CooCoo 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +16 -0
- data/CooCoo.gemspec +47 -0
- data/Gemfile +4 -0
- data/Gemfile.lock +88 -0
- data/README.md +123 -0
- data/Rakefile +81 -0
- data/bin/cuda-dev-info +25 -0
- data/bin/cuda-free +28 -0
- data/bin/cuda-free-trend +7 -0
- data/bin/ffi-gen +267 -0
- data/bin/spec_runner_html.sh +42 -0
- data/bin/trainer +198 -0
- data/bin/trend-cost +13 -0
- data/examples/char-rnn.rb +405 -0
- data/examples/cifar/cifar.rb +94 -0
- data/examples/img-similarity.rb +201 -0
- data/examples/math_ops.rb +57 -0
- data/examples/mnist.rb +365 -0
- data/examples/mnist_classifier.rb +293 -0
- data/examples/mnist_dream.rb +214 -0
- data/examples/seeds.rb +268 -0
- data/examples/seeds_dataset.txt +210 -0
- data/examples/t10k-images-idx3-ubyte +0 -0
- data/examples/t10k-labels-idx1-ubyte +0 -0
- data/examples/train-images-idx3-ubyte +0 -0
- data/examples/train-labels-idx1-ubyte +0 -0
- data/ext/buffer/Rakefile +50 -0
- data/ext/buffer/buffer.pre.cu +727 -0
- data/ext/buffer/matrix.pre.cu +49 -0
- data/lib/CooCoo.rb +1 -0
- data/lib/coo-coo.rb +18 -0
- data/lib/coo-coo/activation_functions.rb +344 -0
- data/lib/coo-coo/consts.rb +5 -0
- data/lib/coo-coo/convolution.rb +298 -0
- data/lib/coo-coo/core_ext.rb +75 -0
- data/lib/coo-coo/cost_functions.rb +91 -0
- data/lib/coo-coo/cuda.rb +116 -0
- data/lib/coo-coo/cuda/device_buffer.rb +240 -0
- data/lib/coo-coo/cuda/device_buffer/ffi.rb +109 -0
- data/lib/coo-coo/cuda/error.rb +51 -0
- data/lib/coo-coo/cuda/host_buffer.rb +117 -0
- data/lib/coo-coo/cuda/runtime.rb +157 -0
- data/lib/coo-coo/cuda/vector.rb +315 -0
- data/lib/coo-coo/data_sources.rb +2 -0
- data/lib/coo-coo/data_sources/xournal.rb +25 -0
- data/lib/coo-coo/data_sources/xournal/bitmap_stream.rb +197 -0
- data/lib/coo-coo/data_sources/xournal/document.rb +377 -0
- data/lib/coo-coo/data_sources/xournal/loader.rb +144 -0
- data/lib/coo-coo/data_sources/xournal/renderer.rb +101 -0
- data/lib/coo-coo/data_sources/xournal/saver.rb +99 -0
- data/lib/coo-coo/data_sources/xournal/training_document.rb +78 -0
- data/lib/coo-coo/data_sources/xournal/training_document/constants.rb +15 -0
- data/lib/coo-coo/data_sources/xournal/training_document/document_maker.rb +89 -0
- data/lib/coo-coo/data_sources/xournal/training_document/document_reader.rb +105 -0
- data/lib/coo-coo/data_sources/xournal/training_document/example.rb +37 -0
- data/lib/coo-coo/data_sources/xournal/training_document/sets.rb +76 -0
- data/lib/coo-coo/debug.rb +8 -0
- data/lib/coo-coo/dot.rb +129 -0
- data/lib/coo-coo/drawing.rb +4 -0
- data/lib/coo-coo/drawing/cairo_canvas.rb +100 -0
- data/lib/coo-coo/drawing/canvas.rb +68 -0
