alglib4 0.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/README.md +47 -0
- data/ext/alglib/alglib.cpp +537 -0
- data/ext/alglib/alglib_array_converters.cpp +86 -0
- data/ext/alglib/alglib_array_converters.h +15 -0
- data/ext/alglib/alglib_utils.cpp +10 -0
- data/ext/alglib/alglib_utils.h +6 -0
- data/ext/alglib/alglibinternal.cpp +21749 -0
- data/ext/alglib/alglibinternal.h +2168 -0
- data/ext/alglib/alglibmisc.cpp +9106 -0
- data/ext/alglib/alglibmisc.h +2114 -0
- data/ext/alglib/ap.cpp +20094 -0
- data/ext/alglib/ap.h +7244 -0
- data/ext/alglib/dataanalysis.cpp +52588 -0
- data/ext/alglib/dataanalysis.h +10601 -0
- data/ext/alglib/diffequations.cpp +1342 -0
- data/ext/alglib/diffequations.h +282 -0
- data/ext/alglib/extconf.rb +5 -0
- data/ext/alglib/fasttransforms.cpp +4696 -0
- data/ext/alglib/fasttransforms.h +1018 -0
- data/ext/alglib/integration.cpp +4249 -0
- data/ext/alglib/integration.h +869 -0
- data/ext/alglib/interpolation.cpp +74502 -0
- data/ext/alglib/interpolation.h +12264 -0
- data/ext/alglib/kernels_avx2.cpp +2171 -0
- data/ext/alglib/kernels_avx2.h +201 -0
- data/ext/alglib/kernels_fma.cpp +1065 -0
- data/ext/alglib/kernels_fma.h +137 -0
- data/ext/alglib/kernels_sse2.cpp +735 -0
- data/ext/alglib/kernels_sse2.h +100 -0
- data/ext/alglib/linalg.cpp +65182 -0
- data/ext/alglib/linalg.h +9927 -0
- data/ext/alglib/optimization.cpp +135331 -0
- data/ext/alglib/optimization.h +19235 -0
- data/ext/alglib/solvers.cpp +20488 -0
- data/ext/alglib/solvers.h +4781 -0
- data/ext/alglib/specialfunctions.cpp +10672 -0
- data/ext/alglib/specialfunctions.h +2305 -0
- data/ext/alglib/statistics.cpp +19791 -0
- data/ext/alglib/statistics.h +1359 -0
- data/ext/alglib/stdafx.h +2 -0
- data/gpl2.txt +339 -0
- data/gpl3.txt +674 -0
- data/lib/alglib/version.rb +3 -0
- data/lib/alglib.rb +4 -0
- metadata +101 -0
@@ -0,0 +1,2305 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
ALGLIB 4.04.0 (source code generated 2024-12-21)
|
3
|
+
Copyright (c) Sergey Bochkanov (ALGLIB project).
|
4
|
+
|
5
|
+
>>> SOURCE LICENSE >>>
|
6
|
+
This program is free software; you can redistribute it and/or modify
|
7
|
+
it under the terms of the GNU General Public License as published by
|
8
|
+
the Free Software Foundation (www.fsf.org); either version 2 of the
|
9
|
+
License, or (at your option) any later version.
|
10
|
+
|
11
|
+
This program is distributed in the hope that it will be useful,
|
12
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14
|
+
GNU General Public License for more details.
|
15
|
+
|
16
|
+
A copy of the GNU General Public License is available at
|
17
|
+
http://www.fsf.org/licensing/licenses
|
18
|
+
>>> END OF LICENSE >>>
|
19
|
+
*************************************************************************/
|
20
|
+
#ifndef _specialfunctions_pkg_h
|
21
|
+
#define _specialfunctions_pkg_h
|
22
|
+
#include "ap.h"
|
23
|
+
#include "alglibinternal.h"
|
24
|
+
#include "alglibmisc.h"
|
25
|
+
|
26
|
+
/////////////////////////////////////////////////////////////////////////
|
27
|
+
//
|
28
|
+
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
|
29
|
+
//
|
30
|
+
/////////////////////////////////////////////////////////////////////////
|
31
|
+
namespace alglib_impl
|
32
|
+
{
|
33
|
+
#if defined(AE_COMPILE_GAMMAFUNC) || !defined(AE_PARTIAL_BUILD)
|
34
|
+
#endif
|
35
|
+
#if defined(AE_COMPILE_NORMALDISTR) || !defined(AE_PARTIAL_BUILD)
|
36
|
+
#endif
|
37
|
+
#if defined(AE_COMPILE_IBETAF) || !defined(AE_PARTIAL_BUILD)
|
38
|
+
#endif
|
39
|
+
#if defined(AE_COMPILE_STUDENTTDISTR) || !defined(AE_PARTIAL_BUILD)
|
40
|
+
#endif
|
41
|
+
#if defined(AE_COMPILE_FDISTR) || !defined(AE_PARTIAL_BUILD)
|
42
|
+
#endif
|
43
|
+
#if defined(AE_COMPILE_IGAMMAF) || !defined(AE_PARTIAL_BUILD)
|
44
|
+
#endif
|
45
|
+
#if defined(AE_COMPILE_CHISQUAREDISTR) || !defined(AE_PARTIAL_BUILD)
|
46
|
+
#endif
|
47
|
+
#if defined(AE_COMPILE_BINOMIALDISTR) || !defined(AE_PARTIAL_BUILD)
|
48
|
+
#endif
|
49
|
+
#if defined(AE_COMPILE_EXPINTEGRALS) || !defined(AE_PARTIAL_BUILD)
|
50
|
+
#endif
|
51
|
+
#if defined(AE_COMPILE_JACOBIANELLIPTIC) || !defined(AE_PARTIAL_BUILD)
|
52
|
+
#endif
|
53
|
+
#if defined(AE_COMPILE_TRIGINTEGRALS) || !defined(AE_PARTIAL_BUILD)
|
54
|
+
#endif
|
55
|
+
#if defined(AE_COMPILE_CHEBYSHEV) || !defined(AE_PARTIAL_BUILD)
|
56
|
+
#endif
|
57
|
+
#if defined(AE_COMPILE_POISSONDISTR) || !defined(AE_PARTIAL_BUILD)
|
58
|
+
#endif
|
59
|
+
#if defined(AE_COMPILE_BETAF) || !defined(AE_PARTIAL_BUILD)
|
60
|
+
#endif
|
61
|
+
#if defined(AE_COMPILE_FRESNEL) || !defined(AE_PARTIAL_BUILD)
|
62
|
+
#endif
|
63
|
+
#if defined(AE_COMPILE_PSIF) || !defined(AE_PARTIAL_BUILD)
|
64
|
+
#endif
|
65
|
+
#if defined(AE_COMPILE_AIRYF) || !defined(AE_PARTIAL_BUILD)
|
66
|
+
#endif
|
67
|
+
#if defined(AE_COMPILE_DAWSON) || !defined(AE_PARTIAL_BUILD)
|
68
|
+
#endif
|
69
|
+
#if defined(AE_COMPILE_HERMITE) || !defined(AE_PARTIAL_BUILD)
|
70
|
+
#endif
|
71
|
+
#if defined(AE_COMPILE_LEGENDRE) || !defined(AE_PARTIAL_BUILD)
|
72
|
+
#endif
|
73
|
+
#if defined(AE_COMPILE_BESSEL) || !defined(AE_PARTIAL_BUILD)
|
74
|
+
#endif
|
75
|
+
#if defined(AE_COMPILE_LAGUERRE) || !defined(AE_PARTIAL_BUILD)
|
76
|
+
#endif
|
77
|
+
#if defined(AE_COMPILE_ELLIPTIC) || !defined(AE_PARTIAL_BUILD)
|
78
|
+
#endif
|
79
|
+
|
80
|
+
}
|
81
|
+
|
82
|
+
/////////////////////////////////////////////////////////////////////////
|
83
|
+
//
|
84
|
+
// THIS SECTION CONTAINS C++ INTERFACE
|
85
|
+
//
|
86
|
+
/////////////////////////////////////////////////////////////////////////
|
87
|
+
namespace alglib
|
88
|
+
{
|
89
|
+
|
90
|
+
#if defined(AE_COMPILE_GAMMAFUNC) || !defined(AE_PARTIAL_BUILD)
|
91
|
+
|
92
|
+
#endif
|
93
|
+
|
94
|
+
#if defined(AE_COMPILE_NORMALDISTR) || !defined(AE_PARTIAL_BUILD)
|
95
|
+
|
96
|
+
#endif
|
97
|
+
|
98
|
+
#if defined(AE_COMPILE_IBETAF) || !defined(AE_PARTIAL_BUILD)
|
99
|
+
|
100
|
+
#endif
|
101
|
+
|
102
|
+
#if defined(AE_COMPILE_STUDENTTDISTR) || !defined(AE_PARTIAL_BUILD)
|
103
|
+
|
104
|
+
#endif
|
105
|
+
|
106
|
+
#if defined(AE_COMPILE_FDISTR) || !defined(AE_PARTIAL_BUILD)
|
107
|
+
|
108
|
+
#endif
|
109
|
+
|
110
|
+
#if defined(AE_COMPILE_IGAMMAF) || !defined(AE_PARTIAL_BUILD)
|
111
|
+
|
112
|
+
#endif
|
113
|
+
|
114
|
+
#if defined(AE_COMPILE_CHISQUAREDISTR) || !defined(AE_PARTIAL_BUILD)
|
115
|
+
|
116
|
+
#endif
|
117
|
+
|
118
|
+
#if defined(AE_COMPILE_BINOMIALDISTR) || !defined(AE_PARTIAL_BUILD)
|
119
|
+
|
120
|
+
#endif
|
121
|
+
|
122
|
+
#if defined(AE_COMPILE_EXPINTEGRALS) || !defined(AE_PARTIAL_BUILD)
|
123
|
+
|
124
|
+
#endif
|
125
|
+
|
126
|
+
#if defined(AE_COMPILE_JACOBIANELLIPTIC) || !defined(AE_PARTIAL_BUILD)
|
127
|
+
|
128
|
+
#endif
|
129
|
+
|
130
|
+
#if defined(AE_COMPILE_TRIGINTEGRALS) || !defined(AE_PARTIAL_BUILD)
|
131
|
+
|
132
|
+
#endif
|
133
|
+
|
134
|
+
#if defined(AE_COMPILE_CHEBYSHEV) || !defined(AE_PARTIAL_BUILD)
|
135
|
+
|
136
|
+
#endif
|
137
|
+
|
138
|
+
#if defined(AE_COMPILE_POISSONDISTR) || !defined(AE_PARTIAL_BUILD)
|
139
|
+
|
140
|
+
#endif
|
141
|
+
|
142
|
+
#if defined(AE_COMPILE_BETAF) || !defined(AE_PARTIAL_BUILD)
|
143
|
+
|
144
|
+
#endif
|
145
|
+
|
146
|
+
#if defined(AE_COMPILE_FRESNEL) || !defined(AE_PARTIAL_BUILD)
|
147
|
+
|
148
|
+
#endif
|
149
|
+
|
150
|
+
#if defined(AE_COMPILE_PSIF) || !defined(AE_PARTIAL_BUILD)
|
151
|
+
|
152
|
+
#endif
|
153
|
+
|
154
|
+
#if defined(AE_COMPILE_AIRYF) || !defined(AE_PARTIAL_BUILD)
|
155
|
+
|
156
|
+
#endif
|
157
|
+
|
158
|
+
#if defined(AE_COMPILE_DAWSON) || !defined(AE_PARTIAL_BUILD)
|
159
|
+
|
160
|
+
#endif
|
161
|
+
|
162
|
+
#if defined(AE_COMPILE_HERMITE) || !defined(AE_PARTIAL_BUILD)
|
163
|
+
|
164
|
+
#endif
|
165
|
+
|
166
|
+
#if defined(AE_COMPILE_LEGENDRE) || !defined(AE_PARTIAL_BUILD)
|
167
|
+
|
168
|
+
#endif
|
169
|
+
|
170
|
+
#if defined(AE_COMPILE_BESSEL) || !defined(AE_PARTIAL_BUILD)
|
171
|
+
|
172
|
+
#endif
|
173
|
+
|
174
|
+
#if defined(AE_COMPILE_LAGUERRE) || !defined(AE_PARTIAL_BUILD)
|
175
|
+
|
176
|
+
#endif
|
177
|
+
|
178
|
+
#if defined(AE_COMPILE_ELLIPTIC) || !defined(AE_PARTIAL_BUILD)
|
179
|
+
|
180
|
+
#endif
|
181
|
+
|
182
|
+
#if defined(AE_COMPILE_GAMMAFUNC) || !defined(AE_PARTIAL_BUILD)
|
183
|
+
/*************************************************************************
|
184
|
+
Gamma function
|
185
|
+
|
186
|
+
Input parameters:
|
187
|
+
X - argument
|
188
|
+
|
189
|
+
Domain:
|
190
|
+
0 < X < 171.6
|
191
|
+
-170 < X < 0, X is not an integer.
|
192
|
+
|
193
|
+
Relative error:
|
194
|
+
arithmetic domain # trials peak rms
|
195
|
+
IEEE -170,-33 20000 2.3e-15 3.3e-16
|
196
|
+
IEEE -33, 33 20000 9.4e-16 2.2e-16
|
197
|
+
IEEE 33, 171.6 20000 2.3e-15 3.2e-16
|
198
|
+
|
199
|
+
Cephes Math Library Release 2.8: June, 2000
|
200
|
+
Original copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
201
|
+
Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
|
202
|
+
*************************************************************************/
|
203
|
+
double gammafunction(const double x, const xparams _xparams = alglib::xdefault);
|
204
|
+
|
205
|
+
|
206
|
+
/*************************************************************************
|
207
|
+
Natural logarithm of gamma function
|
208
|
+
|
209
|
+
Input parameters:
|
210
|
+
X - argument
|
211
|
+
|
212
|
+
Result:
|
213
|
+
logarithm of the absolute value of the Gamma(X).
