alglib4 0.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/README.md +47 -0
- data/ext/alglib/alglib.cpp +537 -0
- data/ext/alglib/alglib_array_converters.cpp +86 -0
- data/ext/alglib/alglib_array_converters.h +15 -0
- data/ext/alglib/alglib_utils.cpp +10 -0
- data/ext/alglib/alglib_utils.h +6 -0
- data/ext/alglib/alglibinternal.cpp +21749 -0
- data/ext/alglib/alglibinternal.h +2168 -0
- data/ext/alglib/alglibmisc.cpp +9106 -0
- data/ext/alglib/alglibmisc.h +2114 -0
- data/ext/alglib/ap.cpp +20094 -0
- data/ext/alglib/ap.h +7244 -0
- data/ext/alglib/dataanalysis.cpp +52588 -0
- data/ext/alglib/dataanalysis.h +10601 -0
- data/ext/alglib/diffequations.cpp +1342 -0
- data/ext/alglib/diffequations.h +282 -0
- data/ext/alglib/extconf.rb +5 -0
- data/ext/alglib/fasttransforms.cpp +4696 -0
- data/ext/alglib/fasttransforms.h +1018 -0
- data/ext/alglib/integration.cpp +4249 -0
- data/ext/alglib/integration.h +869 -0
- data/ext/alglib/interpolation.cpp +74502 -0
- data/ext/alglib/interpolation.h +12264 -0
- data/ext/alglib/kernels_avx2.cpp +2171 -0
- data/ext/alglib/kernels_avx2.h +201 -0
- data/ext/alglib/kernels_fma.cpp +1065 -0
- data/ext/alglib/kernels_fma.h +137 -0
- data/ext/alglib/kernels_sse2.cpp +735 -0
- data/ext/alglib/kernels_sse2.h +100 -0
- data/ext/alglib/linalg.cpp +65182 -0
- data/ext/alglib/linalg.h +9927 -0
- data/ext/alglib/optimization.cpp +135331 -0
- data/ext/alglib/optimization.h +19235 -0
- data/ext/alglib/solvers.cpp +20488 -0
- data/ext/alglib/solvers.h +4781 -0
- data/ext/alglib/specialfunctions.cpp +10672 -0
- data/ext/alglib/specialfunctions.h +2305 -0
- data/ext/alglib/statistics.cpp +19791 -0
- data/ext/alglib/statistics.h +1359 -0
- data/ext/alglib/stdafx.h +2 -0
- data/gpl2.txt +339 -0
- data/gpl3.txt +674 -0
- data/lib/alglib/version.rb +3 -0
- data/lib/alglib.rb +4 -0
- metadata +101 -0
@@ -0,0 +1,1359 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
ALGLIB 4.04.0 (source code generated 2024-12-21)
|
3
|
+
Copyright (c) Sergey Bochkanov (ALGLIB project).
|
4
|
+
|
5
|
+
>>> SOURCE LICENSE >>>
|
6
|
+
This program is free software; you can redistribute it and/or modify
|
7
|
+
it under the terms of the GNU General Public License as published by
|
8
|
+
the Free Software Foundation (www.fsf.org); either version 2 of the
|
9
|
+
License, or (at your option) any later version.
|
10
|
+
|
11
|
+
This program is distributed in the hope that it will be useful,
|
12
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14
|
+
GNU General Public License for more details.
|
15
|
+
|
16
|
+
A copy of the GNU General Public License is available at
|
17
|
+
http://www.fsf.org/licensing/licenses
|
18
|
+
>>> END OF LICENSE >>>
|
19
|
+
*************************************************************************/
|
20
|
+
#ifndef _statistics_pkg_h
|
21
|
+
#define _statistics_pkg_h
|
22
|
+
#include "ap.h"
|
23
|
+
#include "alglibinternal.h"
|
24
|
+
#include "linalg.h"
|
25
|
+
#include "specialfunctions.h"
|
26
|
+
#include "alglibmisc.h"
|
27
|
+
|
28
|
+
/////////////////////////////////////////////////////////////////////////
|
29
|
+
//
|
30
|
+
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
|
31
|
+
//
|
32
|
+
/////////////////////////////////////////////////////////////////////////
|
33
|
+
namespace alglib_impl
|
34
|
+
{
|
35
|
+
#if defined(AE_COMPILE_BASESTAT) || !defined(AE_PARTIAL_BUILD)
|
36
|
+
#endif
|
37
|
+
#if defined(AE_COMPILE_CORRELATIONTESTS) || !defined(AE_PARTIAL_BUILD)
|
38
|
+
#endif
|
39
|
+
#if defined(AE_COMPILE_JARQUEBERA) || !defined(AE_PARTIAL_BUILD)
|
40
|
+
#endif
|
41
|
+
#if defined(AE_COMPILE_VARIANCETESTS) || !defined(AE_PARTIAL_BUILD)
|
42
|
+
#endif
|
43
|
+
#if defined(AE_COMPILE_WSR) || !defined(AE_PARTIAL_BUILD)
|
44
|
+
#endif
|
45
|
+
#if defined(AE_COMPILE_MANNWHITNEYU) || !defined(AE_PARTIAL_BUILD)
|
46
|
+
#endif
|
47
|
+
#if defined(AE_COMPILE_STEST) || !defined(AE_PARTIAL_BUILD)
|
48
|
+
#endif
|
49
|
+
#if defined(AE_COMPILE_STUDENTTTESTS) || !defined(AE_PARTIAL_BUILD)
|
50
|
+
#endif
|
51
|
+
|
52
|
+
}
|
53
|
+
|
54
|
+
/////////////////////////////////////////////////////////////////////////
|
55
|
+
//
|
56
|
+
// THIS SECTION CONTAINS C++ INTERFACE
|
57
|
+
//
|
58
|
+
/////////////////////////////////////////////////////////////////////////
|
59
|
+
namespace alglib
|
60
|
+
{
|
61
|
+
|
62
|
+
#if defined(AE_COMPILE_BASESTAT) || !defined(AE_PARTIAL_BUILD)
|
63
|
+
|
64
|
+
#endif
|
65
|
+
|
66
|
+
#if defined(AE_COMPILE_CORRELATIONTESTS) || !defined(AE_PARTIAL_BUILD)
|
67
|
+
|
68
|
+
#endif
|
69
|
+
|
70
|
+
#if defined(AE_COMPILE_JARQUEBERA) || !defined(AE_PARTIAL_BUILD)
|
71
|
+
|
72
|
+
#endif
|
73
|
+
|
74
|
+
#if defined(AE_COMPILE_VARIANCETESTS) || !defined(AE_PARTIAL_BUILD)
|
75
|
+
|
76
|
+
#endif
|
77
|
+
|
78
|
+
#if defined(AE_COMPILE_WSR) || !defined(AE_PARTIAL_BUILD)
|
79
|
+
|
80
|
+
#endif
|
81
|
+
|
82
|
+
#if defined(AE_COMPILE_MANNWHITNEYU) || !defined(AE_PARTIAL_BUILD)
|
83
|
+
|
84
|
+
#endif
|
85
|
+
|
86
|
+
#if defined(AE_COMPILE_STEST) || !defined(AE_PARTIAL_BUILD)
|
87
|
+
|
88
|
+
#endif
|
89
|
+
|
90
|
+
#if defined(AE_COMPILE_STUDENTTTESTS) || !defined(AE_PARTIAL_BUILD)
|
91
|
+
|
92
|
+
#endif
|
93
|
+
|
94
|
+
#if defined(AE_COMPILE_BASESTAT) || !defined(AE_PARTIAL_BUILD)
|
95
|
+
/*************************************************************************
|
96
|
+
Calculation of the distribution moments: mean, variance, skewness, kurtosis.
|
97
|
+
|
98
|
+
INPUT PARAMETERS:
|
99
|
+
X - sample
|
100
|
+
N - N>=0, sample size:
|
101
|
+
* if given, only leading N elements of X are processed
|
102
|
+
* if not given, automatically determined from size of X
|
103
|
+
|
104
|
+
OUTPUT PARAMETERS
|
105
|
+
Mean - mean.
|
106
|
+
Variance- variance.
|
107
|
+
Skewness- skewness (if variance<>0; zero otherwise).
|
108
|
+
Kurtosis- kurtosis (if variance<>0; zero otherwise).
|
109
|
+
|
110
|
+
NOTE: variance is calculated by dividing sum of squares by N-1, not N.
|
111
|
+
|
112
|
+
-- ALGLIB --
|
113
|
+
Copyright 06.09.2006 by Bochkanov Sergey
|
114
|
+
*************************************************************************/
|
115
|
+
void samplemoments(const real_1d_array &x, const ae_int_t n, double &mean, double &variance, double &skewness, double &kurtosis, const xparams _xparams = alglib::xdefault);
|
116
|
+
void samplemoments(const real_1d_array &x, double &mean, double &variance, double &skewness, double &kurtosis, const xparams _xparams = alglib::xdefault);
|
117
|
+
|
118
|
+
|
119
|
+
/*************************************************************************
|
120
|
+
Calculation of the mean.
|
121
|
+
|
122
|
+
INPUT PARAMETERS:
|
123
|
+
X - sample
|
124
|
+
N - N>=0, sample size:
|
125
|
+
* if given, only leading N elements of X are processed
|
126
|
+
* if not given, automatically determined from size of X
|
127
|
+
|
128
|
+
NOTE:
|
129
|
+
|
130
|
+
This function return result which calculated by 'SampleMoments' function
|
131
|
+
and stored at 'Mean' variable.