- data/lib/coo-coo/drawing/chunky_canvas.rb +101 -0
- data/lib/coo-coo/drawing/sixel.rb +214 -0
- data/lib/coo-coo/enum.rb +17 -0
- data/lib/coo-coo/from_name.rb +58 -0
- data/lib/coo-coo/fully_connected_layer.rb +205 -0
- data/lib/coo-coo/generation_script.rb +38 -0
- data/lib/coo-coo/grapher.rb +140 -0
- data/lib/coo-coo/image.rb +286 -0
- data/lib/coo-coo/layer.rb +67 -0
- data/lib/coo-coo/layer_factory.rb +26 -0
- data/lib/coo-coo/linear_layer.rb +59 -0
- data/lib/coo-coo/math.rb +607 -0
- data/lib/coo-coo/math/abstract_vector.rb +121 -0
- data/lib/coo-coo/math/functions.rb +39 -0
- data/lib/coo-coo/math/interpolation.rb +7 -0
- data/lib/coo-coo/network.rb +264 -0
- data/lib/coo-coo/neuron.rb +112 -0
- data/lib/coo-coo/neuron_layer.rb +168 -0
- data/lib/coo-coo/option_parser.rb +18 -0
- data/lib/coo-coo/platform.rb +17 -0
- data/lib/coo-coo/progress_bar.rb +11 -0
- data/lib/coo-coo/recurrence/backend.rb +99 -0
- data/lib/coo-coo/recurrence/frontend.rb +101 -0
- data/lib/coo-coo/sequence.rb +187 -0
- data/lib/coo-coo/shell.rb +2 -0
- data/lib/coo-coo/temporal_network.rb +291 -0
- data/lib/coo-coo/trainer.rb +21 -0
- data/lib/coo-coo/trainer/base.rb +67 -0
- data/lib/coo-coo/trainer/batch.rb +82 -0
- data/lib/coo-coo/trainer/batch_stats.rb +27 -0
- data/lib/coo-coo/trainer/momentum_stochastic.rb +59 -0
- data/lib/coo-coo/trainer/stochastic.rb +47 -0
- data/lib/coo-coo/transformer.rb +272 -0
- data/lib/coo-coo/vector_layer.rb +194 -0
- data/lib/coo-coo/version.rb +3 -0
- data/lib/coo-coo/weight_deltas.rb +23 -0
- data/prototypes/convolution.rb +116 -0
- data/prototypes/linear_drop.rb +51 -0
- data/prototypes/recurrent_layers.rb +79 -0
- data/www/images/screamer.png +0 -0
- data/www/images/screamer.xcf +0 -0
- data/www/index.html +82 -0
- metadata +373 -0
@@ -0,0 +1,291 @@
|
|
1
|
+
require 'coo-coo/network'
|
2
|
+
|
3
|
+
module CooCoo
|
4
|
+
class TemporalNetwork
|
5
|
+
attr_reader :network
|
6
|
+
attr_accessor :backprop_limit
|
7
|
+
|
8
|
+
delegate :age, :to => :network
|
9
|
+
delegate :num_inputs, :to => :network
|
10
|
+
delegate :num_outputs, :to => :network
|
11
|
+
delegate :num_layers, :to => :network
|
12
|
+
|
13
|
+
def initialize(opts = Hash.new)
|
14
|
+
@network = opts.fetch(:network) { CooCoo::Network.new }
|
15
|
+
@backprop_limit = opts[:backprop_limit]
|
16
|
+
end
|
17
|
+
|
18
|
+
def layer(*args)
|
19
|
+
@network.layer(*args)
|
20
|
+
self
|
21
|
+
end
|
22
|
+
|
23
|
+
def layers
|
24
|
+
@network.layers
|
25
|
+
end
|
26
|
+
|
27
|
+
def prep_input(input)
|
28
|
+
if input.kind_of?(Enumerable)
|
29
|
+
CooCoo::Sequence[input.collect do |i|
|
30
|
+
@network.prep_input(i)