|
214
|
+
|
215
|
+
Output parameters:
|
216
|
+
SgnGam - sign(Gamma(X))
|
217
|
+
|
218
|
+
Domain:
|
219
|
+
0 < X < 2.55e305
|
220
|
+
-2.55e305 < X < 0, X is not an integer.
|
221
|
+
|
222
|
+
ACCURACY:
|
223
|
+
arithmetic domain # trials peak rms
|
224
|
+
IEEE 0, 3 28000 5.4e-16 1.1e-16
|
225
|
+
IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17
|
226
|
+
The error criterion was relative when the function magnitude
|
227
|
+
was greater than one but absolute when it was less than one.
|
228
|
+
|
229
|
+
The following test used the relative error criterion, though
|
230
|
+
at certain points the relative error could be much higher than
|
231
|
+
indicated.
|
232
|
+
IEEE -200, -4 10000 4.8e-16 1.3e-16
|
233
|
+
|
234
|
+
Cephes Math Library Release 2.8: June, 2000
|
235
|
+
Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
236
|
+
Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
|
237
|
+
*************************************************************************/
|
238
|
+
double lngamma(const double x, double &sgngam, const xparams _xparams = alglib::xdefault);
|
239
|
+
#endif
|
240
|
+
|
241
|
+
#if defined(AE_COMPILE_NORMALDISTR) || !defined(AE_PARTIAL_BUILD)
|
242
|
+
/*************************************************************************
|
243
|
+
Error function
|
244
|
+
|
245
|
+
The integral is
|
246
|
+
|
247
|
+
x
|
248
|
+
-
|
249
|
+
2 | | 2
|
250
|
+
erf(x) = -------- | exp( - t ) dt.
|
251
|
+
sqrt(pi) | |
|
252
|
+
-
|
253
|
+
0
|
254
|
+
|
255
|
+
For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
|
256
|
+
erf(x) = 1 - erfc(x).
|
257
|
+
|
258
|
+
|
259
|
+
ACCURACY:
|
260
|
+
|
261
|
+
Relative error:
|
262
|
+
arithmetic domain # trials peak rms
|
263
|
+
IEEE 0,1 30000 3.7e-16 1.0e-16
|
264
|
+
|
265
|
+
Cephes Math Library Release 2.8: June, 2000
|
266
|
+
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
267
|
+
*************************************************************************/
|
268
|
+
double errorfunction(const double x, const xparams _xparams = alglib::xdefault);
|
269
|
+
|
270
|
+
|
271
|
+
/*************************************************************************
|
272
|
+
Complementary error function
|
273
|
+
|
274
|
+
1 - erf(x) =
|
275
|
+
|
276
|
+
inf.
|
277
|
+
-
|
278
|
+
2 | | 2
|
279
|
+
erfc(x) = -------- | exp( - t ) dt
|
280
|
+
sqrt(pi) | |
|
281
|
+
-
|
282
|
+
x
|
283
|
+
|
284
|
+
|
285
|
+
For small x, erfc(x) = 1 - erf(x); otherwise rational
|
286
|
+
approximations are computed.
|
287
|
+
|
288
|
+
|
289
|
+
ACCURACY:
|
290
|
+
|
291
|
+
Relative error:
|
292
|
+
arithmetic domain # trials peak rms
|
293
|
+
IEEE 0,26.6417 30000 5.7e-14 1.5e-14
|
294
|
+
|
295
|
+
Cephes Math Library Release 2.8: June, 2000
|
296
|
+
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
297
|
+
*************************************************************************/
|
298
|
+
double errorfunctionc(const double x, const xparams _xparams = alglib::xdefault);
|
299
|
+
|
300
|
+
|
301
|
+
/*************************************************************************
|
302
|
+
Same as normalcdf(), obsolete name.
|
303
|
+
*************************************************************************/
|
304
|
+
double normaldistribution(const double x, const xparams _xparams = alglib::xdefault);
|
305
|
+
|
306
|
+
|
307
|
+
/*************************************************************************
|
308
|
+
Normal distribution PDF
|
309
|
+
|
310
|
+
Returns Gaussian probability density function:
|
311
|
+
|
312
|
+
1
|
313
|
+
f(x) = --------- * exp(-x^2/2)
|
314
|
+
sqrt(2pi)
|
315
|
+
|
316
|
+
Cephes Math Library Release 2.8: June, 2000
|
317
|
+
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
318
|
+
*************************************************************************/
|
319
|
+
double normalpdf(const double x, const xparams _xparams = alglib::xdefault);
|
320
|
+
|
321
|
+
|
322
|
+
/*************************************************************************
|
323
|
+
Normal distribution CDF
|
324
|
+
|
325
|
+
Returns the area under the Gaussian probability density
|
326
|
+
function, integrated from minus infinity to x:
|
327
|
+
|
328
|
+
x
|
329
|
+
-
|
330
|
+
1 | | 2
|
331
|
+
ndtr(x) = --------- | exp( - t /2 ) dt
|
332
|
+
sqrt(2pi) | |
|
333
|
+
-
|
334
|
+
-inf.
|
335
|
+
|
336
|
+
= ( 1 + erf(z) ) / 2
|
337
|
+
= erfc(z) / 2
|
338
|
+
|
339
|
+
where z = x/sqrt(2). Computation is via the functions
|
340
|
+
erf and erfc.
|
341
|
+
|
342
|
+
|
343
|
+
ACCURACY:
|
344
|
+
|
345
|
+
Relative error:
|
346
|
+
arithmetic domain # trials peak rms
|
347
|
+
IEEE -13,0 30000 3.4e-14 6.7e-15
|
348
|
+
|
349
|
+
Cephes Math Library Release 2.8: June, 2000
|
350
|
+
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
351
|
+
*************************************************************************/
|
352
|
+
double normalcdf(const double x, const xparams _xparams = alglib::xdefault);
|
353
|
+
|
354
|
+
|
355
|
+
/*************************************************************************
|
356
|
+
Inverse of the error function
|
357
|
+
|
358
|
+
Cephes Math Library Release 2.8: June, 2000
|
359
|
+
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
360
|
+
*************************************************************************/
|
361
|
+
double inverf(const double e, const xparams _xparams = alglib::xdefault);
|
362
|
+
|
363
|
+
|
364
|
+
/*************************************************************************
|
365
|
+
Same as invnormalcdf(), deprecated name
|
366
|
+
*************************************************************************/
|
367
|
+
double invnormaldistribution(const double y0, const xparams _xparams = alglib::xdefault);
|
368
|
+
|
369
|
+
|
370
|
+
/*************************************************************************
|
371
|
+
Inverse of Normal CDF
|
372
|
+
|
373
|
+
Returns the argument, x, for which the area under the
|
374
|
+
Gaussian probability density function (integrated from
|
375
|
+
minus infinity to x) is equal to y.
|
376
|
+
|
377
|
+
|
378
|
+
For small arguments 0 < y < exp(-2), the program computes
|
379
|
+
z = sqrt( -2.0 * log(y) ); then the approximation is
|
380
|
+
x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
|
381
|
+
There are two rational functions P/Q, one for 0 < y < exp(-32)
|
382
|
+
and the other for y up to exp(-2). For larger arguments,
|
383
|
+
w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
|
384
|
+
|
385
|
+
ACCURACY:
|
386
|
+
|
387
|
+
Relative error:
|
388
|
+
arithmetic domain # trials peak rms
|
389
|
+
IEEE 0.125, 1 20000 7.2e-16 1.3e-16
|
390
|
+
IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
|
391
|
+
|
392
|
+
Cephes Math Library Release 2.8: June, 2000
|
393
|
+
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
394
|
+
*************************************************************************/
|
395
|
+
double invnormalcdf(const double y0, const xparams _xparams = alglib::xdefault);
|
396
|
+
|
397
|
+
|
398
|
+
/*************************************************************************
|
399
|
+
Bivariate normal PDF
|
400
|
+
|
401
|
+
Returns probability density function of the bivariate Gaussian with
|
402
|
+
correlation parameter equal to Rho:
|
403
|
+
|
404
|
+
1 ( x^2 - 2*rho*x*y + y^2 )
|
405
|
+
f(x,y,rho) = ----------------- * exp( - ----------------------- )
|
406
|
+
2pi*sqrt(1-rho^2) ( 2*(1-rho^2) )
|
407
|
+
|
408
|
+
|
409
|
+
with -1<rho<+1 and arbitrary x, y.
|
410
|
+
|
411
|
+
This function won't fail as long as Rho is in (-1,+1) range.
|
412
|
+
|
413
|
+
-- ALGLIB --
|
414
|
+
Copyright 15.11.2019 by Bochkanov Sergey
|
415
|
+
*************************************************************************/
|
416
|
+
double bivariatenormalpdf(const double x, const double y, const double rho, const xparams _xparams = alglib::xdefault);
|
417
|
+
|
418
|
+
|
419
|
+
/*************************************************************************
|
420
|
+
Bivariate normal CDF
|
421
|
+
|
422
|
+
Returns the area under the bivariate Gaussian PDF with correlation
|
423
|
+
parameter equal to Rho, integrated from minus infinity to (x,y):
|
424
|
+
|
425
|
+
|
426
|
+
x y
|
427
|
+
- -
|
428
|
+
1 | | | |
|
429
|
+
bvn(x,y,rho) = ------------------- | | f(u,v,rho)*du*dv
|
430
|
+
2pi*sqrt(1-rho^2) | | | |
|
431
|
+
- -
|
432
|
+
-INF -INF
|
433
|
+
|
434
|
+
|
435
|
+
where
|
436
|
+
|
437
|
+
( u^2 - 2*rho*u*v + v^2 )
|
438
|
+
f(u,v,rho) = exp( - ----------------------- )
|
439
|
+
( 2*(1-rho^2) )
|
440
|
+
|
441
|
+
|
442
|
+
with -1<rho<+1 and arbitrary x, y.
|
443
|
+
|
444
|
+
This subroutine uses high-precision approximation scheme proposed by
|
445
|
+
Alan Genz in "Numerical Computation of Rectangular Bivariate and
|
446
|
+
Trivariate Normal and t probabilities", which computes CDF with
|
447
|
+
absolute error roughly equal to 1e-14.
|
448
|
+
|
449
|
+
This function won't fail as long as Rho is in (-1,+1) range.
|
450
|
+
|
451
|
+
-- ALGLIB --
|
452
|
+
Copyright 15.11.2019 by Bochkanov Sergey
|
453
|
+
*************************************************************************/
|
454
|
+
double bivariatenormalcdf(const double x, const double y, const double rho, const xparams _xparams = alglib::xdefault);
|
455
|
+
#endif
|
456
|
+
|
457
|
+
#if defined(AE_COMPILE_IBETAF) || !defined(AE_PARTIAL_BUILD)
|
458
|
+
/*************************************************************************
|
459
|
+
Incomplete beta integral
|
460
|
+
|
461
|
+
Returns incomplete beta integral of the arguments, evaluated
|
462
|
+
from zero to x. The function is defined as
|
463
|
+
|
464
|
+
x
|
465
|
+
- -
|
466
|
+
| (a+b) | | a-1 b-1
|
467
|
+
----------- | t (1-t) dt.
|
468
|
+
- - | |
|
469
|
+
| (a) | (b) -
|
470
|
+
0
|
471
|
+
|
472
|
+
The domain of definition is 0 <= x <= 1. In this
|
473
|
+
implementation a and b are restricted to positive values.
|
474
|
+
The integral from x to 1 may be obtained by the symmetry
|
475
|
+
relation
|
476
|
+
|
477
|
+
1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
|
478
|
+
|
479
|
+
The integral is evaluated by a continued fraction expansion
|
480
|
+
or, when b*x is small, by a power series.
|
481
|
+
|
482
|
+
ACCURACY:
|
483
|
+
|
484
|
+
Tested at uniformly distributed random points (a,b,x) with a and b
|
485
|
+
in "domain" and x between 0 and 1.
|
486
|
+
Relative error
|
487
|
+
arithmetic domain # trials peak rms
|
488
|
+
IEEE 0,5 10000 6.9e-15 4.5e-16
|
489
|
+
IEEE 0,85 250000 2.2e-13 1.7e-14
|
490
|
+
IEEE 0,1000 30000 5.3e-12 6.3e-13
|
491
|
+
IEEE 0,10000 250000 9.3e-11 7.1e-12
|
492
|
+
IEEE 0,100000 10000 8.7e-10 4.8e-11
|
493
|
+
Outputs smaller than the IEEE gradual underflow threshold
|
494
|
+
were excluded from these statistics.
|
495
|
+
|
496
|
+
Cephes Math Library, Release 2.8: June, 2000
|
497
|
+
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
498
|
+
*************************************************************************/
|
499
|
+
double incompletebeta(const double a, const double b, const double x, const xparams _xparams = alglib::xdefault);
|
500
|
+
|
501
|
+
|
502
|
+
/*************************************************************************
|
503
|
+
Inverse of imcomplete beta integral
|
504
|
+
|
505
|
+
Given y, the function finds x such that
|
506
|
+
|
507
|
+
incbet( a, b, x ) = y .
|
508
|
+
|
509
|
+
The routine performs interval halving or Newton iterations to find the
|
510
|
+
root of incbet(a,b,x) - y = 0.
|
511
|
+
|
512
|
+
|
513
|
+
ACCURACY:
|
514
|
+
|
515
|
+
Relative error:
|
516
|
+
x a,b
|
517
|
+
arithmetic domain domain # trials peak rms
|
518
|
+
IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13
|
519
|
+
IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15
|
520
|
+
IEEE 0,1 0,5 50000 1.1e-12 5.5e-15
|
521
|
+
With a and b constrained to half-integer or integer values:
|
522
|
+
IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13
|
523
|
+
IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16
|
524
|
+
With a = .5, b constrained to half-integer or integer values:
|
525
|
+
IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11
|
526
|
+
|
527
|
+
Cephes Math Library Release 2.8: June, 2000
|
528
|
+
Copyright 1984, 1996, 2000 by Stephen L. Moshier
|
529
|
+
*************************************************************************/
|
530
|
+
double invincompletebeta(const double a, const double b, const double y, const xparams _xparams = alglib::xdefault);
|
531
|
+
#endif
|
532
|
+
|
533
|
+
#if defined(AE_COMPILE_STUDENTTDISTR) || !defined(AE_PARTIAL_BUILD)
|
534
|
+
/*************************************************************************
|
535
|
+
Student's t distribution
|
536
|
+
|
537
|
+
Computes the integral from minus infinity to t of the Student
|
538
|
+
t distribution with integer k > 0 degrees of freedom:
|
539
|
+
|
540
|
+
t
|
541
|
+
-
|
542
|
+
| |
|
543
|
+
- | 2 -(k+1)/2
|
544
|
+
| ( (k+1)/2 ) | ( x )
|
545
|
+
---------------------- | ( 1 + --- ) dx
|
546
|
+
- | ( k )
|
547
|
+
sqrt( k pi ) | ( k/2 ) |
|
548
|
+
| |
|
549
|
+
-
|
550
|
+
-inf.