|
132
|
+
|
133
|
+
|
134
|
+
-- ALGLIB --
|
135
|
+
Copyright 06.09.2006 by Bochkanov Sergey
|
136
|
+
*************************************************************************/
|
137
|
+
double samplemean(const real_1d_array &x, const ae_int_t n, const xparams _xparams = alglib::xdefault);
|
138
|
+
double samplemean(const real_1d_array &x, const xparams _xparams = alglib::xdefault);
|
139
|
+
|
140
|
+
|
141
|
+
/*************************************************************************
|
142
|
+
Calculation of the variance.
|
143
|
+
|
144
|
+
INPUT PARAMETERS:
|
145
|
+
X - sample
|
146
|
+
N - N>=0, sample size:
|
147
|
+
* if given, only leading N elements of X are processed
|
148
|
+
* if not given, automatically determined from size of X
|
149
|
+
|
150
|
+
NOTE:
|
151
|
+
|
152
|
+
This function return result which calculated by 'SampleMoments' function
|
153
|
+
and stored at 'Variance' variable.
|
154
|
+
|
155
|
+
|
156
|
+
-- ALGLIB --
|
157
|
+
Copyright 06.09.2006 by Bochkanov Sergey
|
158
|
+
*************************************************************************/
|
159
|
+
double samplevariance(const real_1d_array &x, const ae_int_t n, const xparams _xparams = alglib::xdefault);
|
160
|
+
double samplevariance(const real_1d_array &x, const xparams _xparams = alglib::xdefault);
|
161
|
+
|
162
|
+
|
163
|
+
/*************************************************************************
|
164
|
+
Calculation of the skewness.
|
165
|
+
|
166
|
+
INPUT PARAMETERS:
|
167
|
+
X - sample
|
168
|
+
N - N>=0, sample size:
|
169
|
+
* if given, only leading N elements of X are processed
|
170
|
+
* if not given, automatically determined from size of X
|
171
|
+
|
172
|
+
NOTE:
|
173
|
+
|
174
|
+
This function return result which calculated by 'SampleMoments' function
|
175
|
+
and stored at 'Skewness' variable.
|
176
|
+
|
177
|
+
|
178
|
+
-- ALGLIB --
|
179
|
+
Copyright 06.09.2006 by Bochkanov Sergey
|
180
|
+
*************************************************************************/
|
181
|
+
double sampleskewness(const real_1d_array &x, const ae_int_t n, const xparams _xparams = alglib::xdefault);
|
182
|
+
double sampleskewness(const real_1d_array &x, const xparams _xparams = alglib::xdefault);
|
183
|
+
|
184
|
+
|
185
|
+
/*************************************************************************
|
186
|
+
Calculation of the kurtosis.
|
187
|
+
|
188
|
+
INPUT PARAMETERS:
|
189
|
+
X - sample
|
190
|
+
N - N>=0, sample size:
|
191
|
+
* if given, only leading N elements of X are processed
|
192
|
+
* if not given, automatically determined from size of X
|
193
|
+
|
194
|
+
NOTE:
|
195
|
+
|
196
|
+
This function return result which calculated by 'SampleMoments' function
|
197
|
+
and stored at 'Kurtosis' variable.
|
198
|
+
|
199
|
+
|
200
|
+
-- ALGLIB --
|
201
|
+
Copyright 06.09.2006 by Bochkanov Sergey
|
202
|
+
*************************************************************************/
|
203
|
+
double samplekurtosis(const real_1d_array &x, const ae_int_t n, const xparams _xparams = alglib::xdefault);
|
204
|
+
double samplekurtosis(const real_1d_array &x, const xparams _xparams = alglib::xdefault);
|
205
|
+
|
206
|
+
|
207
|
+
/*************************************************************************
|
208
|
+
ADev
|
209
|
+
|
210
|
+
Input parameters:
|
211
|
+
X - sample
|
212
|
+
N - N>=0, sample size:
|
213
|
+
* if given, only leading N elements of X are processed
|
214
|
+
* if not given, automatically determined from size of X
|
215
|
+
|
216
|
+
Output parameters:
|
217
|
+
ADev- ADev
|
218
|
+
|
219
|
+
-- ALGLIB --
|
220
|
+
Copyright 06.09.2006 by Bochkanov Sergey
|
221
|
+
*************************************************************************/
|
222
|
+
void sampleadev(const real_1d_array &x, const ae_int_t n, double &adev, const xparams _xparams = alglib::xdefault);
|
223
|
+
void sampleadev(const real_1d_array &x, double &adev, const xparams _xparams = alglib::xdefault);
|
224
|
+
|
225
|
+
|
226
|
+
/*************************************************************************
|
227
|
+
Median calculation.
|
228
|
+
|
229
|
+
Input parameters:
|
230
|
+
X - sample (array indexes: [0..N-1])
|
231
|
+
N - N>=0, sample size:
|
232
|
+
* if given, only leading N elements of X are processed
|
233
|
+
* if not given, automatically determined from size of X
|
234
|
+
|
235
|
+
Output parameters:
|
236
|
+
Median
|
237
|
+
|
238
|
+
-- ALGLIB --
|
239
|
+
Copyright 06.09.2006 by Bochkanov Sergey
|
240
|
+
*************************************************************************/
|
241
|
+
void samplemedian(const real_1d_array &x, const ae_int_t n, double &median, const xparams _xparams = alglib::xdefault);
|
242
|
+
void samplemedian(const real_1d_array &x, double &median, const xparams _xparams = alglib::xdefault);
|
243
|
+
|
244
|
+
|
245
|
+
/*************************************************************************
|
246
|
+
Percentile calculation.
|
247
|
+
|
248
|
+
Input parameters:
|
249
|
+
X - sample (array indexes: [0..N-1])
|
250
|
+
N - N>=0, sample size:
|
251
|
+
* if given, only leading N elements of X are processed
|
252
|
+
* if not given, automatically determined from size of X
|
253
|
+
P - percentile (0<=P<=1)
|
254
|
+
|
255
|
+
Output parameters:
|
256
|
+
V - percentile
|
257
|
+
|
258
|
+
-- ALGLIB --
|
259
|
+
Copyright 01.03.2008 by Bochkanov Sergey
|
260
|
+
*************************************************************************/
|
261
|
+
void samplepercentile(const real_1d_array &x, const ae_int_t n, const double p, double &v, const xparams _xparams = alglib::xdefault);
|
262
|
+
void samplepercentile(const real_1d_array &x, const double p, double &v, const xparams _xparams = alglib::xdefault);
|
263
|
+
|
264
|
+
|
265
|
+
/*************************************************************************
|
266
|
+
2-sample covariance
|
267
|
+
|
268
|
+
Input parameters:
|
269
|
+
X - sample 1 (array indexes: [0..N-1])
|
270
|
+
Y - sample 2 (array indexes: [0..N-1])
|
271
|
+
N - N>=0, sample size:
|
272
|
+
* if given, only N leading elements of X/Y are processed
|
273
|
+
* if not given, automatically determined from input sizes
|
274
|
+
|
275
|
+
Result:
|
276
|
+
covariance (zero for N=0 or N=1)
|
277
|
+
|
278
|
+
-- ALGLIB --
|
279
|
+
Copyright 28.10.2010 by Bochkanov Sergey
|
280
|
+
*************************************************************************/
|
281
|
+
double cov2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const xparams _xparams = alglib::xdefault);
|
282
|
+
double cov2(const real_1d_array &x, const real_1d_array &y, const xparams _xparams = alglib::xdefault);
|
283
|
+
|
284
|
+
|
285
|
+
/*************************************************************************
|
286
|
+
Pearson product-moment correlation coefficient
|
287
|
+
|
288
|
+
Input parameters:
|
289
|
+
X - sample 1 (array indexes: [0..N-1])
|
290
|
+
Y - sample 2 (array indexes: [0..N-1])
|
291
|
+
N - N>=0, sample size:
|
292
|
+
* if given, only N leading elements of X/Y are processed
|
293
|
+
* if not given, automatically determined from input sizes
|
294
|
+
|
295
|
+
Result:
|
296
|
+
Pearson product-moment correlation coefficient
|
297
|
+
(zero for N=0 or N=1)
|
298
|
+
|
299
|
+
-- ALGLIB --
|
300
|
+
Copyright 28.10.2010 by Bochkanov Sergey
|
301
|
+
*************************************************************************/
|
302
|
+
double pearsoncorr2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const xparams _xparams = alglib::xdefault);
|
303
|
+
double pearsoncorr2(const real_1d_array &x, const real_1d_array &y, const xparams _xparams = alglib::xdefault);
|
304
|
+
|
305
|
+
|
306
|
+
/*************************************************************************
|
307
|
+
Spearman's rank correlation coefficient
|
308
|
+
|
309
|
+
Input parameters:
|
310
|
+
X - sample 1 (array indexes: [0..N-1])
|
311
|
+
Y - sample 2 (array indexes: [0..N-1])
|
312
|
+
N - N>=0, sample size:
|
313
|
+
* if given, only N leading elements of X/Y are processed
|
314
|
+
* if not given, automatically determined from input sizes
|
315
|
+
|
316
|
+
Result:
|
317
|
+
Spearman's rank correlation coefficient
|
318
|
+
(zero for N=0 or N=1)
|
319
|
+
|
320
|
+
-- ALGLIB --
|
321
|
+
Copyright 09.04.2007 by Bochkanov Sergey
|
322
|
+
*************************************************************************/
|
323
|
+
double spearmancorr2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const xparams _xparams = alglib::xdefault);
|
324
|
+
double spearmancorr2(const real_1d_array &x, const real_1d_array &y, const xparams _xparams = alglib::xdefault);
|
325
|
+
|
326
|
+
|
327
|
+
/*************************************************************************
|
328
|
+
Covariance matrix
|
329
|
+
|
330
|
+
! COMMERCIAL EDITION OF ALGLIB:
|
331
|
+
!