|
31
|
+
end]
|
32
|
+
else
|
33
|
+
@network.prep_input(input)
|
34
|
+
end
|
35
|
+
end
|
36
|
+
|
37
|
+
def prep_output_target(target)
|
38
|
+
if target.kind_of?(Enumerable)
|
39
|
+
CooCoo::Sequence[target.collect do |t|
|
40
|
+
@network.prep_output_target(t)
|
41
|
+
end]
|
42
|
+
else
|
43
|
+
@network.prep_output_target(target)
|
44
|
+
end
|
45
|
+
end
|
46
|
+
|
47
|
+
def final_output(outputs)
|
48
|
+
CooCoo::Sequence[outputs.collect { |o| @network.final_output(o) }]
|
49
|
+
end
|
50
|
+
|
51
|
+
def forward(input, hidden_state = nil, flattened = false)
|
52
|
+
if input.kind_of?(Enumerable)
|
53
|
+
o = input.collect do |i|
|
54
|
+
output, hidden_state = @network.forward(i, hidden_state, flattened)
|
55
|
+
output
|
56
|
+
end
|
57
|
+
|
58
|
+
return CooCoo::Sequence[o], hidden_state
|
59
|
+
else
|
60
|
+
@network.forward(input, hidden_state, flattened)
|
61
|
+
end
|
62
|
+
end
|
63
|
+
|
64
|
+
def predict(input, hidden_state = nil, flattened = false)
|
65
|
+
if input.kind_of?(Enumerable)
|
66
|
+
o = input.collect do |i|
|
67
|
+
outputs, hidden_state = @network.predict(i, hidden_state, flattened)
|
68
|
+
outputs
|
69
|
+
end
|
70
|
+
|
71
|
+
return o, hidden_state
|
72
|
+
else
|
73
|
+
@network.predict(input, hidden_state, flattened)
|
74
|
+
end
|
75
|
+
end
|
76
|
+
|
77
|
+
def learn(input, expecting, rate, cost_function = CostFunctions::MeanSquare, hidden_state = nil)
|
78
|
+
expecting.zip(input).each do |target, input|
|
79
|
+
n, hidden_state = @network.learn(input, target, rate, cost_function, hidden_state)
|
80
|
+
end
|
81
|
+
|
82
|
+
return self, hidden_state
|
83
|
+
end
|
84
|
+
|
85
|
+
def backprop(inputs, outputs, errors, hidden_state = nil)
|
86
|
+
errors = Sequence.new(outputs.size) { errors / outputs.size.to_f } unless errors.kind_of?(Sequence)
|
87
|
+
|
88
|
+
o = outputs.zip(inputs, errors).reverse.collect do |output, input, err|
|
89
|
+
output, hidden_state = @network.backprop(input, output, err, hidden_state)
|
90
|
+
output
|
91
|
+
end.reverse
|
92
|
+
|
93
|
+
return Sequence[o], hidden_state
|
94
|
+
end
|
95
|
+
|
96
|
+
def weight_deltas(inputs, outputs, deltas)
|
97
|
+
e = inputs.zip(outputs, deltas)
|
98
|
+
e = e.last(@backprop_limit) if @backprop_limit
|
99
|
+
|
100
|
+
deltas = e.collect do |input, output, delta|
|
101
|
+
@network.weight_deltas(input, output, delta)
|
102
|
+
end
|
103
|
+
|
104
|
+
accumulate_deltas(deltas)
|
105
|
+
end
|
106
|
+
|
107
|
+
def adjust_weights!(deltas)
|
108
|
+
@network.adjust_weights!(deltas)
|
109
|
+
self
|
110
|
+
end
|
111
|
+
|
112
|
+
def update_weights!(inputs, outputs, deltas)
|
113
|
+