|
551
|
+
|
552
|
+
Relation to incomplete beta integral:
|
553
|
+
|
554
|
+
1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
|
555
|
+
where
|
556
|
+
z = k/(k + t**2).
|
557
|
+
|
558
|
+
For t < -2, this is the method of computation. For higher t,
|
559
|
+
a direct method is derived from integration by parts.
|
560
|
+
Since the function is symmetric about t=0, the area under the
|
561
|
+
right tail of the density is found by calling the function
|
562
|
+
with -t instead of t.
|
563
|
+
|
564
|
+
ACCURACY:
|
565
|
+
|
566
|
+
Tested at random 1 <= k <= 25. The "domain" refers to t.
|
567
|
+
Relative error:
|
568
|
+
arithmetic domain # trials peak rms
|
569
|
+
IEEE -100,-2 50000 5.9e-15 1.4e-15
|
570
|
+
IEEE -2,100 500000 2.7e-15 4.9e-17
|
571
|
+
|
572
|
+
Cephes Math Library Release 2.8: June, 2000
|
573
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
574
|
+
*************************************************************************/
|
575
|
+
double studenttdistribution(const ae_int_t k, const double t, const xparams _xparams = alglib::xdefault);
|
576
|
+
|
577
|
+
|
578
|
+
/*************************************************************************
|
579
|
+
Functional inverse of Student's t distribution
|
580
|
+
|
581
|
+
Given probability p, finds the argument t such that stdtr(k,t)
|
582
|
+
is equal to p.
|
583
|
+
|
584
|
+
ACCURACY:
|
585
|
+
|
586
|
+
Tested at random 1 <= k <= 100. The "domain" refers to p:
|
587
|
+
Relative error:
|
588
|
+
arithmetic domain # trials peak rms
|
589
|
+
IEEE .001,.999 25000 5.7e-15 8.0e-16
|
590
|
+
IEEE 10^-6,.001 25000 2.0e-12 2.9e-14
|
591
|
+
|
592
|
+
Cephes Math Library Release 2.8: June, 2000
|
593
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
594
|
+
*************************************************************************/
|
595
|
+
double invstudenttdistribution(const ae_int_t k, const double p, const xparams _xparams = alglib::xdefault);
|
596
|
+
#endif
|
597
|
+
|
598
|
+
#if defined(AE_COMPILE_FDISTR) || !defined(AE_PARTIAL_BUILD)
|
599
|
+
/*************************************************************************
|
600
|
+
F distribution
|
601
|
+
|
602
|
+
Returns the area from zero to x under the F density
|
603
|
+
function (also known as Snedcor's density or the
|
604
|
+
variance ratio density). This is the density
|
605
|
+
of x = (u1/df1)/(u2/df2), where u1 and u2 are random
|
606
|
+
variables having Chi square distributions with df1
|
607
|
+
and df2 degrees of freedom, respectively.
|
608
|
+
The incomplete beta integral is used, according to the
|
609
|
+
formula
|
610
|
+
|
611
|
+
P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
|
612
|
+
|
613
|
+
|
614
|
+
The arguments a and b are greater than zero, and x is
|
615
|
+
nonnegative.
|
616
|
+
|
617
|
+
ACCURACY:
|
618
|
+
|
619
|
+
Tested at random points (a,b,x).
|
620
|
+
|
621
|
+
x a,b Relative error:
|
622
|
+
arithmetic domain domain # trials peak rms
|
623
|
+
IEEE 0,1 0,100 100000 9.8e-15 1.7e-15
|
624
|
+
IEEE 1,5 0,100 100000 6.5e-15 3.5e-16
|
625
|
+
IEEE 0,1 1,10000 100000 2.2e-11 3.3e-12
|
626
|
+
IEEE 1,5 1,10000 100000 1.1e-11 1.7e-13
|
627
|
+
|
628
|
+
Cephes Math Library Release 2.8: June, 2000
|
629
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
630
|
+
*************************************************************************/
|
631
|
+
double fdistribution(const ae_int_t a, const ae_int_t b, const double x, const xparams _xparams = alglib::xdefault);
|
632
|
+
|
633
|
+
|
634
|
+
/*************************************************************************
|
635
|
+
Complemented F distribution
|
636
|
+
|
637
|
+
Returns the area from x to infinity under the F density
|
638
|
+
function (also known as Snedcor's density or the
|
639
|
+
variance ratio density).
|
640
|
+
|
641
|
+
|
642
|
+
inf.
|
643
|
+
-
|
644
|
+
1 | | a-1 b-1
|
645
|
+
1-P(x) = ------ | t (1-t) dt
|
646
|
+
B(a,b) | |
|
647
|
+
-
|
648
|
+
x
|
649
|
+
|
650
|
+
|
651
|
+
The incomplete beta integral is used, according to the
|
652
|
+
formula
|
653
|
+
|
654
|
+
P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
|
655
|
+
|
656
|
+
|
657
|
+
ACCURACY:
|
658
|
+
|
659
|
+
Tested at random points (a,b,x) in the indicated intervals.
|
660
|
+
x a,b Relative error:
|
661
|
+
arithmetic domain domain # trials peak rms
|
662
|
+
IEEE 0,1 1,100 100000 3.7e-14 5.9e-16
|
663
|
+
IEEE 1,5 1,100 100000 8.0e-15 1.6e-15
|
664
|
+
IEEE 0,1 1,10000 100000 1.8e-11 3.5e-13
|
665
|
+
IEEE 1,5 1,10000 100000 2.0e-11 3.0e-12
|
666
|
+
|
667
|
+
Cephes Math Library Release 2.8: June, 2000
|
668
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
669
|
+
*************************************************************************/
|
670
|
+
double fcdistribution(const ae_int_t a, const ae_int_t b, const double x, const xparams _xparams = alglib::xdefault);
|
671
|
+
|
672
|
+
|
673
|
+
/*************************************************************************
|
674
|
+
Inverse of complemented F distribution
|
675
|
+
|
676
|
+
Finds the F density argument x such that the integral
|
677
|
+
from x to infinity of the F density is equal to the
|
678
|
+
given probability p.
|
679
|
+
|
680
|
+
This is accomplished using the inverse beta integral
|
681
|
+
function and the relations
|
682
|
+
|
683
|
+
z = incbi( df2/2, df1/2, p )
|
684
|
+
x = df2 (1-z) / (df1 z).
|
685
|
+
|
686
|
+
Note: the following relations hold for the inverse of
|
687
|
+
the uncomplemented F distribution:
|
688
|
+
|
689
|
+
z = incbi( df1/2, df2/2, p )
|
690
|
+
x = df2 z / (df1 (1-z)).
|
691
|
+
|
692
|
+
ACCURACY:
|
693
|
+
|
694
|
+
Tested at random points (a,b,p).
|
695
|
+
|
696
|
+
a,b Relative error:
|
697
|
+
arithmetic domain # trials peak rms
|
698
|
+
For p between .001 and 1:
|
699
|
+
IEEE 1,100 100000 8.3e-15 4.7e-16
|
700
|
+
IEEE 1,10000 100000 2.1e-11 1.4e-13
|
701
|
+
For p between 10^-6 and 10^-3:
|
702
|
+
IEEE 1,100 50000 1.3e-12 8.4e-15
|
703
|
+
IEEE 1,10000 50000 3.0e-12 4.8e-14
|
704
|
+
|
705
|
+
Cephes Math Library Release 2.8: June, 2000
|
706
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
707
|
+
*************************************************************************/
|
708
|
+
double invfdistribution(const ae_int_t a, const ae_int_t b, const double y, const xparams _xparams = alglib::xdefault);
|
709
|
+
#endif
|
710
|
+
|
711
|
+
#if defined(AE_COMPILE_IGAMMAF) || !defined(AE_PARTIAL_BUILD)
|
712
|
+
/*************************************************************************
|
713
|
+
Incomplete gamma integral
|
714
|
+
|
715
|
+
The function is defined by
|
716
|
+
|
717
|
+
x
|
718
|
+
-
|
719
|
+
1 | | -t a-1
|
720
|
+
igam(a,x) = ----- | e t dt.
|
721
|
+
- | |
|
722
|
+
| (a) -
|
723
|
+
0
|
724
|
+
|
725
|
+
|
726
|
+
In this implementation both arguments must be positive.
|
727
|
+
The integral is evaluated by either a power series or
|
728
|
+
continued fraction expansion, depending on the relative
|
729
|
+
values of a and x.
|
730
|
+
|
731
|
+
ACCURACY:
|
732
|
+
|
733
|
+
Relative error:
|
734
|
+
arithmetic domain # trials peak rms
|
735
|
+
IEEE 0,30 200000 3.6e-14 2.9e-15
|
736
|
+
IEEE 0,100 300000 9.9e-14 1.5e-14
|
737
|
+
|
738
|
+
Cephes Math Library Release 2.8: June, 2000
|
739
|
+
Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
740
|
+
*************************************************************************/
|
741
|
+
double incompletegamma(const double a, const double x, const xparams _xparams = alglib::xdefault);
|
742
|
+
|
743
|
+
|
744
|
+
/*************************************************************************
|
745
|
+
Complemented incomplete gamma integral
|
746
|
+
|
747
|
+
The function is defined by
|
748
|
+
|
749
|
+
|
750
|
+
igamc(a,x) = 1 - igam(a,x)
|
751
|
+
|
752
|
+
inf.
|
753
|
+
-
|
754
|
+
1 | | -t a-1
|
755
|
+
= ----- | e t dt.
|
756
|
+
- | |
|
757
|
+
| (a) -
|
758
|
+
x
|
759
|
+
|
760
|
+
|
761
|
+
In this implementation both arguments must be positive.
|
762
|
+
The integral is evaluated by either a power series or
|
763
|
+
continued fraction expansion, depending on the relative
|
764
|
+
values of a and x.
|
765
|
+
|
766
|
+
ACCURACY:
|
767
|
+
|
768
|
+
Tested at random a, x.
|
769
|
+
a x Relative error:
|
770
|
+
arithmetic domain domain # trials peak rms
|
771
|
+
IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
|
772
|
+
IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
|
773
|
+
|
774
|
+
Cephes Math Library Release 2.8: June, 2000
|
775
|
+
Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
776
|
+
*************************************************************************/
|
777
|
+
double incompletegammac(const double a, const double x, const xparams _xparams = alglib::xdefault);
|
778
|
+
|
779
|
+
|
780
|
+
/*************************************************************************
|
781
|
+
Inverse of complemented imcomplete gamma integral
|
782
|
+
|
783
|
+
Given p, the function finds x such that
|
784
|
+
|
785
|
+
igamc( a, x ) = p.
|
786
|
+
|
787
|
+
Starting with the approximate value
|
788
|
+
|
789
|
+
3
|
790
|
+
x = a t
|
791
|
+
|
792
|
+
where
|
793
|
+
|
794
|
+
t = 1 - d - ndtri(p) sqrt(d)
|
795
|
+
|
796
|
+
and
|
797
|
+
|
798
|
+
d = 1/9a,
|
799
|
+
|
800
|
+
the routine performs up to 10 Newton iterations to find the
|
801
|
+
root of igamc(a,x) - p = 0.
|
802
|
+
|
803
|
+
ACCURACY:
|
804
|
+
|
805
|
+
Tested at random a, p in the intervals indicated.
|
806
|
+
|
807
|
+
a p Relative error:
|
808
|
+
arithmetic domain domain # trials peak rms
|
809
|
+
IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15
|
810
|
+
IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15
|
811
|
+
IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14
|
812
|
+
|
813
|
+
Cephes Math Library Release 2.8: June, 2000
|
814
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
815
|
+
*************************************************************************/
|
816
|
+
double invincompletegammac(const double a, const double y0, const xparams _xparams = alglib::xdefault);
|
817
|
+
#endif
|
818
|
+
|
819
|
+
#if defined(AE_COMPILE_CHISQUAREDISTR) || !defined(AE_PARTIAL_BUILD)
|
820
|
+
/*************************************************************************
|
821
|
+
Chi-square distribution
|
822
|
+
|
823
|
+
Returns the area under the left hand tail (from 0 to x)
|
824
|
+
of the Chi square probability density function with
|
825
|
+
v degrees of freedom.
|
826
|
+
|
827
|
+
|
828
|
+
x
|
829
|
+
-
|
830
|
+
1 | | v/2-1 -t/2
|
831
|
+
P( x | v ) = ----------- | t e dt
|
832
|
+
v/2 - | |
|
833
|
+
2 | (v/2) -
|
834
|
+
0
|
835
|
+
|
836
|
+
where x is the Chi-square variable.
|
837
|
+
|
838
|
+
The incomplete gamma integral is used, according to the
|
839
|
+
formula
|
840
|
+
|
841
|
+
y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
|
842
|
+
|
843
|
+
The arguments must both be positive.
|
844
|
+
|
845
|
+
ACCURACY:
|
846
|
+
|
847
|
+
See incomplete gamma function
|
848
|
+
|
849
|
+
|
850
|
+
Cephes Math Library Release 2.8: June, 2000
|
851
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
852
|
+
*************************************************************************/
|
853
|
+
double chisquaredistribution(const double v, const double x, const xparams _xparams = alglib::xdefault);
|
854
|
+
|
855
|
+
|
856
|
+
/*************************************************************************
|
857
|
+
Complemented Chi-square distribution
|
858
|
+
|
859
|
+
Returns the area under the right hand tail (from x to
|
860
|
+
infinity) of the Chi square probability density function
|
861
|
+
with v degrees of freedom:
|
862
|
+
|
863
|
+
inf.
