CooCoo 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +16 -0
- data/CooCoo.gemspec +47 -0
- data/Gemfile +4 -0
- data/Gemfile.lock +88 -0
- data/README.md +123 -0
- data/Rakefile +81 -0
- data/bin/cuda-dev-info +25 -0
- data/bin/cuda-free +28 -0
- data/bin/cuda-free-trend +7 -0
- data/bin/ffi-gen +267 -0
- data/bin/spec_runner_html.sh +42 -0
- data/bin/trainer +198 -0
- data/bin/trend-cost +13 -0
- data/examples/char-rnn.rb +405 -0
- data/examples/cifar/cifar.rb +94 -0
- data/examples/img-similarity.rb +201 -0
- data/examples/math_ops.rb +57 -0
- data/examples/mnist.rb +365 -0
- data/examples/mnist_classifier.rb +293 -0
- data/examples/mnist_dream.rb +214 -0
- data/examples/seeds.rb +268 -0
- data/examples/seeds_dataset.txt +210 -0
- data/examples/t10k-images-idx3-ubyte +0 -0
- data/examples/t10k-labels-idx1-ubyte +0 -0
- data/examples/train-images-idx3-ubyte +0 -0
- data/examples/train-labels-idx1-ubyte +0 -0
- data/ext/buffer/Rakefile +50 -0
- data/ext/buffer/buffer.pre.cu +727 -0
- data/ext/buffer/matrix.pre.cu +49 -0
- data/lib/CooCoo.rb +1 -0
- data/lib/coo-coo.rb +18 -0
- data/lib/coo-coo/activation_functions.rb +344 -0
- data/lib/coo-coo/consts.rb +5 -0
- data/lib/coo-coo/convolution.rb +298 -0
- data/lib/coo-coo/core_ext.rb +75 -0
- data/lib/coo-coo/cost_functions.rb +91 -0
- data/lib/coo-coo/cuda.rb +116 -0
- data/lib/coo-coo/cuda/device_buffer.rb +240 -0
- data/lib/coo-coo/cuda/device_buffer/ffi.rb +109 -0
- data/lib/coo-coo/cuda/error.rb +51 -0
- data/lib/coo-coo/cuda/host_buffer.rb +117 -0
- data/lib/coo-coo/cuda/runtime.rb +157 -0
- data/lib/coo-coo/cuda/vector.rb +315 -0
- data/lib/coo-coo/data_sources.rb +2 -0
- data/lib/coo-coo/data_sources/xournal.rb +25 -0
- data/lib/coo-coo/data_sources/xournal/bitmap_stream.rb +197 -0
- data/lib/coo-coo/data_sources/xournal/document.rb +377 -0
- data/lib/coo-coo/data_sources/xournal/loader.rb +144 -0
- data/lib/coo-coo/data_sources/xournal/renderer.rb +101 -0
- data/lib/coo-coo/data_sources/xournal/saver.rb +99 -0
- data/lib/coo-coo/data_sources/xournal/training_document.rb +78 -0
- data/lib/coo-coo/data_sources/xournal/training_document/constants.rb +15 -0
- data/lib/coo-coo/data_sources/xournal/training_document/document_maker.rb +89 -0
- data/lib/coo-coo/data_sources/xournal/training_document/document_reader.rb +105 -0
- data/lib/coo-coo/data_sources/xournal/training_document/example.rb +37 -0
- data/lib/coo-coo/data_sources/xournal/training_document/sets.rb +76 -0
- data/lib/coo-coo/debug.rb +8 -0
- data/lib/coo-coo/dot.rb +129 -0
- data/lib/coo-coo/drawing.rb +4 -0
- data/lib/coo-coo/drawing/cairo_canvas.rb +100 -0
- data/lib/coo-coo/drawing/canvas.rb +68 -0
- data/lib/coo-coo/drawing/chunky_canvas.rb +101 -0
- data/lib/coo-coo/drawing/sixel.rb +214 -0
- data/lib/coo-coo/enum.rb +17 -0
- data/lib/coo-coo/from_name.rb +58 -0
- data/lib/coo-coo/fully_connected_layer.rb +205 -0
- data/lib/coo-coo/generation_script.rb +38 -0
- data/lib/coo-coo/grapher.rb +140 -0
- data/lib/coo-coo/image.rb +286 -0
- data/lib/coo-coo/layer.rb +67 -0
- data/lib/coo-coo/layer_factory.rb +26 -0
- data/lib/coo-coo/linear_layer.rb +59 -0
- data/lib/coo-coo/math.rb +607 -0
