afeld-opencv 0.0.8
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +23 -0
- data/Gemfile +6 -0
- data/History.txt +5 -0
- data/License.txt +30 -0
- data/Manifest.txt +217 -0
- data/README.rdoc +161 -0
- data/Rakefile +52 -0
- data/examples/alpha_blend.rb +21 -0
- data/examples/box.png +0 -0
- data/examples/box_in_scene.png +0 -0
- data/examples/contours/bitmap-contours-with-labels.png +0 -0
- data/examples/contours/bitmap-contours.png +0 -0
- data/examples/contours/bounding-box-detect-canny.rb +62 -0
- data/examples/contours/contour_retrieval_modes.rb +139 -0
- data/examples/contours/rotated-boxes.jpg +0 -0
- data/examples/convexhull.rb +47 -0
- data/examples/face_detect.rb +20 -0
- data/examples/find_obj.rb +169 -0
- data/examples/houghcircle.rb +22 -0
- data/examples/inpaint.png +0 -0
- data/examples/inpaint.rb +57 -0
- data/examples/lenna-rotated.jpg +0 -0
- data/examples/lenna.jpg +0 -0
- data/examples/match_kdtree.rb +88 -0
- data/examples/paint.rb +70 -0
- data/examples/snake.rb +43 -0
- data/examples/stuff.jpg +0 -0
- data/examples/tiffany.jpg +0 -0
- data/ext/opencv/curve.cpp +112 -0
- data/ext/opencv/curve.h +34 -0
- data/ext/opencv/cvavgcomp.cpp +67 -0
- data/ext/opencv/cvavgcomp.h +39 -0
- data/ext/opencv/cvbox2d.cpp +197 -0
- data/ext/opencv/cvbox2d.h +61 -0
- data/ext/opencv/cvcapture.cpp +499 -0
- data/ext/opencv/cvcapture.h +72 -0
- data/ext/opencv/cvchain.cpp +230 -0
- data/ext/opencv/cvchain.h +46 -0
- data/ext/opencv/cvcircle32f.cpp +116 -0
- data/ext/opencv/cvcircle32f.h +52 -0
- data/ext/opencv/cvcondensation.cpp +282 -0
- data/ext/opencv/cvcondensation.h +49 -0
- data/ext/opencv/cvconnectedcomp.cpp +143 -0
- data/ext/opencv/cvconnectedcomp.h +49 -0
- data/ext/opencv/cvcontour.cpp +297 -0
- data/ext/opencv/cvcontour.h +48 -0
- data/ext/opencv/cvcontourtree.cpp +91 -0
- data/ext/opencv/cvcontourtree.h +41 -0
- data/ext/opencv/cvconvexitydefect.cpp +103 -0
- data/ext/opencv/cvconvexitydefect.h +42 -0
- data/ext/opencv/cverror.cpp +159 -0
- data/ext/opencv/cverror.h +28 -0
- data/ext/opencv/cvfeaturetree.cpp +125 -0
- data/ext/opencv/cvfeaturetree.h +55 -0
- data/ext/opencv/cvfont.cpp +208 -0
- data/ext/opencv/cvfont.h +64 -0
- data/ext/opencv/cvhaarclassifiercascade.cpp +168 -0
- data/ext/opencv/cvhaarclassifiercascade.h +39 -0
- data/ext/opencv/cvhistogram.cpp +546 -0
- data/ext/opencv/cvhistogram.h +73 -0
- data/ext/opencv/cvhumoments.cpp +139 -0
- data/ext/opencv/cvhumoments.h +51 -0
- data/ext/opencv/cvline.cpp +154 -0
- data/ext/opencv/cvline.h +54 -0
- data/ext/opencv/cvmat.cpp +5627 -0
- data/ext/opencv/cvmat.h +280 -0
- data/ext/opencv/cvmatnd.cpp +44 -0
- data/ext/opencv/cvmatnd.h +28 -0
- data/ext/opencv/cvmemstorage.cpp +68 -0
- data/ext/opencv/cvmemstorage.h +53 -0
- data/ext/opencv/cvmoments.cpp +287 -0
- data/ext/opencv/cvmoments.h +75 -0
- data/ext/opencv/cvpoint.cpp +228 -0
- data/ext/opencv/cvpoint.h +64 -0
- data/ext/opencv/cvpoint2d32f.cpp +211 -0
- data/ext/opencv/cvpoint2d32f.h +63 -0
- data/ext/opencv/cvpoint3d32f.cpp +246 -0
- data/ext/opencv/cvpoint3d32f.h +66 -0
- data/ext/opencv/cvrect.cpp +333 -0
- data/ext/opencv/cvrect.h +79 -0
- data/ext/opencv/cvscalar.cpp +236 -0
