CooCoo 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +16 -0
- data/CooCoo.gemspec +47 -0
- data/Gemfile +4 -0
- data/Gemfile.lock +88 -0
- data/README.md +123 -0
- data/Rakefile +81 -0
- data/bin/cuda-dev-info +25 -0
- data/bin/cuda-free +28 -0
- data/bin/cuda-free-trend +7 -0
- data/bin/ffi-gen +267 -0
- data/bin/spec_runner_html.sh +42 -0
- data/bin/trainer +198 -0
- data/bin/trend-cost +13 -0
- data/examples/char-rnn.rb +405 -0
- data/examples/cifar/cifar.rb +94 -0
- data/examples/img-similarity.rb +201 -0
- data/examples/math_ops.rb +57 -0
- data/examples/mnist.rb +365 -0
- data/examples/mnist_classifier.rb +293 -0
- data/examples/mnist_dream.rb +214 -0
- data/examples/seeds.rb +268 -0
- data/examples/seeds_dataset.txt +210 -0
- data/examples/t10k-images-idx3-ubyte +0 -0
- data/examples/t10k-labels-idx1-ubyte +0 -0
- data/examples/train-images-idx3-ubyte +0 -0
- data/examples/train-labels-idx1-ubyte +0 -0
- data/ext/buffer/Rakefile +50 -0
- data/ext/buffer/buffer.pre.cu +727 -0
- data/ext/buffer/matrix.pre.cu +49 -0
- data/lib/CooCoo.rb +1 -0
- data/lib/coo-coo.rb +18 -0
- data/lib/coo-coo/activation_functions.rb +344 -0
- data/lib/coo-coo/consts.rb +5 -0
- data/lib/coo-coo/convolution.rb +298 -0
- data/lib/coo-coo/core_ext.rb +75 -0
- data/lib/coo-coo/cost_functions.rb +91 -0
- data/lib/coo-coo/cuda.rb +116 -0
- data/lib/coo-coo/cuda/device_buffer.rb +240 -0
- data/lib/coo-coo/cuda/device_buffer/ffi.rb +109 -0
- data/lib/coo-coo/cuda/error.rb +51 -0
- data/lib/coo-coo/cuda/host_buffer.rb +117 -0
- data/lib/coo-coo/cuda/runtime.rb +157 -0
- data/lib/coo-coo/cuda/vector.rb +315 -0
- data/lib/coo-coo/data_sources.rb +2 -0
- data/lib/coo-coo/data_sources/xournal.rb +25 -0
- data/lib/coo-coo/data_sources/xournal/bitmap_stream.rb +197 -0
- data/lib/coo-coo/data_sources/xournal/document.rb +377 -0
- data/lib/coo-coo/data_sources/xournal/loader.rb +144 -0
- data/lib/coo-coo/data_sources/xournal/renderer.rb +101 -0
- data/lib/coo-coo/data_sources/xournal/saver.rb +99 -0
- data/lib/coo-coo/data_sources/xournal/training_document.rb +78 -0
- data/lib/coo-coo/data_sources/xournal/training_document/constants.rb +15 -0
- data/lib/coo-coo/data_sources/xournal/training_document/document_maker.rb +89 -0
- data/lib/coo-coo/data_sources/xournal/training_document/document_reader.rb +105 -0
- data/lib/coo-coo/data_sources/xournal/training_document/example.rb +37 -0
- data/lib/coo-coo/data_sources/xournal/training_document/sets.rb +76 -0
- data/lib/coo-coo/debug.rb +8 -0
- data/lib/coo-coo/dot.rb +129 -0
- data/lib/coo-coo/drawing.rb +4 -0
- data/lib/coo-coo/drawing/cairo_canvas.rb +100 -0
- data/lib/coo-coo/drawing/canvas.rb +68 -0
- data/lib/coo-coo/drawing/chunky_canvas.rb +101 -0
- data/lib/coo-coo/drawing/sixel.rb +214 -0
- data/lib/coo-coo/enum.rb +17 -0
- data/lib/coo-coo/from_name.rb +58 -0
- data/lib/coo-coo/fully_connected_layer.rb +205 -0
- data/lib/coo-coo/generation_script.rb +38 -0
- data/lib/coo-coo/grapher.rb +140 -0
- data/lib/coo-coo/image.rb +286 -0
- data/lib/coo-coo/layer.rb +67 -0
- data/lib/coo-coo/layer_factory.rb +26 -0
