experian-data-dictionary 1.0 → 1.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/docs/DataDictionary_NonProfit_Experian.pdf +0 -0
- data/experian_data_dictionary.gemspec +1 -1
- data/lib/element_numbers/en_0000.rb +4 -1
- data/lib/element_numbers/en_0100.rb +10 -3
- data/lib/element_numbers/en_0103.rb +4 -1
- data/lib/element_numbers/en_0107.rb +6 -3
- data/lib/element_numbers/en_0108.rb +36 -7
- data/lib/element_numbers/en_0110.rb +4 -1
- data/lib/element_numbers/en_0112.rb +4 -1
- data/lib/element_numbers/en_0113.rb +4 -1
- data/lib/element_numbers/en_0118.rb +4 -0
- data/lib/element_numbers/en_0119.rb +6 -3
- data/lib/element_numbers/en_0130.rb +4 -1
- data/lib/element_numbers/en_0131.rb +4 -1
- data/lib/element_numbers/en_0132.rb +9 -0
- data/lib/element_numbers/en_0133.rb +4 -1
- data/lib/element_numbers/en_0134.rb +9 -5
- data/lib/element_numbers/en_0135.rb +9 -6
- data/lib/element_numbers/en_0136.rb +9 -6
- data/lib/element_numbers/en_0137.rb +8 -5
- data/lib/element_numbers/en_0138.rb +8 -5
- data/lib/element_numbers/en_0139.rb +8 -5
- data/lib/element_numbers/en_0140.rb +8 -4
- data/lib/element_numbers/en_0141.rb +9 -5
- data/lib/element_numbers/en_0155.rb +5 -1
- data/lib/element_numbers/en_0156.rb +5 -1
- data/lib/element_numbers/en_0160.rb +6 -3
- data/lib/element_numbers/en_0162.rb +5 -2
- data/lib/element_numbers/en_0164.rb +5 -2
- data/lib/element_numbers/en_0174.rb +5 -2
- data/lib/element_numbers/en_0711.rb +6 -3
- data/lib/element_numbers/en_0715.rb +6 -3
- data/lib/element_numbers/en_0716.rb +5 -2
- data/lib/element_numbers/en_0717.rb +6 -3
- data/lib/element_numbers/en_310M.rb +5 -2
- data/lib/element_numbers/en_8502.rb +11 -5
- data/lib/element_numbers/en_8503.rb +11 -5
- data/lib/element_numbers/en_8504.rb +11 -5
- data/lib/element_numbers/en_8505.rb +11 -3
- data/lib/element_numbers/en_8519.rb +11 -3
- data/lib/element_numbers/en_8525.rb +11 -3
- data/lib/element_numbers/en_8526.rb +11 -3
- data/lib/element_numbers/en_8528.rb +11 -3
- data/lib/element_numbers/en_8531.rb +11 -3
- data/lib/element_numbers/en_8532.rb +11 -3
- data/lib/element_numbers/en_8533.rb +9 -2
- data/lib/element_numbers/en_8538.rb +11 -3
- data/lib/element_numbers/en_8574.rb +11 -3
- data/lib/element_numbers/en_A107.rb +4 -0
- data/lib/element_numbers/en_B000.rb +5 -1
- data/lib/element_numbers/en_B2185.rb +5 -1
- data/lib/element_numbers/en_B3010.rb +5 -1
- data/lib/element_numbers/en_B5011.rb +5 -1
- data/lib/element_numbers/en_B5013.rb +5 -1
- data/lib/element_numbers/en_B5014.rb +5 -1
- data/lib/element_numbers/en_B5016.rb +5 -1
- data/lib/element_numbers/en_D105N.rb +5 -1
- data/lib/element_numbers/en_D200.rb +5 -1
- data/lib/element_numbers/en_F031.rb +5 -1
- data/lib/element_numbers/en_G2001.rb +7 -3
- data/lib/element_numbers/en_G2514.rb +5 -1
- data/lib/element_numbers/en_G2516.rb +5 -1
- data/lib/element_numbers/en_G2601.rb +5 -1
- data/lib/element_numbers/en_G2602.rb +5 -1
- data/lib/element_numbers/en_G2603.rb +5 -1
- data/lib/element_numbers/en_GE06.rb +6 -2
- data/lib/element_numbers/en_L000.rb +7 -3
- data/lib/element_numbers/en_P213E.rb +6 -2
- data/lib/element_numbers/en_P213H.rb +6 -2
- data/lib/element_numbers/en_P213W.rb +6 -2
- data/lib/element_numbers/en_P400.rb +12 -4
- data/lib/element_numbers/en_T200.rb +6 -2
- data/lib/element_numbers/en_V000.rb +5 -1
- data/lib/element_numbers/en_Y000.rb +5 -1
- data/lib/experian.rb +8 -4
- data/spec/functional/en_0000_spec.rb +2 -1
- data/spec/functional/en_0100_spec.rb +3 -1
- data/spec/functional/en_0103_spec.rb +2 -1
- metadata +2 -2
@@ -1,15 +1,18 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_0139_column_name
|
5
|
+
'News & Financial'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_0139_description
|
6
|
-
|
9
|
+
'The News & Financial Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant\'s information may exceed 25% of any category.'
|
7
10
|
end
|
8
11
|
|
9
12
|
def self.en_0139(key)
|
10
|
-
return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