- data/ext/opencv/cvscalar.h +71 -0
- data/ext/opencv/cvseq.cpp +599 -0
- data/ext/opencv/cvseq.h +72 -0
- data/ext/opencv/cvsize.cpp +221 -0
- data/ext/opencv/cvsize.h +65 -0
- data/ext/opencv/cvsize2d32f.cpp +209 -0
- data/ext/opencv/cvsize2d32f.h +64 -0
- data/ext/opencv/cvslice.cpp +120 -0
- data/ext/opencv/cvslice.h +61 -0
- data/ext/opencv/cvsparsemat.cpp +44 -0
- data/ext/opencv/cvsparsemat.h +28 -0
- data/ext/opencv/cvsurfparams.cpp +199 -0
- data/ext/opencv/cvsurfparams.h +58 -0
- data/ext/opencv/cvsurfpoint.cpp +223 -0
- data/ext/opencv/cvsurfpoint.h +52 -0
- data/ext/opencv/cvtermcriteria.cpp +192 -0
- data/ext/opencv/cvtermcriteria.h +71 -0
- data/ext/opencv/cvtwopoints.cpp +116 -0
- data/ext/opencv/cvtwopoints.h +51 -0
- data/ext/opencv/cvutils.cpp +194 -0
- data/ext/opencv/cvutils.h +29 -0
- data/ext/opencv/cvvideowriter.cpp +137 -0
- data/ext/opencv/cvvideowriter.h +43 -0
- data/ext/opencv/gui.cpp +68 -0
- data/ext/opencv/gui.h +30 -0
- data/ext/opencv/iplconvkernel.cpp +192 -0
- data/ext/opencv/iplconvkernel.h +71 -0
- data/ext/opencv/iplimage.cpp +576 -0
- data/ext/opencv/iplimage.h +70 -0
- data/ext/opencv/lib/opencv.rb +3 -0
- data/ext/opencv/lib/opencv/psyched_yaml.rb +22 -0
- data/ext/opencv/lib/opencv/version.rb +3 -0
- data/ext/opencv/mouseevent.cpp +181 -0
- data/ext/opencv/mouseevent.h +56 -0
- data/ext/opencv/opencv.cpp +710 -0
- data/ext/opencv/opencv.h +400 -0
- data/ext/opencv/pointset.cpp +284 -0
- data/ext/opencv/pointset.h +69 -0
- data/ext/opencv/trackbar.cpp +121 -0
- data/ext/opencv/trackbar.h +69 -0
- data/ext/opencv/window.cpp +357 -0
- data/ext/opencv/window.h +66 -0
- data/extconf.rb +65 -0
- data/images/CvMat_sobel.png +0 -0
- data/images/CvMat_sub_rect.png +0 -0
- data/images/CvSeq_relationmap.png +0 -0
- data/images/face_detect_from_lena.jpg +0 -0
- data/test/helper.rb +146 -0
- data/test/runner.rb +30 -0
- data/test/samples/airplane.jpg +0 -0
- data/test/samples/baboon.jpg +0 -0
- data/test/samples/baboon200.jpg +0 -0
- data/test/samples/baboon200_rotated.jpg +0 -0
- data/test/samples/blank0.jpg +0 -0
- data/test/samples/blank1.jpg +0 -0
- data/test/samples/blank2.jpg +0 -0
- data/test/samples/blank3.jpg +0 -0
- data/test/samples/blank4.jpg +0 -0
- data/test/samples/blank5.jpg +0 -0
- data/test/samples/blank6.jpg +0 -0
- data/test/samples/blank7.jpg +0 -0
- data/test/samples/blank8.jpg +0 -0
- data/test/samples/blank9.jpg +0 -0
- data/test/samples/cat.jpg +0 -0
- data/test/samples/contours.jpg +0 -0
- data/test/samples/fruits.jpg +0 -0
- data/test/samples/haarcascade_frontalface_alt.xml.gz +0 -0
- data/test/samples/inpaint-mask.bmp +0 -0
- data/test/samples/lena-256x256.jpg +0 -0
- data/test/samples/lena-32x32.jpg +0 -0
- data/test/samples/lena-eyes.jpg +0 -0
- data/test/samples/lena-inpaint.jpg +0 -0
- data/test/samples/lena.jpg +0 -0
- data/test/samples/lines.jpg +0 -0
- data/test/samples/messy0.jpg +0 -0
- data/test/samples/messy1.jpg +0 -0
- data/test/samples/movie_sample.avi +0 -0
- data/test/samples/one_way_train_0000.jpg +0 -0
- data/test/samples/one_way_train_0001.jpg +0 -0
- data/test/samples/partially_blank0.jpg +0 -0
