daru 0.1.3.1 → 0.1.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +2 -0
- data/.rspec +2 -1
- data/.rspec_formatter.rb +33 -0
- data/.rubocop.yml +26 -2
- data/History.md +38 -0
- data/README.md +22 -13
- data/Rakefile +50 -2
- data/benchmarks/csv_reading.rb +22 -0
- data/daru.gemspec +9 -2
- data/lib/daru.rb +36 -4
- data/lib/daru/accessors/array_wrapper.rb +6 -1
- data/lib/daru/accessors/dataframe_by_row.rb +10 -2
- data/lib/daru/accessors/gsl_wrapper.rb +1 -3
- data/lib/daru/accessors/nmatrix_wrapper.rb +9 -0
- data/lib/daru/category.rb +935 -0
- data/lib/daru/core/group_by.rb +29 -38
- data/lib/daru/core/merge.rb +186 -145
- data/lib/daru/core/query.rb +22 -11
- data/lib/daru/dataframe.rb +976 -885
- data/lib/daru/date_time/index.rb +166 -166
- data/lib/daru/date_time/offsets.rb +66 -77
- data/lib/daru/formatters/table.rb +54 -0
- data/lib/daru/helpers/array.rb +40 -0
- data/lib/daru/index.rb +476 -73
- data/lib/daru/io/io.rb +66 -45
- data/lib/daru/io/sql_data_source.rb +33 -62
- data/lib/daru/iruby/helpers.rb +38 -0
- data/lib/daru/iruby/templates/dataframe.html.erb +52 -0
- data/lib/daru/iruby/templates/dataframe_mi.html.erb +58 -0
- data/lib/daru/iruby/templates/multi_index.html.erb +12 -0
- data/lib/daru/iruby/templates/vector.html.erb +27 -0
- data/lib/daru/iruby/templates/vector_mi.html.erb +36 -0
- data/lib/daru/maths/arithmetic/dataframe.rb +16 -18
- data/lib/daru/maths/arithmetic/vector.rb +4 -6
- data/lib/daru/maths/statistics/dataframe.rb +8 -15
- data/lib/daru/maths/statistics/vector.rb +120 -98
- data/lib/daru/monkeys.rb +12 -40
- data/lib/daru/plotting/gruff.rb +3 -0
- data/lib/daru/plotting/gruff/category.rb +49 -0
- data/lib/daru/plotting/gruff/dataframe.rb +91 -0
- data/lib/daru/plotting/gruff/vector.rb +57 -0
- data/lib/daru/plotting/nyaplot.rb +3 -0
- data/lib/daru/plotting/nyaplot/category.rb +34 -0
- data/lib/daru/plotting/nyaplot/dataframe.rb +187 -0
- data/lib/daru/plotting/nyaplot/vector.rb +46 -0
- data/lib/daru/vector.rb +694 -421
- data/lib/daru/version.rb +1 -1
- data/profile/_base.rb +23 -0
- data/profile/df_to_a.rb +10 -0
- data/profile/filter.rb +13 -0
- data/profile/joining.rb +13 -0
- data/profile/sorting.rb +12 -0
- data/profile/vector_each_with_index.rb +9 -0
- data/spec/accessors/wrappers_spec.rb +2 -4
- data/spec/categorical_spec.rb +1734 -0
- data/spec/core/group_by_spec.rb +52 -2
- data/spec/core/merge_spec.rb +63 -2
- data/spec/core/query_spec.rb +236 -80
- data/spec/dataframe_spec.rb +1373 -79
- data/spec/date_time/data_spec.rb +3 -5
- data/spec/date_time/index_spec.rb +154 -17
- data/spec/date_time/offsets_spec.rb +3 -4
- data/spec/fixtures/empties.dat +2 -0
- data/spec/fixtures/strings.dat +2 -0
- data/spec/formatters/table_formatter_spec.rb +99 -0
- data/spec/helpers_spec.rb +8 -0
- data/spec/index/categorical_index_spec.rb +168 -0
- data/spec/index/index_spec.rb +283 -0
- data/spec/index/multi_index_spec.rb +570 -0
- data/spec/io/io_spec.rb +31 -4
- data/spec/io/sql_data_source_spec.rb +0 -1
- data/spec/iruby/dataframe_spec.rb +172 -0
- data/spec/iruby/helpers_spec.rb +49 -0
- data/spec/iruby/multi_index_spec.rb +37 -0
- data/spec/iruby/vector_spec.rb +107 -0
- data/spec/math/arithmetic/dataframe_spec.rb +71 -13
- data/spec/math/arithmetic/vector_spec.rb +8 -10
- data/spec/math/statistics/dataframe_spec.rb +3 -5
- data/spec/math/statistics/vector_spec.rb +45 -55
- data/spec/monkeys_spec.rb +32 -9
- data/spec/plotting/dataframe_spec.rb +386 -0
- data/spec/plotting/vector_spec.rb +230 -0
- data/spec/shared/vector_display_spec.rb +215 -0
- data/spec/spec_helper.rb +23 -0
- data/spec/vector_spec.rb +905 -138
- metadata +143 -11
- data/.rubocop_todo.yml +0 -44
- data/lib/daru/plotting/dataframe.rb +0 -104
- data/lib/daru/plotting/vector.rb +0 -38
- data/spec/daru_spec.rb +0 -58
- data/spec/index_spec.rb +0 -375
@@ -54,6 +54,11 @@ module Daru
|
|
54
54
|
set_size
|
55
55
|
end
|
56
56
|
|
57
|
+
def fill(*arg)
|
58
|
+
@data.fill(*arg)
|
59
|
+
set_size
|
60
|
+
end
|
61
|
+
|
57
62
|
def uniq
|
58
63
|
@data.uniq
|
59
64
|
end
|
@@ -67,7 +72,7 @@ module Daru
|
|
67
72
|
end
|
68
73
|
|
69
74
|
def compact
|
70
|
-
@data -
|
75
|
+
@data - Daru::MISSING_VALUES
|
71
76
|
end
|
72
77
|
|
73
78
|
def mean
|
@@ -9,8 +9,16 @@ module Daru
|
|
9
9
|
@data_frame[*names, :row]
|
10
10
|
end
|
11
11
|
|
12
|
-
def []=(
|
13
|
-
@data_frame[
|
12
|
+
def []=(*names, vector)
|
13
|
+
@data_frame[*names, :row] = vector
|
14
|
+
end
|
15
|
+
|
16
|
+
def at *positions
|
17
|
+
@data_frame.row_at(*positions)
|
18
|
+
end
|
19
|
+
|
20
|
+
def set_at positions, vector
|
21
|
+
@data_frame.set_row_at(positions, vector)
|
14
22
|
end
|
15
23
|
end
|