|
11
|
-
|
12
|
-
if key.to_i == 1
|
13
|
+
return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
|
14
|
+
|
15
|
+
if key.to_i == 1
|
13
16
|
return key.to_i.to_s + ' Response'
|
14
17
|
elsif key.to_i > 1 and key.to_i < 10 or key.to_i == 0
|
15
18
|
return key.to_i.to_s + ' Responses'
|
@@ -2,14 +2,18 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Photography
|
5
|
+
def self.en_0140_column_name
|
6
|
+
'Photography'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_0140_description
|
6
|
-
|
10
|
+
'The Photography Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant\'s information may exceed 25% of any category.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_0140(key)
|
10
|
-
return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
|
11
|
-
|
12
|
-
if key.to_i == 1
|
14
|
+
return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
|
15
|
+
|
16
|
+
if key.to_i == 1
|
13
17
|
return key.to_i.to_s + ' Response'
|
14
18
|
elsif key.to_i > 1 and key.to_i < 10 or key.to_i == 0
|
15
19
|
return key.to_i.to_s + ' Responses'
|
@@ -2,14 +2,18 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Mail Responders - Odds & Ends / Miscellaneous
|
5
|
+
def self.en_0141_column_name
|
6
|
+
'Mail Responders - Odds & Ends / Miscellaneous'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_0141_description
|
6
|
-
|
10
|
+
'The Miscellaneous/Odds & Ends Categories information is compiled via mail order responsiveness by categorized offers/media. Information is collected from 300+ proprietary participants who give us mail order responders and we subsequently categorize them into 1 of 25 categories. No single participant\'s information may exceed 25% of any category.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_0141(key)
|
10
|
-
return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
|
11
|
-
|
12
|
-
if key.to_i == 1
|
14
|
+
return 'Unknown' if key.empty? or key.to_i > 9 or key.size > 1
|
15
|
+
|
16
|
+
if key.to_i == 1
|
13
17
|
return key.to_i.to_s + ' Response'
|
14
18
|
elsif key.to_i > 1 and key.to_i < 10 or key.to_i == 0
|
15
19
|
return key.to_i.to_s + ' Responses'
|
@@ -17,6 +21,6 @@ module Experian
|
|
17
21
|
return nil
|
18
22
|
end
|
19
23
|
end
|
20
|
-
|
24
|
+
|
21
25
|
end
|
22
26
|
end
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Presence Of Young Adult
|
5
|
+
def self.en_0155_column_name
|
6
|
+
'Presence Of Young Adult'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_0155_description
|
6
|
-
|
10
|
+
'Presence of Young Adult indicates if there is a young adult in the household.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_0155(key)
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Presence Of Elderly Parent
|
5
|
+
def self.en_0156_column_name
|
6
|
+
'Presence Of Elderly Parent'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_0156_description
|
6
|
-
|
10
|
+
'Presence of Elderly Parent indicates if there is an elderly parent in the household.'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_0156(key)
|
@@ -2,8 +2,12 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Occupation Group
|
5
|
+
def self.en_0160a_column_name
|
6
|
+
'Occupation Group'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_0160a_description
|
6
|
-
|
10
|
+
'Information is compiled from self-reported surveys, derived from state licensing agencies, or calculated through the application of predictive models. When there is insufficient data to match a customer\'s record in our enrichment master for occupation group, a median occupation group based on the Experian modeled occupation assigned to other living units in the same zip+4 area is used. In the rare case that zip+4 is not on the record, occupation group is based on the occupation assigned to other records in that zip region. Note: the median level data applied to records for this element can be identified through the Enrichment Mandatory Append û Total Enrichment Match Type indicator (E).'