- data/test/samples/partially_blank1.jpg +0 -0
- data/test/samples/smooth0.jpg +0 -0
- data/test/samples/smooth1.jpg +0 -0
- data/test/samples/smooth2.jpg +0 -0
- data/test/samples/smooth3.jpg +0 -0
- data/test/samples/smooth4.jpg +0 -0
- data/test/samples/smooth5.jpg +0 -0
- data/test/samples/smooth6.jpg +0 -0
- data/test/samples/str-cv-rotated.jpg +0 -0
- data/test/samples/str-cv.jpg +0 -0
- data/test/samples/str-ov.jpg +0 -0
- data/test/samples/stuff.jpg +0 -0
- data/test/test_curve.rb +43 -0
- data/test/test_cvavgcomp.rb +24 -0
- data/test/test_cvbox2d.rb +76 -0
- data/test/test_cvcapture.rb +183 -0
- data/test/test_cvchain.rb +108 -0
- data/test/test_cvcircle32f.rb +41 -0
- data/test/test_cvconnectedcomp.rb +61 -0
- data/test/test_cvcontour.rb +150 -0
- data/test/test_cvcontourtree.rb +43 -0
- data/test/test_cverror.rb +50 -0
- data/test/test_cvfeaturetree.rb +65 -0
- data/test/test_cvfont.rb +58 -0
- data/test/test_cvhaarclassifiercascade.rb +63 -0
- data/test/test_cvhistogram.rb +271 -0
- data/test/test_cvhumoments.rb +83 -0
- data/test/test_cvline.rb +50 -0
- data/test/test_cvmat.rb +2752 -0
- data/test/test_cvmat_drawing.rb +318 -0
- data/test/test_cvmat_dxt.rb +147 -0
- data/test/test_cvmat_imageprocessing.rb +1943 -0
- data/test/test_cvmoments.rb +180 -0
- data/test/test_cvpoint.rb +75 -0
- data/test/test_cvpoint2d32f.rb +75 -0
- data/test/test_cvpoint3d32f.rb +93 -0
- data/test/test_cvrect.rb +144 -0
- data/test/test_cvscalar.rb +113 -0
- data/test/test_cvseq.rb +295 -0
- data/test/test_cvsize.rb +75 -0
- data/test/test_cvsize2d32f.rb +75 -0
- data/test/test_cvslice.rb +31 -0
- data/test/test_cvsurfparams.rb +57 -0
- data/test/test_cvsurfpoint.rb +66 -0
- data/test/test_cvtermcriteria.rb +56 -0
- data/test/test_cvtwopoints.rb +40 -0
- data/test/test_cvvideowriter.rb +58 -0
- data/test/test_iplconvkernel.rb +54 -0
- data/test/test_iplimage.rb +156 -0
- data/test/test_mouseevent.rb +17 -0
- data/test/test_opencv.rb +340 -0
- data/test/test_pointset.rb +130 -0
- data/test/test_preliminary.rb +130 -0
- data/test/test_trackbar.rb +47 -0
- data/test/test_window.rb +115 -0
- metadata +399 -0
data/Rakefile
ADDED
@@ -0,0 +1,52 @@
|
|
1
|
+
# -*- ruby -*-
|
2
|
+
require 'rubygems'
|
3
|
+
require './ext/opencv/lib/opencv/psyched_yaml'
|
4
|
+
require 'hoe'
|
5
|
+
require 'rake/extensiontask'
|
6
|
+
require './ext/opencv/lib/opencv/version'
|
7
|
+
|
8
|
+
Hoe.plugin :gemspec
|
9
|
+
|
10
|
+
hoespec = Hoe.spec 'afeld-opencv' do |p|
|
11
|
+
p.version = OpenCV::VERSION
|
12
|
+
p.changes = p.paragraphs_of('History.txt', 0..1).join("\n\n")
|
13
|
+
p.description = <<EOF
|
14
|
+
OpenCV wrapper for Ruby
|
15
|
+
EOF
|
16
|
+
p.rubyforge_name = 'afeld-opencv'
|
17
|
+
p.developer('lsxi', 'masakazu.yonekura@gmail.com')
|
18
|
+
p.developer('ser1zw', '')
|
19
|
+
p.developer('pcting', 'pcting@gmail.com')
|
20
|
+
p.developer('afeld', 'aidan.feldman@gmail.com')
|
21
|
+
|
22
|
+
p.need_tar = false
|
23
|
+
p.need_zip = false
|
24
|
+
p.readme_file = 'README.rdoc'
|
25
|
+
p.history_file = 'History.txt'
|
26
|
+
p.spec_extras = {
|
27
|
+
:extensions => %w{extconf.rb}
|
28
|
+
}
|
29
|
+
p.summary = 'OpenCV wrapper for Ruby.'