16
24
|
end
|
@@ -61,9 +61,7 @@ module Daru
|
|
61
61
|
attr_reader :data
|
62
62
|
|
63
63
|
def compact
|
64
|
-
|
65
|
-
missing = @context.missing_values rescue []
|
66
|
-
::GSL::Vector.alloc(@data.to_a - missing.map(&:to_f))
|
64
|
+
::GSL::Vector.alloc(@data.to_a - [Float::NAN])
|
67
65
|
end
|
68
66
|
|
69
67
|
[:mean, :min, :max, :prod, :sum].each do |method|
|
@@ -14,9 +14,12 @@ module Daru
|
|
14
14
|
self
|
15
15
|
end
|
16
16
|
|
17
|
+
# :nocov:
|
18
|
+
# FIXME: not sure, why this kind of wrapper have such a pure coverage
|
17
19
|
def inject(*args, &block)
|
18
20
|
@data[0...@size].inject(*args, &block)
|
19
21
|
end
|
22
|
+
# :nocov:
|
20
23
|
|
21
24
|
attr_reader :size, :data, :nm_dtype
|
22
25
|
|
@@ -43,9 +46,11 @@ module Daru
|
|
43
46
|
@data[index] = value
|
44
47
|
end
|
45
48
|
|
49
|
+
# :nocov:
|
46
50
|
def == other
|
47
51
|
@data[0...@size] == other[0...@size] and @size == other.size
|
48
52
|
end
|
53
|
+
# :nocov:
|
49
54
|
|
50
55
|
def delete_at index
|
51
56
|
arry = @data.to_a
|
@@ -58,10 +63,12 @@ module Daru
|
|
58
63
|
@data.to_a.index key
|
59
64
|
end
|
60
65
|
|
66
|
+
# :nocov:
|
61
67
|
def << element
|
62
68
|
resize if @size >= @data.size
|
63
69
|
self[@size] = element
|
64
70
|
end
|
71
|
+
# :nocov:
|
65
72
|
|
66
73
|
def to_a
|
67
74
|
@data[0...@size].to_a
|
@@ -77,6 +84,7 @@ module Daru
|
|
77
84
|
@data = NMatrix.new [size], @data.to_a, dtype: @nm_dtype
|
78
85
|
end
|
79
86
|
|
87
|
+
# :nocov:
|
80
88
|
def mean
|
81
89
|
@data[0...@size].mean.first
|
82
90
|
end
|
@@ -96,6 +104,7 @@ module Daru
|
|
96
104
|
def min
|
97
105
|
@data[0...@size].min
|
98
106
|
end
|
107
|
+
# :nocov:
|
99
108
|
end
|
100
109
|
end
|
101
110
|
end if Daru.has_nmatrix?
|
@@ -0,0 +1,935 @@
|
|
1
|
+
module Daru
|
2
|
+
module Category # rubocop:disable Metrics/ModuleLength
|
3
|
+
attr_accessor :base_category
|
4
|
+
attr_reader :index, :coding_scheme, :name
|
5
|
+
|
6
|
+
# For debuggin. To be removed
|
7
|
+
attr_reader :array, :cat_hash, :map_int_cat
|
8
|
+
|
9
|
+
# Initializes a vector to store categorical data.
|
10
|
+
# @note Base category is set to the first category encountered in the vector.
|
11
|
+
# @param [Array] data the categorical data
|
12
|
+
# @param [Hash] opts the options
|
13
|
+
# @option opts [Boolean] :ordered true if data is ordered, false otherwise
|
14
|
+
# @option opts [Array] :categories categories to associate with the vector.
|
15
|
+
# It add extra categories if specified and provides order of categories also.
|
16
|
+
# @option opts [object] :index gives index to vector. By default its from 0 to size-1
|
17
|
+
# @return the categorical data created
|
18
|
+
# @example
|
19
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c],
|
20
|
+
# type: :category,
|
21
|
+
# ordered: true,
|
22
|
+
# categories: [:a, :b, :c, 1]
|
23
|
+
# # => #<Daru::Vector(5)>
|
24
|
+
# # 0 a
|
25
|
+
# # 1 1
|
26
|
+
# # 2 a
|
27
|
+
# # 3 1
|
28
|
+
# # 4 c
|
29
|
+
def initialize_category data, opts={}
|
30
|
+
@type = :category
|
31
|
+
initialize_core_attributes data
|
32
|
+
|
33
|
+
if opts[:categories]
|
34
|
+
validate_categories(opts[:categories])
|
35
|
+
add_extra_categories(opts[:categories] - categories)
|
36
|
+
order_with opts[:categories]
|
37
|
+
end
|
38
|
+
|
39
|
+
# Specify if the categories are ordered or not.
|
40
|
+
# By default its unordered
|
41
|
+
@ordered = opts[:ordered] || false
|
42
|
+
|
43
|
+
# The coding scheme to code with. Default is dummy coding.
|
44
|
+
@coding_scheme = :dummy
|
45
|
+
|
46
|
+
# Base category which won't be present in the coding
|
47
|
+
@base_category = @cat_hash.keys.first
|
48
|
+
|
49
|
+
# Stores the name of the vector
|
50
|
+
@name = opts[:name]
|
51
|
+
|
52
|
+
# Index of the vector
|
53
|
+
@index = coerce_index opts[:index]
|
54
|
+
|
55
|
+
self
|
56
|
+
end
|
57
|
+
|
58
|
+
def name= new_name
|
59
|
+
@name = new_name
|
60
|
+
self
|
61
|
+
end
|
62
|
+
|
63
|
+
def plotting_library= lib
|
64
|
+
case lib
|
65
|
+
when :gruff, :nyaplot
|
66
|
+
@plotting_library = lib
|
67
|
+
extend Module.const_get(
|
68
|
+
"Daru::Plotting::Category::#{lib.to_s.capitalize}Library"
|
69
|
+
) if Daru.send("has_#{lib}?".to_sym)
|
70
|
+
else
|
71
|
+
raise ArguementError, "Plotting library #{lib} not supported. "\
|
72
|
+
'Supported libraries are :nyaplot and :gruff'
|
73
|
+
end
|
74
|
+
end
|
75
|
+
|
76
|
+
alias_method :rename, :name=
|
77
|
+
|
78
|
+
# Returns an enumerator that enumerates on categorical data
|
79
|
+
# @return [Enumerator] an enumerator that enumerates over data stored in vector
|
80
|
+
def each
|
81
|
+
return enum_for(:each) unless block_given?