|
332
|
+
! Commercial Edition of ALGLIB includes following important improvements
|
333
|
+
! of this function:
|
334
|
+
! * high-performance native backend with same C# interface (C# version)
|
335
|
+
! * multithreading support (C++ and C# versions)
|
336
|
+
! * hardware vendor (Intel) implementations of linear algebra primitives
|
337
|
+
! (C++ and C# versions, x86/x64 platform)
|
338
|
+
!
|
339
|
+
! We recommend you to read 'Working with commercial version' section of
|
340
|
+
! ALGLIB Reference Manual in order to find out how to use performance-
|
341
|
+
! related features provided by commercial edition of ALGLIB.
|
342
|
+
|
343
|
+
INPUT PARAMETERS:
|
344
|
+
X - array[N,M], sample matrix:
|
345
|
+
* J-th column corresponds to J-th variable
|
346
|
+
* I-th row corresponds to I-th observation
|
347
|
+
N - N>=0, number of observations:
|
348
|
+
* if given, only leading N rows of X are used
|
349
|
+
* if not given, automatically determined from input size
|
350
|
+
M - M>0, number of variables:
|
351
|
+
* if given, only leading M columns of X are used
|
352
|
+
* if not given, automatically determined from input size
|
353
|
+
|
354
|
+
OUTPUT PARAMETERS:
|
355
|
+
C - array[M,M], covariance matrix (zero if N=0 or N=1)
|
356
|
+
|
357
|
+
-- ALGLIB --
|
358
|
+
Copyright 28.10.2010 by Bochkanov Sergey
|
359
|
+
*************************************************************************/
|
360
|
+
void covm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
361
|
+
void covm(const real_2d_array &x, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
362
|
+
|
363
|
+
|
364
|
+
/*************************************************************************
|
365
|
+
Pearson product-moment correlation matrix
|
366
|
+
|
367
|
+
! COMMERCIAL EDITION OF ALGLIB:
|
368
|
+
!
|
369
|
+
! Commercial Edition of ALGLIB includes following important improvements
|
370
|
+
! of this function:
|
371
|
+
! * high-performance native backend with same C# interface (C# version)
|
372
|
+
! * multithreading support (C++ and C# versions)
|
373
|
+
! * hardware vendor (Intel) implementations of linear algebra primitives
|
374
|
+
! (C++ and C# versions, x86/x64 platform)
|
375
|
+
!
|
376
|
+
! We recommend you to read 'Working with commercial version' section of
|
377
|
+
! ALGLIB Reference Manual in order to find out how to use performance-
|
378
|
+
! related features provided by commercial edition of ALGLIB.
|
379
|
+
|
380
|
+
INPUT PARAMETERS:
|
381
|
+
X - array[N,M], sample matrix:
|
382
|
+
* J-th column corresponds to J-th variable
|
383
|
+
* I-th row corresponds to I-th observation
|
384
|
+
N - N>=0, number of observations:
|
385
|
+
* if given, only leading N rows of X are used
|
386
|
+
* if not given, automatically determined from input size
|
387
|
+
M - M>0, number of variables:
|
388
|
+
* if given, only leading M columns of X are used
|
389
|
+
* if not given, automatically determined from input size
|
390
|
+
|
391
|
+
OUTPUT PARAMETERS:
|
392
|
+
C - array[M,M], correlation matrix (zero if N=0 or N=1)
|
393
|
+
|
394
|
+
-- ALGLIB --
|
395
|
+
Copyright 28.10.2010 by Bochkanov Sergey
|
396
|
+
*************************************************************************/
|
397
|
+
void pearsoncorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
398
|
+
void pearsoncorrm(const real_2d_array &x, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
399
|
+
|
400
|
+
|
401
|
+
/*************************************************************************
|
402
|
+
Spearman's rank correlation matrix
|
403
|
+
|
404
|
+
! COMMERCIAL EDITION OF ALGLIB:
|
405
|
+
!
|
406
|
+
! Commercial Edition of ALGLIB includes following important improvements
|
407
|
+
! of this function:
|
408
|
+
! * high-performance native backend with same C# interface (C# version)
|
409
|
+
! * multithreading support (C++ and C# versions)
|
410
|
+
! * hardware vendor (Intel) implementations of linear algebra primitives
|
411
|
+
! (C++ and C# versions, x86/x64 platform)
|
412
|
+
!
|
413
|
+
! We recommend you to read 'Working with commercial version' section of
|
414
|
+
! ALGLIB Reference Manual in order to find out how to use performance-
|
415
|
+
! related features provided by commercial edition of ALGLIB.
|
416
|
+
|
417
|
+
INPUT PARAMETERS:
|
418
|
+
X - array[N,M], sample matrix:
|
419
|
+
* J-th column corresponds to J-th variable
|
420
|
+
* I-th row corresponds to I-th observation
|
421
|
+
N - N>=0, number of observations:
|
422
|
+
* if given, only leading N rows of X are used
|
423
|
+
* if not given, automatically determined from input size
|
424
|
+
M - M>0, number of variables:
|
425
|
+
* if given, only leading M columns of X are used
|
426
|
+
* if not given, automatically determined from input size
|
427
|
+
|
428
|
+
OUTPUT PARAMETERS:
|
429
|
+
C - array[M,M], correlation matrix (zero if N=0 or N=1)
|
430
|
+
|
431
|
+
-- ALGLIB --
|
432
|
+
Copyright 28.10.2010 by Bochkanov Sergey
|
433
|
+
*************************************************************************/
|
434
|
+
void spearmancorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
435
|
+
void spearmancorrm(const real_2d_array &x, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
436
|
+
|
437
|
+
|
438
|
+
/*************************************************************************
|
439
|
+
Cross-covariance matrix
|
440
|
+
|
441
|
+
! COMMERCIAL EDITION OF ALGLIB:
|
442
|
+
!
|
443
|
+
! Commercial Edition of ALGLIB includes following important improvements
|
444
|
+
! of this function:
|
445
|
+
! * high-performance native backend with same C# interface (C# version)
|
446
|
+
! * multithreading support (C++ and C# versions)
|
447
|
+
! * hardware vendor (Intel) implementations of linear algebra primitives
|
448
|
+
! (C++ and C# versions, x86/x64 platform)
|
449
|
+
!
|
450
|
+
! We recommend you to read 'Working with commercial version' section of
|
451
|
+
! ALGLIB Reference Manual in order to find out how to use performance-
|
452
|
+
! related features provided by commercial edition of ALGLIB.
|
453
|
+
|
454
|
+
INPUT PARAMETERS:
|
455
|
+
X - array[N,M1], sample matrix:
|
456
|
+
* J-th column corresponds to J-th variable
|
457
|
+
* I-th row corresponds to I-th observation
|
458
|
+
Y - array[N,M2], sample matrix:
|
459
|
+
* J-th column corresponds to J-th variable
|
460
|
+
* I-th row corresponds to I-th observation
|
461
|
+
N - N>=0, number of observations:
|
462
|
+
* if given, only leading N rows of X/Y are used
|
463
|
+
* if not given, automatically determined from input sizes
|
464
|
+
M1 - M1>0, number of variables in X:
|
465
|
+
* if given, only leading M1 columns of X are used
|
466
|
+
* if not given, automatically determined from input size
|
467
|
+
M2 - M2>0, number of variables in Y:
|
468
|
+
* if given, only leading M1 columns of X are used
|
469
|
+
* if not given, automatically determined from input size
|
470
|
+
|
471
|
+
OUTPUT PARAMETERS:
|
472
|
+
C - array[M1,M2], cross-covariance matrix (zero if N=0 or N=1)
|
473
|
+
|
474
|
+
-- ALGLIB --
|
475
|
+
Copyright 28.10.2010 by Bochkanov Sergey
|
476
|
+
*************************************************************************/
|
477
|
+
void covm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
478
|
+
void covm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
479
|
+
|
480
|
+
|
481
|
+
/*************************************************************************
|
482
|
+
Pearson product-moment cross-correlation matrix
|
483
|
+
|
484
|
+
! COMMERCIAL EDITION OF ALGLIB:
|
485
|
+
!
|
486
|
+
! Commercial Edition of ALGLIB includes following important improvements
|
487
|
+
! of this function:
|
488
|
+
! * high-performance native backend with same C# interface (C# version)
|
489
|
+
! * multithreading support (C++ and C# versions)
|
490
|
+
! * hardware vendor (Intel) implementations of linear algebra primitives
|
491
|
+
! (C++ and C# versions, x86/x64 platform)
|
492
|
+
!
|
493
|
+
! We recommend you to read 'Working with commercial version' section of
|
494
|
+
! ALGLIB Reference Manual in order to find out how to use performance-
|
495
|
+
! related features provided by commercial edition of ALGLIB.