|
30
|
+
p.test_globs = ['test/test_*.rb']
|
31
|
+
p.clean_globs << 'lib/*.so' << 'tmp'
|
32
|
+
|
33
|
+
p.urls = ['https://github.com/afeld/ruby-opencv']
|
34
|
+
|
35
|
+
p.extra_dev_deps << ['rake-compiler', '>= 0'] << ['hoe-gemspec'] << ['rspec']
|
36
|
+
|
37
|
+
Rake::ExtensionTask.new('opencv', spec) do |ext|
|
38
|
+
ext.lib_dir = File.join('lib', 'opencv')
|
39
|
+
end
|
40
|
+
|
41
|
+
end
|
42
|
+
|
43
|
+
hoespec.spec.files.delete('.gemtest')
|
44
|
+
hoespec.spec.files.delete('ruby-opencv.gemspec')
|
45
|
+
hoespec.spec.files.delete('opencv.gemspec')
|
46
|
+
hoespec.spec.files.delete('afeld-opencv.gemspec')
|
47
|
+
hoespec.spec.cert_chain = []
|
48
|
+
hoespec.spec.signing_key = nil
|
49
|
+
|
50
|
+
Rake::Task[:test].prerequisites << :compile
|
51
|
+
|
52
|
+
# vim: syntax=Ruby
|
@@ -0,0 +1,21 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
# -*- mode: ruby; coding: utf-8-unix -*-
|
3
|
+
|
4
|
+
# Alpha blending sample with GUI
|
5
|
+
|
6
|
+
require 'opencv'
|
7
|
+
include OpenCV
|
8
|
+
|
9
|
+
img1 = IplImage.load('lenna.jpg', CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
10
|
+
img2 = IplImage.load('tiffany.jpg', CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
11
|
+
|
12
|
+
window = GUI::Window.new('Alpha blend')
|
13
|
+
max = 100.0
|
14
|
+
val = max / 2.0
|
15
|
+
window.set_trackbar("Alpha", max, val) { |v|
|
16
|
+
a = v.to_f / max
|
17
|
+
window.show CvMat.add_weighted(img1, a, img2, 1.0 - a, 0)
|
18
|
+
}
|
19
|
+
window.show CvMat.add_weighted(img1, val / max, img2, 1.0 - val / max, 0)
|
20
|
+
GUI::wait_key
|
21
|
+
|
data/examples/box.png
ADDED
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -0,0 +1,62 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
#
|
3
|
+
# Detects contours in an image and
|
4
|
+
# their boundingboxes
|
5
|
+
#
|
6
|
+
require "opencv"
|
7
|
+
|
8
|
+
# Load image
|
9
|
+
cvmat = OpenCV::CvMat.load("rotated-boxes.jpg")
|
10
|
+
|
11
|
+
# The "canny" edge-detector does only work with grayscale images
|
12
|
+
# so to be sure, convert the image
|
13
|
+
# otherwise you will get an OpenCV::CvStsAssert exception.
|
14
|
+
cvmat = cvmat.BGR2GRAY
|
15
|
+
|
16
|
+
# Use the "canny" edge detection algorithm (http://en.wikipedia.org/wiki/Canny_edge_detector)
|
17
|
+
# Parameters are two colors that are then used to determine possible corners
|
18
|
+
canny = cvmat.canny(50, 150)
|
19
|
+
|
20
|
+
# Look for contours
|
21
|
+
# We want them to be returned as a flat list (CV_RETR_LIST) and simplified (CV_CHAIN_APPROX_SIMPLE)
|
22
|
+
# Both are the defaults but included here for clarity
|
23
|
+
contour = canny.find_contours(:mode => OpenCV::CV_RETR_LIST, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE)
|
24
|
+
|
25
|
+
# The Canny Algorithm returns two matches for every contour (see O'Reilly: Learning OpenCV Page 235)
|
26
|
+
# We need only the external edges so we ignore holes.
|
27
|
+
# When there are no more contours, contours.h_next will return nil
|
28
|
+
while contour
|
29
|
+
# No "holes" please (aka. internal contours)
|
30
|
+
unless contour.hole?
|
31
|
+
|
32
|
+
puts '-' * 80
|
33
|
+
puts "BOUNDING RECT FOUND"
|
34
|
+
puts '-' * 80
|
35
|
+
|
36
|
+
# You can detect the "bounding rectangle" which is always oriented horizontally and vertically
|
37
|
+
box = contour.bounding_rect
|
38
|
+
puts "found external contour with bounding rectangle from #{box.top_left.x},#{box.top_left.y} to #{box.bottom_right.x},#{box.bottom_right.y}"
|
39
|
+
|
40
|
+
# The contour area can be computed:
|
41
|
+
puts "that contour encloses an area of #{contour.contour_area} square pixels"
|
42
|
+
|
43
|
+
# .. as can be the length of the contour
|
44
|
+
puts "that contour is #{contour.arc_length} pixels long "
|
45
|
+
|
46
|
+
# Draw that bounding rectangle
|
47
|
+
cvmat.rectangle! box.top_left, box.bottom_right, :color => OpenCV::CvColor::Black
