alglib4 0.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/README.md +47 -0
- data/ext/alglib/alglib.cpp +537 -0
- data/ext/alglib/alglib_array_converters.cpp +86 -0
- data/ext/alglib/alglib_array_converters.h +15 -0
- data/ext/alglib/alglib_utils.cpp +10 -0
- data/ext/alglib/alglib_utils.h +6 -0
- data/ext/alglib/alglibinternal.cpp +21749 -0
- data/ext/alglib/alglibinternal.h +2168 -0
- data/ext/alglib/alglibmisc.cpp +9106 -0
- data/ext/alglib/alglibmisc.h +2114 -0
- data/ext/alglib/ap.cpp +20094 -0
- data/ext/alglib/ap.h +7244 -0
- data/ext/alglib/dataanalysis.cpp +52588 -0
- data/ext/alglib/dataanalysis.h +10601 -0
- data/ext/alglib/diffequations.cpp +1342 -0
- data/ext/alglib/diffequations.h +282 -0
- data/ext/alglib/extconf.rb +5 -0
- data/ext/alglib/fasttransforms.cpp +4696 -0
- data/ext/alglib/fasttransforms.h +1018 -0
- data/ext/alglib/integration.cpp +4249 -0
- data/ext/alglib/integration.h +869 -0
- data/ext/alglib/interpolation.cpp +74502 -0
- data/ext/alglib/interpolation.h +12264 -0
- data/ext/alglib/kernels_avx2.cpp +2171 -0
- data/ext/alglib/kernels_avx2.h +201 -0
- data/ext/alglib/kernels_fma.cpp +1065 -0
- data/ext/alglib/kernels_fma.h +137 -0
- data/ext/alglib/kernels_sse2.cpp +735 -0
- data/ext/alglib/kernels_sse2.h +100 -0
- data/ext/alglib/linalg.cpp +65182 -0
- data/ext/alglib/linalg.h +9927 -0
- data/ext/alglib/optimization.cpp +135331 -0
- data/ext/alglib/optimization.h +19235 -0
- data/ext/alglib/solvers.cpp +20488 -0
- data/ext/alglib/solvers.h +4781 -0
- data/ext/alglib/specialfunctions.cpp +10672 -0
- data/ext/alglib/specialfunctions.h +2305 -0
- data/ext/alglib/statistics.cpp +19791 -0
- data/ext/alglib/statistics.h +1359 -0
- data/ext/alglib/stdafx.h +2 -0
- data/gpl2.txt +339 -0
- data/gpl3.txt +674 -0
- data/lib/alglib/version.rb +3 -0
- data/lib/alglib.rb +4 -0
- metadata +101 -0
@@ -0,0 +1,869 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
ALGLIB 4.04.0 (source code generated 2024-12-21)
|
3
|
+
Copyright (c) Sergey Bochkanov (ALGLIB project).
|
4
|
+
|
5
|
+
>>> SOURCE LICENSE >>>
|
6
|
+
This program is free software; you can redistribute it and/or modify
|
7
|
+
it under the terms of the GNU General Public License as published by
|
8
|
+
the Free Software Foundation (www.fsf.org); either version 2 of the
|
9
|
+
License, or (at your option) any later version.
|
10
|
+
|
11
|
+
This program is distributed in the hope that it will be useful,
|
12
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14
|
+
GNU General Public License for more details.
|
15
|
+
|
16
|
+
A copy of the GNU General Public License is available at
|
17
|
+
http://www.fsf.org/licensing/licenses
|
18
|
+
>>> END OF LICENSE >>>
|
19
|
+
*************************************************************************/
|
20
|
+
#ifndef _integration_pkg_h
|
21
|
+
#define _integration_pkg_h
|
22
|
+
#include "ap.h"
|
23
|
+
#include "alglibinternal.h"
|
24
|
+
#include "alglibmisc.h"
|
25
|
+
#include "linalg.h"
|
26
|
+
#include "specialfunctions.h"
|
27
|
+
|
28
|
+
/////////////////////////////////////////////////////////////////////////
|
29
|
+
//
|
30
|
+
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
|
31
|
+
//
|
32
|
+
/////////////////////////////////////////////////////////////////////////
|
33
|
+
namespace alglib_impl
|
34
|
+
{
|
35
|
+
#if defined(AE_COMPILE_GQ) || !defined(AE_PARTIAL_BUILD)
|
36
|
+
#endif
|
37
|
+
#if defined(AE_COMPILE_GKQ) || !defined(AE_PARTIAL_BUILD)
|
38
|
+
#endif
|
39
|
+
#if defined(AE_COMPILE_AUTOGK) || !defined(AE_PARTIAL_BUILD)
|
40
|
+
typedef struct
|
41
|
+
{
|
42
|
+
ae_int_t terminationtype;
|
43
|
+
ae_int_t nfev;
|
44
|
+
ae_int_t nintervals;
|
45
|
+
} autogkreport;
|
46
|
+
typedef struct
|
47
|
+
{
|
48
|
+
double a;
|
49
|
+
double b;
|
50
|
+
double eps;
|
51
|
+
double xwidth;
|
52
|
+
double x;
|
53
|
+
double f;
|
54
|
+
ae_int_t info;
|
55
|
+
double r;
|
56
|
+
ae_matrix heap;
|
57
|
+
ae_int_t heapsize;
|
58
|
+
ae_int_t heapwidth;
|
59
|
+
ae_int_t heapused;
|
60
|
+
double sumerr;
|
61
|
+
double sumabs;
|
62
|
+
ae_vector qn;
|
63
|
+
ae_vector wg;
|
64
|
+
ae_vector wk;
|
65
|
+
ae_vector wr;
|
66
|
+
ae_int_t n;
|
67
|
+
rcommstate rstate;
|
68
|
+
} autogkinternalstate;
|
69
|
+
typedef struct
|
70
|
+
{
|
71
|
+
double a;
|
72
|
+
double b;
|
73
|
+
double alpha;
|
74
|
+
double beta;
|
75
|
+
double xwidth;
|
76
|
+
double x;
|
77
|
+
double xminusa;
|
78
|
+
double bminusx;
|
79
|
+
ae_bool needf;
|
80
|
+
double f;
|
81
|
+
ae_int_t wrappermode;
|
82
|
+
autogkinternalstate internalstate;
|
83
|
+
rcommstate rstate;
|
84
|
+
double v;
|
85
|
+
ae_int_t terminationtype;
|
86
|
+
ae_int_t nfev;
|
87
|
+
ae_int_t nintervals;
|
88
|
+
} autogkstate;
|
89
|
+
#endif
|
90
|
+
|
91
|
+
}
|
92
|
+
|
93
|
+
/////////////////////////////////////////////////////////////////////////
|
94
|
+
//
|
95
|
+
// THIS SECTION CONTAINS C++ INTERFACE
|
96
|
+
//
|
97
|
+
/////////////////////////////////////////////////////////////////////////
|
98
|
+
namespace alglib
|
99
|
+
{
|
100
|
+
|
101
|
+
#if defined(AE_COMPILE_GQ) || !defined(AE_PARTIAL_BUILD)
|
102
|
+
|
103
|
+
#endif
|
104
|
+
|
105
|
+
#if defined(AE_COMPILE_GKQ) || !defined(AE_PARTIAL_BUILD)
|
106
|
+
|
107
|
+
#endif
|
108
|
+
|
109
|
+
#if defined(AE_COMPILE_AUTOGK) || !defined(AE_PARTIAL_BUILD)
|
110
|
+
/*************************************************************************
|
111
|
+
Integration report:
|
112
|
+
* TerminationType = completetion code:
|
113
|
+
* -5 non-convergence of Gauss-Kronrod nodes
|
114
|
+
calculation subroutine.