|
864
|
+
-
|
865
|
+
1 | | v/2-1 -t/2
|
866
|
+
P( x | v ) = ----------- | t e dt
|
867
|
+
v/2 - | |
|
868
|
+
2 | (v/2) -
|
869
|
+
x
|
870
|
+
|
871
|
+
where x is the Chi-square variable.
|
872
|
+
|
873
|
+
The incomplete gamma integral is used, according to the
|
874
|
+
formula
|
875
|
+
|
876
|
+
y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
|
877
|
+
|
878
|
+
The arguments must both be positive.
|
879
|
+
|
880
|
+
ACCURACY:
|
881
|
+
|
882
|
+
See incomplete gamma function
|
883
|
+
|
884
|
+
Cephes Math Library Release 2.8: June, 2000
|
885
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
886
|
+
*************************************************************************/
|
887
|
+
double chisquarecdistribution(const double v, const double x, const xparams _xparams = alglib::xdefault);
|
888
|
+
|
889
|
+
|
890
|
+
/*************************************************************************
|
891
|
+
Inverse of complemented Chi-square distribution
|
892
|
+
|
893
|
+
Finds the Chi-square argument x such that the integral
|
894
|
+
from x to infinity of the Chi-square density is equal
|
895
|
+
to the given cumulative probability y.
|
896
|
+
|
897
|
+
This is accomplished using the inverse gamma integral
|
898
|
+
function and the relation
|
899
|
+
|
900
|
+
x/2 = igami( df/2, y );
|
901
|
+
|
902
|
+
ACCURACY:
|
903
|
+
|
904
|
+
See inverse incomplete gamma function
|
905
|
+
|
906
|
+
|
907
|
+
Cephes Math Library Release 2.8: June, 2000
|
908
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
909
|
+
*************************************************************************/
|
910
|
+
double invchisquaredistribution(const double v, const double y, const xparams _xparams = alglib::xdefault);
|
911
|
+
#endif
|
912
|
+
|
913
|
+
#if defined(AE_COMPILE_BINOMIALDISTR) || !defined(AE_PARTIAL_BUILD)
|
914
|
+
/*************************************************************************
|
915
|
+
Binomial distribution
|
916
|
+
|
917
|
+
Returns the sum of the terms 0 through k of the Binomial
|
918
|
+
probability density:
|
919
|
+
|
920
|
+
k
|
921
|
+
-- ( n ) j n-j
|
922
|
+
> ( ) p (1-p)
|
923
|
+
-- ( j )
|
924
|
+
j=0
|
925
|
+
|
926
|
+
The terms are not summed directly; instead the incomplete
|
927
|
+
beta integral is employed, according to the formula
|
928
|
+
|
929
|
+
y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
|
930
|
+
|
931
|
+
The arguments must be positive, with p ranging from 0 to 1.
|
932
|
+
|
933
|
+
ACCURACY:
|
934
|
+
|
935
|
+
Tested at random points (a,b,p), with p between 0 and 1.
|
936
|
+
|
937
|
+
a,b Relative error:
|
938
|
+
arithmetic domain # trials peak rms
|
939
|
+
For p between 0.001 and 1:
|
940
|
+
IEEE 0,100 100000 4.3e-15 2.6e-16
|
941
|
+
|
942
|
+
Cephes Math Library Release 2.8: June, 2000
|
943
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
944
|
+
*************************************************************************/
|
945
|
+
double binomialdistribution(const ae_int_t k, const ae_int_t n, const double p, const xparams _xparams = alglib::xdefault);
|
946
|
+
|
947
|
+
|
948
|
+
/*************************************************************************
|
949
|
+
Complemented binomial distribution
|
950
|
+
|
951
|
+
Returns the sum of the terms k+1 through n of the Binomial
|
952
|
+
probability density:
|
953
|
+
|
954
|
+
n
|
955
|
+
-- ( n ) j n-j
|
956
|
+
> ( ) p (1-p)
|
957
|
+
-- ( j )
|
958
|
+
j=k+1
|
959
|
+
|
960
|
+
The terms are not summed directly; instead the incomplete
|
961
|
+
beta integral is employed, according to the formula
|
962
|
+
|
963
|
+
y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
|
964
|
+
|
965
|
+
The arguments must be positive, with p ranging from 0 to 1.
|
966
|
+
|
967
|
+
ACCURACY:
|
968
|
+
|
969
|
+
Tested at random points (a,b,p).
|
970
|
+
|
971
|
+
a,b Relative error:
|
972
|
+
arithmetic domain # trials peak rms
|
973
|
+
For p between 0.001 and 1:
|
974
|
+
IEEE 0,100 100000 6.7e-15 8.2e-16
|
975
|
+
For p between 0 and .001:
|
976
|
+
IEEE 0,100 100000 1.5e-13 2.7e-15
|
977
|
+
|
978
|
+
Cephes Math Library Release 2.8: June, 2000
|
979
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
980
|
+
*************************************************************************/
|
981
|
+
double binomialcdistribution(const ae_int_t k, const ae_int_t n, const double p, const xparams _xparams = alglib::xdefault);
|
982
|
+
|
983
|
+
|
984
|
+
/*************************************************************************
|
985
|
+
Inverse binomial distribution
|
986
|
+
|
987
|
+
Finds the event probability p such that the sum of the
|
988
|
+
terms 0 through k of the Binomial probability density
|
989
|
+
is equal to the given cumulative probability y.
|
990
|
+
|
991
|
+
This is accomplished using the inverse beta integral
|
992
|
+
function and the relation
|
993
|
+
|
994
|
+
1 - p = incbi( n-k, k+1, y ).
|
995
|
+
|
996
|
+
ACCURACY:
|
997
|
+
|
998
|
+
Tested at random points (a,b,p).
|
999
|
+
|
1000
|
+
a,b Relative error:
|
1001
|
+
arithmetic domain # trials peak rms
|
1002
|
+
For p between 0.001 and 1:
|
1003
|
+
IEEE 0,100 100000 2.3e-14 6.4e-16
|
1004
|
+
IEEE 0,10000 100000 6.6e-12 1.2e-13
|
1005
|
+
For p between 10^-6 and 0.001:
|
1006
|
+
IEEE 0,100 100000 2.0e-12 1.3e-14
|
1007
|
+
IEEE 0,10000 100000 1.5e-12 3.2e-14
|
1008
|
+
|
1009
|
+
Cephes Math Library Release 2.8: June, 2000
|
1010
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
1011
|
+
*************************************************************************/
|
1012
|
+
double invbinomialdistribution(const ae_int_t k, const ae_int_t n, const double y, const xparams _xparams = alglib::xdefault);
|
1013
|
+
#endif
|
1014
|
+
|
1015
|
+
#if defined(AE_COMPILE_EXPINTEGRALS) || !defined(AE_PARTIAL_BUILD)
|
1016
|
+
/*************************************************************************
|
1017
|
+
Exponential integral Ei(x)
|
1018
|
+
|
1019
|
+
x
|
1020
|
+
- t
|
1021
|
+
| | e
|
1022
|
+
Ei(x) = -|- --- dt .
|
1023
|
+
| | t
|
1024
|
+
-
|
1025
|
+
-inf
|
1026
|
+
|
1027
|
+
Not defined for x <= 0.
|
1028
|
+
See also expn.c.
|
1029
|
+
|
1030
|
+
|
1031
|
+
|
1032
|
+
ACCURACY:
|
1033
|
+
|
1034
|
+
Relative error:
|
1035
|
+
arithmetic domain # trials peak rms
|
1036
|
+
IEEE 0,100 50000 8.6e-16 1.3e-16
|
1037
|
+
|
1038
|
+
Cephes Math Library Release 2.8: May, 1999
|
1039
|
+
Copyright 1999 by Stephen L. Moshier
|
1040
|
+
*************************************************************************/
|
1041
|
+
double exponentialintegralei(const double x, const xparams _xparams = alglib::xdefault);
|
1042
|
+
|
1043
|
+
|
1044
|
+
/*************************************************************************
|
1045
|
+
Exponential integral En(x)
|
1046
|
+
|
1047
|
+
Evaluates the exponential integral
|
1048
|
+
|
1049
|
+
inf.
|
1050
|
+
-
|
1051
|
+
| | -xt
|
1052
|
+
| e
|
1053
|
+
E (x) = | ---- dt.
|
1054
|
+
n | n
|
1055
|
+
| | t
|
1056
|
+
-
|
1057
|
+
1
|
1058
|
+
|
1059
|
+
|
1060
|
+
Both n and x must be nonnegative.
|
1061
|
+
|
1062
|
+
The routine employs either a power series, a continued
|
1063
|
+
fraction, or an asymptotic formula depending on the
|
1064
|
+
relative values of n and x.
|
1065
|
+
|
1066
|
+
ACCURACY:
|
1067
|
+
|
1068
|
+
Relative error:
|
1069
|
+
arithmetic domain # trials peak rms
|
1070
|
+
IEEE 0, 30 10000 1.7e-15 3.6e-16
|
1071
|
+
|
1072
|
+
Cephes Math Library Release 2.8: June, 2000
|
1073
|
+
Copyright 1985, 2000 by Stephen L. Moshier
|
1074
|
+
*************************************************************************/
|
1075
|
+
double exponentialintegralen(const double x, const ae_int_t n, const xparams _xparams = alglib::xdefault);
|
1076
|
+
#endif
|
1077
|
+
|
1078
|
+
#if defined(AE_COMPILE_JACOBIANELLIPTIC) || !defined(AE_PARTIAL_BUILD)
|
1079
|
+
/*************************************************************************
|
1080
|
+
Jacobian Elliptic Functions
|
1081
|
+
|
1082
|
+
Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
|
1083
|
+
and dn(u|m) of parameter m between 0 and 1, and real
|
1084
|
+
argument u.
|
1085
|
+
|
1086
|
+
These functions are periodic, with quarter-period on the
|
1087
|
+
real axis equal to the complete elliptic integral
|
1088
|
+
ellpk(1.0-m).
|
1089
|
+
|
1090
|
+
Relation to incomplete elliptic integral:
|
1091
|
+
If u = ellik(phi,m), then sn(u|m) = sin(phi),
|
1092
|
+
and cn(u|m) = cos(phi). Phi is called the amplitude of u.
|
1093
|
+
|
1094
|
+
Computation is by means of the arithmetic-geometric mean
|
1095
|
+
algorithm, except when m is within 1e-9 of 0 or 1. In the
|
1096
|
+
latter case with m close to 1, the approximation applies
|
1097
|
+
only for phi < pi/2.
|
1098
|
+
|
1099
|
+
ACCURACY:
|
1100
|
+
|
1101
|
+
Tested at random points with u between 0 and 10, m between
|
1102
|
+
0 and 1.
|
1103
|
+
|
1104
|
+
Absolute error (* = relative error):
|
1105
|
+
arithmetic function # trials peak rms
|
1106
|
+
IEEE phi 10000 9.2e-16* 1.4e-16*
|
1107
|
+
IEEE sn 50000 4.1e-15 4.6e-16
|
1108
|
+
IEEE cn 40000 3.6e-15 4.4e-16
|
1109
|
+
IEEE dn 10000 1.3e-12 1.8e-14
|
1110
|
+
|
1111
|
+
Peak error observed in consistency check using addition
|
1112
|
+
theorem for sn(u+v) was 4e-16 (absolute). Also tested by
|
1113
|
+
the above relation to the incomplete elliptic integral.
|
1114
|
+
Accuracy deteriorates when u is large.
|
1115
|
+
|
1116
|
+
Cephes Math Library Release 2.8: June, 2000
|
1117
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1118
|
+
*************************************************************************/
|
1119
|
+
void jacobianellipticfunctions(const double u, const double m, double &sn, double &cn, double &dn, double &ph, const xparams _xparams = alglib::xdefault);
|
1120
|
+
#endif
|
1121
|
+
|
1122
|
+
#if defined(AE_COMPILE_TRIGINTEGRALS) || !defined(AE_PARTIAL_BUILD)
|
1123
|
+
/*************************************************************************
|
1124
|
+
Sine and cosine integrals
|
1125
|
+
|
1126
|
+
Evaluates the integrals
|
1127
|
+
|
1128
|
+
x
|
1129
|
+
-
|
1130
|
+
| cos t - 1
|
1131
|
+
Ci(x) = eul + ln x + | --------- dt,
|
1132
|
+
| t
|
1133
|
+
-
|
1134
|
+
0
|
1135
|
+
x
|
1136
|
+
-
|
1137
|
+
| sin t
|
1138
|
+
Si(x) = | ----- dt
|
1139
|
+
| t
|
1140
|
+
-
|
1141
|
+
0
|
1142
|
+
|
1143
|
+
where eul = 0.57721566490153286061 is Euler's constant.
|
1144
|
+
The integrals are approximated by rational functions.
|
1145
|
+
For x > 8 auxiliary functions f(x) and g(x) are employed
|
1146
|
+
such that
|
1147
|
+
|
1148
|
+
Ci(x) = f(x) sin(x) - g(x) cos(x)
|
1149
|
+
Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
|
1150
|
+
|
1151
|
+
|
1152
|
+
ACCURACY:
|
1153
|
+
Test interval = [0,50].