adjust_weights!(weight_deltas(inputs, outputs, deltas))
|
114
|
+
end
|
115
|
+
|
116
|
+
def to_hash
|
117
|
+
@network.to_hash.merge({ type: self.class.name })
|
118
|
+
end
|
119
|
+
|
120
|
+
def update_from_hash!(h)
|
121
|
+
@network.update_from_hash!(h)
|
122
|
+
self
|
123
|
+
end
|
124
|
+
|
125
|
+
def self.from_hash(h)
|
126
|
+
net = CooCoo::Network.from_hash(h)
|
127
|
+
self.new(network: net)
|
128
|
+
end
|
129
|
+
|
130
|
+
private
|
131
|
+
def accumulate_deltas(deltas)
|
132
|
+
weight = 1.0 / deltas.size.to_f
|
133
|
+
|
134
|
+
acc = deltas[0]
|
135
|
+
deltas[1, deltas.size].each do |step|
|
136
|
+
step.each_with_index do |layer, i|
|
137
|
+
acc[i] += layer * weight
|
138
|
+
end
|
139
|
+
end
|
140
|
+
|
141
|
+
acc
|
142
|
+
end
|
143
|
+
end
|
144
|
+
end
|
145
|
+
|
146
|
+
if __FILE__ == $0
|
147
|
+
require 'coo-coo'
|
148
|
+
require 'pp'
|
149
|
+
|
150
|
+
def mark_random(v)
|
151
|
+
bingo = rand < 0.1
|
152
|
+
if bingo
|
153
|
+
v = v.dup
|
154
|
+
v[0] = 1.0
|
155
|
+
return v, true
|
156
|
+
else
|
157
|
+
return v, false
|
158
|
+
end
|
159
|
+
end
|
160
|
+
|
161
|
+
INPUT_LENGTH = 2
|
162
|
+
OUTPUT_LENGTH = 2
|
163
|
+
SEQUENCE_LENGTH = ENV.fetch('SEQUENCE_LENGTH', 6).to_i
|
164
|
+
HIDDEN_LENGTH = 10
|
165
|
+
RECURRENT_LENGTH = SEQUENCE_LENGTH * 4 # boosts the signal
|
166
|
+
DELAY = ENV.fetch('DELAY', 2).to_i
|
167
|
+
SINGLE_LAYER = (ENV.fetch('SINGLE_LAYER', 'true') == "true")
|
168
|
+
|
169
|
+
activation_function = CooCoo::ActivationFunctions.from_name(ENV.fetch('ACTIVATION', 'Logistic'))
|
170
|
+
|
171
|
+
net = CooCoo::TemporalNetwork.new
|
172
|
+
2.times do |n|
|
173
|
+
rec = CooCoo::Recurrence::Frontend.new(INPUT_LENGTH, RECURRENT_LENGTH)
|
174
|
+
net.layer(rec)
|
175
|
+
if SINGLE_LAYER
|
176
|
+
net.layer(CooCoo::FullyConnectedLayer.new(INPUT_LENGTH + rec.recurrent_size, OUTPUT_LENGTH + rec.recurrent_size))
|
177
|
+
net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH + rec.recurrent_size, activation_function))
|
178
|
+
else
|
179
|
+
net.layer(CooCoo::FullyConnectedLayer.new(INPUT_LENGTH + rec.recurrent_size, HIDDEN_LENGTH))
|
180
|
+
net.layer(CooCoo::LinearLayer.new(HIDDEN_LENGTH, activation_function))
|
181
|
+
net.layer(CooCoo::FullyConnectedLayer.new(HIDDEN_LENGTH, OUTPUT_LENGTH + rec.recurrent_size))
|
182
|
+
net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH + rec.recurrent_size, activation_function))
|
183
|
+
end
|
184
|
+
#net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH + rec.recurrent_size, CooCoo::ActivationFunctions::LeakyReLU.instance))
|
185
|
+
#net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH + rec.recurrent_size, CooCoo::ActivationFunctions::Normalize.instance))