|
115
|
+
* -1 incorrect parameters were specified
|
116
|
+
* 1 OK
|
117
|
+
* Rep.NFEV countains number of function calculations
|
118
|
+
* Rep.NIntervals contains number of intervals [a,b]
|
119
|
+
was partitioned into.
|
120
|
+
*************************************************************************/
|
121
|
+
class _autogkreport_owner
|
122
|
+
{
|
123
|
+
public:
|
124
|
+
_autogkreport_owner();
|
125
|
+
_autogkreport_owner(alglib_impl::autogkreport *attach_to);
|
126
|
+
_autogkreport_owner(const _autogkreport_owner &rhs);
|
127
|
+
_autogkreport_owner& operator=(const _autogkreport_owner &rhs);
|
128
|
+
virtual ~_autogkreport_owner();
|
129
|
+
alglib_impl::autogkreport* c_ptr();
|
130
|
+
const alglib_impl::autogkreport* c_ptr() const;
|
131
|
+
protected:
|
132
|
+
alglib_impl::autogkreport *p_struct;
|
133
|
+
bool is_attached;
|
134
|
+
};
|
135
|
+
class autogkreport : public _autogkreport_owner
|
136
|
+
{
|
137
|
+
public:
|
138
|
+
autogkreport();
|
139
|
+
autogkreport(alglib_impl::autogkreport *attach_to);
|
140
|
+
autogkreport(const autogkreport &rhs);
|
141
|
+
autogkreport& operator=(const autogkreport &rhs);
|
142
|
+
virtual ~autogkreport();
|
143
|
+
ae_int_t &terminationtype;
|
144
|
+
ae_int_t &nfev;
|
145
|
+
ae_int_t &nintervals;
|
146
|
+
|
147
|
+
};
|
148
|
+
|
149
|
+
|
150
|
+
/*************************************************************************
|
151
|
+
This structure stores state of the integration algorithm.
|
152
|
+
|
153
|
+
Although this class has public fields, they are not intended for external
|
154
|
+
use. You should use ALGLIB functions to work with this class:
|
155
|
+
* autogksmooth()/AutoGKSmoothW()/... to create objects
|
156
|
+
* autogkintegrate() to begin integration
|
157
|
+
* autogkresults() to get results
|
158
|
+
*************************************************************************/
|
159
|
+
class _autogkstate_owner
|
160
|
+
{
|
161
|
+
public:
|
162
|
+
_autogkstate_owner();
|
163
|
+
_autogkstate_owner(alglib_impl::autogkstate *attach_to);
|
164
|
+
_autogkstate_owner(const _autogkstate_owner &rhs);
|
165
|
+
_autogkstate_owner& operator=(const _autogkstate_owner &rhs);
|
166
|
+
virtual ~_autogkstate_owner();
|
167
|
+
alglib_impl::autogkstate* c_ptr();
|
168
|
+
const alglib_impl::autogkstate* c_ptr() const;
|
169
|
+
protected:
|
170
|
+
alglib_impl::autogkstate *p_struct;
|
171
|
+
bool is_attached;
|
172
|
+
};
|
173
|
+
class autogkstate : public _autogkstate_owner
|
174
|
+
{
|
175
|
+
public:
|
176
|
+
autogkstate();
|
177
|
+
autogkstate(alglib_impl::autogkstate *attach_to);
|
178
|
+
autogkstate(const autogkstate &rhs);
|
179
|
+
autogkstate& operator=(const autogkstate &rhs);
|
180
|
+
virtual ~autogkstate();
|
181
|
+
ae_bool &needf;
|
182
|
+
double &x;
|
183
|
+
double &xminusa;
|
184
|
+
double &bminusx;
|
185
|
+
double &f;
|
186
|
+
|
187
|
+
};
|
188
|
+
#endif
|
189
|
+
|
190
|
+
#if defined(AE_COMPILE_GQ) || !defined(AE_PARTIAL_BUILD)
|
191
|
+
/*************************************************************************
|
192
|
+
Computation of nodes and weights for a Gauss quadrature formula
|
193
|
+
|
194
|
+
The algorithm generates the N-point Gauss quadrature formula with weight
|
195
|
+
function given by coefficients alpha and beta of a recurrence relation
|
196
|
+
which generates a system of orthogonal polynomials:
|
197
|
+
|
198
|
+
P-1(x) = 0
|
199
|
+
P0(x) = 1
|
200
|
+
Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
|
201
|
+
|
202
|
+
and zeroth moment Mu0
|
203
|
+
|
204
|
+
Mu0 = integral(W(x)dx,a,b)
|
205
|
+
|
206
|
+
INPUT PARAMETERS:
|
207
|
+
Alpha - array[0..N-1], alpha coefficients
|
208
|
+
Beta - array[0..N-1], beta coefficients
|
209
|
+
Zero-indexed element is not used and may be arbitrary.