|
82
|
+
@array.each { |pos| yield cat_from_int pos }
|
83
|
+
self
|
84
|
+
end
|
85
|
+
|
86
|
+
# Returns all categorical data
|
87
|
+
# @return [Array] array of all categorical data which vector is storing
|
88
|
+
# @example
|
89
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
90
|
+
# dv.to_a
|
91
|
+
# # => [:a, 1, :a, 1, :c]
|
92
|
+
def to_a
|
93
|
+
each.to_a
|
94
|
+
end
|
95
|
+
|
96
|
+
# Duplicated a vector
|
97
|
+
# @return [Daru::Vector] duplicated vector
|
98
|
+
# @example
|
99
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
100
|
+
# dv.dup
|
101
|
+
# # => #<Daru::Vector(5)>
|
102
|
+
# # 0 a
|
103
|
+
# # 1 1
|
104
|
+
# # 2 a
|
105
|
+
# # 3 1
|
106
|
+
# # 4 c
|
107
|
+
def dup
|
108
|
+
Daru::Vector.new to_a.dup,
|
109
|
+
name: @name,
|
110
|
+
index: @index.dup,
|
111
|
+
type: :category,
|
112
|
+
categories: categories,
|
113
|
+
ordered: ordered?
|
114
|
+
end
|
115
|
+
|
116
|
+
# Associates a category to the vector.
|
117
|
+
# @param [Array] *new_categories new categories to be associated
|
118
|
+
# @example
|
119
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
120
|
+
# dv.add_category :b
|
121
|
+
# dv.categories
|
122
|
+
# # => [:a, :b, :c, 1]
|
123
|
+
def add_category(*new_categories)
|
124
|
+
new_categories -= categories
|
125
|
+
add_extra_categories new_categories
|
126
|
+
end
|
127
|
+
|
128
|
+
# Returns frequency of given category
|
129
|
+
# @param [object] category given category whose count has to be founded
|
130
|
+
# @return count/frequency of given category
|
131
|
+
# @example
|
132
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
133
|
+
# dv.count :a
|
134
|
+
# # => 2
|
135
|
+
def count category
|
136
|
+
raise ArgumentError, "Invalid category #{category}" unless
|
137
|
+
categories.include?(category)
|
138
|
+
|
139
|
+
@cat_hash[category].size
|
140
|
+
end
|
141
|
+
|
142
|
+
# Returns a vector storing count/frequency of each category
|
143
|
+
# @return [Daru::Vector] Return a vector whose indexes are categories
|
144
|
+
# and corresponding values are its count
|
145
|
+
# @example
|
146
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
147
|
+
# dv.frequencies
|
148
|
+
# # => #<Daru::Vector(4)>
|
149
|
+
# # a 2
|
150
|
+
# # b 0
|
151
|
+
# # c 1
|
152
|
+
# # 1 2
|
153
|
+
def frequencies type=:count
|
154
|
+
counts = @cat_hash.values.map(&:size)
|
155
|
+
values =
|
156
|
+
case type
|
157
|
+
when :count
|
158
|
+
counts
|
159
|
+
when :fraction
|
160
|
+
counts.map { |c| c / size.to_f }
|
161
|
+
when :percentage
|
162
|
+
counts.map { |c| c / size.to_f * 100 }
|
163
|
+
end
|
164
|
+
Daru::Vector.new values, index: categories, name: name
|
165
|
+
end
|
166
|
+
|
167
|
+
# Returns vector for indexes/positions specified
|
168
|
+
# @param [Array] *indexes indexes/positions for which values has to be retrived
|
169
|
+
# @note Since it accepts both indexes and postions. In case of collision,
|
170
|
+
# arguement will be treated as index
|
171
|
+
# @return vector containing values specified at specified indexes/positions
|
172
|
+
# @example
|
173
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c],
|
174
|
+
# type: :category,
|
175
|
+
# index: 'a'..'e'
|
176
|
+
# dv[:a, 1]
|
177
|
+
# # => #<Daru::Vector(2)>
|
178
|
+
# # a a
|
179
|
+
# # b 1
|
180
|
+
# dv[0, 1]
|
181
|
+
# # => #<Daru::Vector(2)>
|
182
|
+
# # a a
|
183
|
+
# # b 1
|
184
|
+
def [] *indexes
|
185
|
+
positions = @index.pos(*indexes)
|
186
|
+
return category_from_position(positions) if positions.is_a? Integer
|
187
|
+
|
188
|
+
Daru::Vector.new positions.map { |pos| category_from_position pos },
|
189
|
+
index: @index.subset(*indexes),
|
190
|
+
name: @name,
|
191
|
+
type: :category,
|
192
|
+
ordered: @ordered,
|
193
|
+
categories: categories
|
194
|
+
end
|
195
|
+
|
196
|
+
# Returns vector for positions specified.
|
197
|
+
# @param [Array] *positions positions at which values to be retrived.
|
198
|
+
# @return vector containing values specified at specified positions
|
199
|
+
# @example
|
200
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
201
|
+
# dv.at 0..-2
|
202
|
+
# # => #<Daru::Vector(4)>
|
203
|
+
# # 0 a
|
204
|
+
# # 1 1
|
205
|
+
# # 2 a
|
206
|
+
# # 3 1
|
207
|
+
def at *positions
|
208
|
+
original_positions = positions
|
209
|
+
positions = coerce_positions(*positions)
|
210
|
+
validate_positions(*positions)