|
186
|
+
#net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH + rec.recurrent_size, CooCoo::ActivationFunctions::ShiftedSoftMax.instance))
|
187
|
+
#net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH + rec.recurrent_size, CooCoo::ActivationFunctions::TanH.instance))
|
188
|
+
#net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH + rec.recurrent_size, CooCoo::ActivationFunctions::ZeroSafeMinMax.instance))
|
189
|
+
net.layer(rec.backend)
|
190
|
+
end
|
191
|
+
#net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH + rec.recurrent_size, CooCoo::ActivationFunctions::ReLU.instance))
|
192
|
+
#net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH, CooCoo::ActivationFunctions::ShiftedSoftMax.instance))
|
193
|
+
#net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH, CooCoo::ActivationFunctions::Normalize.instance))
|
194
|
+
#net.layer(CooCoo::LinearLayer.new(OUTPUT_LENGTH, CooCoo::ActivationFunctions::Logistic.instance))
|
195
|
+
|
196
|
+
input_seqs = 2.times.collect do
|
197
|
+
SEQUENCE_LENGTH.times.collect do
|
198
|
+
CooCoo::Vector.zeros(INPUT_LENGTH)
|
199
|
+
end
|
200
|
+
end
|
201
|
+
input_seqs << SEQUENCE_LENGTH.times.collect { 0.45 * CooCoo::Vector.rand(INPUT_LENGTH) }
|
202
|
+
input_seqs << SEQUENCE_LENGTH.times.collect { 0.5 * CooCoo::Vector.rand(INPUT_LENGTH) }
|
203
|
+
input_seqs.first[0][0] = 1.0
|
204
|
+
input_seqs.last[0][0] = 1.0
|
205
|
+
|
206
|
+
target_seqs = input_seqs.length.times.collect do
|
207
|
+
SEQUENCE_LENGTH.times.collect do
|
208
|
+
CooCoo::Vector.zeros(OUTPUT_LENGTH)
|
209
|
+
end
|
210
|
+
end
|
211
|
+
target_seqs.first[DELAY][0] = 1.0
|
212
|
+
target_seqs.last[DELAY][0] = 1.0
|
213
|
+
|
214
|
+
def cost(net, expecting, outputs)
|
215
|
+
CooCoo::Sequence[outputs.zip(expecting).collect do |output, target|
|
216
|
+
CooCoo::CostFunctions::MeanSquare.derivative(net.prep_output_target(target), output.last)
|
217
|
+
end]
|
218
|
+
end
|
219
|
+
|
220
|
+
learning_rate = ENV.fetch("RATE", 0.3).to_f
|
221
|
+
print_rate = ENV.fetch("PRINT_RATE", 500).to_i
|
222
|
+
|
223
|
+
ENV.fetch("LOOPS", 100).to_i.times do |n|
|
224
|
+
input_seqs.zip(target_seqs).each do |input_seq, target_seq|
|
225
|
+
fuzz = Random.rand(input_seq.length)
|
226
|
+
input_seq = input_seq.rotate(fuzz)
|
227
|
+
target_seq = target_seq.rotate(fuzz)
|
228
|
+
|
229
|
+
outputs, hidden_state = net.forward(input_seq, Hash.new)
|
230
|
+
|
231
|
+
if n % print_rate == 0
|
232
|
+
input_seq.zip(outputs, target_seq).each do |input, output, target|
|
233
|
+
puts("#{n}\t#{input} -> #{target}\n\t#{output.join("\n\t")}\n")
|