|
7
11
|
end
|
8
12
|
|
9
13
|
def self.en_0160a(key)
|
@@ -19,11 +23,10 @@ module Experian
|
|
19
23
|
'05' => 'Other',
|
20
24
|
'06' => 'Retired'
|
21
25
|
}
|
22
|
-
return 'Unknown' if key.size != 3 or values[key[1..2]].nil? or type[key[0]].nil? or key.eql?("U00")
|
26
|
+
return 'Unknown' if key.size != 3 or values[key[1..2]].nil? or type[key[0]].nil? or key.eql?("U00")
|
23
27
|
[values[key[1..2]], type[key[0]]].join(' - ')
|
24
28
|
|
25
29
|
end
|
26
30
|
|
27
31
|
end
|
28
32
|
end
|
29
|
-
|
@@ -1,7 +1,10 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_0162_column_name
|
5
|
+
'Individual Education'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_0162_description
|
6
9
|
'Information is compiled from self-reported surveys, derived based on occupational information, or calculated through the application of predictive models.'
|
7
10
|
end
|
@@ -18,7 +21,7 @@ module Experian
|
|
18
21
|
'4' => 'Graduate Degree',
|
19
22
|
'5' => 'Less Than High School Diploma'
|
20
23
|
}
|
21
|
-
return 'Unknown' if key.size != 2 or education[key[1]].nil? or likely[key[0]].nil?
|
24
|
+
return 'Unknown' if key.size != 2 or education[key[1]].nil? or likely[key[0]].nil?
|
22
25
|
[education[key[1]], likely[key[0]]].join(' - ')
|
23
26
|
end
|
24
27
|
|
@@ -1,11 +1,14 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
5
|
-
def self.en_0164_description
|
4
|
+
def self.en_0164_column_name
|
6
5
|
'Political Persona'
|
7
6
|
end
|
8
7
|
|
8
|
+
def self.en_0164_description
|
9
|
+
'PoliticalPersona Segments provide a detailed understanding of key voter segments, demographics, responsiveness to various media platforms, and attitudes and opinions on important political issues and social trends. Gain in-depth information to the demographics and insights on voter attitudes by segment and detailed analysis of media preferences by segment. PoliticalPersona provide actionable data on voter attitudes and opinions in key areas such as healthcare, employment and social security, education, and more.'