|
211
|
+
|
212
|
+
return category_from_position(positions) if positions.is_a? Integer
|
213
|
+
|
214
|
+
Daru::Vector.new positions.map { |pos| category_from_position(pos) },
|
215
|
+
index: @index.at(*original_positions),
|
216
|
+
name: @name,
|
217
|
+
type: :category,
|
218
|
+
ordered: @ordered,
|
219
|
+
categories: categories
|
220
|
+
end
|
221
|
+
|
222
|
+
# Modifies values at specified indexes/positions.
|
223
|
+
# @note In order to add a new category you need to associate it via #add_category
|
224
|
+
# @param [Array] *indexes indexes/positions at which to modify value
|
225
|
+
# @param [object] val value to assign at specific indexes/positions
|
226
|
+
# @return modified vector
|
227
|
+
# @example
|
228
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
229
|
+
# dv.add_category :b
|
230
|
+
# dv[0] = :b
|
231
|
+
# dv
|
232
|
+
# # => #<Daru::Vector(5)>
|
233
|
+
# # 0 b
|
234
|
+
# # 1 1
|
235
|
+
# # 2 a
|
236
|
+
# # 3 1
|
237
|
+
# # 4 c
|
238
|
+
def []= *indexes, val
|
239
|
+
positions = @index.pos(*indexes)
|
240
|
+
|
241
|
+
if positions.is_a? Numeric
|
242
|
+
modify_category_at positions, val
|
243
|
+
else
|
244
|
+
positions.each { |pos| modify_category_at pos, val }
|
245
|
+
end
|
246
|
+
self
|
247
|
+
end
|
248
|
+
|
249
|
+
# Modifies values at specified positions.
|
250
|
+
# @param [Array] positions positions at which to modify value
|
251
|
+
# @param [object] val value to assign at specific positions
|
252
|
+
# @return modified vector
|
253
|
+
# @example
|
254
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
255
|
+
# dv.add_category :b
|
256
|
+
# dv.set_at [0, 1], :b
|
257
|
+
# # => #<Daru::Vector(5)>
|
258
|
+
# # 0 b
|
259
|
+
# # 1 b
|
260
|
+
# # 2 a
|
261
|
+
# # 3 1
|
262
|
+
# # 4 c
|
263
|
+
def set_at positions, val
|
264
|
+
validate_positions(*positions)
|
265
|
+
positions.map { |pos| modify_category_at pos, val }
|
266
|
+
self
|
267
|
+
end
|
268
|
+
|
269
|
+
# Size of categorical data.
|
270
|
+
# @return total number of values in the vector
|
271
|
+
# @example
|
272
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
273
|
+
# dv.size
|
274
|
+
# # => 5
|
275
|
+
def size
|
276
|
+
@array.size
|
277
|
+
end
|
278
|
+
|
279
|
+
# Tells whether vector is ordered or not.
|
280
|
+
# @return [Boolean] true if vector is ordered, false otherwise
|
281
|
+
# @example
|
282
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
283
|
+
# dv.ordered?
|
284
|
+
# # => false
|
285
|
+
def ordered?
|
286
|
+
@ordered
|
287
|
+
end
|
288
|
+
|
289
|
+
# Make categorical data ordered or unordered.
|
290
|
+
# @param [Boolean] bool true if categorical data is to be to ordered, false otherwise
|
291
|
+
# @example
|
292
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
293
|
+
# dv.ordered = true
|
294
|
+
# dv.ordered?
|
295
|
+
# # => true
|
296
|
+
def ordered= bool
|
297
|
+
@ordered = bool
|
298
|
+
end
|
299
|
+
|
300
|
+
# Returns all the categories with the inherent order
|
301
|
+
# @return [Array] categories of the vector with the order
|
302
|
+
# @example
|
303
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c],
|
304
|
+
# type: :category,
|
305
|
+
# categories: [:a, :b, :c, 1]
|
306
|
+
# dv.categories
|
307
|
+
# # => [:a, :b, :c, 1]
|
308
|
+
def categories
|
309
|
+
@cat_hash.keys
|
310
|
+
end
|
311
|
+
|
312
|
+
alias_method :order, :categories
|
313
|
+
|
314
|
+
# Sets order of the categories.
|
315
|
+
# @note If extra categories are specified, they get added too.
|
316
|
+
# @param [Array] cat_with_order categories specifying their order
|
317
|
+
# @example
|
318
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
319
|
+
# dv.categories = [:a, :b, :c, 1]
|
320
|
+
# dv.categories
|
321
|
+
# # => [:a, :b, :c, 1]
|
322
|
+
def categories= cat_with_order
|
323
|
+
validate_categories(cat_with_order)
|
324
|
+
add_extra_categories(cat_with_order - categories)