|
48
|
+
|
49
|
+
# You can also detect the "minimal rectangle" which has an angle, width, height and center coordinates
|
50
|
+
# and is not neccessarily horizonally or vertically aligned.
|
51
|
+
# The corner of the rectangle with the lowest y and x position is the anchor (see image here: http://bit.ly/lT1XvB)
|
52
|
+
# The zero angle position is always straight up.
|
53
|
+
# Positive angle values are clockwise and negative values counter clockwise (so -60 means 60 degree counter clockwise)
|
54
|
+
box = contour.min_area_rect2
|
55
|
+
puts "found minimal rectangle with its center at (#{box.center.x.round},#{box.center.y.round}), width of #{box.size.width.round}px, height of #{box.size.height.round} and an angle of #{box.angle.round} degree"
|
56
|
+
end
|
57
|
+
contour = contour.h_next
|
58
|
+
end
|
59
|
+
|
60
|
+
# And save the image
|
61
|
+
puts "\nSaving image with bounding rectangles"
|
62
|
+
cvmat.save_image("rotated-boxes-with-detected-bounding-rectangles.jpg")
|
@@ -0,0 +1,139 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
#
|
3
|
+
# This file shows the different retrieval modes for contour detection
|
4
|
+
#
|
5
|
+
require "opencv"
|
6
|
+
|
7
|
+
# Load image
|
8
|
+
# The structure of the image is "explained" in bitmap-contours-with-labels.png
|
9
|
+
cvmat = OpenCV::CvMat.load("bitmap-contours.png")
|
10
|
+
|
11
|
+
# "find_contours" does only operate on bitmap images (black/white)
|
12
|
+
mat = OpenCV::CvMat.new(cvmat.rows, cvmat.cols, :cv8u, 1)
|
13
|
+
(cvmat.rows * cvmat.cols).times do |i|
|
14
|
+
mat[i] = (cvmat[i][0] <= 128) ? OpenCV::CvScalar.new(0) : OpenCV::CvScalar.new(255)
|
15
|
+
end
|
16
|
+
|
17
|
+
# find_contours takes two parameters:
|
18
|
+
# 1. Retrieval mode (:mode, defines the structure of the contour sequence returned)
|
19
|
+
# - CV_RETR_LIST (default)
|
20
|
+
# - CV_RETR_EXTERNAL
|
21
|
+
# - CV_RETR_CCOMP
|
22
|
+
# - CV_RETR_TREE
|
23
|
+
# 2. Retrieval Method (:method, how the contours are approximated)
|
24
|
+
# - CV_CHAIN_CODE
|
25
|
+
# - CV_CHAIN_APPROX_NONE
|
26
|
+
# - CV_CHAIN_APPROX_SIMPLE (default)
|
27
|
+
# - CV_CHAIN_APPROX_TC89_L1
|
28
|
+
# - CV_CHAIN_APPROX_T89_KCOS
|
29
|
+
# - CV_LINK_RUNS
|
30
|
+
|
31
|
+
#
|
32
|
+
# The default: CV_RETR_LIST and CV_CHAIN_APPROX_SIMPLE
|
33
|
+
# This produces a flat list of contours that can be traversed with .h_next and .h_prev
|
34
|
+
#
|
35
|
+
puts "Detecting using CV_RETR_LIST and CV_CHAIN_APPROX_SIMPLE"
|
36
|
+
contour = mat.find_contours(:mode => OpenCV::CV_RETR_LIST, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE)
|
37
|
+
cindex=1
|
38
|
+
|
39
|
+
while contour
|
40
|
+
puts "Contour ##{cindex} is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
41
|
+
contour = contour.h_next
|
42
|
+
cindex+=1
|
43
|
+
end
|
44
|
+
|
45
|
+
#
|
46
|
+
# CV_RETR_EXTERNAL retrieves only the outer most non "hole" contour
|
47
|
+
#
|
48
|
+
puts '-'*80
|
49
|
+
puts "Detecting using CV_RETR_EXTERNAL and CV_CHAIN_APPROX_SIMPLE"
|
50
|
+
contour = mat.find_contours(:mode => OpenCV::CV_RETR_EXTERNAL, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE)
|
51
|
+
cindex=1
|
52
|
+
|
53
|
+
while contour
|
54
|
+
puts "Contour ##{cindex} is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
55
|
+
contour = contour.h_next
|
56
|
+
cindex+=1
|
57
|
+
end
|
58
|
+
|
59
|
+
#
|
60
|
+
# CV_RETR_CCOMP organizes the contours in a two level deep stack
|
61
|
+
# The first level holds the contours
|
62
|
+
# The second level contains the holes of the contours in level 1
|
63
|
+
#
|
64
|
+
# C00001 <-> C00000 <-> C000 <-> C0
|
65
|
+
# | |
|
66
|
+
# V V
|
67
|
+
# H0000 H00
|
68
|
+
#
|
69
|
+
puts '-'*80
|
70
|
+
puts "Detecting using CV_RETR_CCOMP and CV_CHAIN_APPROX_SIMPLE"
|
71
|
+
contour = mat.find_contours(:mode => OpenCV::CV_RETR_CCOMP, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE)
|
72
|
+
|
73
|
+
# C00001
|
74
|
+
puts "Contour #1 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
75
|