|
496
|
+
|
497
|
+
INPUT PARAMETERS:
|
498
|
+
X - array[N,M1], sample matrix:
|
499
|
+
* J-th column corresponds to J-th variable
|
500
|
+
* I-th row corresponds to I-th observation
|
501
|
+
Y - array[N,M2], sample matrix:
|
502
|
+
* J-th column corresponds to J-th variable
|
503
|
+
* I-th row corresponds to I-th observation
|
504
|
+
N - N>=0, number of observations:
|
505
|
+
* if given, only leading N rows of X/Y are used
|
506
|
+
* if not given, automatically determined from input sizes
|
507
|
+
M1 - M1>0, number of variables in X:
|
508
|
+
* if given, only leading M1 columns of X are used
|
509
|
+
* if not given, automatically determined from input size
|
510
|
+
M2 - M2>0, number of variables in Y:
|
511
|
+
* if given, only leading M1 columns of X are used
|
512
|
+
* if not given, automatically determined from input size
|
513
|
+
|
514
|
+
OUTPUT PARAMETERS:
|
515
|
+
C - array[M1,M2], cross-correlation matrix (zero if N=0 or N=1)
|
516
|
+
|
517
|
+
-- ALGLIB --
|
518
|
+
Copyright 28.10.2010 by Bochkanov Sergey
|
519
|
+
*************************************************************************/
|
520
|
+
void pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
521
|
+
void pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
522
|
+
|
523
|
+
|
524
|
+
/*************************************************************************
|
525
|
+
Spearman's rank cross-correlation matrix
|
526
|
+
|
527
|
+
! COMMERCIAL EDITION OF ALGLIB:
|
528
|
+
!
|
529
|
+
! Commercial Edition of ALGLIB includes following important improvements
|
530
|
+
! of this function:
|
531
|
+
! * high-performance native backend with same C# interface (C# version)
|
532
|
+
! * multithreading support (C++ and C# versions)
|
533
|
+
! * hardware vendor (Intel) implementations of linear algebra primitives
|
534
|
+
! (C++ and C# versions, x86/x64 platform)
|
535
|
+
!
|
536
|
+
! We recommend you to read 'Working with commercial version' section of
|
537
|
+
! ALGLIB Reference Manual in order to find out how to use performance-
|
538
|
+
! related features provided by commercial edition of ALGLIB.
|
539
|
+
|
540
|
+
INPUT PARAMETERS:
|
541
|
+
X - array[N,M1], sample matrix:
|
542
|
+
* J-th column corresponds to J-th variable
|
543
|
+
* I-th row corresponds to I-th observation
|
544
|
+
Y - array[N,M2], sample matrix:
|
545
|
+
* J-th column corresponds to J-th variable
|
546
|
+
* I-th row corresponds to I-th observation
|
547
|
+
N - N>=0, number of observations:
|
548
|
+
* if given, only leading N rows of X/Y are used
|
549
|
+
* if not given, automatically determined from input sizes
|
550
|
+
M1 - M1>0, number of variables in X:
|
551
|
+
* if given, only leading M1 columns of X are used
|
552
|
+
* if not given, automatically determined from input size
|
553
|
+
M2 - M2>0, number of variables in Y:
|
554
|
+
* if given, only leading M1 columns of X are used
|
555
|
+
* if not given, automatically determined from input size
|
556
|
+
|
557
|
+
OUTPUT PARAMETERS:
|
558
|
+
C - array[M1,M2], cross-correlation matrix (zero if N=0 or N=1)
|
559
|
+
|
560
|
+
-- ALGLIB --
|
561
|
+
Copyright 28.10.2010 by Bochkanov Sergey
|
562
|
+
*************************************************************************/
|
563
|
+
void spearmancorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
564
|
+
void spearmancorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c, const xparams _xparams = alglib::xdefault);
|
565
|
+
|
566
|
+
|
567
|
+
/*************************************************************************
|
568
|
+
This function replaces data in XY by their ranks:
|
569
|
+
* XY is processed row-by-row
|
570
|
+
* rows are processed separately
|
571
|
+
* tied data are correctly handled (tied ranks are calculated)
|
572
|
+
* ranking starts from 0, ends at NFeatures-1
|
573
|
+
* sum of within-row values is equal to (NFeatures-1)*NFeatures/2
|
574
|
+
|
575
|
+
! COMMERCIAL EDITION OF ALGLIB:
|
576
|
+
!
|
577
|
+
! Commercial Edition of ALGLIB includes following important improvements
|
578
|
+
! of this function:
|
579
|
+
! * high-performance native backend with same C# interface (C# version)
|
580
|
+
! * multithreading support (C++ and C# versions)
|
581
|
+
!
|
582
|
+
! We recommend you to read 'Working with commercial version' section of
|
583
|
+
! ALGLIB Reference Manual in order to find out how to use performance-
|
584
|
+
! related features provided by commercial edition of ALGLIB.
|
585
|
+
|
586
|
+
INPUT PARAMETERS:
|
587
|
+
XY - array[NPoints,NFeatures], dataset
|
588
|
+
NPoints - number of points
|
589
|
+
NFeatures- number of features
|
590
|
+
|
591
|
+
OUTPUT PARAMETERS:
|
592
|
+
XY - data are replaced by their within-row ranks;
|
593
|
+
ranking starts from 0, ends at NFeatures-1
|
594
|
+
|
595
|
+
-- ALGLIB --
|
596
|
+
Copyright 18.04.2013 by Bochkanov Sergey
|
597
|
+
*************************************************************************/
|
598
|
+
void rankdata(real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const xparams _xparams = alglib::xdefault);
|
599
|
+
void rankdata(real_2d_array &xy, const xparams _xparams = alglib::xdefault);
|
600
|
+
|
601
|
+
|
602
|
+
/*************************************************************************
|
603
|
+
This function replaces data in XY by their CENTERED ranks:
|
604
|
+
* XY is processed row-by-row
|
605
|
+
* rows are processed separately
|
606
|
+
* tied data are correctly handled (tied ranks are calculated)
|
607
|
+
* centered ranks are just usual ranks, but centered in such way that sum
|
608
|
+
of within-row values is equal to 0.0.
|
609
|
+
* centering is performed by subtracting mean from each row, i.e it changes
|
610
|
+
mean value, but does NOT change higher moments
|
611
|
+
|
612
|
+
! COMMERCIAL EDITION OF ALGLIB:
|
613
|
+
!
|
614
|
+
! Commercial Edition of ALGLIB includes following important improvements
|
615
|
+
! of this function:
|
616
|
+
! * high-performance native backend with same C# interface (C# version)
|
617
|
+
! * multithreading support (C++ and C# versions)
|
618
|
+
!
|
619
|
+
! We recommend you to read 'Working with commercial version' section of
|
620
|
+
! ALGLIB Reference Manual in order to find out how to use performance-
|
621
|
+
! related features provided by commercial edition of ALGLIB.
|
622
|
+
|
623
|
+
INPUT PARAMETERS:
|
624
|
+
XY - array[NPoints,NFeatures], dataset
|
625
|
+
NPoints - number of points
|
626
|
+
NFeatures- number of features
|
627
|
+
|
628
|
+
OUTPUT PARAMETERS:
|
629
|
+
XY - data are replaced by their within-row ranks;
|
630
|
+
ranking starts from 0, ends at NFeatures-1
|
631
|
+
|
632
|
+
-- ALGLIB --
|
633
|
+
Copyright 18.04.2013 by Bochkanov Sergey
|
634
|
+
*************************************************************************/
|
635
|
+
void rankdatacentered(real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const xparams _xparams = alglib::xdefault);
|
636
|
+
void rankdatacentered(real_2d_array &xy, const xparams _xparams = alglib::xdefault);
|
637
|
+
|
638
|
+
|
639
|
+
/*************************************************************************
|
640
|
+
Obsolete function, we recommend to use PearsonCorr2().
|
641
|
+
|
642
|
+
-- ALGLIB --
|
643
|
+
Copyright 09.04.2007 by Bochkanov Sergey
|
644
|
+
*************************************************************************/
|
645
|
+
double pearsoncorrelation(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const xparams _xparams = alglib::xdefault);
|
646
|
+
|
647
|
+
|
648
|
+
/*************************************************************************
|
649
|
+
Obsolete function, we recommend to use SpearmanCorr2().
|
650
|
+
|
651
|
+
-- ALGLIB --
|
652
|
+
Copyright 09.04.2007 by Bochkanov Sergey
|
653
|
+
*************************************************************************/
|
654
|
+
double spearmanrankcorrelation(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const xparams _xparams = alglib::xdefault);
|
655
|
+
#endif
|
656
|
+
|
657
|
+
#if defined(AE_COMPILE_CORRELATIONTESTS) || !defined(AE_PARTIAL_BUILD)
|
658
|
+
/*************************************************************************
|
659
|
+
Pearson's correlation coefficient significance test
|
660
|
+
|
661
|
+
This test checks hypotheses about whether X and Y are samples of two
|
662
|
+
continuous distributions having zero correlation or whether their
|
663
|
+
correlation is non-zero.
|
664
|
+
|
665
|
+
The following tests are performed:
|
666
|
+
* two-tailed test (null hypothesis - X and Y have zero correlation)
|
667
|
+
* left-tailed test (null hypothesis - the correlation coefficient is
|
668
|
+
greater than or equal to 0)
|
669
|
+
* right-tailed test (null hypothesis - the correlation coefficient is
|
670
|
+
less than or equal to 0).