|
210
|
+
Beta[I]>0.
|
211
|
+
Mu0 - zeroth moment of the weight function.
|
212
|
+
N - number of nodes of the quadrature formula, N>=1
|
213
|
+
|
214
|
+
OUTPUT PARAMETERS:
|
215
|
+
Info - error code:
|
216
|
+
* -3 internal eigenproblem solver hasn't converged
|
217
|
+
* -2 Beta[i]<=0
|
218
|
+
* -1 incorrect N was passed
|
219
|
+
* 1 OK
|
220
|
+
X - array[0..N-1] - array of quadrature nodes,
|
221
|
+
in ascending order.
|
222
|
+
W - array[0..N-1] - array of quadrature weights.
|
223
|
+
|
224
|
+
-- ALGLIB --
|
225
|
+
Copyright 2005-2009 by Bochkanov Sergey
|
226
|
+
*************************************************************************/
|
227
|
+
void gqgeneraterec(const real_1d_array &alpha, const real_1d_array &beta, const double mu0, const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &w, const xparams _xparams = alglib::xdefault);
|
228
|
+
|
229
|
+
|
230
|
+
/*************************************************************************
|
231
|
+
Computation of nodes and weights for a Gauss-Lobatto quadrature formula
|
232
|
+
|
233
|
+
The algorithm generates the N-point Gauss-Lobatto quadrature formula with
|
234
|
+
weight function given by coefficients alpha and beta of a recurrence which
|
235
|
+
generates a system of orthogonal polynomials.
|
236
|
+
|
237
|
+
P-1(x) = 0
|
238
|
+
P0(x) = 1
|
239
|
+
Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
|
240
|
+
|
241
|
+
and zeroth moment Mu0
|
242
|
+
|
243
|
+
Mu0 = integral(W(x)dx,a,b)
|
244
|
+
|
245
|
+
INPUT PARAMETERS:
|
246
|
+
Alpha - array[0..N-2], alpha coefficients
|
247
|
+
Beta - array[0..N-2], beta coefficients.
|
248
|
+
Zero-indexed element is not used, may be arbitrary.
|
249
|
+
Beta[I]>0
|
250
|
+
Mu0 - zeroth moment of the weighting function.
|
251
|
+
A - left boundary of the integration interval.
|
252
|
+
B - right boundary of the integration interval.
|
253
|
+
N - number of nodes of the quadrature formula, N>=3
|
254
|
+
(including the left and right boundary nodes).
|
255
|
+
|
256
|
+
OUTPUT PARAMETERS:
|
257
|
+
Info - error code:
|
258
|
+
* -3 internal eigenproblem solver hasn't converged
|
259
|
+
* -2 Beta[i]<=0
|
260
|
+
* -1 incorrect N was passed
|
261
|
+
* 1 OK
|
262
|
+
X - array[0..N-1] - array of quadrature nodes,
|
263
|
+
in ascending order.
|
264
|
+
W - array[0..N-1] - array of quadrature weights.
|
265
|
+
|
266
|
+
-- ALGLIB --
|
267
|
+
Copyright 2005-2009 by Bochkanov Sergey
|
268
|
+
*************************************************************************/
|
269
|
+
void gqgenerategausslobattorec(const real_1d_array &alpha, const real_1d_array &beta, const double mu0, const double a, const double b, const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &w, const xparams _xparams = alglib::xdefault);
|
270
|
+
|
271
|
+
|
272
|
+
/*************************************************************************
|
273
|
+
Computation of nodes and weights for a Gauss-Radau quadrature formula
|
274
|
+
|
275
|
+
The algorithm generates the N-point Gauss-Radau quadrature formula with
|
276
|
+
weight function given by the coefficients alpha and beta of a recurrence
|
277
|
+
which generates a system of orthogonal polynomials.
|
278
|
+
|
279
|
+
P-1(x) = 0
|
280
|
+
P0(x) = 1
|
281
|
+
Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
|
282
|
+
|
283
|
+
and zeroth moment Mu0
|
284
|
+
|
285
|
+
Mu0 = integral(W(x)dx,a,b)
|
286
|
+
|
287
|
+
INPUT PARAMETERS:
|
288
|
+
Alpha - array[0..N-2], alpha coefficients.
|
289
|
+
Beta - array[0..N-1], beta coefficients
|
290
|
+
Zero-indexed element is not used.
|
291
|
+
Beta[I]>0
|
292
|
+
Mu0 - zeroth moment of the weighting function.
|
293
|
+
A - left boundary of the integration interval.
|
294
|
+
N - number of nodes of the quadrature formula, N>=2
|
295
|
+
(including the left boundary node).
|
296
|
+
|
297
|
+
OUTPUT PARAMETERS:
|
298
|
+
Info - error code:
|
299
|
+
* -3 internal eigenproblem solver hasn't converged
|
300
|
+
* -2 Beta[i]<=0
|
301
|
+
* -1 incorrect N was passed
|
302
|
+
* 1 OK
|
303
|
+
X - array[0..N-1] - array of quadrature nodes,
|
304
|
+
in ascending order.
|
305
|
+
W - array[0..N-1] - array of quadrature weights.
|
306
|
+
|
307
|
+
|
308
|
+
-- ALGLIB --
|
309
|
+
Copyright 2005-2009 by Bochkanov Sergey
|
310
|
+
*************************************************************************/
|
311
|
+
void gqgenerategaussradaurec(const real_1d_array &alpha, const real_1d_array &beta, const double mu0, const double a, const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &w, const xparams _xparams = alglib::xdefault);
|
312
|
+
|
313
|
+
|
314
|
+
/*************************************************************************
|
315
|
+
Returns nodes/weights for Gauss-Legendre quadrature on [-1,1] with N
|
316
|
+
nodes.