+
contour = contour.h_next
|
76
|
+
|
77
|
+
# C00000
|
78
|
+
puts "Contour #2 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
79
|
+
contour = contour.h_next
|
80
|
+
|
81
|
+
# C000
|
82
|
+
puts "Contour #3 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
83
|
+
contour_down = contour.v_next
|
84
|
+
|
85
|
+
# H0000
|
86
|
+
puts "Contour #4 is #{contour_down.contour_area} px^2 (width: #{contour_down.bounding_rect.width}, height: #{contour_down.bounding_rect.height}, type: #{(contour_down.hole?)?"hole":"contour"})"
|
87
|
+
contour = contour.h_next
|
88
|
+
|
89
|
+
# C0
|
90
|
+
puts "Contour #5 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
91
|
+
contour_down = contour.v_next
|
92
|
+
|
93
|
+
# H00
|
94
|
+
puts "Contour #6 is #{contour_down.contour_area} px^2 (width: #{contour_down.bounding_rect.width}, height: #{contour_down.bounding_rect.height}, type: #{(contour_down.hole?)?"hole":"contour"})"
|
95
|
+
|
96
|
+
#
|
97
|
+
# CV_RETR_TREE manages the contours in a tree structure
|
98
|
+
# This reconstructs the complete hierarchy of contours and holes that the image displayed
|
99
|
+
#
|
100
|
+
# C0
|
101
|
+
# |
|
102
|
+
# V
|
103
|
+
# H00
|
104
|
+
# |
|
105
|
+
# V
|
106
|
+
# C000
|
107
|
+
# |
|
108
|
+
# V
|
109
|
+
# H0000-------+
|
110
|
+
# | |
|
111
|
+
# V V
|
112
|
+
# C00000 C00001
|
113
|
+
#
|
114
|
+
puts '-'*80
|
115
|
+
puts "Detecting using CV_RETR_TREE and CV_CHAIN_APPROX_SIMPLE"
|
116
|
+
contour = mat.find_contours(:mode => OpenCV::CV_RETR_TREE, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE)
|
117
|
+
|
118
|
+
# C0
|
119
|
+
puts "Contour #1 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
120
|
+
contour = contour.v_next
|
121
|
+
|
122
|
+
# H00
|
123
|
+
puts "Contour #2 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
124
|
+
contour = contour.v_next
|
125
|
+
|
126
|
+
# C000
|
127
|
+
puts "Contour #3 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
128
|
+
contour = contour.v_next
|
129
|
+
|
130
|
+
# H0000
|
131
|
+
puts "Contour #4 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
132
|
+
contour = contour.v_next
|
133
|
+
|
134
|
+
# C00000
|
135
|
+
puts "Contour #5 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
|
136
|
+
contour_right = contour.h_next
|
137
|
+
|
138
|
+
# C00001
|
139
|
+
puts "Contour #6 is #{contour_right.contour_area} px^2 (width: #{contour_right.bounding_rect.width}, height: #{contour_right.bounding_rect.height}, type: #{(contour_right.hole?)?"hole":"contour"})"
|
Binary file
|
@@ -0,0 +1,47 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
# convexhull.rb
|
3
|
+
# Draw contours and convexity defect points to captured image
|
4
|
+
require "rubygems"
|
5
|
+
require "opencv"
|
6
|
+
include OpenCV
|
7
|
+
|
8
|
+
window = GUI::Window.new("convexhull")
|
9
|
+
capture = CvCapture::open
|
10
|
+
|
11
|
+
accuracy = 1
|
12
|
+
t = window.set_trackbar("accuracy", 10, 1) { |v|
|
13
|
+
accuracy = v
|
14
|
+
}
|
15
|
+
|
16
|
+
circle_options = { :color => CvColor::Blue, :line_type => :aa, :thickness => -1 }
|
17
|
+
|
18
|
+
loop do
|
19
|
+
image = capture.query
|
20
|
+
|
21
|
+
# Calculate contours from a binary image
|
22
|
+
gray = image.BGR2GRAY
|
23
|
+
bin = gray.threshold(0x44, 0xFF, :binary)
|
24
|
+
contours = bin.find_contours
|
25
|
+
|
26
|
+
while contours
|
27
|
+
# Draw contours
|
28
|
+
poly = contours.approx(:accuracy => accuracy)
|
29
|
+
begin
|
30
|
+
image.draw_contours!(poly, CvColor::Red, CvColor::Black, 2,
|
31
|
+
:thickness => 2, :line_type => :aa)
|
32
|
+
end while (poly = poly.h_next)
|
33
|
+
|
34
|
+
# Draw convexity defects
|
35
|
+
hull = contours.convex_hull2(true, false)
|
36
|
+
contours.convexity_defects(hull).each { |cd|
|
37
|
+
image.circle!(cd.start, 3, circle_options)
|
38
|
+
image.circle!(cd.depth_point, 3, circle_options)
|
39
|
+
image.circle!(cd.end, 3, circle_options)
|
40
|
+
}
|
41
|
+
contours = contours.h_next
|
42
|
+
end
|
43
|
+
|
44
|
+
window.show image