- data/lib/coo-coo/math/abstract_vector.rb +121 -0
- data/lib/coo-coo/math/functions.rb +39 -0
- data/lib/coo-coo/math/interpolation.rb +7 -0
- data/lib/coo-coo/network.rb +264 -0
- data/lib/coo-coo/neuron.rb +112 -0
- data/lib/coo-coo/neuron_layer.rb +168 -0
- data/lib/coo-coo/option_parser.rb +18 -0
- data/lib/coo-coo/platform.rb +17 -0
- data/lib/coo-coo/progress_bar.rb +11 -0
- data/lib/coo-coo/recurrence/backend.rb +99 -0
- data/lib/coo-coo/recurrence/frontend.rb +101 -0
- data/lib/coo-coo/sequence.rb +187 -0
- data/lib/coo-coo/shell.rb +2 -0
- data/lib/coo-coo/temporal_network.rb +291 -0
- data/lib/coo-coo/trainer.rb +21 -0
- data/lib/coo-coo/trainer/base.rb +67 -0
- data/lib/coo-coo/trainer/batch.rb +82 -0
- data/lib/coo-coo/trainer/batch_stats.rb +27 -0
- data/lib/coo-coo/trainer/momentum_stochastic.rb +59 -0
- data/lib/coo-coo/trainer/stochastic.rb +47 -0
- data/lib/coo-coo/transformer.rb +272 -0
- data/lib/coo-coo/vector_layer.rb +194 -0
- data/lib/coo-coo/version.rb +3 -0
- data/lib/coo-coo/weight_deltas.rb +23 -0
- data/prototypes/convolution.rb +116 -0
- data/prototypes/linear_drop.rb +51 -0
- data/prototypes/recurrent_layers.rb +79 -0
- data/www/images/screamer.png +0 -0
- data/www/images/screamer.xcf +0 -0
- data/www/index.html +82 -0
- metadata +373 -0
data/examples/seeds.rb
ADDED
@@ -0,0 +1,268 @@
|
|
1
|
+
#!/bin/env ruby
|
2
|
+
|
3
|
+
require 'pathname'
|
4
|
+
require 'net/http'
|
5
|
+
require 'coo-coo'
|
6
|
+
|
7
|
+
class Seed
|
8
|
+
attr_accessor :area
|
9
|
+
attr_accessor :perimeter
|
10
|
+
attr_accessor :compactness
|
11
|
+
attr_accessor :length
|
12
|
+
attr_accessor :width
|
13
|
+
attr_accessor :asymetry_coeff
|
14
|
+
attr_accessor :groove_length
|
15
|
+
attr_accessor :type
|
16
|
+
|
17
|
+
def initialize(area = 0.0,
|
18
|
+
perimeter = 0.0,
|
19
|
+
compactness = 0.0,
|
20
|
+
length = 0.0,
|
21
|
+
width = 0.0,
|
22
|
+
asymetry_coeff = 0.0,
|
23
|
+
groove_length = 0.0,
|
24
|
+
type = -1)
|
25
|
+
@area = area
|
26
|
+
@perimeter = perimeter
|
27
|
+
@compactness = compactness
|
28
|
+
@length = length
|
29
|
+
@width = width
|
30
|
+
@asymetry_coeff = asymetry_coeff
|
31
|
+
@groove_length = groove_length
|
32
|
+
@type = type.to_i
|
33
|
+
end
|
34
|
+
|
35
|
+
def values
|
36
|
+
CooCoo::Vector[[ area,
|
37
|
+
perimeter,
|
38
|
+
compactness,
|
39
|
+
length,
|
40
|
+
width,
|
41
|
+
asymetry_coeff,
|
42
|
+
groove_length
|
43
|
+
]]
|
44
|
+
end
|
45
|
+
end
|
46
|
+
|
47
|
+
class SeedData
|
48
|
+
def initialize(path)
|
49
|
+
load_data(path)
|
50
|
+
end
|
51
|
+
|
52
|
+
def load_data(path)
|
53
|
+
max_seed = Seed.new
|
54
|
+
|
55
|
+
@seeds = File.readlines(path).collect do |line|
|
56
|
+
Seed.new(*line.split.collect(&:to_f))
|
57
|
+
end
|
58
|
+
|
59
|
+
@max_seed = Seed.new(@seeds.collect(&:area).max,
|
60
|
+
@seeds.collect(&:perimeter).max,
|
61
|
+
@seeds.collect(&:compactness).max,
|
62
|
+
@seeds.collect(&:length).max,
|
63
|
+
@seeds.collect(&:width).max,
|
64
|
+
@seeds.collect(&:asymetry_coeff).max,
|
65
|
+
@seeds.collect(&:groove_length).max,
|
66
|
+
@seeds.collect(&:type).max)
|
67
|
+
end
|
68
|
+
|
69
|
+
def each(&block)
|
70
|
+
return enum_for(:each) unless block_given?