|
325
|
+
order_with cat_with_order
|
326
|
+
end
|
327
|
+
|
328
|
+
# Rename categories.
|
329
|
+
# @note The order of categories after renaming is preserved but new categories
|
330
|
+
# are added at the end in the order. Also the base-category is reassigned
|
331
|
+
# to new value if it is renamed
|
332
|
+
# @param [Hash] old_to_new a hash mapping categories whose name to be changed
|
333
|
+
# to their new names
|
334
|
+
# @example
|
335
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
336
|
+
# dv.rename_categories :a => :b
|
337
|
+
# dv
|
338
|
+
# # => #<Daru::Vector(5)>
|
339
|
+
# # 0 b
|
340
|
+
# # 1 1
|
341
|
+
# # 2 b
|
342
|
+
# # 3 1
|
343
|
+
# # 4 c
|
344
|
+
def rename_categories old_to_new
|
345
|
+
old_categories = categories
|
346
|
+
data = to_a.map do |cat|
|
347
|
+
old_to_new.include?(cat) ? old_to_new[cat] : cat
|
348
|
+
end
|
349
|
+
|
350
|
+
initialize_core_attributes data
|
351
|
+
self.categories = (old_categories - old_to_new.keys) | old_to_new.values
|
352
|
+
self.base_category = old_to_new[base_category] if
|
353
|
+
old_to_new.include? base_category
|
354
|
+
self
|
355
|
+
end
|
356
|
+
|
357
|
+
# Removes the unused categories
|
358
|
+
# @note If base category is removed, then the first occuring category in the
|
359
|
+
# data is taken as base category. Order of the undeleted categories
|
360
|
+
# remains preserved.
|
361
|
+
# @return [Daru::Vector] Makes changes in the vector itself i.e. deletes
|
362
|
+
# the unused categories and returns itself
|
363
|
+
# @example
|
364
|
+
# dv = Daru::Vector.new [:one, :two, :one], type: :category,
|
365
|
+
# categories: [:three, :two, :one]
|
366
|
+
# dv.remove_unused_categories
|
367
|
+
# dv.categories
|
368
|
+
# # => [:two, :one]
|
369
|
+
def remove_unused_categories
|
370
|
+
old_categories = categories
|
371
|
+
|
372
|
+
initialize_core_attributes to_a
|
373
|
+
self.categories = old_categories & categories
|
374
|
+
self.base_category = @cat_hash.keys.first unless
|
375
|
+
categories.include? base_category
|
376
|
+
self
|
377
|
+
end
|
378
|
+
|
379
|
+
# Returns the minimum category acording to the order specified.
|
380
|
+
# @note This operation will only work if vector is ordered.
|
381
|
+
# To set the vector ordered do `vector.ordered = true`
|
382
|
+
# @return [object] the minimum category acording to the order
|
383
|
+
# @example
|
384
|
+
# dv = Daru::Vector.new ['second', 'second', 'third', 'first'],
|
385
|
+
# categories: ['first', 'second', 'third']
|
386
|
+
# dv.min
|
387
|
+
# # => 'first'
|
388
|
+
def min
|
389
|
+
assert_ordered :min
|
390
|
+
categories.first
|
391
|
+
end
|
392
|
+
|
393
|
+
# Returns the maximum category acording to the order specified.
|
394
|
+
# @note This operation will only work if vector is ordered.
|
395
|
+
# To set the vector ordered do `vector.ordered = true`
|
396
|
+
# @return [object] the maximum category acording to the order
|
397
|
+
# @example
|
398
|
+
# dv = Daru::Vector.new ['second', 'second', 'third', 'first'],
|
399
|
+
# categories: ['first', 'second', 'third']
|
400
|
+
# dv.max
|
401
|
+
# # => 'third'
|
402
|
+
def max
|
403
|
+
assert_ordered :max
|
404
|
+
categories.last
|
405
|
+
end
|
406
|
+
|
407
|
+
# Sorts the vector in the order specified.
|
408
|
+
# @note This operation will only work if vector is ordered.
|
409
|
+
# To set the vector ordered, do `vector.ordered = true`
|
410
|
+
# @return [Daru::Vector] sorted vector
|
411
|
+
# @example
|
412
|
+
# dv = Daru::Vector.new ['second', 'second', 'third', 'first'],
|
413
|
+
# categories: ['first', 'second', 'thrid'],
|
414
|
+
# type: :categories,
|
415
|
+
# ordered: true
|
416
|
+
# dv.sort!
|
417
|
+
# # => #<Daru::Vector(4)>
|
418
|
+
# # 3 first
|
419
|
+
# # 0 second
|
420
|
+
# # 1 second
|
421
|
+
# # 2 third
|
422
|
+
def sort! # rubocop:disable Metrics/AbcSize
|
423
|
+
# TODO: Simply the code
|
424
|
+
assert_ordered :sort
|
425
|
+
|
426
|
+
# Build sorted index
|
427
|
+
old_index = @index.to_a
|
428
|
+
new_index = @cat_hash.values.map do |positions|
|
429
|
+
old_index.values_at(*positions)
|
430
|
+
end.flatten
|
431
|
+
@index = @index.class.new new_index
|
432
|
+
|
433
|
+
# Build sorted data
|
434
|
+
@cat_hash = categories.inject([{}, 0]) do |acc, cat|
|
435
|
+
hash, count = acc
|
436
|
+
cat_count = @cat_hash[cat].size
|
437
|
+
cat_count.times { |i| @array[count+i] = int_from_cat(cat) }
|
438
|
+
hash[cat] = (count...(cat_count+count)).to_a
|
439
|
+
[hash, count + cat_count]
|
440
|
+
end.first
|
441
|
+
|
442
|
+
self
|
443
|
+
end
|
444
|
+
|
445
|
+
def sort
|
446
|
+
dup.sort!
|
447
|
+
end
|
448
|
+
|
449
|
+
# Set coding scheme
|
450
|
+
# @param [Symbol] scheme to set
|
451
|
+
# @example
|
452
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
453
|
+
# dv.coding_scheme = :deviation
|
454
|
+
# dv.coding_scheme
|
455
|
+
# # => :deviation
|
456
|
+
def coding_scheme= scheme
|
457
|
+
raise ArgumentError, "Unknown or unsupported coding scheme #{scheme}." unless
|
458
|
+
CODING_SCHEMES.include? scheme
|
459
|
+
@coding_scheme = scheme
|
460
|
+
end
|
461
|
+
|
462
|
+
CODING_SCHEMES = [:dummy, :deviation, :helmert, :simple].freeze
|
463
|
+
|
464
|
+
# Contrast code the vector acording to the coding scheme set.
|
465
|
+
# @note To set the coding scheme use #coding_scheme=
|
466
|
+
# @param [true, false] full true if you want k variables for k categories,
|
467
|
+
# false if you want k-1 variables for k categories
|
468
|
+
# @return [Daru::DataFrame] dataframe containing all coded variables
|
469
|
+
# @example
|
470
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
471
|
+
# dv.contrast_code
|
472
|
+
# # => #<Daru::DataFrame(5x2)>
|
473
|
+
# # daru_1 daru_c
|
474
|
+
# # 0 0 0
|
475
|
+
# # 1 1 0
|
476
|
+
# # 2 0 0
|
477
|
+
# # 3 1 0
|
478
|
+
# # 4 0 1
|
479
|
+
def contrast_code opts={}
|
480
|
+
if opts[:user_defined]
|
481
|
+
user_defined_coding(opts[:user_defined])
|
482
|
+
else
|
483
|
+
# TODO: Make various coding schemes code DRY
|
484
|
+
send("#{coding_scheme}_coding".to_sym, opts[:full] || false)