|
671
|
+
|
672
|
+
Requirements:
|
673
|
+
* the number of elements in each sample is not less than 5
|
674
|
+
* normality of distributions of X and Y.
|
675
|
+
|
676
|
+
Input parameters:
|
677
|
+
R - Pearson's correlation coefficient for X and Y
|
678
|
+
N - number of elements in samples, N>=5.
|
679
|
+
|
680
|
+
Output parameters:
|
681
|
+
BothTails - p-value for two-tailed test.
|
682
|
+
If BothTails is less than the given significance level
|
683
|
+
the null hypothesis is rejected.
|
684
|
+
LeftTail - p-value for left-tailed test.
|
685
|
+
If LeftTail is less than the given significance level,
|
686
|
+
the null hypothesis is rejected.
|
687
|
+
RightTail - p-value for right-tailed test.
|
688
|
+
If RightTail is less than the given significance level
|
689
|
+
the null hypothesis is rejected.
|
690
|
+
|
691
|
+
-- ALGLIB --
|
692
|
+
Copyright 09.04.2007 by Bochkanov Sergey
|
693
|
+
*************************************************************************/
|
694
|
+
void pearsoncorrelationsignificance(const double r, const ae_int_t n, double &bothtails, double &lefttail, double &righttail, const xparams _xparams = alglib::xdefault);
|
695
|
+
|
696
|
+
|
697
|
+
/*************************************************************************
|
698
|
+
Spearman's rank correlation coefficient significance test
|
699
|
+
|
700
|
+
This test checks hypotheses about whether X and Y are samples of two
|
701
|
+
continuous distributions having zero correlation or whether their
|
702
|
+
correlation is non-zero.
|
703
|
+
|
704
|
+
The following tests are performed:
|
705
|
+
* two-tailed test (null hypothesis - X and Y have zero correlation)
|
706
|
+
* left-tailed test (null hypothesis - the correlation coefficient is
|
707
|
+
greater than or equal to 0)
|
708
|
+
* right-tailed test (null hypothesis - the correlation coefficient is
|
709
|
+
less than or equal to 0).
|
710
|
+
|
711
|
+
Requirements:
|
712
|
+
* the number of elements in each sample is not less than 5.
|
713
|
+
|
714
|
+
The test is non-parametric and doesn't require distributions X and Y to be
|
715
|
+
normal.
|
716
|
+
|
717
|
+
Input parameters:
|
718
|
+
R - Spearman's rank correlation coefficient for X and Y
|
719
|
+
N - number of elements in samples, N>=5.
|
720
|
+
|
721
|
+
Output parameters:
|
722
|
+
BothTails - p-value for two-tailed test.
|
723
|
+
If BothTails is less than the given significance level
|
724
|
+
the null hypothesis is rejected.
|
725
|
+
LeftTail - p-value for left-tailed test.
|
726
|
+
If LeftTail is less than the given significance level,
|
727
|
+
the null hypothesis is rejected.
|
728
|
+
RightTail - p-value for right-tailed test.
|
729
|
+
If RightTail is less than the given significance level
|
730
|
+
the null hypothesis is rejected.
|
731
|
+
|
732
|
+
-- ALGLIB --
|
733
|
+
Copyright 09.04.2007 by Bochkanov Sergey
|
734
|
+
*************************************************************************/
|
735
|
+
void spearmanrankcorrelationsignificance(const double r, const ae_int_t n, double &bothtails, double &lefttail, double &righttail, const xparams _xparams = alglib::xdefault);
|
736
|
+
#endif
|
737
|
+
|
738
|
+
#if defined(AE_COMPILE_JARQUEBERA) || !defined(AE_PARTIAL_BUILD)
|
739
|
+
/*************************************************************************
|
740
|
+
Jarque-Bera test
|
741
|
+
|
742
|
+
This test checks hypotheses about the fact that a given sample X is a
|
743
|
+
sample of normal random variable.
|
744
|
+
|
745
|
+
Requirements:
|
746
|
+
* the number of elements in the sample is not less than 5.
|
747
|
+
|
748
|
+
Input parameters:
|
749
|
+
X - sample. Array whose index goes from 0 to N-1.
|
750
|
+
N - size of the sample. N>=5
|
751
|
+
|
752
|
+
Output parameters:
|
753
|
+
P - p-value for the test
|
754
|
+
|
755
|
+
Accuracy of the approximation used (5<=N<=1951):
|
756
|
+
|
757
|
+
p-value relative error (5<=N<=1951)
|
758
|
+
[1, 0.1] < 1%
|
759
|
+
[0.1, 0.01] < 2%
|
760
|
+
[0.01, 0.001] < 6%
|
761
|
+
[0.001, 0] wasn't measured
|
762
|
+
|
763
|
+
For N>1951 accuracy wasn't measured but it shouldn't be sharply different
|
764
|
+
from table values.
|
765
|
+
|
766
|
+
-- ALGLIB --
|
767
|
+
Copyright 09.04.2007 by Bochkanov Sergey
|
768
|
+
*************************************************************************/
|
769
|
+
void jarqueberatest(const real_1d_array &x, const ae_int_t n, double &p, const xparams _xparams = alglib::xdefault);
|
770
|
+
#endif
|
771
|
+
|
772
|
+
#if defined(AE_COMPILE_VARIANCETESTS) || !defined(AE_PARTIAL_BUILD)
|
773
|
+
/*************************************************************************
|
774
|
+
Two-sample F-test
|
775
|
+
|
776
|
+
This test checks three hypotheses about dispersions of the given samples.
|
777
|
+
The following tests are performed:
|
778
|
+
* two-tailed test (null hypothesis - the dispersions are equal)
|
779
|
+
* left-tailed test (null hypothesis - the dispersion of the first
|
780
|
+
sample is greater than or equal to the dispersion of the second
|
781
|
+
sample).
|
782
|
+
* right-tailed test (null hypothesis - the dispersion of the first
|
783
|
+
sample is less than or equal to the dispersion of the second sample)
|
784
|
+
|
785
|
+
The test is based on the following assumptions:
|
786
|
+
* the given samples have normal distributions
|
787
|
+
* the samples are independent.
|
788
|
+
|
789
|
+
Input parameters:
|
790
|
+
X - sample 1. Array whose index goes from 0 to N-1.
|
791
|
+
N - sample size.
|
792
|
+
Y - sample 2. Array whose index goes from 0 to M-1.
|
793
|
+
M - sample size.
|
794
|
+
|
795
|
+
Output parameters:
|
796
|
+
BothTails - p-value for two-tailed test.
|
797
|
+
If BothTails is less than the given significance level
|
798
|
+
the null hypothesis is rejected.
|
799
|
+
LeftTail - p-value for left-tailed test.
|
800
|
+
If LeftTail is less than the given significance level,
|
801
|
+
the null hypothesis is rejected.
|
802
|
+
RightTail - p-value for right-tailed test.
|
803
|
+
If RightTail is less than the given significance level
|
804
|
+
the null hypothesis is rejected.
|
805
|
+
|
806
|
+
-- ALGLIB --
|
807
|
+
Copyright 19.09.2006 by Bochkanov Sergey
|
808
|
+
*************************************************************************/
|
809
|
+
void ftest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail, const xparams _xparams = alglib::xdefault);
|
810
|
+
|
811
|
+
|
812
|
+
/*************************************************************************
|
813
|
+
One-sample chi-square test
|
814
|
+
|
815
|
+
This test checks three hypotheses about the dispersion of the given sample
|
816
|
+
The following tests are performed:
|
817
|
+
* two-tailed test (null hypothesis - the dispersion equals the given
|
818
|
+
number)
|
819
|
+
* left-tailed test (null hypothesis - the dispersion is greater than
|
820
|
+
or equal to the given number)
|
821
|
+
* right-tailed test (null hypothesis - dispersion is less than or
|
822
|
+
equal to the given number).
|
823
|
+
|
824
|
+
Test is based on the following assumptions:
|
825
|
+
* the given sample has a normal distribution.
|
826
|
+
|
827
|
+
Input parameters:
|
828
|
+
X - sample 1. Array whose index goes from 0 to N-1.
|
829
|
+
N - size of the sample.
|
830
|
+
Variance - dispersion value to compare with.
|
831
|
+
|
832
|
+
Output parameters:
|
833
|
+
BothTails - p-value for two-tailed test.
|
834
|
+
If BothTails is less than the given significance level
|
835
|
+
the null hypothesis is rejected.
|
836
|
+
LeftTail - p-value for left-tailed test.
|
837
|
+
If LeftTail is less than the given significance level,
|
838
|
+
the null hypothesis is rejected.
|
839
|
+
RightTail - p-value for right-tailed test.
|
840
|
+
If RightTail is less than the given significance level
|
841
|
+
the null hypothesis is rejected.
|
842
|
+
|
843
|
+
-- ALGLIB --
|
844
|
+
Copyright 19.09.2006 by Bochkanov Sergey
|
845
|
+
*************************************************************************/
|
846
|
+
void onesamplevariancetest(const real_1d_array &x, const ae_int_t n, const double variance, double &bothtails, double &lefttail, double &righttail, const xparams _xparams = alglib::xdefault);
|
847
|
+
#endif
|
848
|
+
|
849
|
+
#if defined(AE_COMPILE_WSR) || !defined(AE_PARTIAL_BUILD)
|
850
|
+
/*************************************************************************
|
851
|
+
Wilcoxon signed-rank test
|
852
|
+
|
853
|
+
This test checks three hypotheses about the median of the given sample.