|
45
|
+
exit if GUI::wait_key(1)
|
46
|
+
end
|
47
|
+
|
@@ -0,0 +1,20 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
# face_detect.rb
|
3
|
+
require "rubygems"
|
4
|
+
require "opencv"
|
5
|
+
|
6
|
+
include OpenCV
|
7
|
+
|
8
|
+
window = GUI::Window.new("face detect")
|
9
|
+
capture = CvCapture.open
|
10
|
+
detector = CvHaarClassifierCascade::load("./data/haarcascades/haarcascade_frontalface_alt.xml")
|
11
|
+
|
12
|
+
loop {
|
13
|
+
image = capture.query
|
14
|
+
detector.detect_objects(image).each { |rect|
|
15
|
+
image.rectangle! rect.top_left, rect.bottom_right, :color => CvColor::Red
|
16
|
+
}
|
17
|
+
window.show image
|
18
|
+
break if GUI::wait_key(100)
|
19
|
+
}
|
20
|
+
|
@@ -0,0 +1,169 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
# -*- mode: ruby; coding: utf-8-unix -*-
|
3
|
+
|
4
|
+
# A Demo Ruby/OpenCV Implementation of SURF
|
5
|
+
# See https://code.ros.org/trac/opencv/browser/tags/2.3.1/opencv/samples/c/find_obj.cpp
|
6
|
+
require 'opencv'
|
7
|
+
require 'benchmark'
|
8
|
+
include OpenCV
|
9
|
+
|
10
|
+
def compare_surf_descriptors(d1, d2, best, length)
|
11
|
+
raise ArgumentError unless (length % 4) == 0
|
12
|
+
total_cost = 0
|
13
|
+
0.step(length - 1, 4) { |i|
|
14
|
+
t0 = d1[i] - d2[i]
|
15
|
+
t1 = d1[i + 1] - d2[i + 1]
|
16
|
+
t2 = d1[i + 2] - d2[i + 2]
|
17
|
+
t3 = d1[i + 3] - d2[i + 3]
|
18
|
+
total_cost += t0 * t0 + t1 * t1 + t2 * t2 + t3 * t3
|
19
|
+
break if total_cost > best
|
20
|
+
}
|
21
|
+
total_cost
|
22
|
+
end
|
23
|
+
|
24
|
+
def naive_nearest_neighbor(vec, laplacian, model_keypoints, model_descriptors)
|
25
|
+
length = model_descriptors[0].size
|
26
|
+
neighbor = nil
|
27
|
+
dist1 = 1e6
|
28
|
+
dist2 = 1e6
|
29
|
+
|
30
|
+
model_descriptors.size.times { |i|
|
31
|
+
kp = model_keypoints[i]
|
32
|
+
mvec = model_descriptors[i]
|
33
|
+
next if laplacian != kp.laplacian
|
34
|
+
|
35
|
+
d = compare_surf_descriptors(vec, mvec, dist2, length)
|
36
|
+
if d < dist1
|
37
|
+
dist2 = dist1
|
38
|
+
dist1 = d
|
39
|
+
neighbor = i
|
40
|
+
elsif d < dist2
|
41
|
+
dist2 = d
|
42
|
+
end
|
43
|
+
}
|
44
|
+
|
45
|
+
return (dist1 < 0.6 * dist2) ? neighbor : nil
|
46
|
+
end
|
47
|
+
|
48
|
+
def find_pairs(object_keypoints, object_descriptors,
|
49
|
+
image_keypoints, image_descriptors)
|
50
|
+
ptpairs = []
|
51
|
+
object_descriptors.size.times { |i|
|
52
|
+
kp = object_keypoints[i]
|
53
|
+
descriptor = object_descriptors[i]
|
54
|
+
nearest_neighbor = naive_nearest_neighbor(descriptor, kp.laplacian, image_keypoints, image_descriptors)
|
55
|
+
unless nearest_neighbor.nil?
|
56
|
+
ptpairs << i
|
57
|
+
ptpairs << nearest_neighbor
|
58
|
+
end
|
59
|
+
}
|
60
|
+
ptpairs
|
61
|
+
end
|
62
|
+
|
63
|
+
def locate_planar_object(object_keypoints, object_descriptors,
|
64
|
+
image_keypoints, image_descriptors, src_corners)
|
65
|
+
ptpairs = find_pairs(object_keypoints, object_descriptors, image_keypoints, image_descriptors)
|
66
|
+
n = ptpairs.size / 2
|
67
|
+
return nil if n < 4
|
68
|
+
|
69
|
+
pt1 = []
|
70
|
+
pt2 = []
|
71
|
+
n.times { |i|
|
72
|
+
pt1 << object_keypoints[ptpairs[i * 2]].pt
|
73
|
+
pt2 << image_keypoints[ptpairs[i * 2 + 1]].pt
|
74
|
+
}
|
75
|
+
|
76
|
+
_pt1 = CvMat.new(1, n, CV_32F, 2)
|
77
|
+
_pt2 = CvMat.new(1, n, CV_32F, 2)
|
78
|
+
_pt1.set_data(pt1)
|
79
|
+
_pt2.set_data(pt2)
|
80
|
+
h = CvMat.find_homography(_pt1, _pt2, :ransac, 5)
|
81
|
+
|
82
|
+
dst_corners = []
|
83
|
+
4.times { |i|
|
84
|
+
x = src_corners[i].x
|
85
|
+
y = src_corners[i].y
|
86
|
+
z = 1.0 / (h[6][0] * x + h[7][0] * y + h[8][0])
|
87
|
+
x = (h[0][0] * x + h[1][0] * y + h[2][0]) * z
|
88
|
+
y = (h[3][0] * x + h[4][0] * y + h[5][0]) * z
|
89
|
+
dst_corners << CvPoint.new(x.to_i, y.to_i)
|
90
|
+
}
|
91
|
+
|
92
|
+
dst_corners
|
93
|
+
end
|
94
|
+
|
95
|
+
|
96
|
+
##### Main #####
|
97
|
+
puts 'This program demonstrated the use of the SURF Detector and Descriptor using'
|
98
|
+
puts 'brute force matching on planar objects.'