|
1154
|
+
Absolute error, except relative when > 1:
|
1155
|
+
arithmetic function # trials peak rms
|
1156
|
+
IEEE Si 30000 4.4e-16 7.3e-17
|
1157
|
+
IEEE Ci 30000 6.9e-16 5.1e-17
|
1158
|
+
|
1159
|
+
Cephes Math Library Release 2.1: January, 1989
|
1160
|
+
Copyright 1984, 1987, 1989 by Stephen L. Moshier
|
1161
|
+
*************************************************************************/
|
1162
|
+
void sinecosineintegrals(const double x, double &si, double &ci, const xparams _xparams = alglib::xdefault);
|
1163
|
+
|
1164
|
+
|
1165
|
+
/*************************************************************************
|
1166
|
+
Hyperbolic sine and cosine integrals
|
1167
|
+
|
1168
|
+
Approximates the integrals
|
1169
|
+
|
1170
|
+
x
|
1171
|
+
-
|
1172
|
+
| | cosh t - 1
|
1173
|
+
Chi(x) = eul + ln x + | ----------- dt,
|
1174
|
+
| | t
|
1175
|
+
-
|
1176
|
+
0
|
1177
|
+
|
1178
|
+
x
|
1179
|
+
-
|
1180
|
+
| | sinh t
|
1181
|
+
Shi(x) = | ------ dt
|
1182
|
+
| | t
|
1183
|
+
-
|
1184
|
+
0
|
1185
|
+
|
1186
|
+
where eul = 0.57721566490153286061 is Euler's constant.
|
1187
|
+
The integrals are evaluated by power series for x < 8
|
1188
|
+
and by Chebyshev expansions for x between 8 and 88.
|
1189
|
+
For large x, both functions approach exp(x)/2x.
|
1190
|
+
Arguments greater than 88 in magnitude return MAXNUM.
|
1191
|
+
|
1192
|
+
|
1193
|
+
ACCURACY:
|
1194
|
+
|
1195
|
+
Test interval 0 to 88.
|
1196
|
+
Relative error:
|
1197
|
+
arithmetic function # trials peak rms
|
1198
|
+
IEEE Shi 30000 6.9e-16 1.6e-16
|
1199
|
+
Absolute error, except relative when |Chi| > 1:
|
1200
|
+
IEEE Chi 30000 8.4e-16 1.4e-16
|
1201
|
+
|
1202
|
+
Cephes Math Library Release 2.8: June, 2000
|
1203
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1204
|
+
*************************************************************************/
|
1205
|
+
void hyperbolicsinecosineintegrals(const double x, double &shi, double &chi, const xparams _xparams = alglib::xdefault);
|
1206
|
+
#endif
|
1207
|
+
|
1208
|
+
#if defined(AE_COMPILE_CHEBYSHEV) || !defined(AE_PARTIAL_BUILD)
|
1209
|
+
/*************************************************************************
|
1210
|
+
Calculation of the value of the Chebyshev polynomials of the
|
1211
|
+
first and second kinds.
|
1212
|
+
|
1213
|
+
Parameters:
|
1214
|
+
r - polynomial kind, either 1 or 2.
|
1215
|
+
n - degree, n>=0
|
1216
|
+
x - argument, -1 <= x <= 1
|
1217
|
+
|
1218
|
+
Result:
|
1219
|
+
the value of the Chebyshev polynomial at x
|
1220
|
+
*************************************************************************/
|
1221
|
+
double chebyshevcalculate(const ae_int_t r, const ae_int_t n, const double x, const xparams _xparams = alglib::xdefault);
|
1222
|
+
|
1223
|
+
|
1224
|
+
/*************************************************************************
|
1225
|
+
Summation of Chebyshev polynomials using Clenshaw's recurrence formula.
|
1226
|
+
|
1227
|
+
This routine calculates
|
1228
|
+
c[0]*T0(x) + c[1]*T1(x) + ... + c[N]*TN(x)
|
1229
|
+
or
|
1230
|
+
c[0]*U0(x) + c[1]*U1(x) + ... + c[N]*UN(x)
|
1231
|
+
depending on the R.
|
1232
|
+
|
1233
|
+
Parameters:
|
1234
|
+
r - polynomial kind, either 1 or 2.
|
1235
|
+
n - degree, n>=0
|
1236
|
+
x - argument
|
1237
|
+
|
1238
|
+
Result:
|
1239
|
+
the value of the Chebyshev polynomial at x
|
1240
|
+
*************************************************************************/
|
1241
|
+
double chebyshevsum(const real_1d_array &c, const ae_int_t r, const ae_int_t n, const double x, const xparams _xparams = alglib::xdefault);
|
1242
|
+
|
1243
|
+
|
1244
|
+
/*************************************************************************
|
1245
|
+
Representation of Tn as C[0] + C[1]*X + ... + C[N]*X^N
|
1246
|
+
|
1247
|
+
Input parameters:
|
1248
|
+
N - polynomial degree, n>=0
|
1249
|
+
|
1250
|
+
Output parameters:
|
1251
|
+
C - coefficients
|
1252
|
+
*************************************************************************/
|
1253
|
+
void chebyshevcoefficients(const ae_int_t n, real_1d_array &c, const xparams _xparams = alglib::xdefault);
|
1254
|
+
|
1255
|
+
|
1256
|
+
/*************************************************************************
|
1257
|
+
Conversion of a series of Chebyshev polynomials to a power series.
|
1258
|
+
|
1259
|
+
Represents A[0]*T0(x) + A[1]*T1(x) + ... + A[N]*Tn(x) as
|
1260
|
+
B[0] + B[1]*X + ... + B[N]*X^N.
|
1261
|
+
|
1262
|
+
Input parameters:
|
1263
|
+
A - Chebyshev series coefficients
|
1264
|
+
N - degree, N>=0
|
1265
|
+
|
1266
|
+
Output parameters
|
1267
|
+
B - power series coefficients
|
1268
|
+
*************************************************************************/
|
1269
|
+
void fromchebyshev(const real_1d_array &a, const ae_int_t n, real_1d_array &b, const xparams _xparams = alglib::xdefault);
|
1270
|
+
#endif
|
1271
|
+
|
1272
|
+
#if defined(AE_COMPILE_POISSONDISTR) || !defined(AE_PARTIAL_BUILD)
|
1273
|
+
/*************************************************************************
|
1274
|
+
Poisson distribution
|
1275
|
+
|
1276
|
+
Returns the sum of the first k+1 terms of the Poisson
|
1277
|
+
distribution:
|
1278
|
+
|
1279
|
+
k j
|
1280
|
+
-- -m m
|
1281
|
+
> e --
|
1282
|
+
-- j!
|
1283
|
+
j=0
|
1284
|
+
|
1285
|
+
The terms are not summed directly; instead the incomplete
|
1286
|
+
gamma integral is employed, according to the relation
|
1287
|
+
|
1288
|
+
y = pdtr( k, m ) = igamc( k+1, m ).
|
1289
|
+
|
1290
|
+
The arguments must both be positive.
|
1291
|
+
ACCURACY:
|
1292
|
+
|
1293
|
+
See incomplete gamma function
|
1294
|
+
|
1295
|
+
Cephes Math Library Release 2.8: June, 2000
|
1296
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
1297
|
+
*************************************************************************/
|
1298
|
+
double poissondistribution(const ae_int_t k, const double m, const xparams _xparams = alglib::xdefault);
|
1299
|
+
|
1300
|
+
|
1301
|
+
/*************************************************************************
|
1302
|
+
Complemented Poisson distribution
|
1303
|
+
|
1304
|
+
Returns the sum of the terms k+1 to infinity of the Poisson
|
1305
|
+
distribution:
|
1306
|
+
|
1307
|
+
inf. j
|
1308
|
+
-- -m m
|
1309
|
+
> e --
|
1310
|
+
-- j!
|
1311
|
+
j=k+1
|
1312
|
+
|
1313
|
+
The terms are not summed directly; instead the incomplete
|
1314
|
+
gamma integral is employed, according to the formula
|
1315
|
+
|
1316
|
+
y = pdtrc( k, m ) = igam( k+1, m ).
|
1317
|
+
|
1318
|
+
The arguments must both be positive.
|
1319
|
+
|
1320
|
+
ACCURACY:
|
1321
|
+
|
1322
|
+
See incomplete gamma function
|
1323
|
+
|
1324
|
+
Cephes Math Library Release 2.8: June, 2000
|
1325
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
1326
|
+
*************************************************************************/
|
1327
|
+
double poissoncdistribution(const ae_int_t k, const double m, const xparams _xparams = alglib::xdefault);
|
1328
|
+
|
1329
|
+
|
1330
|
+
/*************************************************************************
|
1331
|
+
Inverse Poisson distribution
|
1332
|
+
|
1333
|
+
Finds the Poisson variable x such that the integral
|
1334
|
+
from 0 to x of the Poisson density is equal to the
|
1335
|
+
given probability y.
|
1336
|
+
|
1337
|
+
This is accomplished using the inverse gamma integral
|
1338
|
+
function and the relation
|
1339
|
+
|
1340
|
+
m = igami( k+1, y ).
|
1341
|
+
|
1342
|
+
ACCURACY:
|
1343
|
+
|
1344
|
+
See inverse incomplete gamma function
|
1345
|
+
|
1346
|
+
Cephes Math Library Release 2.8: June, 2000
|
1347
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
1348
|
+
*************************************************************************/
|
1349
|
+
double invpoissondistribution(const ae_int_t k, const double y, const xparams _xparams = alglib::xdefault);
|
1350
|
+
#endif
|
1351
|
+
|
1352
|
+
#if defined(AE_COMPILE_BETAF) || !defined(AE_PARTIAL_BUILD)
|
1353
|
+
/*************************************************************************
|
1354
|
+
Beta function
|
1355
|
+
|
1356
|
+
|
1357
|
+
- -
|
1358
|
+
| (a) | (b)
|
1359
|
+
beta( a, b ) = -----------.
|
1360
|
+
-
|
1361
|
+
| (a+b)
|
1362
|
+
|
1363
|
+
For large arguments the logarithm of the function is
|
1364
|
+
evaluated using lgam(), then exponentiated.
|
1365
|
+
|
1366
|
+
ACCURACY:
|
1367
|
+
|
1368
|
+
Relative error:
|
1369
|
+
arithmetic domain # trials peak rms
|
1370
|
+
IEEE 0,30 30000 8.1e-14 1.1e-14
|
1371
|
+
|
1372
|
+
Cephes Math Library Release 2.0: April, 1987
|
1373
|
+
Copyright 1984, 1987 by Stephen L. Moshier
|
1374
|
+
*************************************************************************/
|
1375
|
+
double beta(const double a, const double b, const xparams _xparams = alglib::xdefault);
|
1376
|
+
#endif
|
1377
|
+
|
1378
|
+
#if defined(AE_COMPILE_FRESNEL) || !defined(AE_PARTIAL_BUILD)
|
1379
|
+
/*************************************************************************
|
1380
|
+
Fresnel integral
|
1381
|
+
|
1382
|
+
Evaluates the Fresnel integrals
|
1383
|
+
|
1384
|
+
x
|
1385
|
+
-
|
1386
|
+
| |
|
1387
|
+
C(x) = | cos(pi/2 t**2) dt,
|
1388
|
+
| |
|
1389
|
+
-
|
1390
|
+
0
|
1391
|
+
|
1392
|
+
x
|
1393
|
+
-
|
1394
|
+
| |
|
1395
|
+
S(x) = | sin(pi/2 t**2) dt.
|
1396
|
+
| |
|
1397
|
+
-
|
1398
|
+
0
|
1399
|
+
|
1400
|
+
|
1401
|
+
The integrals are evaluated by a power series for x < 1.
|
1402
|
+
For x >= 1 auxiliary functions f(x) and g(x) are employed
|
1403
|
+
such that
|
1404
|
+
|
1405
|
+
C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
|
1406
|
+
S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
|
1407
|
+
|
1408
|
+
|
1409
|
+
|
1410
|
+
ACCURACY:
|
1411
|
+
|
1412
|
+
Relative error.
|
1413
|
+
|
1414
|
+
Arithmetic function domain # trials peak rms
|
1415
|
+
IEEE S(x) 0, 10 10000 2.0e-15 3.2e-16
|
1416
|
+
IEEE C(x) 0, 10 10000 1.8e-15 3.3e-16
|
1417
|
+
|
1418
|
+
Cephes Math Library Release 2.8: June, 2000
|
1419
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
1420
|
+
*************************************************************************/
|
1421
|
+
void fresnelintegral(const double x, double &c, double &s, const xparams _xparams = alglib::xdefault);
|
1422
|
+
#endif
|
1423
|
+
|
1424
|
+
#if defined(AE_COMPILE_PSIF) || !defined(AE_PARTIAL_BUILD)
|
1425
|
+
/*************************************************************************
|
1426
|
+
Psi (digamma) function
|
1427
|
+
|
1428
|
+
d -
|
1429
|
+
psi(x) = -- ln | (x)
|
1430
|
+
dx
|
1431
|
+
|
1432
|
+
is the logarithmic derivative of the gamma function.
|
1433
|
+
For integer x,
|
1434
|
+
n-1
|
1435
|
+
-
|
1436
|
+
psi(n) = -EUL + > 1/k.
|
1437
|
+
-
|
1438
|
+
k=1
|
1439
|
+
|
1440
|
+
This formula is used for 0 < n <= 10. If x is negative, it
|
1441
|
+
is transformed to a positive argument by the reflection
|
1442
|
+
formula psi(1-x) = psi(x) + pi cot(pi x).
|
1443
|
+
For general positive x, the argument is made greater than 10
|
1444
|
+
using the recurrence psi(x+1) = psi(x) + 1/x.
|
1445
|
+
Then the following asymptotic expansion is applied:
|
1446
|
+
|
1447
|
+
inf. B
|
1448
|
+
- 2k
|
1449
|
+
psi(x) = log(x) - 1/2x - > -------
|
1450
|
+
- 2k
|
1451
|
+
k=1 2k x
|
1452
|
+
|
1453
|
+
where the B2k are Bernoulli numbers.
|
1454
|
+
|
1455
|
+
ACCURACY:
|
1456
|
+
Relative error (except absolute when |psi| < 1):
|
1457
|
+
arithmetic domain # trials peak rms
|
1458
|
+
IEEE 0,30 30000 1.3e-15 1.4e-16
|
1459
|
+
IEEE -30,0 40000 1.5e-15 2.2e-16
|
1460
|
+
|
1461
|
+
Cephes Math Library Release 2.8: June, 2000
|
1462
|
+
Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
|
1463
|
+
*************************************************************************/
|
1464
|
+
double psi(const double x, const xparams _xparams = alglib::xdefault);
|
1465
|
+
#endif
|
1466
|
+
|
1467
|
+
#if defined(AE_COMPILE_AIRYF) || !defined(AE_PARTIAL_BUILD)
|
1468
|
+
/*************************************************************************
|
1469
|
+
Airy function
|
1470
|
+
|
1471
|
+
Solution of the differential equation
|
1472
|
+
|
1473
|
+
y"(x) = xy.