|
71
|
+
|
72
|
+
@seeds.each do |seed|
|
73
|
+
block.call(seed)
|
74
|
+
end
|
75
|
+
end
|
76
|
+
|
77
|
+
def encode_type(type)
|
78
|
+
raise ArgumentError.new("bad seed type #{type}") if type > num_types
|
79
|
+
|
80
|
+
t = CooCoo::Vector.zeros(num_types)
|
81
|
+
t[type - 1] = 1.0
|
82
|
+
t
|
83
|
+
end
|
84
|
+
|
85
|
+
def normalize_seed(seed)
|
86
|
+
seed.values / @max_seed.values
|
87
|
+
end
|
88
|
+
|
89
|
+
def each_example(&block)
|
90
|
+
return enum_for(:each_example) unless block_given?
|
91
|
+
|
92
|
+
@seeds.each do |seed|
|
93
|
+
t = encode_type(seed.type)
|
94
|
+
block.call([ t, normalize_seed(seed) ])
|
95
|
+
end
|
96
|
+
end
|
97
|
+
|
98
|
+
def num_types
|
99
|
+
@max_seed.type
|
100
|
+
end
|
101
|
+
end
|
102
|
+
|
103
|
+
require 'fileutils'
|
104
|
+
|
105
|
+
def backup(path)
|
106
|
+
if File.exists?(path)
|
107
|
+
backup = path.to_s + "~"
|
108
|
+
if File.exists?(backup)
|
109
|
+
File.delete(backup)
|
110
|
+
end
|
111
|
+
FileUtils.copy(path, backup)
|
112
|
+
end
|
113
|
+
end
|
114
|
+
|
115
|
+
require 'coo-coo/neuron_layer'
|
116
|
+
require 'ostruct'
|
117
|
+
require 'optparse'
|
118
|
+
|
119
|
+
DATA_FILE = Pathname.new(__FILE__).dirname.join("seeds_dataset.txt") # via http://archive.ics.uci.edu/ml/datasets/seeds
|
120
|
+
|
121
|
+
options = OpenStruct.new
|
122
|
+
options.model_path = nil
|
123
|
+
options.epochs = nil
|
124
|
+
options.data_path = DATA_FILE
|
125
|
+
options.activation_function = CooCoo.default_activation
|
126
|
+
options.hidden_size = 21
|
127
|
+
options.num_layers = 2
|
128
|
+
options.trainer = 'Stochastic'
|
129
|
+
|
130
|
+
op = CooCoo::OptionParser.new do |o|
|
131
|
+
o.on('-m', '--model PATH') do |path|
|
132
|
+
options.model_path = Pathname.new(path)
|
133
|
+
end
|
134
|
+
|
135
|
+
o.on('-t', '--train NUMBER') do |epochs|
|
136
|
+
options.epochs = epochs.to_i
|
137
|
+
end
|
138
|
+
|
139
|
+
o.on('-d', '--data PATH') do |path|
|
140
|
+
options.data_path = Pathname.new(path)
|
141
|
+
end
|
142
|
+
|
143
|
+
o.on('-f', '--activation FUNC') do |func|
|
144
|
+
options.activation_function = CooCoo::ActivationFunctions.from_name(func)
|
145
|
+
end
|
146
|
+
|
147
|
+
o.on('--hidden-size NUMBER') do |num|
|
148
|
+
options.hidden_size = num.to_i
|
149
|
+
end
|
150
|
+
|
151
|
+
o.on('--num-layers NUMBER') do |num|
|
152
|
+
options.num_layers = num.to_i
|
153
|
+
end
|
154
|
+
|
155
|
+
o.on('--trainer NAME') do |trainer|
|
156
|
+
options.trainer = trainer
|
157
|
+
end
|
158
|
+
|
159
|
+
o.on('--softmax') do
|
160
|
+
options.softmax = true
|
161
|
+
options.cost_function = CooCoo::CostFunctions.from_name('CrossEntropy')
|
162
|
+
end
|
163
|
+
|
164
|
+
o.on('-h', '--help') do
|
165
|
+
puts(o)
|
166
|
+
if options.trainer
|
167
|
+
t = CooCoo::Trainer.from_name(options.trainer)
|
168
|
+
raise NameError.new("Unknown trainer #{options.trainer}") unless t
|
169
|
+
opts, _ = t.options
|
170
|
+
puts(opts)
|
171
|
+
end
|
172
|
+
exit
|
173
|
+
end
|
174
|
+
end
|
175
|
+
|
176
|
+
args = op.parse!(ARGV)
|
177
|
+
|
178
|
+
trainer = nil
|
179
|
+
trainer_options = nil
|
180
|
+
if options.trainer
|
181
|
+
trainer = CooCoo::Trainer.from_name(options.trainer)
|
182
|
+
raise NameError.new("Unknown trainer #{options.trainer}") unless trainer
|
183
|
+
t_opts, trainer_options = trainer.options
|
184
|
+
argv = t_opts.parse!(args)
|
185
|
+
end
|
186
|
+
|
187
|
+
Random.srand(123)
|
188
|
+
|
189
|
+
training_data = SeedData.new(options.data_path)
|
190
|
+
model = CooCoo::Network.new()
|
191
|
+
|
192
|
+
puts("Using CUDA") if CooCoo::CUDA.available?