|
10
|
+
end
|
11
|
+
|
9
12
|
def self.en_0164(key)
|
10
13
|
political = [
|
11
14
|
'Unknown',
|
@@ -1,9 +1,12 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_0174_column_name
|
5
|
+
'Presence of Children Age Ranges'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_0174_description
|
6
|
-
|
9
|
+
'Known & Inferred Children\'s Age Ranges are a combination of known children\'s age ranges, and where not available, an Experian model which predicts the likelihood that a child within the age group is present in the living unit. When there is insufficient data to match a customer record to our Enrichment master for Inferred Children\'s Age Range, a median Inferred Children\'s Age Range based on the Known & Inferred Children\'s Age Ranges assigned to other living units in the same ZIP+4 area is used. In the rare case that the ZIP+4 is not on the record, median Children\'s Age Range is based on the Known & Inferred children\'s age ranges assigned to other records in that ZIP region. The median level data applied to records for this element can be identified through the Enrichment Mandatory Append - Total Enrichment Match Type indicator (G).'
|
7
10
|
end
|
8
11
|
|
9
12
|
def self.en_0174(key)
|
@@ -1,9 +1,12 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_0711_column_name
|
5
|
+
'Estimated Available Equity Ranges'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_0711_description
|
6
|
-
|
9
|
+
'The Estimated Available Equity model is Experian\'s proprietary model designed to accurately predict equity in the home for Homeowner records. The value of equity equals the estimated current home value minus the remaining principal of the mortgage loan. The model inputs, such as sale price, sale date and mortgage amount of the property were acquired from realty deed records from the county court house.'
|
7
10
|
end
|
8
11
|
|
9
12
|
def self.en_0711(key)
|
@@ -32,7 +35,7 @@ module Experian
|
|
32
35
|
'P' => '1,000,000 - +',
|
33
36
|
'U' => 'Unknown'
|
34
37
|
}
|
35
|
-
return 'Unknown' if key.size != 2 or confidence[key[0]].nil? or values[key[1]].nil?
|
38
|
+
return 'Unknown' if key.size != 2 or confidence[key[0]].nil? or values[key[1]].nil?
|
36
39
|
[values[key[1]], confidence[key[0]]].join(' - ')
|
37
40
|
end
|
38
41
|
|
@@ -1,9 +1,12 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_0715_column_name
|
5
|
+
'Estimated Current Loan-to-Value Ratio Ranges'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_0715_description
|
6
|
-
|
9
|
+
'Estimated Current Loan to Value Ratio is a percentage of the current estimated mortgage amount divided by the estimated current market value of the home. The higher the ratio, the less equity the homeowner has on the house. This ratio is available on wherever the loan amount and estimated current home value are available.'
|
7
10
|
end
|
8
11
|
|
9
12
|
def self.en_0715(key)
|
@@ -14,7 +17,7 @@ module Experian
|
|
14
17
|
}
|
15
18
|
|
16
19
|
|
17
|
-
return 'Unknown' if key.size != 4 or confidence[key[0]].nil? or key[1...4].to_i.nil? or key[1...4].to_i > 125
|
20
|
+
return 'Unknown' if key.size != 4 or confidence[key[0]].nil? or key[1...4].to_i.nil? or key[1...4].to_i > 125
|
18
21
|
[key[1...4].to_i, confidence[key[0]]].join(' - ')
|
19
22
|
end
|
20
23
|
|
@@ -1,9 +1,12 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_0716_column_name
|
5
|
+
'Estimated Current Monthly Mortgage Payment Ranges'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_0716_description
|
6
|
-
|
9
|
+
'The Estimated Current Monthly Mortgage Payment model is a subset of the Experian Equity model and predicts the monthly home payment. Input variables; such as Sale Date, Mortgage Amount and Interest Rate acquired from realty deed records from the county court house are utilized.'
|
7
10
|
end
|
8
11
|
|
9
12
|
def self.en_0716(key)
|
@@ -1,9 +1,12 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_0717_column_name
|
5
|
+
'Estimated Current Mortgage Amount Ranges'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_0717_description
|
6
|
-
|
9
|
+
'Estimated Current Mortgage Amount model predicts the amount currently remaining on the primary mortgage. It projects the amount owed on the mortgage by using the original mortgage amount or refinance amount; even where known mortgage data is not available. When data is not available from deed records, ECMA is calculated based on a combination of real estate data including estimated current home value and other ConsumerView variables such as demographics, summarized credit and auto data, and census. A confidence level of Likely is applied when the known data is not available.'