234
|
+
end
|
235
|
+
end
|
236
|
+
|
237
|
+
c = cost(net, net.prep_output_target(target_seq), outputs)
|
238
|
+
all_deltas, hidden_state = net.backprop(input_seq, outputs, c, hidden_state)
|
239
|
+
net.update_weights!(input_seq, outputs, all_deltas * learning_rate)
|
240
|
+
if n % 500 == 0
|
241
|
+
puts("\tcost\t#{(c * c).sum}\n\t\t#{c.to_a.join("\n\t\t")}")
|
242
|
+
puts
|
243
|
+
end
|
244
|
+
end
|
245
|
+
end
|
246
|
+
|
247
|
+
puts
|
248
|
+
|
249
|
+
2.times do |n|
|
250
|
+
input_seqs.zip(target_seqs).each_with_index do |(input_seq, target_seq), i|
|
251
|
+
input_seq = input_seq.collect do |input|
|
252
|
+
input, bingo = mark_random(input)
|
253
|
+
input
|
254
|
+
end
|
255
|
+
|
256
|
+
outputs, hidden_state = net.predict(input_seq, Hash.new)
|
257
|
+
|
258
|
+
outputs.zip(input_seq, target_seq).each_with_index do |(output, input, target), ii|
|
259
|
+
bingo = input[0] == 1.0
|
260
|
+
puts("#{n},#{i},#{ii}\t#{bingo ? '*' : ''}#{input} -> #{target}\t#{output}")
|
261
|
+
end
|
262
|
+
end
|
263
|
+
end
|
264
|
+
|
265
|
+
hidden_state = nil
|
266
|
+
input = CooCoo::Vector.zeros(INPUT_LENGTH)
|
267
|
+
input[0] = 1.0
|
268
|
+
outputs = (SEQUENCE_LENGTH * 2).times.collect do |n|
|
269
|
+
output, hidden_state = net.predict(input, hidden_state)
|
270
|
+
puts("#{n}\t#{input}\t#{output}")
|
271
|
+
input[0] = 0.0
|
272
|
+
|
273
|
+
output
|
274
|
+
end
|
275
|
+
|
276
|
+
outputs = outputs.collect { |o| o[0] }
|
277
|
+
(min, min_i), (max, max_i) = outputs.each_with_index.minmax
|
278
|
+
puts("Min output index = #{min_i}\t#{min_i == 0}")
|
279
|
+
puts("Max output index = #{max_i}\t#{max_i == DELAY}")
|
280
|
+
puts("output[0] is <MAX = #{outputs[0] < max}")
|
281
|
+
puts("output[DELAY] is > [0] = #{outputs[DELAY] > outputs[0]}")
|
282
|
+
puts("output[DELAY] is > [DELAY-1] = #{outputs[DELAY] > outputs[DELAY-1]}")
|
283
|
+
puts("output[DELAY] is > [DELAY-1] = #{outputs[DELAY] > outputs[DELAY+1]}")
|
284
|
+
puts("Max output index - 1 is <MAX = #{outputs[max_i-1] < max}")
|
285
|
+
if max_i < outputs.length - 1
|
286
|
+
puts("Max output index + 1 is <MAX = #{outputs[max_i+1] < max}")
|
287
|
+
end
|
288
|
+
|
289
|
+
puts
|
290
|
+
pp(net.to_hash)
|
291
|
+
end
|
@@ -0,0 +1,21 @@
|
|
1
|
+
require 'parallel'
|
2
|
+
require 'coo-coo/consts'
|
3
|
+
require 'coo-coo/debug'
|
4
|
+
require 'coo-coo/trainer/stochastic'
|
5
|
+
require 'coo-coo/trainer/momentum_stochastic'
|
6
|
+
require 'coo-coo/trainer/batch'
|
7
|
+
|
8
|
+
module CooCoo
|
9
|
+
module Trainer
|
10
|
+
def self.list
|
11
|
+
constants.
|
12
|
+
select { |c| const_get(c).ancestors.include?(Base) }.
|
13
|
+
collect(&:to_s).