|
485
|
+
end
|
486
|
+
end
|
487
|
+
|
488
|
+
# Two categorical vectors are equal if their index and corresponding values are same
|
489
|
+
# return [true, false] true if two vectors are similar
|
490
|
+
# @example
|
491
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
492
|
+
# other = Daru::Vector.new [:a, 1, :a, 1, :c],
|
493
|
+
# type: :category,
|
494
|
+
# index: 1..5
|
495
|
+
# dv == other
|
496
|
+
# # => false
|
497
|
+
def == other
|
498
|
+
size == other.size &&
|
499
|
+
to_a == other.to_a &&
|
500
|
+
index == other.index
|
501
|
+
end
|
502
|
+
|
503
|
+
# Returns integer coding for categorical data in the order starting from 0.
|
504
|
+
# For example if order is [:a, :b, :c], then :a, will be coded as 0, :b as 1 and :c as 2
|
505
|
+
# @return [Array] integer coding of all values of vector
|
506
|
+
# @example
|
507
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c],
|
508
|
+
# type: :category,
|
509
|
+
# categories: [:a, :b, :c, 1]
|
510
|
+
# dv.to_ints
|
511
|
+
# # => [0, 1, 0, 1, 2]
|
512
|
+
def to_ints
|
513
|
+
@array
|
514
|
+
end
|
515
|
+
|
516
|
+
# Reorder the vector with given positions
|
517
|
+
# @note Unlike #reindex! which takes index as input, it takes
|
518
|
+
# positions as an input to reorder the vector
|
519
|
+
# @param [Array] order the order to reorder the vector with
|
520
|
+
# @return reordered vector
|
521
|
+
# @example
|
522
|
+
# dv = Daru::Vector.new [3, 2, 1], index: ['c', 'b', 'a'], type: :category
|
523
|
+
# dv.reorder! [2, 1, 0]
|
524
|
+
# # => #<Daru::Vector(3)>
|
525
|
+
# # a 1
|
526
|
+
# # b 2
|
527
|
+
# # c 3
|
528
|
+
def reorder! order
|
529
|
+
raise ArgumentError, 'Invalid order specified' unless
|
530
|
+
order.sort == size.times.to_a
|
531
|
+
# TODO: Room for optimization
|
532
|
+
old_data = to_a
|
533
|
+
new_data = order.map { |i| old_data[i] }
|
534
|
+
initialize_core_attributes new_data
|
535
|
+
self
|
536
|
+
end
|
537
|
+
|
538
|
+
# Sets new index for vector. Preserves index->value correspondence.
|
539
|
+
# @note Unlike #reorder! which takes positions as input it takes
|
540
|
+
# index as an input to reorder the vector
|
541
|
+
# @param [Daru::Index, Daru::MultiIndex, Array] idx new index to order with
|
542
|
+
# @return [Daru::Vector] vector reindexed with new index
|
543
|
+
# @example
|
544
|
+
# dv = Daru::Vector.new [3, 2, 1], index: ['c', 'b', 'a'], type: :category
|
545
|
+
# dv.reindex! ['a', 'b', 'c']
|
546
|
+
# # => #<Daru::Vector(3)>
|
547
|
+
# # a 1
|
548
|
+
# # b 2
|
549
|
+
# # c 3
|
550
|
+
def reindex! idx
|
551
|
+
idx = Daru::Index.new idx unless idx.is_a? Daru::Index
|
552
|
+
raise ArgumentError, 'Invalid index specified' unless
|
553
|
+
idx.to_a.sort == index.to_a.sort
|
554
|
+
|
555
|
+
old_categories = categories
|
556
|
+
data = idx.map { |i| self[i] }
|
557
|
+
initialize_core_attributes data
|
558
|
+
self.categories = old_categories
|
559
|
+
self.index = idx
|
560
|
+
self
|
561
|
+
end
|
562
|
+
|
563
|
+
{
|
564
|
+
eq: :==,
|
565
|
+
not_eq: :!=,
|
566
|
+
lt: :<,
|
567
|
+
lteq: :<=,
|
568
|
+
mt: :>,
|
569
|
+
mteq: :>=
|
570
|
+
}.each do |method, operator|
|
571
|
+
define_method(method) do |other|
|
572
|
+
mod = Daru::Core::Query
|
573
|
+
if other.is_a?(Daru::Vector)
|
574
|
+
mod.apply_vector_operator operator, to_ints, other.to_ints
|
575
|
+
else
|
576
|
+
mod.apply_scalar_operator operator, @array, int_from_cat(other)
|
577
|
+
end
|
578
|
+
end
|
579
|
+
end
|
580
|
+
alias :gt :mt
|
581
|
+
alias :gteq :mteq
|
582
|
+
|
583
|
+
# For querying the data
|
584
|
+
# @param [object] arel like query syntax
|
585
|
+
# @return [Daru::Vector] Vector which makes the conditions true
|
586
|
+
# @example
|
587
|
+
# dv = Daru::Vector.new ['I', 'II', 'I', 'III', 'I', 'II'],
|
588
|
+
# type: :category,
|
589
|
+
# ordered: true,
|
590
|
+
# categories: ['I', 'II', 'III']
|
591
|
+
# dv.where(dv.mt('I') & dv.lt('III'))
|
592
|
+
# # => #<Daru::Vector(2)>
|
593
|
+
# # 1 II
|
594
|
+
# # 5 II
|
595
|
+
def where bool_array
|
596
|
+
Daru::Core::Query.vector_where self, bool_array
|
597
|
+
end
|
598
|
+
|
599
|
+
# Gives the summary of data using following parameters
|
600
|
+
# - size: size of the data
|
601
|
+
# - categories: total number of categories
|
602
|
+
# - max_freq: Max no of times a category occurs
|
603
|
+
# - max_category: The category which occurs max no of times
|
604
|
+
# - min_freq: Min no of times a category occurs
|
605
|
+
# - min_category: The category which occurs min no of times
|
606
|
+
# @return [Daru::Vector] Vector with index as following parameters
|
607
|
+
# and values as values to these parameters
|
608
|
+
# @example
|
609
|
+
# dv = Daru::Vector.new [:a, 1, :a, 1, :c], type: :category
|
610
|
+
# dv.describe
|
611
|
+
# # => #<Daru::Vector(6)>
|
612
|
+
# # size 5
|
613
|
+
# # categories 3
|
614
|
+
# # max_freq 2
|
615
|
+
# # max_category a
|
616
|
+
# # min_freq 1
|
617
|
+
# # min_category c
|
618
|
+
def describe
|
619
|
+
Daru::Vector.new(
|
620
|
+
size: size,
|
621
|
+
categories: categories.size,
|
622
|
+
max_freq: @cat_hash.values.map(&:size).max,
|
623
|
+
max_category: @cat_hash.keys.max_by { |cat| @cat_hash[cat].size },
|
624
|
+
min_freq: @cat_hash.values.map(&:size).min,
|
625
|
+
min_category: @cat_hash.keys.min_by { |cat| @cat_hash[cat].size }
|
626
|
+
)