|
193
|
+
|
194
|
+
if options.model_path && File.exists?(options.model_path)
|
195
|
+
model.load!(options.model_path)
|
196
|
+
puts("Loaded model #{options.model_path}")
|
197
|
+
else
|
198
|
+
options.num_layers.times do |i|
|
199
|
+
inputs = case i
|
200
|
+
when 0 then 7
|
201
|
+
else options.hidden_size
|
202
|
+
end
|
203
|
+
outputs = case i
|
204
|
+
when (options.num_layers - 1) then training_data.num_types
|
205
|
+
else options.hidden_size
|
206
|
+
end
|
207
|
+
model.layer(CooCoo::Layer.new(inputs, outputs, options.activation_function))
|
208
|
+
end
|
209
|
+
|
210
|
+
if options.softmax
|
211
|
+
model.layer(CooCoo::LinearLayer.new(training_data.num_types, CooCoo::ActivationFunctions.from_name('ShiftedSoftMax')))
|
212
|
+
end
|
213
|
+
|
214
|
+
#model.layer(CooCoo::Layer.new(7, options.hidden_size, options.activation_function))
|
215
|
+
#model.layer(CooCoo::Layer.new(10, 5))
|
216
|
+
#model.layer(CooCoo::Layer.new(options.hidden_size, training_data.num_types, options.activation_function))
|
217
|
+
end
|
218
|
+
|
219
|
+
if options.epochs
|
220
|
+
puts("Training for #{options.epochs} epochs")
|
221
|
+
now = Time.now
|
222
|
+
bar = CooCoo::ProgressBar.create(:total => options.epochs.to_i)
|
223
|
+
errors = Array.new
|
224
|
+
options.epochs.to_i.times do |epoch|
|
225
|
+
trainer.train({ network: model,
|
226
|
+
data: training_data.each_example,
|
227
|
+
}.merge(trainer_options.to_h)) do |stats|
|
228
|
+
errors << stats.average_loss
|
229
|
+
end
|
230
|
+
cost = CooCoo::Sequence[errors].average
|
231
|
+
bar.log("Cost #{cost.average} #{cost}")
|
232
|
+
if options.model_path
|
233
|
+
backup(options.model_path)
|
234
|
+
model.save(options.model_path)
|
235
|
+
bar.log("Saved to #{options.model_path}")
|
236
|
+
end
|
237
|
+
bar.increment
|
238
|
+
end
|
239
|
+
puts("\n\tElapsed #{(Time.now - now) / 60.0} min.")
|
240
|
+
puts("Trained!")
|
241
|
+
end
|
242
|
+
|
243
|
+
puts("Predicting:")
|
244
|
+
puts("Seed values\t\t\t\t\tExpecting\tPrediction\tOutputs")
|
245
|
+
|
246
|
+
def try_seed(model, td, seed)
|
247
|
+
output, hidden_state = model.predict(td.normalize_seed(seed))
|
248
|
+
type = 1 + output.each_with_index.max[1]
|
249
|
+
puts("#{seed.values}\t#{seed.type}\t#{type}\t#{output}")
|
250
|
+
return(seed.type == type ? 0.0 : 1.0)
|
251
|
+
end
|
252
|
+
|
253
|
+
n_errors = training_data.each.first(4).collect { |seed|
|
254
|
+
try_seed(model, training_data, seed)
|
255
|
+
}.sum
|
256
|
+
|
257
|
+
n_errors += training_data.each.
|
258
|
+
select { |s| s.type == 2 }.
|
259
|
+
first(4).
|
260
|
+
collect { |seed| try_seed(model, training_data, seed) }.
|
261
|
+
sum
|
262
|
+
|
263
|
+
n_errors += training_data.each.
|
264
|
+
select { |s| s.type == 3 }.
|
265
|
+
first(4).
|
266
|
+
collect { |seed| try_seed(model, training_data, seed) }.