|
317
|
+
|
318
|
+
INPUT PARAMETERS:
|
319
|
+
N - number of nodes, >=1
|
320
|
+
|
321
|
+
OUTPUT PARAMETERS:
|
322
|
+
Info - error code:
|
323
|
+
* -4 an error was detected when calculating
|
324
|
+
weights/nodes. N is too large to obtain
|
325
|
+
weights/nodes with high enough accuracy.
|
326
|
+
Try to use multiple precision version.
|
327
|
+
* -3 internal eigenproblem solver hasn't converged
|
328
|
+
* -1 incorrect N was passed
|
329
|
+
* +1 OK
|
330
|
+
X - array[0..N-1] - array of quadrature nodes,
|
331
|
+
in ascending order.
|
332
|
+
W - array[0..N-1] - array of quadrature weights.
|
333
|
+
|
334
|
+
|
335
|
+
-- ALGLIB --
|
336
|
+
Copyright 12.05.2009 by Bochkanov Sergey
|
337
|
+
*************************************************************************/
|
338
|
+
void gqgenerategausslegendre(const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &w, const xparams _xparams = alglib::xdefault);
|
339
|
+
|
340
|
+
|
341
|
+
/*************************************************************************
|
342
|
+
Returns nodes/weights for Gauss-Jacobi quadrature on [-1,1] with weight
|
343
|
+
function W(x)=Power(1-x,Alpha)*Power(1+x,Beta).
|
344
|
+
|
345
|
+
INPUT PARAMETERS:
|
346
|
+
N - number of nodes, >=1
|
347
|
+
Alpha - power-law coefficient, Alpha>-1
|
348
|
+
Beta - power-law coefficient, Beta>-1
|
349
|
+
|
350
|
+
OUTPUT PARAMETERS:
|
351
|
+
Info - error code:
|
352
|
+
* -4 an error was detected when calculating
|
353
|
+
weights/nodes. Alpha or Beta are too close
|
354
|
+
to -1 to obtain weights/nodes with high enough
|
355
|
+
accuracy, or, may be, N is too large. Try to
|
356
|
+
use multiple precision version.
|
357
|
+
* -3 internal eigenproblem solver hasn't converged
|
358
|
+
* -1 incorrect N/Alpha/Beta was passed
|
359
|
+
* +1 OK
|
360
|
+
X - array[0..N-1] - array of quadrature nodes,
|
361
|
+
in ascending order.
|
362
|
+
W - array[0..N-1] - array of quadrature weights.
|
363
|
+
|
364
|
+
|
365
|
+
-- ALGLIB --
|
366
|
+
Copyright 12.05.2009 by Bochkanov Sergey
|
367
|
+
*************************************************************************/
|
368
|
+
void gqgenerategaussjacobi(const ae_int_t n, const double alpha, const double beta, ae_int_t &info, real_1d_array &x, real_1d_array &w, const xparams _xparams = alglib::xdefault);
|
369
|
+
|
370
|
+
|
371
|
+
/*************************************************************************
|
372
|
+
Returns nodes/weights for Gauss-Laguerre quadrature on [0,+inf) with
|
373
|
+
weight function W(x)=Power(x,Alpha)*Exp(-x)
|
374
|
+
|
375
|
+
INPUT PARAMETERS:
|
376
|
+
N - number of nodes, >=1
|
377
|
+
Alpha - power-law coefficient, Alpha>-1
|
378
|
+
|
379
|
+
OUTPUT PARAMETERS:
|
380
|
+
Info - error code:
|
381
|
+
* -4 an error was detected when calculating
|
382
|
+
weights/nodes. Alpha is too close to -1 to
|
383
|
+
obtain weights/nodes with high enough accuracy
|
384
|
+
or, may be, N is too large. Try to use
|
385
|
+
multiple precision version.
|
386
|
+
* -3 internal eigenproblem solver hasn't converged
|
387
|
+
* -1 incorrect N/Alpha was passed
|
388
|
+
* +1 OK
|
389
|
+
X - array[0..N-1] - array of quadrature nodes,
|
390
|
+
in ascending order.
|
391
|
+
W - array[0..N-1] - array of quadrature weights.
|
392
|
+
|
393
|
+
|
394
|
+
-- ALGLIB --
|
395
|
+
Copyright 12.05.2009 by Bochkanov Sergey
|
396
|
+
*************************************************************************/
|
397
|
+
void gqgenerategausslaguerre(const ae_int_t n, const double alpha, ae_int_t &info, real_1d_array &x, real_1d_array &w, const xparams _xparams = alglib::xdefault);
|
398
|
+
|
399
|
+
|
400
|
+
/*************************************************************************
|
401
|
+
Returns nodes/weights for Gauss-Hermite quadrature on (-inf,+inf) with
|
402
|
+
weight function W(x)=Exp(-x*x)
|
403
|
+
|
404
|
+
INPUT PARAMETERS:
|
405
|
+
N - number of nodes, >=1
|
406
|
+
|
407
|
+
OUTPUT PARAMETERS:
|
408
|
+
Info - error code:
|
409
|
+
* -4 an error was detected when calculating
|
410
|
+
weights/nodes. May be, N is too large. Try to
|
411
|
+
use multiple precision version.
|
412
|
+
* -3 internal eigenproblem solver hasn't converged
|
413
|
+
* -1 incorrect N/Alpha was passed
|
414
|
+
* +1 OK
|
415
|
+
X - array[0..N-1] - array of quadrature nodes,
|
416
|
+
in ascending order.
|
417
|
+
W - array[0..N-1] - array of quadrature weights.