|
854
|
+
The following tests are performed:
|
855
|
+
* two-tailed test (null hypothesis - the median is equal to the given
|
856
|
+
value)
|
857
|
+
* left-tailed test (null hypothesis - the median is greater than or
|
858
|
+
equal to the given value)
|
859
|
+
* right-tailed test (null hypothesis - the median is less than or
|
860
|
+
equal to the given value)
|
861
|
+
|
862
|
+
Requirements:
|
863
|
+
* the scale of measurement should be ordinal, interval or ratio (i.e.
|
864
|
+
the test could not be applied to nominal variables).
|
865
|
+
* the distribution should be continuous and symmetric relative to its
|
866
|
+
median.
|
867
|
+
* number of distinct values in the X array should be greater than 4
|
868
|
+
|
869
|
+
The test is non-parametric and doesn't require distribution X to be normal
|
870
|
+
|
871
|
+
Input parameters:
|
872
|
+
X - sample. Array whose index goes from 0 to N-1.
|
873
|
+
N - size of the sample.
|
874
|
+
Median - assumed median value.
|
875
|
+
|
876
|
+
Output parameters:
|
877
|
+
BothTails - p-value for two-tailed test.
|
878
|
+
If BothTails is less than the given significance level
|
879
|
+
the null hypothesis is rejected.
|
880
|
+
LeftTail - p-value for left-tailed test.
|
881
|
+
If LeftTail is less than the given significance level,
|
882
|
+
the null hypothesis is rejected.
|
883
|
+
RightTail - p-value for right-tailed test.
|
884
|
+
If RightTail is less than the given significance level
|
885
|
+
the null hypothesis is rejected.
|
886
|
+
|
887
|
+
To calculate p-values, special approximation is used. This method lets us
|
888
|
+
calculate p-values with two decimal places in interval [0.0001, 1].
|
889
|
+
|
890
|
+
"Two decimal places" does not sound very impressive, but in practice the
|
891
|
+
relative error of less than 1% is enough to make a decision.
|
892
|
+
|
893
|
+
There is no approximation outside the [0.0001, 1] interval. Therefore, if
|
894
|
+
the significance level outlies this interval, the test returns 0.0001.
|
895
|
+
|
896
|
+
-- ALGLIB --
|
897
|
+
Copyright 08.09.2006 by Bochkanov Sergey
|
898
|
+
*************************************************************************/
|
899
|
+
void wilcoxonsignedranktest(const real_1d_array &x, const ae_int_t n, const double e, double &bothtails, double &lefttail, double &righttail, const xparams _xparams = alglib::xdefault);
|
900
|
+
#endif
|
901
|
+
|
902
|
+
#if defined(AE_COMPILE_MANNWHITNEYU) || !defined(AE_PARTIAL_BUILD)
|
903
|
+
/*************************************************************************
|
904
|
+
Mann-Whitney U-test
|
905
|
+
|
906
|
+
This test checks hypotheses about whether X and Y are samples of two
|
907
|
+
continuous distributions of the same shape and same median or whether
|
908
|
+
their medians are different.
|
909
|
+
|
910
|
+
The following tests are performed:
|
911
|
+
* two-tailed test (null hypothesis - the medians are equal)
|
912
|
+
* left-tailed test (null hypothesis - the median of the first sample
|
913
|
+
is greater than or equal to the median of the second sample)
|
914
|
+
* right-tailed test (null hypothesis - the median of the first sample
|
915
|
+
is less than or equal to the median of the second sample).
|
916
|
+
|
917
|
+
Requirements:
|
918
|
+
* the samples are independent
|
919
|
+
* X and Y are continuous distributions (or discrete distributions well-
|
920
|
+
approximating continuous distributions)
|
921
|
+
* distributions of X and Y have the same shape. The only possible
|
922
|
+
difference is their position (i.e. the value of the median)
|
923
|
+
* the number of elements in each sample is not less than 5
|
924
|
+
* the scale of measurement should be ordinal, interval or ratio (i.e.
|
925
|
+
the test could not be applied to nominal variables).
|
926
|
+
|
927
|
+
The test is non-parametric and doesn't require distributions to be normal.
|
928
|
+
|
929
|
+
Input parameters:
|
930
|
+
X - sample 1. Array whose index goes from 0 to N-1.
|
931
|
+
N - size of the sample. N>=5
|
932
|
+
Y - sample 2. Array whose index goes from 0 to M-1.
|
933
|
+
M - size of the sample. M>=5
|
934
|
+
|
935
|
+
Output parameters:
|
936
|
+
BothTails - p-value for two-tailed test.
|
937
|
+
If BothTails is less than the given significance level
|
938
|
+
the null hypothesis is rejected.
|
939
|
+
LeftTail - p-value for left-tailed test.
|
940
|
+
If LeftTail is less than the given significance level,
|
941
|
+
the null hypothesis is rejected.
|
942
|
+
RightTail - p-value for right-tailed test.
|
943
|
+
If RightTail is less than the given significance level
|
944
|
+
the null hypothesis is rejected.
|
945
|
+
|
946
|
+
To calculate p-values, special approximation is used. This method lets us
|
947
|
+
calculate p-values with satisfactory accuracy in interval [0.0001, 1].
|
948
|
+
There is no approximation outside the [0.0001, 1] interval. Therefore, if
|
949
|
+
the significance level outlies this interval, the test returns 0.0001.
|
950
|
+
|
951
|
+
Relative precision of approximation of p-value:
|
952
|
+
|
953
|
+
N M Max.err. Rms.err.
|
954
|
+
5..10 N..10 1.4e-02 6.0e-04
|
955
|
+
5..10 N..100 2.2e-02 5.3e-06
|
956
|
+
10..15 N..15 1.0e-02 3.2e-04
|
957
|
+
10..15 N..100 1.0e-02 2.2e-05
|
958
|
+
15..100 N..100 6.1e-03 2.7e-06
|
959
|
+
|
960
|
+
For N,M>100 accuracy checks weren't put into practice, but taking into
|
961
|
+
account characteristics of asymptotic approximation used, precision should
|
962
|
+
not be sharply different from the values for interval [5, 100].
|
963
|
+
|
964
|
+
NOTE: P-value approximation was optimized for 0.0001<=p<=0.2500. Thus,
|
965
|
+
P's outside of this interval are enforced to these bounds. Say, you
|
966
|
+
may quite often get P equal to exactly 0.25 or 0.0001.
|
967
|
+
|
968
|
+
-- ALGLIB --
|
969
|
+
Copyright 09.04.2007 by Bochkanov Sergey
|
970
|
+
*************************************************************************/
|
971
|
+
void mannwhitneyutest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail, const xparams _xparams = alglib::xdefault);
|
972
|
+
#endif
|
973
|
+
|
974
|
+
#if defined(AE_COMPILE_STEST) || !defined(AE_PARTIAL_BUILD)
|
975
|
+
/*************************************************************************
|
976
|
+
Sign test
|
977
|
+
|
978
|
+
This test checks three hypotheses about the median of the given sample.
|
979
|
+
The following tests are performed:
|
980
|
+
* two-tailed test (null hypothesis - the median is equal to the given
|
981
|
+
value)
|
982
|
+
* left-tailed test (null hypothesis - the median is greater than or
|
983
|
+
equal to the given value)
|
984
|
+
* right-tailed test (null hypothesis - the median is less than or
|
985
|
+
equal to the given value)
|
986
|
+
|
987
|
+
Requirements:
|
988
|
+
* the scale of measurement should be ordinal, interval or ratio (i.e.
|
989
|
+
the test could not be applied to nominal variables).
|
990
|
+
|
991
|
+
The test is non-parametric and doesn't require distribution X to be normal
|
992
|
+
|
993
|
+
Input parameters:
|
994
|
+
X - sample. Array whose index goes from 0 to N-1.
|
995
|
+
N - size of the sample.
|
996
|
+
Median - assumed median value.
|
997
|
+
|
998
|
+
Output parameters:
|
999
|
+
BothTails - p-value for two-tailed test.
|
1000
|
+
If BothTails is less than the given significance level
|
1001
|
+
the null hypothesis is rejected.
|
1002
|
+
LeftTail - p-value for left-tailed test.
|
1003
|
+
If LeftTail is less than the given significance level,
|
1004
|
+
the null hypothesis is rejected.
|
1005
|
+
RightTail - p-value for right-tailed test.
|
1006
|
+
If RightTail is less than the given significance level
|
1007
|
+
the null hypothesis is rejected.
|
1008
|
+
|
1009
|
+
While calculating p-values high-precision binomial distribution
|
1010
|
+
approximation is used, so significance levels have about 15 exact digits.