|
627
|
+
end
|
628
|
+
|
629
|
+
# Does nothing since its already of type category.
|
630
|
+
# @return [Daru::Vector] categorical vector
|
631
|
+
def to_category
|
632
|
+
self
|
633
|
+
end
|
634
|
+
|
635
|
+
# Converts a category type vector to non category type vector
|
636
|
+
# @return [Daru::Vector] non category type vector
|
637
|
+
def to_non_category
|
638
|
+
Daru::Vector.new to_a, name: name, index: index
|
639
|
+
end
|
640
|
+
|
641
|
+
# Sets index of the vector
|
642
|
+
# @param [Daru::Index, Daru::MultiIndex, Daru::CategoricalIndex, Array, Range]
|
643
|
+
# idx new index to assign to vector
|
644
|
+
# @return [Daru::Index, Daru::CategoricalIndex, Daru::MultiIndex] the index assigned
|
645
|
+
# @example
|
646
|
+
# dv = Daru::Vector.new [1, 2, 3], type: :category
|
647
|
+
# dv.index = 'a'..'c'
|
648
|
+
# dv
|
649
|
+
# # => #<Daru::Vector(3)>
|
650
|
+
# # a 1
|
651
|
+
# # b 2
|
652
|
+
# # c 3
|
653
|
+
def index= idx
|
654
|
+
@index = coerce_index idx
|
655
|
+
end
|
656
|
+
|
657
|
+
# Check if any one of mentioned values occur in the vector
|
658
|
+
# @param [Array] *values values to check for
|
659
|
+
# @return [true, false] returns true if any one of specified values
|
660
|
+
# occur in the vector
|
661
|
+
# @example
|
662
|
+
# dv = Daru::Vector.new [1, 2, 3, 4, nil]
|
663
|
+
# dv.include_values? nil, Float::NAN
|
664
|
+
# # => true
|
665
|
+
def include_values?(*values)
|
666
|
+
values.any? { |v| @cat_hash.include?(v) && !@cat_hash[v].empty? }
|
667
|
+
end
|
668
|
+
|
669
|
+
# Return a vector with specified values removed
|
670
|
+
# @param [Array] *values values to reject from resultant vector
|
671
|
+
# @return [Daru::Vector] vector with specified values removed
|
672
|
+
# @example
|
673
|
+
# dv = Daru::Vector.new [1, 2, nil, Float::NAN], type: :category
|
674
|
+
# dv.reject_values nil, Float::NAN
|
675
|
+
# # => #<Daru::Vector(2)>
|
676
|
+
# # 0 1
|
677
|
+
# # 1 2
|
678
|
+
def reject_values(*values)
|
679
|
+
resultant_pos = size.times.to_a - values.flat_map { |v| @cat_hash[v] }
|
680
|
+
dv = at(*resultant_pos)
|
681
|
+
unless dv.is_a? Daru::Vector
|
682
|
+
pos = resultant_pos.first
|
683
|
+
dv = at(pos..pos)
|
684
|
+
end
|
685
|
+
dv.remove_unused_categories
|
686
|
+
end
|
687
|
+
|
688
|
+
# Count the number of values specified
|
689
|
+
# @param [Array] *values values to count for
|
690
|
+
# @return [Integer] the number of times the values mentioned occurs
|
691
|
+
# @example
|
692
|
+
# dv = Daru::Vector.new [1, 2, 1, 2, 3, 4, nil, nil]
|
693
|
+
# dv.count_values nil
|
694
|
+
# # => 2
|
695
|
+
def count_values(*values)
|
696
|
+
values.map { |v| @cat_hash[v].size if @cat_hash.include? v }
|
697
|
+
.compact
|
698
|
+
.inject(0, :+)
|
699
|
+
end
|
700
|
+
|
701
|
+
# Return indexes of values specified
|
702
|
+
# @param [Array] *values values to find indexes for
|
703
|
+
# @return [Array] array of indexes of values specified
|
704
|
+
# @example
|
705
|
+
# dv = Daru::Vector.new [1, 2, nil, Float::NAN], index: 11..14
|
706
|
+
# dv.indexes nil, Float::NAN
|
707
|
+
# # => [13, 14]
|
708
|
+
def indexes(*values)
|
709
|
+
values &= categories
|
710
|
+
index.to_a.values_at(*values.flat_map { |v| @cat_hash[v] }.sort)
|
711
|
+
end
|
712
|
+
|
713
|
+
# Replaces specified values with a new value
|
714
|
+
# @param [Array] old_values array of values to replace
|
715
|
+
# @param [object] new_value new value to replace with
|
716
|
+
# @note It performs the replace in place.
|
717
|
+
# @return [Daru::Vector] Same vector itself with values
|
718
|
+
# replaced with new value
|
719
|
+
# @example
|
720
|
+
# dv = Daru::Vector.new [1, 2, :a, :b]
|
721
|
+
# dv.replace_values [:a, :b], nil
|
722
|
+
# dv
|
723
|
+
# # =>
|
724
|
+
# # #<Daru::Vector:19903200 @name = nil @metadata = {} @size = 4 >
|
725
|
+
# # nil
|
726
|
+
# # 0 1
|
727
|
+
# # 1 2
|
728
|
+
# # 2 nil
|
729
|
+
# # 3 nil
|
730
|
+
def replace_values old_values, new_value
|
731
|
+
old_values = [old_values] unless old_values.is_a? Array
|
732
|
+
rename_hash = old_values.map { |v| [v, new_value] }.to_h
|
733
|
+
rename_categories rename_hash
|
734
|
+
end
|
735
|
+
|
736
|
+
def positions(*values)
|
737
|
+
values &= categories
|
738
|
+
values.flat_map { |v| @cat_hash[v] }.sort
|
739
|
+
end
|
740
|
+
|
741
|
+
private
|
742
|
+
|
743
|
+
def validate_categories input_categories
|
744
|
+
raise ArgumentError, 'Input categories and speculated categories mismatch' unless
|
745
|
+
(categories - input_categories).empty?
|
746
|
+
end
|
747
|
+
|
748
|
+
def add_extra_categories extra_categories
|
749
|
+
extra_categories.each { |cat| @cat_hash[cat] = [] }
|
750
|
+
end
|
751
|
+
|
752
|
+
def initialize_core_attributes data
|
753
|
+
# Create a hash to map each category to positional indexes
|
754
|
+
categories = data.each_with_index.group_by(&:first)
|
755
|
+
@cat_hash = categories.map { |cat, group| [cat, group.map(&:last)] }.to_h
|
756
|
+
|
757
|
+
# Map each category to a unique integer for effective storage in @array
|
758
|
+
map_cat_int = categories.keys.each_with_index.to_h
|
759
|
+
|
760
|
+
# To link every instance to its category,
|
761
|
+
# it stores integer for every instance representing its category
|
762
|
+
@array = map_cat_int.values_at(*data)
|
763
|
+
|
764
|
+
# Include plotting functionality
|
765
|
+
self.plotting_library = Daru.plotting_library
|
766
|
+
end
|
767
|
+
|
768
|
+
def category_from_position position
|
769
|
+
cat_from_int @array[position]
|
770
|
+
end
|
771
|
+
|
772
|
+
def assert_ordered operation
|
773
|
+
# TODO: Change ArgumentError to something more expressive
|
774
|
+
raise ArgumentError, "Can not apply #{operation} when vector is unordered. "\
|
775
|
+
'To make the categorical data ordered, use #ordered = true'\
|
776
|
+
unless ordered?