|
418
|
+
|
419
|
+
|
420
|
+
-- ALGLIB --
|
421
|
+
Copyright 12.05.2009 by Bochkanov Sergey
|
422
|
+
*************************************************************************/
|
423
|
+
void gqgenerategausshermite(const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &w, const xparams _xparams = alglib::xdefault);
|
424
|
+
#endif
|
425
|
+
|
426
|
+
#if defined(AE_COMPILE_GKQ) || !defined(AE_PARTIAL_BUILD)
|
427
|
+
/*************************************************************************
|
428
|
+
Computation of nodes and weights of a Gauss-Kronrod quadrature formula
|
429
|
+
|
430
|
+
The algorithm generates the N-point Gauss-Kronrod quadrature formula with
|
431
|
+
weight function given by coefficients alpha and beta of a recurrence
|
432
|
+
relation which generates a system of orthogonal polynomials:
|
433
|
+
|
434
|
+
P-1(x) = 0
|
435
|
+
P0(x) = 1
|
436
|
+
Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
|
437
|
+
|
438
|
+
and zero moment Mu0
|
439
|
+
|
440
|
+
Mu0 = integral(W(x)dx,a,b)
|
441
|
+
|
442
|
+
|
443
|
+
INPUT PARAMETERS:
|
444
|
+
Alpha - alpha coefficients, array[0..floor(3*K/2)].
|
445
|
+
Beta - beta coefficients, array[0..ceil(3*K/2)].
|
446
|
+
Beta[0] is not used and may be arbitrary.
|
447
|
+
Beta[I]>0.
|
448
|
+
Mu0 - zeroth moment of the weight function.
|
449
|
+
N - number of nodes of the Gauss-Kronrod quadrature formula,
|
450
|
+
N >= 3,
|
451
|
+
N = 2*K+1.
|
452
|
+
|
453
|
+
OUTPUT PARAMETERS:
|
454
|
+
Info - error code:
|
455
|
+
* -5 no real and positive Gauss-Kronrod formula can
|
456
|
+
be created for such a weight function with a
|
457
|
+
given number of nodes.
|
458
|
+
* -4 N is too large, task may be ill conditioned -
|
459
|
+
x[i]=x[i+1] found.
|
460
|
+
* -3 internal eigenproblem solver hasn't converged
|
461
|
+
* -2 Beta[i]<=0
|
462
|
+
* -1 incorrect N was passed
|
463
|
+
* +1 OK
|
464
|
+
X - array[0..N-1] - array of quadrature nodes,
|
465
|
+
in ascending order.
|
466
|
+
WKronrod - array[0..N-1] - Kronrod weights
|
467
|
+
WGauss - array[0..N-1] - Gauss weights (interleaved with zeros
|
468
|
+
corresponding to extended Kronrod nodes).
|
469
|
+
|
470
|
+
-- ALGLIB --
|
471
|
+
Copyright 08.05.2009 by Bochkanov Sergey
|
472
|
+
*************************************************************************/
|
473
|
+
void gkqgeneraterec(const real_1d_array &alpha, const real_1d_array &beta, const double mu0, const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &wkronrod, real_1d_array &wgauss, const xparams _xparams = alglib::xdefault);
|
474
|
+
|
475
|
+
|
476
|
+
/*************************************************************************
|
477
|
+
Returns Gauss and Gauss-Kronrod nodes/weights for Gauss-Legendre
|
478
|
+
quadrature with N points.
|
479
|
+
|
480
|
+
GKQLegendreCalc (calculation) or GKQLegendreTbl (precomputed table) is
|
481
|
+
used depending on machine precision and number of nodes.
|
482
|
+
|
483
|
+
INPUT PARAMETERS:
|
484
|
+
N - number of Kronrod nodes, must be odd number, >=3.
|
485
|
+
|
486
|
+
OUTPUT PARAMETERS:
|
487
|
+
Info - error code:
|
488
|
+
* -4 an error was detected when calculating
|
489
|
+
weights/nodes. N is too large to obtain
|
490
|
+
weights/nodes with high enough accuracy.
|
491
|
+
Try to use multiple precision version.
|
492
|
+
* -3 internal eigenproblem solver hasn't converged
|
493
|
+
* -1 incorrect N was passed
|
494
|
+
* +1 OK
|
495
|
+
X - array[0..N-1] - array of quadrature nodes, ordered in
|
496
|
+
ascending order.
|
497
|
+
WKronrod - array[0..N-1] - Kronrod weights
|
498
|
+
WGauss - array[0..N-1] - Gauss weights (interleaved with zeros
|
499
|
+
corresponding to extended Kronrod nodes).
|
500
|
+
|
501
|
+
|
502
|
+
-- ALGLIB --
|
503
|
+
Copyright 12.05.2009 by Bochkanov Sergey
|
504
|
+
*************************************************************************/
|
505
|
+
void gkqgenerategausslegendre(const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &wkronrod, real_1d_array &wgauss, const xparams _xparams = alglib::xdefault);
|
506
|
+
|
507
|
+
|
508
|
+
/*************************************************************************
|
509
|
+
Returns Gauss and Gauss-Kronrod nodes/weights for Gauss-Jacobi
|
510
|
+
quadrature on [-1,1] with weight function
|
511
|
+
|
512
|
+
W(x)=Power(1-x,Alpha)*Power(1+x,Beta).
|
513
|
+
|
514
|
+
INPUT PARAMETERS:
|
515
|
+
N - number of Kronrod nodes, must be odd number, >=3.
|
516
|
+
Alpha - power-law coefficient, Alpha>-1
|
517
|
+
Beta - power-law coefficient, Beta>-1
|
518
|
+
|
519
|
+
OUTPUT PARAMETERS:
|
520
|
+
Info - error code:
|
521
|
+
* -5 no real and positive Gauss-Kronrod formula can
|
522
|
+
be created for such a weight function with a
|
523
|
+
given number of nodes.
|
524
|
+
* -4 an error was detected when calculating
|
525
|
+
weights/nodes. Alpha or Beta are too close
|
526
|
+
to -1 to obtain weights/nodes with high enough
|
527
|
+
accuracy, or, may be, N is too large. Try to
|
528
|
+
use multiple precision version.
|
529
|
+
* -3 internal eigenproblem solver hasn't converged
|
530
|
+
* -1 incorrect N was passed
|
531
|
+
* +1 OK
|
532
|
+
* +2 OK, but quadrature rule have exterior nodes,
|
533
|
+
x[0]<-1 or x[n-1]>+1
|
534
|
+
X - array[0..N-1] - array of quadrature nodes, ordered in
|
535
|
+
ascending order.
|
536
|
+
WKronrod - array[0..N-1] - Kronrod weights
|
537
|
+
WGauss - array[0..N-1] - Gauss weights (interleaved with zeros
|
538
|
+
corresponding to extended Kronrod nodes).