|
1011
|
+
|
1012
|
+
-- ALGLIB --
|
1013
|
+
Copyright 08.09.2006 by Bochkanov Sergey
|
1014
|
+
*************************************************************************/
|
1015
|
+
void onesamplesigntest(const real_1d_array &x, const ae_int_t n, const double median, double &bothtails, double &lefttail, double &righttail, const xparams _xparams = alglib::xdefault);
|
1016
|
+
#endif
|
1017
|
+
|
1018
|
+
#if defined(AE_COMPILE_STUDENTTTESTS) || !defined(AE_PARTIAL_BUILD)
|
1019
|
+
/*************************************************************************
|
1020
|
+
One-sample t-test
|
1021
|
+
|
1022
|
+
This test checks three hypotheses about the mean of the given sample. The
|
1023
|
+
following tests are performed:
|
1024
|
+
* two-tailed test (null hypothesis - the mean is equal to the given
|
1025
|
+
value)
|
1026
|
+
* left-tailed test (null hypothesis - the mean is greater than or
|
1027
|
+
equal to the given value)
|
1028
|
+
* right-tailed test (null hypothesis - the mean is less than or equal
|
1029
|
+
to the given value).
|
1030
|
+
|
1031
|
+
The test is based on the assumption that a given sample has a normal
|
1032
|
+
distribution and an unknown dispersion. If the distribution sharply
|
1033
|
+
differs from normal, the test will work incorrectly.
|
1034
|
+
|
1035
|
+
INPUT PARAMETERS:
|
1036
|
+
X - sample. Array whose index goes from 0 to N-1.
|
1037
|
+
N - size of sample, N>=0
|
1038
|
+
Mean - assumed value of the mean.
|
1039
|
+
|
1040
|
+
OUTPUT PARAMETERS:
|
1041
|
+
BothTails - p-value for two-tailed test.
|
1042
|
+
If BothTails is less than the given significance level
|
1043
|
+
the null hypothesis is rejected.
|
1044
|
+
LeftTail - p-value for left-tailed test.
|
1045
|
+
If LeftTail is less than the given significance level,
|
1046
|
+
the null hypothesis is rejected.
|
1047
|
+
RightTail - p-value for right-tailed test.
|
1048
|
+
If RightTail is less than the given significance level
|
1049
|
+
the null hypothesis is rejected.
|
1050
|
+
|
1051
|
+
NOTE: this function correctly handles degenerate cases:
|
1052
|
+
* when N=0, all p-values are set to 1.0
|
1053
|
+
* when variance of X[] is exactly zero, p-values are set
|
1054
|
+
to 1.0 or 0.0, depending on difference between sample mean and
|
1055
|
+
value of mean being tested.
|
1056
|
+
|
1057
|
+
|
1058
|
+
-- ALGLIB --
|
1059
|
+
Copyright 08.09.2006 by Bochkanov Sergey
|
1060
|
+
*************************************************************************/
|
1061
|
+
void studentttest1(const real_1d_array &x, const ae_int_t n, const double mean, double &bothtails, double &lefttail, double &righttail, const xparams _xparams = alglib::xdefault);
|
1062
|
+
|
1063
|
+
|
1064
|
+
/*************************************************************************
|
1065
|
+
Two-sample pooled test
|
1066
|
+
|
1067
|
+
This test checks three hypotheses about the mean of the given samples. The
|
1068
|
+
following tests are performed:
|
1069
|
+
* two-tailed test (null hypothesis - the means are equal)
|
1070
|
+
* left-tailed test (null hypothesis - the mean of the first sample is
|
1071
|
+
greater than or equal to the mean of the second sample)
|
1072
|
+
* right-tailed test (null hypothesis - the mean of the first sample is
|
1073
|
+
less than or equal to the mean of the second sample).
|
1074
|
+
|
1075
|
+
Test is based on the following assumptions:
|
1076
|
+
* given samples have normal distributions
|
1077
|
+
* dispersions are equal
|
1078
|
+
* samples are independent.
|
1079
|
+
|
1080
|
+
Input parameters:
|
1081
|
+
X - sample 1. Array whose index goes from 0 to N-1.
|
1082
|
+
N - size of sample.
|
1083
|
+
Y - sample 2. Array whose index goes from 0 to M-1.
|
1084
|
+
M - size of sample.
|
1085
|
+
|
1086
|
+
Output parameters:
|
1087
|
+
BothTails - p-value for two-tailed test.
|
1088
|
+
If BothTails is less than the given significance level
|
1089
|
+
the null hypothesis is rejected.
|
1090
|
+
LeftTail - p-value for left-tailed test.
|
1091
|
+
If LeftTail is less than the given significance level,
|
1092
|
+
the null hypothesis is rejected.
|
1093
|
+
RightTail - p-value for right-tailed test.
|
1094
|
+
If RightTail is less than the given significance level
|
1095
|
+
the null hypothesis is rejected.
|
1096
|
+
|
1097
|
+
NOTE: this function correctly handles degenerate cases:
|
1098
|
+
* when N=0 or M=0, all p-values are set to 1.0
|
1099
|
+
* when both samples has exactly zero variance, p-values are set
|
1100
|
+
to 1.0 or 0.0, depending on difference between means.
|
1101
|
+
|
1102
|
+
-- ALGLIB --
|
1103
|
+
Copyright 18.09.2006 by Bochkanov Sergey
|
1104
|
+
*************************************************************************/
|
1105
|
+
void studentttest2(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail, const xparams _xparams = alglib::xdefault);
|
1106
|
+
|
1107
|
+
|
1108
|
+
/*************************************************************************
|
1109
|
+
Two-sample unpooled test
|
1110
|
+
|
1111
|
+
This test checks three hypotheses about the mean of the given samples. The
|
1112
|
+
following tests are performed:
|
1113
|
+
* two-tailed test (null hypothesis - the means are equal)
|
1114
|
+
* left-tailed test (null hypothesis - the mean of the first sample is
|
1115
|
+
greater than or equal to the mean of the second sample)
|
1116
|
+
* right-tailed test (null hypothesis - the mean of the first sample is
|
1117
|
+
less than or equal to the mean of the second sample).
|
1118
|
+
|
1119
|
+
Test is based on the following assumptions:
|
1120
|
+
* given samples have normal distributions
|
1121
|
+
* samples are independent.
|
1122
|
+
Equality of variances is NOT required.
|
1123
|
+
|
1124
|
+
Input parameters:
|
1125
|
+
X - sample 1. Array whose index goes from 0 to N-1.
|
1126
|
+
N - size of the sample.
|
1127
|
+
Y - sample 2. Array whose index goes from 0 to M-1.
|
1128
|
+
M - size of the sample.
|
1129
|
+
|
1130
|
+
Output parameters:
|
1131
|
+
BothTails - p-value for two-tailed test.
|
1132
|
+
If BothTails is less than the given significance level
|
1133
|
+
the null hypothesis is rejected.
|
1134
|
+
LeftTail - p-value for left-tailed test.
|
1135
|
+
If LeftTail is less than the given significance level,
|
1136
|
+
the null hypothesis is rejected.
|
1137
|
+
RightTail - p-value for right-tailed test.
|
1138
|
+
If RightTail is less than the given significance level
|
1139
|
+
the null hypothesis is rejected.
|
1140
|
+
|
1141
|
+
NOTE: this function correctly handles degenerate cases:
|
1142
|
+
* when N=0 or M=0, all p-values are set to 1.0
|
1143
|
+
* when both samples has zero variance, p-values are set
|
1144
|
+
to 1.0 or 0.0, depending on difference between means.
|
1145
|
+
* when only one sample has zero variance, test reduces to 1-sample
|
1146
|
+
version.