|
777
|
+
end
|
778
|
+
|
779
|
+
def dummy_coding full
|
780
|
+
categories = @cat_hash.keys
|
781
|
+
categories.delete(base_category) unless full
|
782
|
+
|
783
|
+
df = categories.map do |category|
|
784
|
+
dummy_code @cat_hash[category]
|
785
|
+
end
|
786
|
+
|
787
|
+
Daru::DataFrame.new df,
|
788
|
+
index: @index,
|
789
|
+
order: create_names(categories)
|
790
|
+
end
|
791
|
+
|
792
|
+
def dummy_code positions
|
793
|
+
code = Array.new(size, 0)
|
794
|
+
positions.each { |pos| code[pos] = 1 }
|
795
|
+
code
|
796
|
+
end
|
797
|
+
|
798
|
+
def simple_coding full
|
799
|
+
categories = @cat_hash.keys
|
800
|
+
categories.delete(base_category) unless full
|
801
|
+
|
802
|
+
df = categories.map do |category|
|
803
|
+
simple_code @cat_hash[category]
|
804
|
+
end
|
805
|
+
|
806
|
+
Daru::DataFrame.new df,
|
807
|
+
index: @index,
|
808
|
+
order: create_names(categories)
|
809
|
+
end
|
810
|
+
|
811
|
+
def simple_code positions
|
812
|
+
n = @cat_hash.keys.size.to_f
|
813
|
+
code = Array.new(size, -1/n)
|
814
|
+
positions.each { |pos| code[pos] = (n-1)/n }
|
815
|
+
code
|
816
|
+
end
|
817
|
+
|
818
|
+
def helmert_coding(*)
|
819
|
+
categories = @cat_hash.keys[0..-2]
|
820
|
+
|
821
|
+
df = categories.each_index.map do |index|
|
822
|
+
helmert_code index
|
823
|
+
end
|
824
|
+
|
825
|
+
Daru::DataFrame.new df,
|
826
|
+
index: @index,
|
827
|
+
order: create_names(categories)
|
828
|
+
end
|
829
|
+
|
830
|
+
def helmert_code index
|
831
|
+
n = (categories.size - index).to_f
|
832
|
+
|
833
|
+
@array.map do |cat_index|
|
834
|
+
if cat_index == index
|
835
|
+
(n-1)/n
|
836
|
+
elsif cat_index > index
|
837
|
+
-1/n
|
838
|
+
else
|
839
|
+
0
|
840
|
+
end
|
841
|
+
end
|
842
|
+
end
|
843
|
+
|
844
|
+
def deviation_coding(*)
|
845
|
+
categories = @cat_hash.keys[0..-2]
|
846
|
+
|
847
|
+
df = categories.each_index.map do |index|
|
848
|
+
deviation_code index
|
849
|
+
end
|
850
|
+
|
851
|
+
Daru::DataFrame.new df,
|
852
|
+
index: @index,
|
853
|
+
order: create_names(categories)
|
854
|
+
end
|
855
|
+
|
856
|
+
def deviation_code index
|
857
|
+
last = categories.size - 1
|
858
|
+
@array.map do |cat_index|
|
859
|
+
case cat_index
|
860
|
+
when index then 1
|
861
|
+
when last then -1
|
862
|
+
else 0
|
863
|
+
end
|
864
|
+
end
|
865
|
+
end
|
866
|
+
|
867
|
+
def user_defined_coding df
|
868
|
+
Daru::DataFrame.rows (Array.new(size) { |pos| df.row[at(pos)].to_a }),
|
869
|
+
index: @index,
|
870
|
+
order: df.vectors.to_a
|
871
|
+
end
|
872
|
+
|
873
|
+
def create_names categories
|
874
|
+
categories.map do |cat|
|
875
|
+
name.is_a?(Symbol) ? "#{name}_#{cat}".to_sym : "#{name}_#{cat}"
|
876
|
+
end
|
877
|
+
end
|
878
|
+
|
879
|
+
def coerce_index index
|
880
|
+
index =
|
881
|
+
case index
|
882
|
+
when Daru::MultiIndex, Daru::CategoricalIndex, Daru::Index
|
883
|
+
index
|
884
|
+
when nil
|
885
|
+
Daru::Index.new size
|
886
|
+
when Range
|
887
|
+
Daru::Index.new index.to_a
|
888
|
+
when Array
|
889
|
+
Daru::Index.new index
|
890
|
+
else
|
891
|
+
raise ArgumentError, "Unregnized index type #{index.class}"
|
892
|
+
end
|
893
|
+
validate_index index
|
894
|
+
index
|
895
|
+
end
|
896
|
+
|
897
|
+
def validate_index index
|
898
|
+
# Change to SizeError
|
899
|
+
raise ArgumentError, "Size of index (#{index.size}) does not matches"\
|
900
|
+
"size of vector (#{size})" if size != index.size
|
901
|
+
end
|
902
|
+
|
903
|
+
def modify_category_at pos, category
|
904
|
+
raise ArgumentError, "Invalid category #{category}, "\
|
905
|
+
'to add a new category use #add_category' unless
|
906
|
+
categories.include? category
|
907
|
+
old_category = category_from_position pos
|
908
|
+
@array[pos] = int_from_cat category
|
909
|
+
@cat_hash[old_category].delete pos
|
910
|
+
@cat_hash[category] << pos
|
911
|
+
end
|
912
|
+
|
913
|
+
def order_with new
|
914
|
+
if new.to_set != categories.to_set
|
915
|
+
raise ArgumentError, 'The contents of new and old order must be the same.'
|
916
|
+
end
|
917
|
+
|
918
|
+
@cat_hash = new.map { |cat| [cat, @cat_hash[cat]] }.to_h
|
919
|
+
|
920
|
+
map_cat_int = @cat_hash.keys.each_with_index.to_a.to_h
|
921
|
+
@array = Array.new(size)
|
922
|
+
@cat_hash.map do |cat, positions|
|
923
|
+
positions.each { |pos| @array[pos] = map_cat_int[cat] }
|
924
|
+
end
|
925
|
+
end
|
926
|
+
|
927
|
+
def cat_from_int int
|
928
|
+
@cat_hash.keys[int]
|
929
|
+
end
|
930
|
+
|
931
|
+
def int_from_cat cat
|
932
|
+
@cat_hash.keys.index cat
|
933
|
+
end
|
934
|
+
end
|
935
|
+
end
|