|
14
|
+
sort
|
15
|
+
end
|
16
|
+
|
17
|
+
def self.from_name(name)
|
18
|
+
const_get(name).instance
|
19
|
+
end
|
20
|
+
end
|
21
|
+
end
|
@@ -0,0 +1,67 @@
|
|
1
|
+
require 'singleton'
|
2
|
+
require 'ostruct'
|
3
|
+
require 'coo-coo/option_parser'
|
4
|
+
|
5
|
+
module CooCoo
|
6
|
+
module Trainer
|
7
|
+
# @abstract Defines and documents the interface for the trainers.
|
8
|
+
class Base
|
9
|
+
include Singleton
|
10
|
+
|
11
|
+
# Returns a user friendly name, like the class name by default.
|
12
|
+
def name
|
13
|
+
self.class.name.split('::').last
|
14
|
+
end
|
15
|
+
|
16
|
+
DEFAULT_OPTIONS = {
|
17
|
+
cost: CostFunctions::MeanSquare,
|
18
|
+
learning_rate: 1/3.0,
|
19
|
+
batch_size: 1024
|
20
|
+
}
|
21
|
+
|
22
|
+
# Returns a command line {OptionParser} to gather the trainer's
|
23
|
+
# options.
|
24
|
+
# @return [[OptionParser, OpenStruct]] an {OptionParser} to parse command line options and hash to store their values.
|
25
|
+
def options(defaults = DEFAULT_OPTIONS)
|
26
|
+
options = OpenStruct.new(defaults)
|
27
|
+
|
28
|
+
parser = OptionParser.new do |o|
|
29
|
+
o.banner = "#{name} trainer options"
|
30
|
+
|
31
|
+
o.accept(CostFunctions::Base) do |v|
|
32
|
+
CostFunctions.from_name(v)
|
33
|
+
end
|
34
|
+
|
35
|
+
o.on('--cost NAME', '--cost-function NAME', "The function to minimize during training. Choices are: #{CostFunctions.named_classes.join(', ')}", CostFunctions::Base) do |v|
|
36
|
+
options.cost_function = v
|
37
|
+
end
|
38
|
+
|
39
|
+
o.on('-r', '--rate FLOAT', '--learning-rate FLOAT', Float, 'Multiplier for the changes the network calculates.') do |n|
|
40
|
+
options.learning_rate = n
|
41
|
+
end
|
42
|
+
|
43
|
+
o.on('-n', '--batch-size INTEGER', Integer, 'Number of examples to train against before yielding.') do |n|
|
44
|
+
options.batch_size = n
|
45
|
+
end
|
46
|
+
|
47
|
+
yield(o, options) if block_given?
|
48
|
+
end
|
49
|
+
|
50
|
+
[ parser, options ]
|
51
|
+
end
|
52
|
+
|
53
|
+
# Trains a network by iterating through a set of target, input pairs.
|
54
|
+
#
|
55
|
+
# @param options [Hash, OpenStruct] Options hash
|
56
|
+
# @option options [Network, TemporalNetwork] :network The network to train.
|
57
|
+
# @option options [Array<Array<Vector, Vector>>, Enumerator<Vector, Vector>] :data An array of +[ target, input ]+ pairs to be used for the training.
|
58
|
+
# @option options [Float] :learning_rate The multiplier of change in the network's weights.
|
59
|
+
# @option options [Integer] :batch_size How many examples to pull from the training data in each batch
|
60
|
+
# @option options [CostFunctions::Base] :cost_function The function to use to calculate the loss and how to change the network from bad outputs.