|
1147
|
+
|
1148
|
+
-- ALGLIB --
|
1149
|
+
Copyright 18.09.2006 by Bochkanov Sergey
|
1150
|
+
*************************************************************************/
|
1151
|
+
void unequalvariancettest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail, const xparams _xparams = alglib::xdefault);
|
1152
|
+
#endif
|
1153
|
+
}
|
1154
|
+
|
1155
|
+
/////////////////////////////////////////////////////////////////////////
|
1156
|
+
//
|
1157
|
+
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
|
1158
|
+
//
|
1159
|
+
/////////////////////////////////////////////////////////////////////////
|
1160
|
+
namespace alglib_impl
|
1161
|
+
{
|
1162
|
+
#if defined(AE_COMPILE_BASESTAT) || !defined(AE_PARTIAL_BUILD)
|
1163
|
+
void samplemoments(/* Real */ const ae_vector* x,
|
1164
|
+
ae_int_t n,
|
1165
|
+
double* mean,
|
1166
|
+
double* variance,
|
1167
|
+
double* skewness,
|
1168
|
+
double* kurtosis,
|
1169
|
+
ae_state *_state);
|
1170
|
+
double samplemean(/* Real */ const ae_vector* x,
|
1171
|
+
ae_int_t n,
|
1172
|
+
ae_state *_state);
|
1173
|
+
double samplevariance(/* Real */ const ae_vector* x,
|
1174
|
+
ae_int_t n,
|
1175
|
+
ae_state *_state);
|
1176
|
+
double sampleskewness(/* Real */ const ae_vector* x,
|
1177
|
+
ae_int_t n,
|
1178
|
+
ae_state *_state);
|
1179
|
+
double samplekurtosis(/* Real */ const ae_vector* x,
|
1180
|
+
ae_int_t n,
|
1181
|
+
ae_state *_state);
|
1182
|
+
void sampleadev(/* Real */ const ae_vector* x,
|
1183
|
+
ae_int_t n,
|
1184
|
+
double* adev,
|
1185
|
+
ae_state *_state);
|
1186
|
+
void samplemedian(/* Real */ const ae_vector* _x,
|
1187
|
+
ae_int_t n,
|
1188
|
+
double* median,
|
1189
|
+
ae_state *_state);
|
1190
|
+
void samplepercentile(/* Real */ const ae_vector* _x,
|
1191
|
+
ae_int_t n,
|
1192
|
+
double p,
|
1193
|
+
double* v,
|
1194
|
+
ae_state *_state);
|
1195
|
+
double cov2(/* Real */ const ae_vector* x,
|
1196
|
+
/* Real */ const ae_vector* y,
|
1197
|
+
ae_int_t n,
|
1198
|
+
ae_state *_state);
|
1199
|
+
double pearsoncorr2(/* Real */ const ae_vector* x,
|
1200
|
+
/* Real */ const ae_vector* y,
|
1201
|
+
ae_int_t n,
|
1202
|
+
ae_state *_state);
|
1203
|
+
double spearmancorr2(/* Real */ const ae_vector* _x,
|
1204
|
+
/* Real */ const ae_vector* _y,
|
1205
|
+
ae_int_t n,
|
1206
|
+
ae_state *_state);
|
1207
|
+
void covm(/* Real */ const ae_matrix* _x,
|
1208
|
+
ae_int_t n,
|
1209
|
+
ae_int_t m,
|
1210
|
+
/* Real */ ae_matrix* c,
|
1211
|
+
ae_state *_state);
|
1212
|
+
void pearsoncorrm(/* Real */ const ae_matrix* x,
|
1213
|
+
ae_int_t n,
|
1214
|
+
ae_int_t m,
|
1215
|
+
/* Real */ ae_matrix* c,
|
1216
|
+
ae_state *_state);
|
1217
|
+
void spearmancorrm(/* Real */ const ae_matrix* x,
|
1218
|
+
ae_int_t n,
|
1219
|
+
ae_int_t m,
|
1220
|
+
/* Real */ ae_matrix* c,
|
1221
|
+
ae_state *_state);
|
1222
|
+
void covm2(/* Real */ const ae_matrix* _x,
|
1223
|
+
/* Real */ const ae_matrix* _y,
|
1224
|
+
ae_int_t n,
|
1225
|
+
ae_int_t m1,
|
1226
|
+
ae_int_t m2,
|
1227
|
+
/* Real */ ae_matrix* c,
|
1228
|
+
ae_state *_state);
|
1229
|
+
void pearsoncorrm2(/* Real */ const ae_matrix* _x,
|
1230
|
+
/* Real */ const ae_matrix* _y,
|
1231
|
+
ae_int_t n,
|
1232
|
+
ae_int_t m1,
|
1233
|
+
ae_int_t m2,
|
1234
|
+
/* Real */ ae_matrix* c,
|
1235
|
+
ae_state *_state);
|
1236
|
+
void spearmancorrm2(/* Real */ const ae_matrix* x,
|
1237
|
+
/* Real */ const ae_matrix* y,
|
1238
|
+
ae_int_t n,
|
1239
|
+
ae_int_t m1,
|
1240
|
+
ae_int_t m2,
|
1241
|
+
/* Real */ ae_matrix* c,
|
1242
|
+
ae_state *_state);
|
1243
|
+
void rankdata(/* Real */ ae_matrix* xy,
|
1244
|
+
ae_int_t npoints,
|
1245
|
+
ae_int_t nfeatures,
|
1246
|
+
ae_state *_state);
|
1247
|
+
ae_bool _trypexec_rankdata(/* Real */ ae_matrix* xy,
|
1248
|
+
ae_int_t npoints,
|
1249
|
+
ae_int_t nfeatures, ae_state *_state);
|
1250
|
+
void rankdatacentered(/* Real */ ae_matrix* xy,
|
1251
|
+
ae_int_t npoints,
|
1252
|
+
ae_int_t nfeatures,
|
1253
|
+
ae_state *_state);
|
1254
|
+
ae_bool _trypexec_rankdatacentered(/* Real */ ae_matrix* xy,
|
1255
|
+
ae_int_t npoints,
|
1256
|
+
ae_int_t nfeatures, ae_state *_state);
|
1257
|
+
double pearsoncorrelation(/* Real */ const ae_vector* x,
|
1258
|
+
/* Real */ const ae_vector* y,
|
1259
|
+
ae_int_t n,
|
1260
|
+
ae_state *_state);
|
1261
|
+
double spearmanrankcorrelation(/* Real */ const ae_vector* x,
|
1262
|
+
/* Real */ const ae_vector* y,
|
1263
|
+
ae_int_t n,
|
1264
|
+
ae_state *_state);
|
1265
|
+
#endif
|
1266
|
+
#if defined(AE_COMPILE_CORRELATIONTESTS) || !defined(AE_PARTIAL_BUILD)
|
1267
|
+
void pearsoncorrelationsignificance(double r,
|
1268
|
+
ae_int_t n,
|
1269
|
+
double* bothtails,
|
1270
|
+
double* lefttail,
|
1271
|
+
double* righttail,
|
1272
|
+
ae_state *_state);
|
1273
|
+
void spearmanrankcorrelationsignificance(double r,
|
1274
|
+
ae_int_t n,
|
1275
|
+
double* bothtails,
|
1276
|
+
double* lefttail,
|
1277
|
+
double* righttail,
|
1278
|
+
ae_state *_state);
|
1279
|
+
#endif
|
1280
|
+
#if defined(AE_COMPILE_JARQUEBERA) || !defined(AE_PARTIAL_BUILD)
|
1281
|
+
void jarqueberatest(/* Real */ const ae_vector* x,
|
1282
|
+
ae_int_t n,
|
1283
|
+
double* p,
|
1284
|
+
ae_state *_state);
|
1285
|
+
#endif
|
1286
|
+
#if defined(AE_COMPILE_VARIANCETESTS) || !defined(AE_PARTIAL_BUILD)
|
1287
|
+
void ftest(/* Real */ const ae_vector* x,
|
1288
|
+
ae_int_t n,
|
1289
|
+
/* Real */ const ae_vector* y,
|
1290
|
+
ae_int_t m,
|
1291
|
+
double* bothtails,
|
1292
|
+
double* lefttail,
|
1293
|
+
double* righttail,
|
1294
|
+
ae_state *_state);
|
1295
|
+
void onesamplevariancetest(/* Real */ const ae_vector* x,
|
1296
|
+
ae_int_t n,
|
1297
|
+
double variance,
|
1298
|
+
double* bothtails,
|
1299
|
+
double* lefttail,
|
1300
|
+
double* righttail,
|
1301
|
+
ae_state *_state);
|
1302
|
+
#endif
|
1303
|
+
#if defined(AE_COMPILE_WSR) || !defined(AE_PARTIAL_BUILD)
|
1304
|
+
void wilcoxonsignedranktest(/* Real */ const ae_vector* _x,
|
1305
|
+
ae_int_t n,
|
1306
|
+
double e,
|
1307
|
+
double* bothtails,
|
1308
|
+
double* lefttail,
|
1309
|
+
double* righttail,
|
1310
|
+
ae_state *_state);
|
1311
|
+
#endif
|
1312
|
+
#if defined(AE_COMPILE_MANNWHITNEYU) || !defined(AE_PARTIAL_BUILD)
|
1313
|
+
void mannwhitneyutest(/* Real */ const ae_vector* x,
|
1314
|
+
ae_int_t n,
|
1315
|
+
/* Real */ const ae_vector* y,
|
1316
|
+
ae_int_t m,
|
1317
|
+
double* bothtails,
|
1318
|
+
double* lefttail,
|
1319
|
+
double* righttail,
|
1320
|
+
ae_state *_state);
|
1321
|
+
#endif
|
1322
|
+
#if defined(AE_COMPILE_STEST) || !defined(AE_PARTIAL_BUILD)
|
1323
|
+
void onesamplesigntest(/* Real */ const ae_vector* x,
|
1324
|
+
ae_int_t n,
|
1325
|
+
double median,
|
1326
|
+
double* bothtails,
|
1327
|
+
double* lefttail,
|
1328
|
+
double* righttail,
|
1329
|
+
ae_state *_state);
|
1330
|
+
#endif
|
1331
|
+
#if defined(AE_COMPILE_STUDENTTTESTS) || !defined(AE_PARTIAL_BUILD)
|
1332
|
+
void studentttest1(/* Real */ const ae_vector* x,
|
1333
|
+
ae_int_t n,
|
1334
|
+
double mean,
|
1335
|
+
double* bothtails,
|
1336
|
+
double* lefttail,
|
1337
|
+
double* righttail,
|
1338
|
+
ae_state *_state);
|
1339
|
+
void studentttest2(/* Real */ const ae_vector* x,
|
1340
|
+
ae_int_t n,
|
1341
|
+
/* Real */ const ae_vector* y,
|
1342
|
+
ae_int_t m,
|
1343
|
+
double* bothtails,
|
1344
|
+
double* lefttail,
|
1345
|
+
double* righttail,
|
1346
|
+
ae_state *_state);
|
1347
|
+
void unequalvariancettest(/* Real */ const ae_vector* x,
|
1348
|
+
ae_int_t n,
|
1349
|
+
/* Real */ const ae_vector* y,
|
1350
|
+
ae_int_t m,
|
1351
|
+
double* bothtails,
|
1352
|
+
double* lefttail,
|
1353
|
+
double* righttail,
|
1354
|
+
ae_state *_state);
|
1355
|
+
#endif
|
1356
|
+
|
1357
|
+
}
|
1358
|
+
#endif
|
1359
|
+
|