|
539
|
+
|
540
|
+
|
541
|
+
-- ALGLIB --
|
542
|
+
Copyright 12.05.2009 by Bochkanov Sergey
|
543
|
+
*************************************************************************/
|
544
|
+
void gkqgenerategaussjacobi(const ae_int_t n, const double alpha, const double beta, ae_int_t &info, real_1d_array &x, real_1d_array &wkronrod, real_1d_array &wgauss, const xparams _xparams = alglib::xdefault);
|
545
|
+
|
546
|
+
|
547
|
+
/*************************************************************************
|
548
|
+
Returns Gauss and Gauss-Kronrod nodes for quadrature with N points.
|
549
|
+
|
550
|
+
Reduction to tridiagonal eigenproblem is used.
|
551
|
+
|
552
|
+
INPUT PARAMETERS:
|
553
|
+
N - number of Kronrod nodes, must be odd number, >=3.
|
554
|
+
|
555
|
+
OUTPUT PARAMETERS:
|
556
|
+
Info - error code:
|
557
|
+
* -4 an error was detected when calculating
|
558
|
+
weights/nodes. N is too large to obtain
|
559
|
+
weights/nodes with high enough accuracy.
|
560
|
+
Try to use multiple precision version.
|
561
|
+
* -3 internal eigenproblem solver hasn't converged
|
562
|
+
* -1 incorrect N was passed
|
563
|
+
* +1 OK
|
564
|
+
X - array[0..N-1] - array of quadrature nodes, ordered in
|
565
|
+
ascending order.
|
566
|
+
WKronrod - array[0..N-1] - Kronrod weights
|
567
|
+
WGauss - array[0..N-1] - Gauss weights (interleaved with zeros
|
568
|
+
corresponding to extended Kronrod nodes).
|
569
|
+
|
570
|
+
-- ALGLIB --
|
571
|
+
Copyright 12.05.2009 by Bochkanov Sergey
|
572
|
+
*************************************************************************/
|
573
|
+
void gkqlegendrecalc(const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &wkronrod, real_1d_array &wgauss, const xparams _xparams = alglib::xdefault);
|
574
|
+
|
575
|
+
|
576
|
+
/*************************************************************************
|
577
|
+
Returns Gauss and Gauss-Kronrod nodes for quadrature with N points using
|
578
|
+
pre-calculated table. Nodes/weights were computed with accuracy up to
|
579
|
+
1.0E-32 (if MPFR version of ALGLIB is used). In standard double precision
|
580
|
+
accuracy reduces to something about 2.0E-16 (depending on your compiler's
|
581
|
+
handling of long floating point constants).
|
582
|
+
|
583
|
+
INPUT PARAMETERS:
|
584
|
+
N - number of Kronrod nodes.
|
585
|
+
N can be 15, 21, 31, 41, 51, 61.
|
586
|
+
|
587
|
+
OUTPUT PARAMETERS:
|
588
|
+
X - array[0..N-1] - array of quadrature nodes, ordered in
|
589
|
+
ascending order.
|
590
|
+
WKronrod - array[0..N-1] - Kronrod weights
|
591
|
+
WGauss - array[0..N-1] - Gauss weights (interleaved with zeros
|
592
|
+
corresponding to extended Kronrod nodes).
|
593
|
+
|
594
|
+
|
595
|
+
-- ALGLIB --
|
596
|
+
Copyright 12.05.2009 by Bochkanov Sergey
|
597
|
+
*************************************************************************/
|
598
|
+
void gkqlegendretbl(const ae_int_t n, real_1d_array &x, real_1d_array &wkronrod, real_1d_array &wgauss, double &eps, const xparams _xparams = alglib::xdefault);
|
599
|
+
#endif
|
600
|
+
|
601
|
+
#if defined(AE_COMPILE_AUTOGK) || !defined(AE_PARTIAL_BUILD)
|
602
|
+
/*************************************************************************
|
603
|
+
Integration of a smooth function F(x) on a finite interval [a,b].
|
604
|
+
|
605
|
+
Fast-convergent algorithm based on a Gauss-Kronrod formula is used. Result
|
606
|
+
is calculated with accuracy close to the machine precision.
|
607
|
+
|
608
|
+
Algorithm works well only with smooth integrands. It may be used with
|
609
|
+
continuous non-smooth integrands, but with less performance.
|
610
|
+
|
611
|
+
It should never be used with integrands which have integrable singularities
|
612
|
+
at lower or upper limits - algorithm may crash. Use AutoGKSingular in such
|
613
|
+
cases.
|
614
|
+
|
615
|
+
INPUT PARAMETERS:
|
616
|
+
A, B - interval boundaries (A<B, A=B or A>B)
|
617
|
+
|
618
|
+
OUTPUT PARAMETERS
|
619
|
+
State - structure which stores algorithm state
|
620
|
+
|
621
|
+
SEE ALSO
|
622
|
+
AutoGKSmoothW, AutoGKSingular, AutoGKResults.
|
623
|
+
|
624
|
+
|
625
|
+
-- ALGLIB --
|
626
|
+
Copyright 06.05.2009 by Bochkanov Sergey
|
627
|
+
*************************************************************************/
|
628
|
+
void autogksmooth(const double a, const double b, autogkstate &state, const xparams _xparams = alglib::xdefault);
|
629
|
+
|
630
|
+
|
631
|
+
/*************************************************************************
|
632
|
+
Integration of a smooth function F(x) on a finite interval [a,b].
|
633
|
+
|
634
|
+
This subroutine is same as AutoGKSmooth(), but it guarantees that interval
|
635
|
+
[a,b] is partitioned into subintervals which have width at most XWidth.
|
636
|
+
|
637
|
+
Subroutine can be used when integrating nearly-constant function with
|
638
|
+
narrow "bumps" (about XWidth wide). If "bumps" are too narrow, AutoGKSmooth
|
639
|
+
subroutine can overlook them.