|
267
|
+
sum
|
268
|
+
puts("Errors: #{n_errors / 12.0 * 100.0}%")
|
@@ -0,0 +1,210 @@
|
|
1
|
+
15.26 14.84 0.871 5.763 3.312 2.221 5.22 1
|
2
|
+
14.88 14.57 0.8811 5.554 3.333 1.018 4.956 1
|
3
|
+
14.29 14.09 0.905 5.291 3.337 2.699 4.825 1
|
4
|
+
13.84 13.94 0.8955 5.324 3.379 2.259 4.805 1
|
5
|
+
16.14 14.99 0.9034 5.658 3.562 1.355 5.175 1
|
6
|
+
14.38 14.21 0.8951 5.386 3.312 2.462 4.956 1
|
7
|
+
14.69 14.49 0.8799 5.563 3.259 3.586 5.219 1
|
8
|
+
14.11 14.1 0.8911 5.42 3.302 2.7 5 1
|
9
|
+
16.63 15.46 0.8747 6.053 3.465 2.04 5.877 1
|
10
|
+
16.44 15.25 0.888 5.884 3.505 1.969 5.533 1
|
11
|
+
15.26 14.85 0.8696 5.714 3.242 4.543 5.314 1
|
12
|
+
14.03 14.16 0.8796 5.438 3.201 1.717 5.001 1
|
13
|
+
13.89 14.02 0.888 5.439 3.199 3.986 4.738 1
|
14
|
+
13.78 14.06 0.8759 5.479 3.156 3.136 4.872 1
|
15
|
+
13.74 14.05 0.8744 5.482 3.114 2.932 4.825 1
|
16
|
+
14.59 14.28 0.8993 5.351 3.333 4.185 4.781 1
|
17
|
+
13.99 13.83 0.9183 5.119 3.383 5.234 4.781 1
|
18
|
+
15.69 14.75 0.9058 5.527 3.514 1.599 5.046 1
|
19
|
+
14.7 14.21 0.9153 5.205 3.466 1.767 4.649 1
|
20
|
+
12.72 13.57 0.8686 5.226 3.049 4.102 4.914 1
|
21
|
+
14.16 14.4 0.8584 5.658 3.129 3.072 5.176 1
|
22
|
+
14.11 14.26 0.8722 5.52 3.168 2.688 5.219 1
|
23
|
+
15.88 14.9 0.8988 5.618 3.507 0.7651 5.091 1
|
24
|
+
12.08 13.23 0.8664 5.099 2.936 1.415 4.961 1
|
25
|
+
15.01 14.76 0.8657 5.789 3.245 1.791 5.001 1
|
26
|
+
16.19 15.16 0.8849 5.833 3.421 0.903 5.307 1
|
27
|
+
13.02 13.76 0.8641 5.395 3.026 3.373 4.825 1
|
28
|
+
12.74 13.67 0.8564 5.395 2.956 2.504 4.869 1
|
29
|
+
14.11 14.18 0.882 5.541 3.221 2.754 5.038 1
|
30
|
+
13.45 14.02 0.8604 5.516 3.065 3.531 5.097 1
|
31
|
+
13.16 13.82 0.8662 5.454 2.975 0.8551 5.056 1
|
32
|
+
15.49 14.94 0.8724 5.757 3.371 3.412 5.228 1
|
33
|
+
14.09 14.41 0.8529 5.717 3.186 3.92 5.299 1
|
34
|
+
13.94 14.17 0.8728 5.585 3.15 2.124 5.012 1
|
35
|
+
15.05 14.68 0.8779 5.712 3.328 2.129 5.36 1
|
36
|
+
16.12 15 0.9 5.709 3.485 2.27 5.443 1
|
37
|
+
16.2 15.27 0.8734 5.826 3.464 2.823 5.527 1
|
38
|
+
17.08 15.38 0.9079 5.832 3.683 2.956 5.484 1
|
39
|
+
14.8 14.52 0.8823 5.656 3.288 3.112 5.309 1
|
40
|
+
14.28 14.17 0.8944 5.397 3.298 6.685 5.001 1
|
41
|
+
13.54 13.85 0.8871 5.348 3.156 2.587 5.178 1
|
42
|
+
13.5 13.85 0.8852 5.351 3.158 2.249 5.176 1
|
43
|
+
13.16 13.55 0.9009 5.138 3.201 2.461 4.783 1
|
44
|
+
15.5 14.86 0.882 5.877 3.396 4.711 5.528 1
|
45
|
+
15.11 14.54 0.8986 5.579 3.462 3.128 5.18 1
|
46
|
+
13.8 14.04 0.8794 5.376 3.155 1.56 4.961 1
|
47
|
+
15.36 14.76 0.8861 5.701 3.393 1.367 5.132 1
|
48
|
+
14.99 14.56 0.8883 5.57 3.377 2.958 5.175 1
|
49
|
+
14.79 14.52 0.8819 5.545 3.291 2.704 5.111 1
|
50
|
+
14.86 14.67 0.8676 5.678 3.258 2.129 5.351 1
|
51
|
+
14.43 14.4 0.8751 5.585 3.272 3.975 5.144 1
|
52
|
+
15.78 14.91 0.8923 5.674 3.434 5.593 5.136 1