|
61
|
+
# @yield [BatchStats] after each batch
|
62
|
+
def train(options, &block)
|
63
|
+
raise NotImplementedError.new
|
64
|
+
end
|
65
|
+
end
|
66
|
+
end
|
67
|
+
end
|
@@ -0,0 +1,82 @@
|
|
1
|
+
require 'coo-coo/cost_functions'
|
2
|
+
require 'coo-coo/sequence'
|
3
|
+
require 'coo-coo/trainer/base'
|
4
|
+
require 'coo-coo/trainer/batch_stats'
|
5
|
+
|
6
|
+
module CooCoo
|
7
|
+
module Trainer
|
8
|
+
# Trains a network by only adjusting the network once a batch. This opens
|
9
|
+
# up parallelism during learning as more examples can be ran at one time.
|
10
|
+
class Batch < Base
|
11
|
+
DEFAULT_OPTIONS = Base::DEFAULT_OPTIONS.merge(processes: Parallel.processor_count)
|
12
|
+
|
13
|
+
def options
|
14
|
+
super(DEFAULT_OPTIONS) do |o, options|
|
15
|
+
o.on('--processes INTEGER', Integer, 'Number of threads or processes to use for the batch.') do |n|
|
16
|
+
options.processes = n
|
17
|
+
end
|
18
|
+
end
|
19
|
+
end
|
20
|
+
|
21
|
+
# @option options [Integer] :processes How many threads or processes to use for the batch. Defaults to the processor count, {Parallel#processor_count}.
|
22
|
+
def train(options, &block)
|
23
|
+
options = options.to_h
|
24
|
+
network = options.fetch(:network)
|
25
|
+
training_data = options.fetch(:data)
|
26
|
+
learning_rate = options.fetch(:learning_rate, 0.3)
|
27
|
+
batch_size = options.fetch(:batch_size, 1024)
|
28
|
+
cost_function = options.fetch(:cost_function, CostFunctions::MeanSquare)
|
29
|
+
processes = options.fetch(:processes, Parallel.processor_count)
|
30
|
+
|
31
|
+
t = Time.now
|
32
|
+
|
33
|
+
training_data.each_slice(batch_size).with_index do |batch, i|
|
34
|
+
deltas_errors = in_parallel(processes, batch) do |(expecting, input)|
|
35
|
+
output, hidden_state = network.forward(input, Hash.new)
|
36
|
+
target = network.prep_output_target(expecting)
|
37
|
+
final_output = network.final_output(output)
|
38
|
+
errors = cost_function.derivative(target, final_output)
|
39
|
+
new_deltas, hidden_state = network.backprop(input, output, errors, hidden_state)
|
40
|
+
new_deltas = network.weight_deltas(input, output, new_deltas * learning_rate)
|
41
|
+
|
42
|
+
[ new_deltas, cost_function.call(target, final_output) ]
|
43
|
+
end
|
44
|
+
|
45
|
+
deltas, total_errors = deltas_errors.transpose
|
46
|
+
network.adjust_weights!(accumulate_deltas(deltas))
|
47
|
+
|
48
|
+
if block
|
49
|
+
block.call(BatchStats.new(self, i, batch_size, Time.now - t, CooCoo::Sequence[total_errors].sum))
|
50
|
+
end
|
51
|
+
|
52
|
+
t = Time.now
|
53
|
+
end
|
54
|
+
end
|
55
|
+
|
56
|
+
protected
|
57
|
+
|
58
|
+
def in_parallel(processes, *args, &block)
|
59
|
+
opts = if CUDA.available?
|
60
|
+
# CUDA can't fork so keep it in a single Ruby
|
61
|
+
{ in_threads: processes }
|
62
|
+
else
|
63
|
+
{ in_processes: processes }
|
64
|
+
end
|
65
|
+
Parallel.map(*args, opts, &block)
|
66
|
+
end
|
67
|
+
|
68
|
+
def accumulate_deltas(deltas)
|
69
|
+
weight = 1.0 / deltas.size.to_f
|
70
|
+
|
71
|
+
acc = deltas[0]
|
72
|
+
deltas[1, deltas.size].each do |step|
|
73
|
+
step.each_with_index do |layer, i|
|
74
|
+
acc[i] += layer * weight
|
75
|
+
end
|
76
|
+
end
|
77
|
+
|
78
|
+
acc
|
79
|
+
end
|
80
|
+
end
|
81
|
+
end
|
82
|
+
end
|