|
640
|
+
|
641
|
+
INPUT PARAMETERS:
|
642
|
+
A, B - interval boundaries (A<B, A=B or A>B)
|
643
|
+
|
644
|
+
OUTPUT PARAMETERS
|
645
|
+
State - structure which stores algorithm state
|
646
|
+
|
647
|
+
SEE ALSO
|
648
|
+
AutoGKSmooth, AutoGKSingular, AutoGKResults.
|
649
|
+
|
650
|
+
|
651
|
+
-- ALGLIB --
|
652
|
+
Copyright 06.05.2009 by Bochkanov Sergey
|
653
|
+
*************************************************************************/
|
654
|
+
void autogksmoothw(const double a, const double b, const double xwidth, autogkstate &state, const xparams _xparams = alglib::xdefault);
|
655
|
+
|
656
|
+
|
657
|
+
/*************************************************************************
|
658
|
+
Integration on a finite interval [A,B].
|
659
|
+
Integrand have integrable singularities at A/B.
|
660
|
+
|
661
|
+
F(X) must diverge as "(x-A)^alpha" at A, as "(B-x)^beta" at B, with known
|
662
|
+
alpha/beta (alpha>-1, beta>-1). If alpha/beta are not known, estimates
|
663
|
+
from below can be used (but these estimates should be greater than -1 too).
|
664
|
+
|
665
|
+
One of alpha/beta variables (or even both alpha/beta) may be equal to 0,
|
666
|
+
which means than function F(x) is non-singular at A/B. Anyway (singular at
|
667
|
+
bounds or not), function F(x) is supposed to be continuous on (A,B).
|
668
|
+
|
669
|
+
Fast-convergent algorithm based on a Gauss-Kronrod formula is used. Result
|
670
|
+
is calculated with accuracy close to the machine precision.
|
671
|
+
|
672
|
+
INPUT PARAMETERS:
|
673
|
+
A, B - interval boundaries (A<B, A=B or A>B)
|
674
|
+
Alpha - power-law coefficient of the F(x) at A,
|
675
|
+
Alpha>-1
|
676
|
+
Beta - power-law coefficient of the F(x) at B,
|
677
|
+
Beta>-1
|
678
|
+
|
679
|
+
OUTPUT PARAMETERS
|
680
|
+
State - structure which stores algorithm state
|
681
|
+
|
682
|
+
SEE ALSO
|
683
|
+
AutoGKSmooth, AutoGKSmoothW, AutoGKResults.
|
684
|
+
|
685
|
+
|
686
|
+
-- ALGLIB --
|
687
|
+
Copyright 06.05.2009 by Bochkanov Sergey
|
688
|
+
*************************************************************************/
|
689
|
+
void autogksingular(const double a, const double b, const double alpha, const double beta, autogkstate &state, const xparams _xparams = alglib::xdefault);
|
690
|
+
|
691
|
+
|
692
|
+
/*************************************************************************
|
693
|
+
This function provides reverse communication interface
|
694
|
+
Reverse communication interface is not documented or recommended to use.
|
695
|
+
See below for functions which provide better documented API
|
696
|
+
*************************************************************************/
|
697
|
+
bool autogkiteration(autogkstate &state, const xparams _xparams = alglib::xdefault);
|
698
|
+
|
699
|
+
|
700
|
+
/*************************************************************************
|
701
|
+
This function is used to launcn iterations of the 1-dimensional integrator
|
702
|
+
|
703
|
+
It accepts following parameters:
|
704
|
+
func - callback which calculates f(x) for given x
|
705
|
+
ptr - optional pointer which is passed to func; can be NULL
|
706
|
+
|
707
|
+
|
708
|
+
-- ALGLIB --
|
709
|
+
Copyright 07.05.2009 by Bochkanov Sergey
|
710
|
+
|
711
|
+
*************************************************************************/
|
712
|
+
void autogkintegrate(autogkstate &state,
|
713
|
+
void (*func)(double x, double xminusa, double bminusx, double &y, void *ptr),
|
714
|
+
void *ptr = NULL, const xparams _xparams = alglib::xdefault);
|
715
|
+
|
716
|
+
|
717
|
+
/*************************************************************************
|
718
|
+
Adaptive integration results
|
719
|
+
|
720
|
+
Called after AutoGKIteration returned False.
|
721
|
+
|
722
|
+
Input parameters:
|
723
|
+
State - algorithm state (used by AutoGKIteration).
|
724
|
+
|
725
|
+
Output parameters:
|
726
|
+
V - integral(f(x)dx,a,b)
|
727
|
+
Rep - optimization report (see AutoGKReport description)
|
728
|
+
|
729
|
+
-- ALGLIB --
|
730
|
+
Copyright 14.11.2007 by Bochkanov Sergey
|
731
|
+
*************************************************************************/
|
732
|
+
void autogkresults(const autogkstate &state, double &v, autogkreport &rep, const xparams _xparams = alglib::xdefault);
|
733
|
+
#endif
|
734
|
+
}
|
735
|
+
|
736
|
+
/////////////////////////////////////////////////////////////////////////
|
737
|
+
//
|
738
|
+
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
|
739
|
+
//
|
740
|
+
/////////////////////////////////////////////////////////////////////////
|
741
|
+
namespace alglib_impl
|
742
|
+
{
|
743
|
+
#if defined(AE_COMPILE_GQ) || !defined(AE_PARTIAL_BUILD)
|
744
|
+