|
1474
|
+
|
1475
|
+
The function returns the two independent solutions Ai, Bi
|
1476
|
+
and their first derivatives Ai'(x), Bi'(x).
|
1477
|
+
|
1478
|
+
Evaluation is by power series summation for small x,
|
1479
|
+
by rational minimax approximations for large x.
|
1480
|
+
|
1481
|
+
|
1482
|
+
|
1483
|
+
ACCURACY:
|
1484
|
+
Error criterion is absolute when function <= 1, relative
|
1485
|
+
when function > 1, except * denotes relative error criterion.
|
1486
|
+
For large negative x, the absolute error increases as x^1.5.
|
1487
|
+
For large positive x, the relative error increases as x^1.5.
|
1488
|
+
|
1489
|
+
Arithmetic domain function # trials peak rms
|
1490
|
+
IEEE -10, 0 Ai 10000 1.6e-15 2.7e-16
|
1491
|
+
IEEE 0, 10 Ai 10000 2.3e-14* 1.8e-15*
|
1492
|
+
IEEE -10, 0 Ai' 10000 4.6e-15 7.6e-16
|
1493
|
+
IEEE 0, 10 Ai' 10000 1.8e-14* 1.5e-15*
|
1494
|
+
IEEE -10, 10 Bi 30000 4.2e-15 5.3e-16
|
1495
|
+
IEEE -10, 10 Bi' 30000 4.9e-15 7.3e-16
|
1496
|
+
|
1497
|
+
Cephes Math Library Release 2.8: June, 2000
|
1498
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
1499
|
+
*************************************************************************/
|
1500
|
+
void airy(const double x, double &ai, double &aip, double &bi, double &bip, const xparams _xparams = alglib::xdefault);
|
1501
|
+
#endif
|
1502
|
+
|
1503
|
+
#if defined(AE_COMPILE_DAWSON) || !defined(AE_PARTIAL_BUILD)
|
1504
|
+
/*************************************************************************
|
1505
|
+
Dawson's Integral
|
1506
|
+
|
1507
|
+
Approximates the integral
|
1508
|
+
|
1509
|
+
x
|
1510
|
+
-
|
1511
|
+
2 | | 2
|
1512
|
+
dawsn(x) = exp( -x ) | exp( t ) dt
|
1513
|
+
| |
|
1514
|
+
-
|
1515
|
+
0
|
1516
|
+
|
1517
|
+
Three different rational approximations are employed, for
|
1518
|
+
the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
|
1519
|
+
|
1520
|
+
ACCURACY:
|
1521
|
+
|
1522
|
+
Relative error:
|
1523
|
+
arithmetic domain # trials peak rms
|
1524
|
+
IEEE 0,10 10000 6.9e-16 1.0e-16
|
1525
|
+
|
1526
|
+
Cephes Math Library Release 2.8: June, 2000
|
1527
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
1528
|
+
*************************************************************************/
|
1529
|
+
double dawsonintegral(const double x, const xparams _xparams = alglib::xdefault);
|
1530
|
+
#endif
|
1531
|
+
|
1532
|
+
#if defined(AE_COMPILE_HERMITE) || !defined(AE_PARTIAL_BUILD)
|
1533
|
+
/*************************************************************************
|
1534
|
+
Calculation of the value of the Hermite polynomial.
|
1535
|
+
|
1536
|
+
Parameters:
|
1537
|
+
n - degree, n>=0
|
1538
|
+
x - argument
|
1539
|
+
|
1540
|
+
Result:
|
1541
|
+
the value of the Hermite polynomial Hn at x
|
1542
|
+
*************************************************************************/
|
1543
|
+
double hermitecalculate(const ae_int_t n, const double x, const xparams _xparams = alglib::xdefault);
|
1544
|
+
|
1545
|
+
|
1546
|
+
/*************************************************************************
|
1547
|
+
Summation of Hermite polynomials using Clenshaw's recurrence formula.
|
1548
|
+
|
1549
|
+
This routine calculates
|
1550
|
+
c[0]*H0(x) + c[1]*H1(x) + ... + c[N]*HN(x)
|
1551
|
+
|
1552
|
+
Parameters:
|
1553
|
+
n - degree, n>=0
|
1554
|
+
x - argument
|
1555
|
+
|
1556
|
+
Result:
|
1557
|
+
the value of the Hermite polynomial at x
|
1558
|
+
*************************************************************************/
|
1559
|
+
double hermitesum(const real_1d_array &c, const ae_int_t n, const double x, const xparams _xparams = alglib::xdefault);
|
1560
|
+
|
1561
|
+
|
1562
|
+
/*************************************************************************
|
1563
|
+
Representation of Hn as C[0] + C[1]*X + ... + C[N]*X^N
|
1564
|
+
|
1565
|
+
Input parameters:
|
1566
|
+
N - polynomial degree, n>=0
|
1567
|
+
|
1568
|
+
Output parameters:
|
1569
|
+
C - coefficients
|
1570
|
+
*************************************************************************/
|
1571
|
+
void hermitecoefficients(const ae_int_t n, real_1d_array &c, const xparams _xparams = alglib::xdefault);
|
1572
|
+
#endif
|
1573
|
+
|
1574
|
+
#if defined(AE_COMPILE_LEGENDRE) || !defined(AE_PARTIAL_BUILD)
|
1575
|
+
/*************************************************************************
|
1576
|
+
Calculation of the value of the Legendre polynomial Pn.
|
1577
|
+
|
1578
|
+
Parameters:
|
1579
|
+
n - degree, n>=0
|
1580
|
+
x - argument
|
1581
|
+
|
1582
|
+
Result:
|
1583
|
+
the value of the Legendre polynomial Pn at x
|
1584
|
+
*************************************************************************/
|
1585
|
+
double legendrecalculate(const ae_int_t n, const double x, const xparams _xparams = alglib::xdefault);
|
1586
|
+
|
1587
|
+
|
1588
|
+
/*************************************************************************
|
1589
|
+
Summation of Legendre polynomials using Clenshaw's recurrence formula.
|
1590
|
+
|
1591
|
+
This routine calculates
|
1592
|
+
c[0]*P0(x) + c[1]*P1(x) + ... + c[N]*PN(x)
|
1593
|
+
|
1594
|
+
Parameters:
|
1595
|
+
n - degree, n>=0
|
1596
|
+
x - argument
|
1597
|
+
|
1598
|
+
Result:
|
1599
|
+
the value of the Legendre polynomial at x
|
1600
|
+
*************************************************************************/
|
1601
|
+
double legendresum(const real_1d_array &c, const ae_int_t n, const double x, const xparams _xparams = alglib::xdefault);
|
1602
|
+
|
1603
|
+
|
1604
|
+
/*************************************************************************
|
1605
|
+
Representation of Pn as C[0] + C[1]*X + ... + C[N]*X^N
|
1606
|
+
|
1607
|
+
Input parameters:
|
1608
|
+
N - polynomial degree, n>=0
|
1609
|
+
|
1610
|
+
Output parameters:
|
1611
|
+
C - coefficients
|
1612
|
+
*************************************************************************/
|
1613
|
+
void legendrecoefficients(const ae_int_t n, real_1d_array &c, const xparams _xparams = alglib::xdefault);
|
1614
|
+
#endif
|
1615
|
+
|
1616
|
+
#if defined(AE_COMPILE_BESSEL) || !defined(AE_PARTIAL_BUILD)
|
1617
|
+
/*************************************************************************
|
1618
|
+
Bessel function of order zero
|
1619
|
+
|
1620
|
+
Returns Bessel function of order zero of the argument.
|
1621
|
+
|
1622
|
+
The domain is divided into the intervals [0, 5] and
|
1623
|
+
(5, infinity). In the first interval the following rational
|
1624
|
+
approximation is used:
|
1625
|
+
|
1626
|
+
|
1627
|
+
2 2
|
1628
|
+
(w - r ) (w - r ) P (w) / Q (w)
|
1629
|
+
1 2 3 8
|
1630
|
+
|
1631
|
+
2
|
1632
|
+
where w = x and the two r's are zeros of the function.
|
1633
|
+
|
1634
|
+
In the second interval, the Hankel asymptotic expansion
|
1635
|
+
is employed with two rational functions of degree 6/6
|
1636
|
+
and 7/7.
|
1637
|
+
|
1638
|
+
ACCURACY:
|
1639
|
+
|
1640
|
+
Absolute error:
|
1641
|
+
arithmetic domain # trials peak rms
|
1642
|
+
IEEE 0, 30 60000 4.2e-16 1.1e-16
|
1643
|
+
|
1644
|
+
Cephes Math Library Release 2.8: June, 2000
|
1645
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
1646
|
+
*************************************************************************/
|
1647
|
+
double besselj0(const double x, const xparams _xparams = alglib::xdefault);
|
1648
|
+
|
1649
|
+
|
1650
|
+
/*************************************************************************
|
1651
|
+
Bessel function of order one
|
1652
|
+
|
1653
|
+
Returns Bessel function of order one of the argument.
|
1654
|
+
|
1655
|
+
The domain is divided into the intervals [0, 8] and
|
1656
|
+
(8, infinity). In the first interval a 24 term Chebyshev
|
1657
|
+
expansion is used. In the second, the asymptotic
|
1658
|
+
trigonometric representation is employed using two
|
1659
|
+
rational functions of degree 5/5.
|
1660
|
+
|
1661
|
+
ACCURACY:
|
1662
|
+
|
1663
|
+
Absolute error:
|
1664
|
+
arithmetic domain # trials peak rms
|
1665
|
+
IEEE 0, 30 30000 2.6e-16 1.1e-16
|
1666
|
+
|
1667
|
+
Cephes Math Library Release 2.8: June, 2000
|
1668
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
1669
|
+
*************************************************************************/
|
1670
|
+
double besselj1(const double x, const xparams _xparams = alglib::xdefault);
|
1671
|
+
|
1672
|
+
|
1673
|
+
/*************************************************************************
|
1674
|
+
Bessel function of integer order
|
1675
|
+
|
1676
|
+
Returns Bessel function of order n, where n is a
|
1677
|
+
(possibly negative) integer.
|
1678
|
+
|
1679
|
+
The ratio of jn(x) to j0(x) is computed by backward
|
1680
|
+
recurrence. First the ratio jn/jn-1 is found by a
|
1681
|
+
continued fraction expansion. Then the recurrence
|
1682
|
+
relating successive orders is applied until j0 or j1 is
|
1683
|
+
reached.
|
1684
|
+
|
1685
|
+
If n = 0 or 1 the routine for j0 or j1 is called
|
1686
|
+
directly.
|
1687
|
+
|
1688
|
+
ACCURACY:
|
1689
|
+
|
1690
|
+
Absolute error:
|
1691
|
+
arithmetic range # trials peak rms
|
1692
|
+
IEEE 0, 30 5000 4.4e-16 7.9e-17
|
1693
|
+
|
1694
|
+
|
1695
|
+
Not suitable for large n or x. Use jv() (fractional order) instead.
|
1696
|
+
|
1697
|
+
Cephes Math Library Release 2.8: June, 2000
|
1698
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1699
|
+
*************************************************************************/
|
1700
|
+
double besseljn(const ae_int_t n, const double x, const xparams _xparams = alglib::xdefault);
|
1701
|
+
|
1702
|
+
|
1703
|
+
/*************************************************************************
|
1704
|
+
Bessel function of the second kind, order zero
|
1705
|
+
|
1706
|
+
Returns Bessel function of the second kind, of order
|
1707
|
+
zero, of the argument.
|
1708
|
+
|
1709
|
+
The domain is divided into the intervals [0, 5] and
|
1710
|
+
(5, infinity). In the first interval a rational approximation
|
1711
|
+
R(x) is employed to compute
|
1712
|
+
y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
|
1713
|
+
Thus a call to j0() is required.
|
1714
|
+
|
1715
|
+
In the second interval, the Hankel asymptotic expansion
|
1716
|
+
is employed with two rational functions of degree 6/6
|
1717
|
+
and 7/7.
|
1718
|
+
|
1719
|
+
|
1720
|
+
|
1721
|
+
ACCURACY:
|
1722
|
+
|
1723
|
+
Absolute error, when y0(x) < 1; else relative error:
|
1724
|
+
|
1725
|
+
arithmetic domain # trials peak rms
|
1726
|
+
IEEE 0, 30 30000 1.3e-15 1.6e-16
|
1727
|
+
|
1728
|
+
Cephes Math Library Release 2.8: June, 2000
|
1729
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
1730
|
+
*************************************************************************/
|
1731
|
+
double bessely0(const double x, const xparams _xparams = alglib::xdefault);
|
1732
|
+
|
1733
|
+
|
1734
|
+
/*************************************************************************
|
1735
|
+
Bessel function of second kind of order one
|
1736
|
+
|
1737
|
+
Returns Bessel function of the second kind of order one
|
1738
|
+
of the argument.
|
1739
|
+
|
1740
|
+
The domain is divided into the intervals [0, 8] and
|
1741
|
+
(8, infinity). In the first interval a 25 term Chebyshev
|
1742
|
+
expansion is used, and a call to j1() is required.
|
1743
|
+
In the second, the asymptotic trigonometric representation
|
1744
|
+
is employed using two rational functions of degree 5/5.
