15
  key.to_i == 0 ? 'Less than a year' : [key.to_i, 'years'].join(' ')
12
16
  end
13
17
 
14
18
  end
15
19
  end
16
-
@@ -1,7 +1,10 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Direct Mail Responder - Individual Level
4
+ def self.en_0130_column_name
5
+ 'Direct Mail Responder - Individual Level'
6
+ end
7
+
5
8
  def self.en_0130_description
6
9
  'Direct Mail Responder information identifies consumers who have purchased by direct mail. Data is carried at the individual level. If one member of a household is a direct mail responder, that member will be coded as a direct mail responder at the individual level.'
7
10
  end
@@ -1,7 +1,10 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Multi-Company Direct Mail Responder - Living Units Level
4
+ def self.en_0131_column_name
5
+ 'Multi-Company Direct Mail Responder - Living Units Level'
6
+ end
7
+
5
8
  def self.en_0131_description
6
9
  'Direct Mail Responder information identifies consumers who have purchased by direct mail. Data is carried at both the individual and household level. If one member of a household is a direct mail responder at the individual level, the remaining members of the household will be coded as a direct mail responder at the household level.'
7
10
  end
@@ -2,6 +2,10 @@ module Experian
2
2
  class DataDictionary
3
3
 
4
4
  # MOR Bank- Deduped Hit Count
5
+ def self.en_0132a_column_name
6
+ 'MOR Bank- Deduped Hit Count'
7
+ end
8
+
5
9
  def self.en_0132a_description
6
10
  'The total number of categories in which the living unit has at least one hit, but with any specific participant counted in only one category.'
7
11
  end
@@ -10,6 +14,11 @@ module Experian
10
14
  return 'Unknown' if key.size != 3 or key.to_i > 999
11
15
  key
12
16
  end
17
+
18
+ #MOR Bank- Non-Deduped Hit Count
19
+ def self.en_0132b_column_name
20
+ 'MOR Bank- Non-Deduped Hit Count'
21
+ end
13
22
 
14
23
  def self.en_0132b_description
15
24
  'The total number of categories in which the living unit has at least one hit, with participant hits counted in all applicable categories.'
@@ -1,7 +1,10 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Multi-Category Buyer
4
+ def self.en_0133_column_name
5
+ 'Multi-Category Buyer'
6
+ end
7
+
5
8
  def self.en_0133_description
6
9
  'Multi-category buyer information identifies consumers who have made purchases by direct mail in multiple product categories. Data is carried at the household level.'
7
10
  end
@@ -2,14 +2,18 @@ module Experian
2
2
  class DataDictionary
3
3
 
4
4
  # Direct Mail Merchandise Buyer Categories
5
+ def self.en_0134_column_name
6
+ 'Direct Mail Merchandise Buyer Categories'
7
+ end
8
+
5
9
  def self.en_0134_description
6
- "The Direct Mail Merchandise Buyer Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant's information may exceed 25% of any category."
10
+ 'The Direct Mail Merchandise Buyer Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant\'s information may exceed 25% of any category.'
7
11
  end
8
12
 
9
13
  def self.en_0134(key)
10
- return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
11
-
12
- if key.to_i == 1
14
+ return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
15
+
16
+ if key.to_i == 1
13
17
  return key.to_i.to_s + ' Response'
14
18
  elsif key.to_i > 1 and key.to_i < 10 or key.to_i == 0
15
19
  return key.to_i.to_s + ' Responses'
@@ -19,4 +23,4 @@ module Experian
19
23
  end
20
24
 
21
25
  end
22
- end
26
+ end
@@ -1,15 +1,18 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Magazine Buyer Categories
4
+ def self.en_0135_column_name
5
+ 'Magazine Buyer Categories'
6
+ end
7
+
5
8
  def self.en_0135_description
6
- "The Direct Mail Magazine Buyer Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant's information may exceed 25% of any category."
9
+ 'The Direct Mail Magazine Buyer Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant\'s information may exceed 25% of any category.'
7
10
  end
8
11
 
9
12
  def self.en_0135(key)
10
- return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
11
-
12
- if key.to_i == 1
13
+ return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
14
+
15
+ if key.to_i == 1
13
16
  return key.to_i.to_s + ' Response'
14
17
  elsif key.to_i > 1 and key.to_i < 10 or key.to_i == 0
15
18
  return key.to_i.to_s + ' Responses'
@@ -17,6 +20,6 @@ module Experian
17
20
  return nil
18
21
  end
19
22
  end
20
-
23
+
21
24
  end
22
25
  end
@@ -1,15 +1,18 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Contributors Categories
4
+ def self.en_0136_column_name
5
+ 'Contributors Categories'
6
+ end
7
+
5
8
  def self.en_0136_description
6
- "The Contributors Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant's information may exceed 25% of any category."
9
+ 'The Contributors Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant\'s information may exceed 25% of any category.'
7
10
  end
8
11
 
9
12
  def self.en_0136(key)
10
- return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
11
-
12
- if key.to_i == 1
13
+ return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
14
+
15
+ if key.to_i == 1
13
16
  return key.to_i.to_s + ' Response'
14
17
  elsif key.to_i > 1 and key.to_i < 10 or key.to_i == 0
15
18
  return key.to_i.to_s + ' Responses'
@@ -17,6 +20,6 @@ module Experian
17
20
  return nil
18
21
  end
19
22
  end
20
-
23
+
21
24
  end
22
25
  end
@@ -1,15 +1,18 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Sweepstakes / Contests
4
+ def self.en_0137_column_name
5
+ 'Sweepstakes / Contests'
6
+ end
7
+
5
8
  def self.en_0137_description
6
- "The Sweepstakes/Contests Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant's information may exceed 25% of any category."
9
+ 'The Sweepstakes/Contests Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant\'s information may exceed 25% of any category.'
7
10
  end
8
11
 
9
12
  def self.en_0137(key)
10
- return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
11
-
12
- if key.to_i == 1
13
+ return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
14
+
15
+ if key.to_i == 1
13
16
  return key.to_i.to_s + ' Response'
14
17
  elsif key.to_i > 1 and key.to_i < 10 or key.to_i == 0
15
18
  return key.to_i.to_s + ' Responses'
@@ -1,15 +1,18 @@
1
1
  module Experian
2
2
  class DataDictionary
3
3
 
4
- # Do-It-Yourself
4
+ def self.en_0138_column_name
5
+ 'Do-It-Yourself'
6
+ end
7
+
5
8
  def self.en_0138_description
6
- "The Do-It-Yourself Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant's information may exceed 25% of any category."
9
+ 'The Do-It-Yourself Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant\'s information may exceed 25% of any category.'
7
10
  end
8
11
 
9
12
  def self.en_0138(key)
10
- return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
11
-
12
- if key.to_i == 1
13
+ return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
14
+
15
+ if key.to_i == 1
13
16
  return key.to_i.to_s + ' Response'
14
17
  elsif key.to_i > 1 and key.to_i < 10 or key.to_i == 0
15
18
  return key.to_i.to_s + ' Responses'