|
53
|
+
14.49 14.61 0.8538 5.715 3.113 4.116 5.396 1
|
54
|
+
14.33 14.28 0.8831 5.504 3.199 3.328 5.224 1
|
55
|
+
14.52 14.6 0.8557 5.741 3.113 1.481 5.487 1
|
56
|
+
15.03 14.77 0.8658 5.702 3.212 1.933 5.439 1
|
57
|
+
14.46 14.35 0.8818 5.388 3.377 2.802 5.044 1
|
58
|
+
14.92 14.43 0.9006 5.384 3.412 1.142 5.088 1
|
59
|
+
15.38 14.77 0.8857 5.662 3.419 1.999 5.222 1
|
60
|
+
12.11 13.47 0.8392 5.159 3.032 1.502 4.519 1
|
61
|
+
11.42 12.86 0.8683 5.008 2.85 2.7 4.607 1
|
62
|
+
11.23 12.63 0.884 4.902 2.879 2.269 4.703 1
|
63
|
+
12.36 13.19 0.8923 5.076 3.042 3.22 4.605 1
|
64
|
+
13.22 13.84 0.868 5.395 3.07 4.157 5.088 1
|
65
|
+
12.78 13.57 0.8716 5.262 3.026 1.176 4.782 1
|
66
|
+
12.88 13.5 0.8879 5.139 3.119 2.352 4.607 1
|
67
|
+
14.34 14.37 0.8726 5.63 3.19 1.313 5.15 1
|
68
|
+
14.01 14.29 0.8625 5.609 3.158 2.217 5.132 1
|
69
|
+
14.37 14.39 0.8726 5.569 3.153 1.464 5.3 1
|
70
|
+
12.73 13.75 0.8458 5.412 2.882 3.533 5.067 1
|
71
|
+
17.63 15.98 0.8673 6.191 3.561 4.076 6.06 2
|
72
|
+
16.84 15.67 0.8623 5.998 3.484 4.675 5.877 2
|
73
|
+
17.26 15.73 0.8763 5.978 3.594 4.539 5.791 2
|
74
|
+
19.11 16.26 0.9081 6.154 3.93 2.936 6.079 2
|
75
|
+
16.82 15.51 0.8786 6.017 3.486 4.004 5.841 2
|
76
|
+
16.77 15.62 0.8638 5.927 3.438 4.92 5.795 2
|
77
|
+
17.32 15.91 0.8599 6.064 3.403 3.824 5.922 2
|
78
|
+
20.71 17.23 0.8763 6.579 3.814 4.451 6.451 2
|
79
|
+
18.94 16.49 0.875 6.445 3.639 5.064 6.362 2
|
80
|
+
17.12 15.55 0.8892 5.85 3.566 2.858 5.746 2
|
81
|
+
16.53 15.34 0.8823 5.875 3.467 5.532 5.88 2
|
82
|
+
18.72 16.19 0.8977 6.006 3.857 5.324 5.879 2
|
83
|
+
20.2 16.89 0.8894 6.285 3.864 5.173 6.187 2
|
84
|
+
19.57 16.74 0.8779 6.384 3.772 1.472 6.273 2
|
85
|
+
19.51 16.71 0.878 6.366 3.801 2.962 6.185 2
|
86
|
+
18.27 16.09 0.887 6.173 3.651 2.443 6.197 2
|
87
|
+
18.88 16.26 0.8969 6.084 3.764 1.649 6.109 2
|
88
|
+
18.98 16.66 0.859 6.549 3.67 3.691 6.498 2
|
89
|
+
21.18 17.21 0.8989 6.573 4.033 5.78 6.231 2
|
90
|
+
20.88 17.05 0.9031 6.45 4.032 5.016 6.321 2
|
91
|
+
20.1 16.99 0.8746 6.581 3.785 1.955 6.449 2
|
92
|
+
18.76 16.2 0.8984 6.172 3.796 3.12 6.053 2
|
93
|
+
18.81 16.29 0.8906 6.272 3.693 3.237 6.053 2
|
94
|
+
18.59 16.05 0.9066 6.037 3.86 6.001 5.877 2
|
95
|
+
18.36 16.52 0.8452 6.666 3.485 4.933 6.448 2
|
96
|
+
16.87 15.65 0.8648 6.139 3.463 3.696 5.967 2
|
97
|
+
19.31 16.59 0.8815 6.341 3.81 3.477 6.238 2
|
98
|
+
18.98 16.57 0.8687 6.449 3.552 2.144 6.453 2
|
99
|
+
18.17 16.26 0.8637 6.271 3.512 2.853 6.273 2
|
100
|
+
18.72 16.34 0.881 6.219 3.684 2.188 6.097 2
|
101
|
+
16.41 15.25 0.8866 5.718 3.525 4.217 5.618 2
|
102
|
+
17.99 15.86 0.8992 5.89 3.694 2.068 5.837 2
|
103
|
+
19.46 16.5 0.8985 6.113 3.892 4.308 6.009 2
|
104
|
+
19.18 16.63 0.8717 6.369 3.681 3.357 6.229 2
|
105
|
+
18.95 16.42 0.8829 6.248 3.755 3.368 6.148 2