void gqgeneraterec(/* Real */ const ae_vector* alpha,
|
745
|
+
/* Real */ const ae_vector* beta,
|
746
|
+
double mu0,
|
747
|
+
ae_int_t n,
|
748
|
+
ae_int_t* info,
|
749
|
+
/* Real */ ae_vector* x,
|
750
|
+
/* Real */ ae_vector* w,
|
751
|
+
ae_state *_state);
|
752
|
+
void gqgenerategausslobattorec(/* Real */ const ae_vector* _alpha,
|
753
|
+
/* Real */ const ae_vector* _beta,
|
754
|
+
double mu0,
|
755
|
+
double a,
|
756
|
+
double b,
|
757
|
+
ae_int_t n,
|
758
|
+
ae_int_t* info,
|
759
|
+
/* Real */ ae_vector* x,
|
760
|
+
/* Real */ ae_vector* w,
|
761
|
+
ae_state *_state);
|
762
|
+
void gqgenerategaussradaurec(/* Real */ const ae_vector* _alpha,
|
763
|
+
/* Real */ const ae_vector* _beta,
|
764
|
+
double mu0,
|
765
|
+
double a,
|
766
|
+
ae_int_t n,
|
767
|
+
ae_int_t* info,
|
768
|
+
/* Real */ ae_vector* x,
|
769
|
+
/* Real */ ae_vector* w,
|
770
|
+
ae_state *_state);
|
771
|
+
void gqgenerategausslegendre(ae_int_t n,
|
772
|
+
ae_int_t* info,
|
773
|
+
/* Real */ ae_vector* x,
|
774
|
+
/* Real */ ae_vector* w,
|
775
|
+
ae_state *_state);
|
776
|
+
void gqgenerategaussjacobi(ae_int_t n,
|
777
|
+
double alpha,
|
778
|
+
double beta,
|
779
|
+
ae_int_t* info,
|
780
|
+
/* Real */ ae_vector* x,
|
781
|
+
/* Real */ ae_vector* w,
|
782
|
+
ae_state *_state);
|
783
|
+
void gqgenerategausslaguerre(ae_int_t n,
|
784
|
+
double alpha,
|
785
|
+
ae_int_t* info,
|
786
|
+
/* Real */ ae_vector* x,
|
787
|
+
/* Real */ ae_vector* w,
|
788
|
+
ae_state *_state);
|
789
|
+
void gqgenerategausshermite(ae_int_t n,
|
790
|
+
ae_int_t* info,
|
791
|
+
/* Real */ ae_vector* x,
|
792
|
+
/* Real */ ae_vector* w,
|
793
|
+
ae_state *_state);
|
794
|
+
#endif
|
795
|
+
#if defined(AE_COMPILE_GKQ) || !defined(AE_PARTIAL_BUILD)
|
796
|
+
void gkqgeneraterec(/* Real */ const ae_vector* _alpha,
|
797
|
+
/* Real */ const ae_vector* _beta,
|
798
|
+
double mu0,
|
799
|
+
ae_int_t n,
|
800
|
+
ae_int_t* info,
|
801
|
+
/* Real */ ae_vector* x,
|
802
|
+
/* Real */ ae_vector* wkronrod,
|
803
|
+
/* Real */ ae_vector* wgauss,
|
804
|
+
ae_state *_state);
|
805
|
+
void gkqgenerategausslegendre(ae_int_t n,
|
806
|
+
ae_int_t* info,
|
807
|
+
/* Real */ ae_vector* x,
|
808
|
+
/* Real */ ae_vector* wkronrod,
|
809
|
+
/* Real */ ae_vector* wgauss,
|
810
|
+
ae_state *_state);
|
811
|
+
void gkqgenerategaussjacobi(ae_int_t n,
|
812
|
+
double alpha,
|
813
|
+
double beta,
|
814
|
+
ae_int_t* info,
|
815
|
+
/* Real */ ae_vector* x,
|
816
|
+
/* Real */ ae_vector* wkronrod,
|
817
|
+
/* Real */ ae_vector* wgauss,
|
818
|
+
ae_state *_state);
|
819
|
+
void gkqlegendrecalc(ae_int_t n,
|
820
|
+
ae_int_t* info,
|
821
|
+
/* Real */ ae_vector* x,
|
822
|
+
/* Real */ ae_vector* wkronrod,
|
823
|
+
/* Real */ ae_vector* wgauss,
|
824
|
+
ae_state *_state);
|
825
|
+
void gkqlegendretbl(ae_int_t n,
|
826
|
+
/* Real */ ae_vector* x,
|
827
|
+
/* Real */ ae_vector* wkronrod,
|
828
|
+
/* Real */ ae_vector* wgauss,
|
829
|
+
double* eps,
|
830
|
+
ae_state *_state);
|
831
|
+
#endif
|
832
|
+
#if defined(AE_COMPILE_AUTOGK) || !defined(AE_PARTIAL_BUILD)
|
833
|
+
void autogksmooth(double a,
|
834
|
+
double b,
|
835
|
+
autogkstate* state,
|
836
|
+
ae_state *_state);
|
837
|
+
void autogksmoothw(double a,
|
838
|
+
double b,
|
839
|
+
double xwidth,
|
840
|
+
autogkstate* state,
|
841
|
+
ae_state *_state);
|
842
|
+
void autogksingular(double a,
|
843
|
+
double b,
|
844
|
+
double alpha,
|
845
|
+
double beta,
|
846
|
+
autogkstate* state,
|
847
|
+
ae_state *_state);
|
848
|
+
ae_bool autogkiteration(autogkstate* state, ae_state *_state);
|
849
|
+
void autogkresults(const autogkstate* state,
|
850
|
+
double* v,
|
851
|
+
autogkreport* rep,
|
852
|
+
ae_state *_state);
|
853
|
+
void _autogkreport_init(void* _p, ae_state *_state, ae_bool make_automatic);
|
854
|
+
void _autogkreport_init_copy(void* _dst, const void* _src, ae_state *_state, ae_bool make_automatic);
|
855
|
+
void _autogkreport_clear(void* _p);
|
856
|
+
void _autogkreport_destroy(void* _p);
|
857
|
+
void _autogkinternalstate_init(void* _p, ae_state *_state, ae_bool make_automatic);
|
858
|
+
void _autogkinternalstate_init_copy(void* _dst, const void* _src, ae_state *_state, ae_bool make_automatic);
|
859
|
+
void _autogkinternalstate_clear(void* _p);
|
860
|
+
void _autogkinternalstate_destroy(void* _p);
|
861
|
+
void _autogkstate_init(void* _p, ae_state *_state, ae_bool make_automatic);
|
862
|
+
void _autogkstate_init_copy(void* _dst, const void* _src, ae_state *_state, ae_bool make_automatic);
|
863
|
+
void _autogkstate_clear(void* _p);
|
864
|
+
void _autogkstate_destroy(void* _p);
|
865
|
+
#endif
|
866
|
+
|
867
|
+
}
|
868
|
+
#endif
|
869
|
+
|