|
1745
|
+
|
1746
|
+
ACCURACY:
|
1747
|
+
|
1748
|
+
Absolute error:
|
1749
|
+
arithmetic domain # trials peak rms
|
1750
|
+
IEEE 0, 30 30000 1.0e-15 1.3e-16
|
1751
|
+
|
1752
|
+
Cephes Math Library Release 2.8: June, 2000
|
1753
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
1754
|
+
*************************************************************************/
|
1755
|
+
double bessely1(const double x, const xparams _xparams = alglib::xdefault);
|
1756
|
+
|
1757
|
+
|
1758
|
+
/*************************************************************************
|
1759
|
+
Bessel function of second kind of integer order
|
1760
|
+
|
1761
|
+
Returns Bessel function of order n, where n is a
|
1762
|
+
(possibly negative) integer.
|
1763
|
+
|
1764
|
+
The function is evaluated by forward recurrence on
|
1765
|
+
n, starting with values computed by the routines
|
1766
|
+
y0() and y1().
|
1767
|
+
|
1768
|
+
If n = 0 or 1 the routine for y0 or y1 is called
|
1769
|
+
directly.
|
1770
|
+
|
1771
|
+
ACCURACY:
|
1772
|
+
Absolute error, except relative
|
1773
|
+
when y > 1:
|
1774
|
+
arithmetic domain # trials peak rms
|
1775
|
+
IEEE 0, 30 30000 3.4e-15 4.3e-16
|
1776
|
+
|
1777
|
+
Cephes Math Library Release 2.8: June, 2000
|
1778
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1779
|
+
*************************************************************************/
|
1780
|
+
double besselyn(const ae_int_t n, const double x, const xparams _xparams = alglib::xdefault);
|
1781
|
+
|
1782
|
+
|
1783
|
+
/*************************************************************************
|
1784
|
+
Modified Bessel function of order zero
|
1785
|
+
|
1786
|
+
Returns modified Bessel function of order zero of the
|
1787
|
+
argument.
|
1788
|
+
|
1789
|
+
The function is defined as i0(x) = j0( ix ).
|
1790
|
+
|
1791
|
+
The range is partitioned into the two intervals [0,8] and
|
1792
|
+
(8, infinity). Chebyshev polynomial expansions are employed
|
1793
|
+
in each interval.
|
1794
|
+
|
1795
|
+
ACCURACY:
|
1796
|
+
|
1797
|
+
Relative error:
|
1798
|
+
arithmetic domain # trials peak rms
|
1799
|
+
IEEE 0,30 30000 5.8e-16 1.4e-16
|
1800
|
+
|
1801
|
+
Cephes Math Library Release 2.8: June, 2000
|
1802
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1803
|
+
*************************************************************************/
|
1804
|
+
double besseli0(const double x, const xparams _xparams = alglib::xdefault);
|
1805
|
+
|
1806
|
+
|
1807
|
+
/*************************************************************************
|
1808
|
+
Modified Bessel function of order one
|
1809
|
+
|
1810
|
+
Returns modified Bessel function of order one of the
|
1811
|
+
argument.
|
1812
|
+
|
1813
|
+
The function is defined as i1(x) = -i j1( ix ).
|
1814
|
+
|
1815
|
+
The range is partitioned into the two intervals [0,8] and
|
1816
|
+
(8, infinity). Chebyshev polynomial expansions are employed
|
1817
|
+
in each interval.
|
1818
|
+
|
1819
|
+
ACCURACY:
|
1820
|
+
|
1821
|
+
Relative error:
|
1822
|
+
arithmetic domain # trials peak rms
|
1823
|
+
IEEE 0, 30 30000 1.9e-15 2.1e-16
|
1824
|
+
|
1825
|
+
Cephes Math Library Release 2.8: June, 2000
|
1826
|
+
Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
1827
|
+
*************************************************************************/
|
1828
|
+
double besseli1(const double x, const xparams _xparams = alglib::xdefault);
|
1829
|
+
|
1830
|
+
|
1831
|
+
/*************************************************************************
|
1832
|
+
Modified Bessel function, second kind, order zero
|
1833
|
+
|
1834
|
+
Returns modified Bessel function of the second kind
|
1835
|
+
of order zero of the argument.
|
1836
|
+
|
1837
|
+
The range is partitioned into the two intervals [0,8] and
|
1838
|
+
(8, infinity). Chebyshev polynomial expansions are employed
|
1839
|
+
in each interval.
|
1840
|
+
|
1841
|
+
ACCURACY:
|
1842
|
+
|
1843
|
+
Tested at 2000 random points between 0 and 8. Peak absolute
|
1844
|
+
error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
|
1845
|
+
Relative error:
|
1846
|
+
arithmetic domain # trials peak rms
|
1847
|
+
IEEE 0, 30 30000 1.2e-15 1.6e-16
|
1848
|
+
|
1849
|
+
Cephes Math Library Release 2.8: June, 2000
|
1850
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1851
|
+
*************************************************************************/
|
1852
|
+
double besselk0(const double x, const xparams _xparams = alglib::xdefault);
|
1853
|
+
|
1854
|
+
|
1855
|
+
/*************************************************************************
|
1856
|
+
Modified Bessel function, second kind, order one
|
1857
|
+
|
1858
|
+
Computes the modified Bessel function of the second kind
|
1859
|
+
of order one of the argument.
|
1860
|
+
|
1861
|
+
The range is partitioned into the two intervals [0,2] and
|
1862
|
+
(2, infinity). Chebyshev polynomial expansions are employed
|
1863
|
+
in each interval.
|
1864
|
+
|
1865
|
+
ACCURACY:
|
1866
|
+
|
1867
|
+
Relative error:
|
1868
|
+
arithmetic domain # trials peak rms
|
1869
|
+
IEEE 0, 30 30000 1.2e-15 1.6e-16
|
1870
|
+
|
1871
|
+
Cephes Math Library Release 2.8: June, 2000
|
1872
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1873
|
+
*************************************************************************/
|
1874
|
+
double besselk1(const double x, const xparams _xparams = alglib::xdefault);
|
1875
|
+
|
1876
|
+
|
1877
|
+
/*************************************************************************
|
1878
|
+
Modified Bessel function, second kind, integer order
|
1879
|
+
|
1880
|
+
Returns modified Bessel function of the second kind
|
1881
|
+
of order n of the argument.
|
1882
|
+
|
1883
|
+
The range is partitioned into the two intervals [0,9.55] and
|
1884
|
+
(9.55, infinity). An ascending power series is used in the
|
1885
|
+
low range, and an asymptotic expansion in the high range.
|
1886
|
+
|
1887
|
+
ACCURACY:
|
1888
|
+
|
1889
|
+
Relative error:
|
1890
|
+
arithmetic domain # trials peak rms
|
1891
|
+
IEEE 0,30 90000 1.8e-8 3.0e-10
|
1892
|
+
|
1893
|
+
Error is high only near the crossover point x = 9.55
|
1894
|
+
between the two expansions used.
|
1895
|
+
|
1896
|
+
Cephes Math Library Release 2.8: June, 2000
|
1897
|
+
Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
|
1898
|
+
*************************************************************************/
|
1899
|
+
double besselkn(const ae_int_t nn, const double x, const xparams _xparams = alglib::xdefault);
|
1900
|
+
#endif
|
1901
|
+
|
1902
|
+
#if defined(AE_COMPILE_LAGUERRE) || !defined(AE_PARTIAL_BUILD)
|
1903
|
+
/*************************************************************************
|
1904
|
+
Calculation of the value of the Laguerre polynomial.
|
1905
|
+
|
1906
|
+
Parameters:
|
1907
|
+
n - degree, n>=0
|
1908
|
+
x - argument
|
1909
|
+
|
1910
|
+
Result:
|
1911
|
+
the value of the Laguerre polynomial Ln at x
|
1912
|
+
*************************************************************************/
|
1913
|
+
double laguerrecalculate(const ae_int_t n, const double x, const xparams _xparams = alglib::xdefault);
|
1914
|
+
|
1915
|
+
|
1916
|
+
/*************************************************************************
|
1917
|
+
Summation of Laguerre polynomials using Clenshaw's recurrence formula.
|
1918
|
+
|
1919
|
+
This routine calculates c[0]*L0(x) + c[1]*L1(x) + ... + c[N]*LN(x)
|
1920
|
+
|
1921
|
+
Parameters:
|
1922
|
+
n - degree, n>=0
|
1923
|
+
x - argument
|
1924
|
+
|
1925
|
+
Result:
|
1926
|
+
the value of the Laguerre polynomial at x
|
1927
|
+
*************************************************************************/
|
1928
|
+
double laguerresum(const real_1d_array &c, const ae_int_t n, const double x, const xparams _xparams = alglib::xdefault);
|
1929
|
+
|
1930
|
+
|
1931
|
+
/*************************************************************************
|
1932
|
+
Representation of Ln as C[0] + C[1]*X + ... + C[N]*X^N
|
1933
|
+
|
1934
|
+
Input parameters:
|
1935
|
+
N - polynomial degree, n>=0
|
1936
|
+
|
1937
|
+
Output parameters:
|
1938
|
+
C - coefficients
|
1939
|
+
*************************************************************************/
|
1940
|
+
void laguerrecoefficients(const ae_int_t n, real_1d_array &c, const xparams _xparams = alglib::xdefault);
|
1941
|
+
#endif
|
1942
|
+
|
1943
|
+
#if defined(AE_COMPILE_ELLIPTIC) || !defined(AE_PARTIAL_BUILD)
|
1944
|
+
/*************************************************************************
|
1945
|
+
Complete elliptic integral of the first kind
|
1946
|
+
|
1947
|
+
Approximates the integral
|
1948
|
+
|
1949
|
+
|
1950
|
+
|
1951
|
+
pi/2
|
1952
|
+
-
|
1953
|
+
| |
|
1954
|
+
| dt
|
1955
|
+
K(m) = | ------------------
|
1956
|
+
| 2
|
1957
|
+
| | sqrt( 1 - m sin t )
|
1958
|
+
-
|
1959
|
+
0
|
1960
|
+
|
1961
|
+
using the approximation
|
1962
|
+
|
1963
|
+
P(x) - log x Q(x).
|
1964
|
+
|
1965
|
+
ACCURACY:
|
1966
|
+
|
1967
|
+
Relative error:
|
1968
|
+
arithmetic domain # trials peak rms
|
1969
|
+
IEEE 0,1 30000 2.5e-16 6.8e-17
|
1970
|
+
|
1971
|
+
Cephes Math Library, Release 2.8: June, 2000
|
1972
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1973
|
+
*************************************************************************/
|
1974
|
+
double ellipticintegralk(const double m, const xparams _xparams = alglib::xdefault);
|
1975
|
+
|
1976
|
+
|
1977
|
+
/*************************************************************************
|
1978
|
+
Complete elliptic integral of the first kind
|
1979
|
+
|
1980
|
+
Approximates the integral
|
1981
|
+
|
1982
|
+
|
1983
|
+
|
1984
|
+
pi/2
|
1985
|
+
-
|
1986
|
+
| |
|
1987
|
+
| dt
|
1988
|
+
K(m) = | ------------------
|
1989
|
+
| 2
|
1990
|
+
| | sqrt( 1 - m sin t )
|
1991
|
+
-
|
1992
|
+
0
|
1993
|
+
|
1994
|
+
where m = 1 - m1, using the approximation
|
1995
|
+
|
1996
|
+
P(x) - log x Q(x).
|
1997
|
+
|
1998
|
+
The argument m1 is used rather than m so that the logarithmic
|
1999
|
+
singularity at m = 1 will be shifted to the origin; this
|
2000
|
+
preserves maximum accuracy.
|
2001
|
+
|
2002
|
+
K(0) = pi/2.
|
2003
|
+
|
2004
|
+
ACCURACY:
|
2005
|
+
|
2006
|
+
Relative error:
|
2007
|
+
arithmetic domain # trials peak rms
|
2008
|
+
IEEE 0,1 30000 2.5e-16 6.8e-17
|
2009
|
+
|
2010
|
+
Cephes Math Library, Release 2.8: June, 2000
|
2011
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
2012
|
+
*************************************************************************/
|
2013
|
+
double ellipticintegralkhighprecision(const double m1, const xparams _xparams = alglib::xdefault);
|
2014
|
+
|
2015
|
+
|
2016
|
+
/*************************************************************************
|
2017
|
+
Incomplete elliptic integral of the first kind F(phi|m)
|
2018
|
+
|
2019
|
+
Approximates the integral
|
2020
|
+
|
2021
|
+
|
2022
|
+
|
2023
|
+
phi
|
2024
|
+
-
|
2025
|
+
| |
|
2026
|
+
| dt
|
2027
|
+
F(phi_\m) = | ------------------
|
2028
|
+
| 2
|
2029
|
+
| | sqrt( 1 - m sin t )
|
2030
|
+
-
|
2031
|
+
0
|
2032
|
+
|
2033
|
+
of amplitude phi and modulus m, using the arithmetic -
|
2034
|
+
geometric mean algorithm.
|
2035
|
+
|
2036
|
+
|
2037
|
+
|
2038
|
+
|
2039
|
+
ACCURACY:
|
2040
|
+
|
2041
|
+
Tested at random points with m in [0, 1] and phi as indicated.
|
2042
|
+
|
2043
|
+
Relative error:
|
2044
|
+
arithmetic domain # trials peak rms
|
2045
|
+
IEEE -10,10 200000 7.4e-16 1.0e-16
|
2046
|
+
|
2047
|
+
Cephes Math Library Release 2.8: June, 2000
|
2048
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
2049
|
+
*************************************************************************/
|
2050
|
+
double incompleteellipticintegralk(const double phi, const double m, const xparams _xparams = alglib::xdefault);
|
2051
|
+
|
2052
|
+
|
2053
|
+
/*************************************************************************
|
2054
|
+
Complete elliptic integral of the second kind
|
2055
|
+
|
2056
|
+
Approximates the integral
|
2057
|
+
|
2058
|
+
|
2059
|
+
pi/2
|
2060
|
+
-
|
2061
|
+
| | 2
|
2062
|
+
E(m) = | sqrt( 1 - m sin t ) dt
|
2063
|
+
| |
|
2064
|
+
-
|
2065
|
+
0
|
2066
|
+
|
2067
|
+
using the approximation
|
2068
|
+
|
2069
|
+
P(x) - x log x Q(x).