|
7
10
|
end
|
8
11
|
|
9
12
|
def self.en_0717(key)
|
@@ -33,7 +36,7 @@ module Experian
|
|
33
36
|
'U' => 'Unknown'
|
34
37
|
}
|
35
38
|
|
36
|
-
return 'Unknown' if key.size != 2 or confidence[key[0]].nil? or values[key[1]].nil?
|
39
|
+
return 'Unknown' if key.size != 2 or confidence[key[0]].nil? or values[key[1]].nil?
|
37
40
|
[values[key[1]], confidence[key[0]]].join(' - ')
|
38
41
|
end
|
39
42
|
|
@@ -1,9 +1,12 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_310m_column_name
|
5
|
+
'MOSAIC Z4'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_310m_description
|
6
|
-
|
9
|
+
'Mosaic Z4 is a geodemographic level classification system developed by Experian. Mosaic Types identify 60 Types and 12 Groups based on consumer behaviors, lifestyles and attitudes. Detailed definitions available upon request.'
|
7
10
|
end
|
8
11
|
|
9
12
|
def self.en_310m(key)
|
@@ -1,14 +1,20 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_8502_column_name
|
5
|
+
'Donor & Donor Propensity, Self reported data'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_8502_description
|
6
|
-
|
9
|
+
'Z donor & donor propensities indicates a household\'s self reported to contribute to charities. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability'
|
10
|
+
end
|
11
|
+
|
12
|
+
def self.en_8502p_column_name
|
13
|
+
'Donor & Donor Propensity, Quick Predict Code'
|
7
14
|
end
|
8
15
|
|
9
|
-
# Donor & Donor Propensity, Quick Predict Code
|
10
16
|
def self.en_8502p_description
|
11
|
-
|
17
|
+
'Z donor & donor propensities indicates a household\'s self reported to contribute to charities. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
18
|
end
|
13
19
|
|
14
20
|
def self.en_8502(key)
|
@@ -28,7 +34,7 @@ module Experian
|
|
28
34
|
'9' => 'Extremely Unlikely to contribute to charities',
|
29
35
|
'0' => 'Unknown / Not Attempted',
|
30
36
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
37
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
38
|
[charity[key[0]], code[key[1]]].join(' - ')
|
33
39
|
end
|
34
40
|
|
@@ -1,14 +1,20 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_8503_column_name
|
5
|
+
'Pets & Pets Propensity, Self reported data'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_8503_description
|
6
|
-
|
9
|
+
'Z pets & pets propensities indicates a household\'s self reported pet enthusiast. BehaviorBank Household Indicators groups similar self-reported elements inslightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
10
|
+
end
|
11
|
+
|
12
|
+
def self.en_8503p_column_name
|
13
|
+
'Pets & Pets Propensity, Quick Predict Code'
|
7
14
|
end
|
8
15
|
|
9
|
-
# Pets & Pets Propensity, Quick Predict Code
|
10
16
|
def self.en_8503p_description
|
11
|
-
|
17
|
+
'Z pets & pets propensities indicates a household\'s self reported pet enthusiast. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
18
|
end
|
13
19
|
|
14
20
|
def self.en_8503(key)
|
@@ -28,7 +34,7 @@ module Experian
|
|
28
34
|
'9' => 'Extremely Unlikely pet enthusiast',
|
29
35
|
'0' => 'Unknown / Not Attempted',
|
30
36
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
37
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
38
|
[charity[key[0]], code[key[1]]].join(' - ')
|
33
39
|
end
|
34
40
|
|
@@ -1,14 +1,20 @@
|
|
1
1
|
module Experian
|
2
2
|
class DataDictionary
|
3
3
|
|
4
|
-
|
4
|
+
def self.en_8504_column_name
|
5
|
+
'Arts & Arts Propensity, Self reported data'
|
6
|
+
end
|
7
|
+
|
5
8
|
def self.en_8504_description
|
6
|
-
|
9
|
+