|
99
|
+
puts 'Usage:'
|
100
|
+
puts "ruby #{__FILE__} <object_filename> <scene_filename>, default is box.png and box_in_scene.png"
|
101
|
+
puts
|
102
|
+
|
103
|
+
object_filename = (ARGV.size == 2) ? ARGV[0] : 'box.png'
|
104
|
+
scene_filename = (ARGV.size == 2) ? ARGV[1] : 'box_in_scene.png'
|
105
|
+
|
106
|
+
object, image = nil, nil
|
107
|
+
begin
|
108
|
+
object = IplImage.load(object_filename, CV_LOAD_IMAGE_GRAYSCALE)
|
109
|
+
image = IplImage.load(scene_filename, CV_LOAD_IMAGE_GRAYSCALE)
|
110
|
+
rescue
|
111
|
+
puts "Can not load #{object_filename} and/or #{scene_filename}"
|
112
|
+
puts "Usage: ruby #{__FILE__} [<object_filename> <scene_filename>]"
|
113
|
+
exit
|
114
|
+
end
|
115
|
+
object_color = object.GRAY2BGR
|
116
|
+
|
117
|
+
param = CvSURFParams.new(1500)
|
118
|
+
|
119
|
+
object_keypoints, object_descriptors = nil, nil
|
120
|
+
image_keypoints, image_descriptors = nil, nil
|
121
|
+
tms = Benchmark.measure {
|
122
|
+
object_keypoints, object_descriptors = object.extract_surf(param)
|
123
|
+
puts "Object Descriptors: #{object_descriptors.size}"
|
124
|
+
|
125
|
+
image_keypoints, image_descriptors = image.extract_surf(param)
|
126
|
+
puts "Image Descriptors: #{image_descriptors.size}"
|
127
|
+
}
|
128
|
+
puts "Extraction time = #{tms.real * 1000} ms"
|
129
|
+
|
130
|
+
correspond = IplImage.new(image.width, object.height + image.height, CV_8U, 1);
|
131
|
+
correspond.set_roi(CvRect.new(0, 0, object.width, object.height))
|
132
|
+
object.copy(correspond)
|
133
|
+
correspond.set_roi(CvRect.new(0, object.height, image.width, image.height))
|
134
|
+
image.copy(correspond)
|
135
|
+
correspond.reset_roi
|
136
|
+
|
137
|
+
src_corners = [CvPoint.new(0, 0), CvPoint.new(object.width, 0),
|
138
|
+
CvPoint.new(object.width, object.height), CvPoint.new(0, object.height)]
|
139
|
+
dst_corners = locate_planar_object(object_keypoints, object_descriptors,
|
140
|
+
image_keypoints, image_descriptors, src_corners)
|
141
|
+
|
142
|
+
correspond = correspond.GRAY2BGR
|
143
|
+
if dst_corners
|
144
|
+
4.times { |i|
|
145
|
+
r1 = dst_corners[i % 4]
|
146
|
+
r2 = dst_corners[(i + 1) % 4]
|
147
|
+
correspond.line!(CvPoint.new(r1.x, r1.y + object.height), CvPoint.new(r2.x, r2.y + object.height),
|
148
|
+
:color => CvColor::Red, :thickness => 2, :line_type => :aa)
|
149
|
+
}
|
150
|
+
end
|
151
|
+
|
152
|
+
ptpairs = find_pairs(object_keypoints, object_descriptors, image_keypoints, image_descriptors)
|
153
|
+
|
154
|
+
0.step(ptpairs.size - 1, 2) { |i|
|
155
|
+
r1 = object_keypoints[ptpairs[i]]
|
156
|
+
r2 = image_keypoints[ptpairs[i + 1]]
|
157
|
+
correspond.line!(r1.pt, CvPoint.new(r2.pt.x, r2.pt.y + object.height),
|
158
|
+
:color => CvColor::Red, :line_type => :aa)
|
159
|
+
}
|
160
|
+
|
161
|
+
object_keypoints.each { |r|
|
162
|
+
radius = (r.size * 1.2 / 9.0 * 2).to_i
|
163
|
+
object_color.circle!(r.pt, radius, :color => CvColor::Red, :line_type => :aa)
|
164
|
+
}
|
165
|
+
|
166
|
+
GUI::Window.new('Object Correspond').show correspond
|
167
|
+
GUI::Window.new('Object').show object_color
|
168
|
+
GUI::wait_key
|
169
|
+
|