|
2070
|
+
|
2071
|
+
ACCURACY:
|
2072
|
+
|
2073
|
+
Relative error:
|
2074
|
+
arithmetic domain # trials peak rms
|
2075
|
+
IEEE 0, 1 10000 2.1e-16 7.3e-17
|
2076
|
+
|
2077
|
+
Cephes Math Library, Release 2.8: June, 2000
|
2078
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
2079
|
+
*************************************************************************/
|
2080
|
+
double ellipticintegrale(const double m, const xparams _xparams = alglib::xdefault);
|
2081
|
+
|
2082
|
+
|
2083
|
+
/*************************************************************************
|
2084
|
+
Incomplete elliptic integral of the second kind
|
2085
|
+
|
2086
|
+
Approximates the integral
|
2087
|
+
|
2088
|
+
|
2089
|
+
phi
|
2090
|
+
-
|
2091
|
+
| |
|
2092
|
+
| 2
|
2093
|
+
E(phi_\m) = | sqrt( 1 - m sin t ) dt
|
2094
|
+
|
|
2095
|
+
| |
|
2096
|
+
-
|
2097
|
+
0
|
2098
|
+
|
2099
|
+
of amplitude phi and modulus m, using the arithmetic -
|
2100
|
+
geometric mean algorithm.
|
2101
|
+
|
2102
|
+
ACCURACY:
|
2103
|
+
|
2104
|
+
Tested at random arguments with phi in [-10, 10] and m in
|
2105
|
+
[0, 1].
|
2106
|
+
Relative error:
|
2107
|
+
arithmetic domain # trials peak rms
|
2108
|
+
IEEE -10,10 150000 3.3e-15 1.4e-16
|
2109
|
+
|
2110
|
+
Cephes Math Library Release 2.8: June, 2000
|
2111
|
+
Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier
|
2112
|
+
*************************************************************************/
|
2113
|
+
double incompleteellipticintegrale(const double phi, const double m, const xparams _xparams = alglib::xdefault);
|
2114
|
+
#endif
|
2115
|
+
}
|
2116
|
+
|
2117
|
+
/////////////////////////////////////////////////////////////////////////
|
2118
|
+
//
|
2119
|
+
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
|
2120
|
+
//
|
2121
|
+
/////////////////////////////////////////////////////////////////////////
|
2122
|
+
namespace alglib_impl
|
2123
|
+
{
|
2124
|
+
#if defined(AE_COMPILE_GAMMAFUNC) || !defined(AE_PARTIAL_BUILD)
|
2125
|
+
double gammafunction(double x, ae_state *_state);
|
2126
|
+
double lngamma(double x, double* sgngam, ae_state *_state);
|
2127
|
+
#endif
|
2128
|
+
#if defined(AE_COMPILE_NORMALDISTR) || !defined(AE_PARTIAL_BUILD)
|
2129
|
+
double errorfunction(double x, ae_state *_state);
|
2130
|
+
double errorfunctionc(double x, ae_state *_state);
|
2131
|
+
double normaldistribution(double x, ae_state *_state);
|
2132
|
+
double normalpdf(double x, ae_state *_state);
|
2133
|
+
double normalcdf(double x, ae_state *_state);
|
2134
|
+
double inverf(double e, ae_state *_state);
|
2135
|
+
double invnormaldistribution(double y0, ae_state *_state);
|
2136
|
+
double invnormalcdf(double y0, ae_state *_state);
|
2137
|
+
double bivariatenormalpdf(double x,
|
2138
|
+
double y,
|
2139
|
+
double rho,
|
2140
|
+
ae_state *_state);
|
2141
|
+
double bivariatenormalcdf(double x,
|
2142
|
+
double y,
|
2143
|
+
double rho,
|
2144
|
+
ae_state *_state);
|
2145
|
+
#endif
|
2146
|
+
#if defined(AE_COMPILE_IBETAF) || !defined(AE_PARTIAL_BUILD)
|
2147
|
+
double incompletebeta(double a, double b, double x, ae_state *_state);
|
2148
|
+
double invincompletebeta(double a, double b, double y, ae_state *_state);
|
2149
|
+
#endif
|
2150
|
+
#if defined(AE_COMPILE_STUDENTTDISTR) || !defined(AE_PARTIAL_BUILD)
|
2151
|
+
double studenttdistribution(ae_int_t k, double t, ae_state *_state);
|
2152
|
+
double invstudenttdistribution(ae_int_t k, double p, ae_state *_state);
|
2153
|
+
#endif
|
2154
|
+
#if defined(AE_COMPILE_FDISTR) || !defined(AE_PARTIAL_BUILD)
|
2155
|
+
double fdistribution(ae_int_t a, ae_int_t b, double x, ae_state *_state);
|
2156
|
+
double fcdistribution(ae_int_t a, ae_int_t b, double x, ae_state *_state);
|
2157
|
+
double invfdistribution(ae_int_t a,
|
2158
|
+
ae_int_t b,
|
2159
|
+
double y,
|
2160
|
+
ae_state *_state);
|
2161
|
+
#endif
|
2162
|
+
#if defined(AE_COMPILE_IGAMMAF) || !defined(AE_PARTIAL_BUILD)
|
2163
|
+
double incompletegamma(double a, double x, ae_state *_state);
|
2164
|
+
double incompletegammac(double a, double x, ae_state *_state);
|
2165
|
+
double invincompletegammac(double a, double y0, ae_state *_state);
|
2166
|
+
#endif
|
2167
|
+
#if defined(AE_COMPILE_CHISQUAREDISTR) || !defined(AE_PARTIAL_BUILD)
|
2168
|
+
double chisquaredistribution(double v, double x, ae_state *_state);
|
2169
|
+
double chisquarecdistribution(double v, double x, ae_state *_state);
|
2170
|
+
double invchisquaredistribution(double v, double y, ae_state *_state);
|
2171
|
+
#endif
|
2172
|
+
#if defined(AE_COMPILE_BINOMIALDISTR) || !defined(AE_PARTIAL_BUILD)
|
2173
|
+
double binomialdistribution(ae_int_t k,
|
2174
|
+
ae_int_t n,
|
2175
|
+
double p,
|
2176
|
+
ae_state *_state);
|
2177
|
+
double binomialcdistribution(ae_int_t k,
|
2178
|
+
ae_int_t n,
|
2179
|
+
double p,
|
2180
|
+
ae_state *_state);
|
2181
|
+
double invbinomialdistribution(ae_int_t k,
|
2182
|
+
ae_int_t n,
|
2183
|
+
double y,
|
2184
|
+
ae_state *_state);
|
2185
|
+
#endif
|
2186
|
+
#if defined(AE_COMPILE_EXPINTEGRALS) || !defined(AE_PARTIAL_BUILD)
|
2187
|
+
double exponentialintegralei(double x, ae_state *_state);
|
2188
|
+
double exponentialintegralen(double x, ae_int_t n, ae_state *_state);
|
2189
|
+
#endif
|
2190
|
+
#if defined(AE_COMPILE_JACOBIANELLIPTIC) || !defined(AE_PARTIAL_BUILD)
|
2191
|
+
void jacobianellipticfunctions(double u,
|
2192
|
+
double m,
|
2193
|
+
double* sn,
|
2194
|
+
double* cn,
|
2195
|
+
double* dn,
|
2196
|
+
double* ph,
|
2197
|
+
ae_state *_state);
|
2198
|
+
#endif
|
2199
|
+
#if defined(AE_COMPILE_TRIGINTEGRALS) || !defined(AE_PARTIAL_BUILD)
|
2200
|
+
void sinecosineintegrals(double x,
|
2201
|
+
double* si,
|
2202
|
+
double* ci,
|
2203
|
+
ae_state *_state);
|
2204
|
+
void hyperbolicsinecosineintegrals(double x,
|
2205
|
+
double* shi,
|
2206
|
+
double* chi,
|
2207
|
+
ae_state *_state);
|
2208
|
+
#endif
|
2209
|
+
#if defined(AE_COMPILE_CHEBYSHEV) || !defined(AE_PARTIAL_BUILD)
|
2210
|
+
double chebyshevcalculate(ae_int_t r,
|
2211
|
+
ae_int_t n,
|
2212
|
+
double x,
|
2213
|
+
ae_state *_state);
|
2214
|
+
double chebyshevsum(/* Real */ const ae_vector* c,
|
2215
|
+
ae_int_t r,
|
2216
|
+
ae_int_t n,
|
2217
|
+
double x,
|
2218
|
+
ae_state *_state);
|
2219
|
+
void chebyshevcoefficients(ae_int_t n,
|
2220
|
+
/* Real */ ae_vector* c,
|
2221
|
+
ae_state *_state);
|
2222
|
+
void fromchebyshev(/* Real */ const ae_vector* a,
|
2223
|
+
ae_int_t n,
|
2224
|
+
/* Real */ ae_vector* b,
|
2225
|
+
ae_state *_state);
|
2226
|
+
#endif
|
2227
|
+
#if defined(AE_COMPILE_POISSONDISTR) || !defined(AE_PARTIAL_BUILD)
|
2228
|
+
double poissondistribution(ae_int_t k, double m, ae_state *_state);
|
2229
|
+
double poissoncdistribution(ae_int_t k, double m, ae_state *_state);
|
2230
|
+
double invpoissondistribution(ae_int_t k, double y, ae_state *_state);
|
2231
|
+
#endif
|
2232
|
+
#if defined(AE_COMPILE_BETAF) || !defined(AE_PARTIAL_BUILD)
|
2233
|
+
double beta(double a, double b, ae_state *_state);
|
2234
|
+
#endif
|
2235
|
+
#if defined(AE_COMPILE_FRESNEL) || !defined(AE_PARTIAL_BUILD)
|
2236
|
+
void fresnelintegral(double x, double* c, double* s, ae_state *_state);
|
2237
|
+
#endif
|
2238
|
+
#if defined(AE_COMPILE_PSIF) || !defined(AE_PARTIAL_BUILD)
|
2239
|
+
double psi(double x, ae_state *_state);
|
2240
|
+
#endif
|
2241
|
+
#if defined(AE_COMPILE_AIRYF) || !defined(AE_PARTIAL_BUILD)
|
2242
|
+
void airy(double x,
|
2243
|
+
double* ai,
|
2244
|
+
double* aip,
|
2245
|
+
double* bi,
|
2246
|
+
double* bip,
|
2247
|
+
ae_state *_state);
|
2248
|
+
#endif
|
2249
|
+
#if defined(AE_COMPILE_DAWSON) || !defined(AE_PARTIAL_BUILD)
|
2250
|
+
double dawsonintegral(double x, ae_state *_state);
|
2251
|
+
#endif
|
2252
|
+
#if defined(AE_COMPILE_HERMITE) || !defined(AE_PARTIAL_BUILD)
|
2253
|
+
double hermitecalculate(ae_int_t n, double x, ae_state *_state);
|
2254
|
+
double hermitesum(/* Real */ const ae_vector* c,
|
2255
|
+
ae_int_t n,
|
2256
|
+
double x,
|
2257
|
+
ae_state *_state);
|
2258
|
+
void hermitecoefficients(ae_int_t n,
|
2259
|
+
/* Real */ ae_vector* c,
|
2260
|
+
ae_state *_state);
|
2261
|
+
#endif
|
2262
|
+
#if defined(AE_COMPILE_LEGENDRE) || !defined(AE_PARTIAL_BUILD)
|
2263
|
+
double legendrecalculate(ae_int_t n, double x, ae_state *_state);
|
2264
|
+
double legendresum(/* Real */ const ae_vector* c,
|
2265
|
+
ae_int_t n,
|
2266
|
+
double x,
|
2267
|
+
ae_state *_state);
|
2268
|
+
void legendrecoefficients(ae_int_t n,
|
2269
|
+
/* Real */ ae_vector* c,
|
2270
|
+
ae_state *_state);
|
2271
|
+
#endif
|
2272
|
+
#if defined(AE_COMPILE_BESSEL) || !defined(AE_PARTIAL_BUILD)
|
2273
|
+
double besselj0(double x, ae_state *_state);
|
2274
|
+
double besselj1(double x, ae_state *_state);
|
2275
|
+
double besseljn(ae_int_t n, double x, ae_state *_state);
|
2276
|
+
double bessely0(double x, ae_state *_state);
|
2277
|
+
double bessely1(double x, ae_state *_state);
|
2278
|
+
double besselyn(ae_int_t n, double x, ae_state *_state);
|
2279
|
+
double besseli0(double x, ae_state *_state);
|
2280
|
+
double besseli1(double x, ae_state *_state);
|
2281
|
+
double besselk0(double x, ae_state *_state);
|
2282
|
+
double besselk1(double x, ae_state *_state);
|
2283
|
+
double besselkn(ae_int_t nn, double x, ae_state *_state);
|
2284
|
+
#endif
|
2285
|
+
#if defined(AE_COMPILE_LAGUERRE) || !defined(AE_PARTIAL_BUILD)
|
2286
|
+
double laguerrecalculate(ae_int_t n, double x, ae_state *_state);
|
2287
|
+
double laguerresum(/* Real */ const ae_vector* c,
|
2288
|
+
ae_int_t n,
|
2289
|
+
double x,
|
2290
|
+
ae_state *_state);
|
2291
|
+
void laguerrecoefficients(ae_int_t n,
|
2292
|
+
/* Real */ ae_vector* c,
|
2293
|
+
ae_state *_state);
|
2294
|
+
#endif
|
2295
|
+
#if defined(AE_COMPILE_ELLIPTIC) || !defined(AE_PARTIAL_BUILD)
|
2296
|
+
double ellipticintegralk(double m, ae_state *_state);
|
2297
|
+
double ellipticintegralkhighprecision(double m1, ae_state *_state);
|
2298
|
+
double incompleteellipticintegralk(double phi, double m, ae_state *_state);
|
2299
|
+
double ellipticintegrale(double m, ae_state *_state);
|
2300
|
+
double incompleteellipticintegrale(double phi, double m, ae_state *_state);
|
2301
|
+
#endif
|
2302
|
+
|
2303
|
+
}
|
2304
|
+
#endif
|
2305
|
+
|