'Z arts & arts propensities indicates a household\'s self reported interest in cultural arts. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response.The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
10
|
+
end
|
11
|
+
|
12
|
+
def self.en_8504p_column_name
|
13
|
+
'Arts & Arts Propensity, Quick Predict code'
|
7
14
|
end
|
8
15
|
|
9
|
-
# Arts & Arts Propensity, Quick Predict Code
|
10
16
|
def self.en_8504p_description
|
11
|
-
|
17
|
+
'Z arts & arts propensities indicates a household\'s self reported interest in cultural arts. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
18
|
end
|
13
19
|
|
14
20
|
def self.en_8504(key)
|
@@ -28,7 +34,7 @@ module Experian
|
|
28
34
|
'9' => 'Extremely Unlikely interest in cultural arts',
|
29
35
|
'0' => 'Unknown / Not Attempted',
|
30
36
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
37
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
38
|
[charity[key[0]], code[key[1]]].join(' - ')
|
33
39
|
end
|
34
40
|
|
@@ -2,13 +2,21 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Mailorder Buyer & Mailorder Buyer Prop, Self Reported data
|
5
|
+
def self.en_8505_column_name
|
6
|
+
'Mailorder Buyer & Mailorder Buyer Prop, Self Reported data'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_8505_description
|
6
|
-
|
10
|
+
'Z mailorder buyer & mailorder buyer propensities indicates a household\'s self reported purchased through the mail. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
7
11
|
end
|
8
12
|
|
9
13
|
# Mailorder Buyer & Mailorder Buyer Prop, Quick Predict Code
|
14
|
+
def self.en_8505p_column_name
|
15
|
+
'Mailorder Buyer & Mailorder Buyer Prop, Quick Predict Code'
|
16
|
+
end
|
17
|
+
|
10
18
|
def self.en_8505p_description
|
11
|
-
|
19
|
+
'Z mailorder buyer & mailorder buyer propensities indicates a household\'s self reported purchased through the mail. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
20
|
end
|
13
21
|
|
14
22
|
def self.en_8505(key)
|
@@ -28,7 +36,7 @@ module Experian
|
|
28
36
|
'9' => 'Extremely Unlikely purchased through the mail',
|
29
37
|
'0' => 'Unknown / Not Attempted',
|
30
38
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
39
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
40
|
[charity[key[0]], code[key[1]]].join(' - ')
|
33
41
|
end
|
34
42
|
|
@@ -2,13 +2,21 @@ module Experian
|
|
2
2
|
class DataDictionary
|
3
3
|
|
4
4
|
# Politics & Politics Propensity, Self reported data
|
5
|
+
def self.en_8519_column_name
|
6
|
+
'Politics & Politics Propensity, Self reported data'
|
7
|
+
end
|
8
|
+
|
5
9
|
def self.en_8519_description
|
6
|
-
|
10
|
+
'Z politics & politics propensities indicates a household\'s self reported interest in politics. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
7
11
|
end
|
8
12
|
|
9
13
|
# Politics & Politics Propensity, Quick Predict Code
|
14
|
+
def self.en_8519p_column_name
|
15
|
+
'Politics & Politics Propensity, Quick Predict Code'
|
16
|
+
end
|
17
|
+
|
10
18
|
def self.en_8519p_description
|
11
|
-
|
19
|
+
'Z politics & politics propensities indicates a household\'s self reported interest in politics. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
|
12
20
|
end
|
13
21
|
|
14
22
|
def self.en_8519(key)
|
@@ -28,7 +36,7 @@ module Experian
|
|
28
36
|
'9' => 'Extremely Unlikely interest in politics',
|
29
37
|
'0' => 'Unknown / Not Attempted',
|
30
38
|
}
|
31
|
-
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
39
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
40
|
[charity[key[0]], code[key[1]]].join(' - ')
|
33
41
|
end
|
34
42
|
|