|
106
|
+
18.83 16.29 0.8917 6.037 3.786 2.553 5.879 2
|
107
|
+
18.85 16.17 0.9056 6.152 3.806 2.843 6.2 2
|
108
|
+
17.63 15.86 0.88 6.033 3.573 3.747 5.929 2
|
109
|
+
19.94 16.92 0.8752 6.675 3.763 3.252 6.55 2
|
110
|
+
18.55 16.22 0.8865 6.153 3.674 1.738 5.894 2
|
111
|
+
18.45 16.12 0.8921 6.107 3.769 2.235 5.794 2
|
112
|
+
19.38 16.72 0.8716 6.303 3.791 3.678 5.965 2
|
113
|
+
19.13 16.31 0.9035 6.183 3.902 2.109 5.924 2
|
114
|
+
19.14 16.61 0.8722 6.259 3.737 6.682 6.053 2
|
115
|
+
20.97 17.25 0.8859 6.563 3.991 4.677 6.316 2
|
116
|
+
19.06 16.45 0.8854 6.416 3.719 2.248 6.163 2
|
117
|
+
18.96 16.2 0.9077 6.051 3.897 4.334 5.75 2
|
118
|
+
19.15 16.45 0.889 6.245 3.815 3.084 6.185 2
|
119
|
+
18.89 16.23 0.9008 6.227 3.769 3.639 5.966 2
|
120
|
+
20.03 16.9 0.8811 6.493 3.857 3.063 6.32 2
|
121
|
+
20.24 16.91 0.8897 6.315 3.962 5.901 6.188 2
|
122
|
+
18.14 16.12 0.8772 6.059 3.563 3.619 6.011 2
|
123
|
+
16.17 15.38 0.8588 5.762 3.387 4.286 5.703 2
|
124
|
+
18.43 15.97 0.9077 5.98 3.771 2.984 5.905 2
|
125
|
+
15.99 14.89 0.9064 5.363 3.582 3.336 5.144 2
|
126
|
+
18.75 16.18 0.8999 6.111 3.869 4.188 5.992 2
|
127
|
+
18.65 16.41 0.8698 6.285 3.594 4.391 6.102 2
|
128
|
+
17.98 15.85 0.8993 5.979 3.687 2.257 5.919 2
|
129
|
+
20.16 17.03 0.8735 6.513 3.773 1.91 6.185 2
|
130
|
+
17.55 15.66 0.8991 5.791 3.69 5.366 5.661 2
|
131
|
+
18.3 15.89 0.9108 5.979 3.755 2.837 5.962 2
|
132
|
+
18.94 16.32 0.8942 6.144 3.825 2.908 5.949 2
|
133
|
+
15.38 14.9 0.8706 5.884 3.268 4.462 5.795 2
|
134
|
+
16.16 15.33 0.8644 5.845 3.395 4.266 5.795 2
|
135
|
+
15.56 14.89 0.8823 5.776 3.408 4.972 5.847 2
|
136
|
+
15.38 14.66 0.899 5.477 3.465 3.6 5.439 2
|
137
|
+
17.36 15.76 0.8785 6.145 3.574 3.526 5.971 2
|
138
|
+
15.57 15.15 0.8527 5.92 3.231 2.64 5.879 2
|
139
|
+
15.6 15.11 0.858 5.832 3.286 2.725 5.752 2
|
140
|
+
16.23 15.18 0.885 5.872 3.472 3.769 5.922 2
|
141
|
+
13.07 13.92 0.848 5.472 2.994 5.304 5.395 3
|
142
|
+
13.32 13.94 0.8613 5.541 3.073 7.035 5.44 3
|
143
|
+
13.34 13.95 0.862 5.389 3.074 5.995 5.307 3
|
144
|
+
12.22 13.32 0.8652 5.224 2.967 5.469 5.221 3
|
145
|
+
11.82 13.4 0.8274 5.314 2.777 4.471 5.178 3
|
146
|
+
11.21 13.13 0.8167 5.279 2.687 6.169 5.275 3
|
147
|
+
11.43 13.13 0.8335 5.176 2.719 2.221 5.132 3
|
148
|
+
12.49 13.46 0.8658 5.267 2.967 4.421 5.002 3
|
149
|
+
12.7 13.71 0.8491 5.386 2.911 3.26 5.316 3
|
150
|
+
10.79 12.93 0.8107 5.317 2.648 5.462 5.194 3
|
151
|
+
11.83 13.23 0.8496 5.263 2.84 5.195 5.307 3
|
152
|
+
12.01 13.52 0.8249 5.405 2.776 6.992 5.27 3
|
153
|
+
12.26 13.6 0.8333 5.408 2.833 4.756 5.36 3
|
154
|
+
11.18 13.04 0.8266 5.22 2.693 3.332 5.001 3
|
155
|
+
11.36 13.05 0.8382 5.175 2.755 4.048 5.263 3
|
156
|
+
11.19 13.05 0.8253 5.25 2.675 5.813 5.219 3
|
157
|
+
11.34 12.87 0.8596 5.053 2.849 3.347 5.003 3
|
158
|
+
12.13 13.73 0.8081 5.394 2.745 4.825 5.22 3
|
159
|
+
11.75 13.52 0.8082 5.444 2.678 4.378 5.31 3
|
160
|
+
11.49 13.22 0.8263 5.304 2.695 5.388 5.31 3
|
161
|
+
12.54 13.67 0.8425 5.451 2.879 3.082 5.491 3
|
162
|
+
12.02 13.33 0.8503 5.35 2.81 4.271 5.308 3
|
163
|
+
12.05 13.41 0.8416 5.267 2.847 4.988 5.046 3
|
164
|
+
12.55 13.57 0.8558 5.333 2.968 4.419 5.176 3
|
165
|
+
11.14 12.79 0.8558 5.011 2.794 6.388 5.049 3
|
166
|
+
12.1 13.15 0.8793 5.105 2.941 2.201 5.056 3
|
167
|
+
12.44 13.59 0.8462 5.319 2.897 4.924 5.27 3
|
168
|
+
12.15 13.45 0.8443 5.417 2.837 3.638 5.338 3
|
169
|
+
11.35 13.12 0.8291 5.176 2.668 4.337 5.132 3
|
170
|
+
11.24 13 0.8359 5.09 2.715 3.521 5.088 3
|
171
|
+
11.02 13 0.8189 5.325 2.701 6.735 5.163 3
|
172
|
+
11.55 13.1 0.8455 5.167 2.845 6.715 4.956 3
|
173
|
+
11.27 12.97 0.8419 5.088 2.763 4.309 5 3
|
174
|
+
11.4 13.08 0.8375 5.136 2.763 5.588 5.089 3
|
175
|
+
10.83 12.96 0.8099 5.278 2.641 5.182 5.185 3
|
176
|
+
10.8 12.57 0.859 4.981 2.821 4.773 5.063 3
|
177
|
+
11.26 13.01 0.8355 5.186 2.71 5.335 5.092 3
|
178
|
+
10.74 12.73 0.8329 5.145 2.642 4.702 4.963 3
|
179
|
+
11.48 13.05 0.8473 5.18 2.758 5.876 5.002 3
|
180
|
+
12.21 13.47 0.8453 5.357 2.893 1.661 5.178 3
|
181
|
+
11.41 12.95 0.856 5.09 2.775 4.957 4.825 3
|
182
|
+
12.46 13.41 0.8706 5.236 3.017 4.987 5.147 3
|
183
|
+
12.19 13.36 0.8579 5.24 2.909 4.857 5.158 3
|
184
|
+
11.65 13.07 0.8575 5.108 2.85 5.209 5.135 3
|
185
|
+
12.89 13.77 0.8541 5.495 3.026 6.185 5.316 3
|
186
|
+
11.56 13.31 0.8198 5.363 2.683 4.062 5.182 3
|
187
|
+
11.81 13.45 0.8198 5.413 2.716 4.898 5.352 3
|
188
|
+
10.91 12.8 0.8372 5.088 2.675 4.179 4.956 3
|
189
|
+
11.23 12.82 0.8594 5.089 2.821 7.524 4.957 3
|
190
|
+
10.59 12.41 0.8648 4.899 2.787 4.975 4.794 3
|
191
|
+
10.93 12.8 0.839 5.046 2.717 5.398 5.045 3
|
192
|
+
11.27 12.86 0.8563 5.091 2.804 3.985 5.001 3
|
193
|
+
11.87 13.02 0.8795 5.132 2.953 3.597 5.132 3
|
194
|
+
10.82 12.83 0.8256 5.18 2.63 4.853 5.089 3
|
195
|
+
12.11 13.27 0.8639 5.236 2.975 4.132 5.012 3
|
196
|
+
12.8 13.47 0.886 5.16 3.126 4.873 4.914 3
|
197
|
+
12.79 13.53 0.8786 5.224 3.054 5.483 4.958 3
|
198
|
+
13.37 13.78 0.8849 5.32 3.128 4.67 5.091 3
|
199
|
+
12.62 13.67 0.8481 5.41 2.911 3.306 5.231 3
|
200
|
+
12.76 13.38 0.8964 5.073 3.155 2.828 4.83 3
|
201
|
+
12.38 13.44 0.8609 5.219 2.989 5.472 5.045 3
|
202
|
+
12.67 13.32 0.8977 4.984 3.135 2.3 4.745 3
|
203
|
+
11.18 12.72 0.868 5.009 2.81 4.051 4.828 3
|
204
|
+
12.7 13.41 0.8874 5.183 3.091 8.456 5 3
|
205
|
+
12.37 13.47 0.8567 5.204 2.96 3.919 5.001 3
|
206
|
+
12.19 13.2 0.8783 5.137 2.981 3.631 4.87 3
|
207
|
+
11.23 12.88 0.8511 5.14 2.795 4.325 5.003 3
|
208
|
+
13.2 13.66 0.8883 5.236 3.232 8.315 5.056 3
|
209
|
+
11.84 13.21 0.8521 5.175 2.836 3.598 5.044 3
|
210
|
+
12.3 13.34 0.8684 5.243 2.974 5.637 5.063 3
|