- data/lib/coo-coo/linear_layer.rb +59 -0
- data/lib/coo-coo/math.rb +607 -0
- data/lib/coo-coo/math/abstract_vector.rb +121 -0
- data/lib/coo-coo/math/functions.rb +39 -0
- data/lib/coo-coo/math/interpolation.rb +7 -0
- data/lib/coo-coo/network.rb +264 -0
- data/lib/coo-coo/neuron.rb +112 -0
- data/lib/coo-coo/neuron_layer.rb +168 -0
- data/lib/coo-coo/option_parser.rb +18 -0
- data/lib/coo-coo/platform.rb +17 -0
- data/lib/coo-coo/progress_bar.rb +11 -0
- data/lib/coo-coo/recurrence/backend.rb +99 -0
- data/lib/coo-coo/recurrence/frontend.rb +101 -0
- data/lib/coo-coo/sequence.rb +187 -0
- data/lib/coo-coo/shell.rb +2 -0
- data/lib/coo-coo/temporal_network.rb +291 -0
- data/lib/coo-coo/trainer.rb +21 -0
- data/lib/coo-coo/trainer/base.rb +67 -0
- data/lib/coo-coo/trainer/batch.rb +82 -0
- data/lib/coo-coo/trainer/batch_stats.rb +27 -0
- data/lib/coo-coo/trainer/momentum_stochastic.rb +59 -0
- data/lib/coo-coo/trainer/stochastic.rb +47 -0
- data/lib/coo-coo/transformer.rb +272 -0
- data/lib/coo-coo/vector_layer.rb +194 -0
- data/lib/coo-coo/version.rb +3 -0
- data/lib/coo-coo/weight_deltas.rb +23 -0
- data/prototypes/convolution.rb +116 -0
- data/prototypes/linear_drop.rb +51 -0
- data/prototypes/recurrent_layers.rb +79 -0
- data/www/images/screamer.png +0 -0
- data/www/images/screamer.xcf +0 -0
- data/www/index.html +82 -0
- metadata +373 -0
@@ -0,0 +1,205 @@
|
|
1
|
+
require 'coo-coo/consts'
|
2
|
+
require 'coo-coo/math'
|
3
|
+
require 'coo-coo/debug'
|
4
|
+
require 'coo-coo/layer_factory'
|
5
|
+
require 'coo-coo/weight_deltas'
|
6
|
+
|
7
|
+
module CooCoo
|
8
|
+
class FullyConnectedLayer
|
9
|
+
LayerFactory.register_type(self)
|
10
|
+
|
11
|
+
attr_reader :bias
|
12
|
+
attr_reader :weights
|
13
|
+
attr_reader :activation_function
|
14
|
+
|
15
|
+
def initialize(num_inputs, size, activation_func = ActivationFunctions::Identity.instance, weights = nil, bias = nil)
|
16
|
+
@num_inputs = num_inputs
|
17
|
+
@size = size
|
18
|
+
@activation_function = activation_func
|
19
|
+
@weights = weights || @activation_function.initial_weights(num_inputs, size)
|
20
|
+
@bias = bias || @activation_function.initial_bias(size)
|
21
|
+
end
|
22
|
+
|
23
|
+
def activation_function
|
24
|
+
ActivationFunctions::Identity.instance
|
25
|
+
end
|
26
|
+
|
27
|
+
def num_inputs
|
28
|
+
@num_inputs
|
29
|
+
end
|
30
|
+
|
31
|
+
def size
|
32
|
+
@size
|
33
|
+
end
|
34
|
+
|
35
|
+
def forward(input, hidden_state)
|
36
|
+
return @weights.dot(num_inputs, size, input, 1, num_inputs) + @bias, hidden_state
|
37
|
+
end
|
38
|
+
|
39
|
+
def backprop(input, output, errors, hidden_state)
|
40
|
+
return errors, hidden_state
|
41
|
+
end
|
42
|
+
|
43
|
+
def transfer_error(deltas)
|
44
|
+
deltas.dot(size, 1, @weights, num_inputs, size)
|
45
|
+
end
|
46
|
+
|
47
|
+
def transfer_input_error(expecting)
|
48
|
+
(output - expecting).to_a
|
49
|
+
end
|
50
|
+
|
51
|
+
def update_weights!(inputs, deltas)
|
52
|
+
adjust_weights!(weight_deltas(inputs, deltas))
|
53
|
+
end
|
54
|
+
|
55
|
+
def adjust_weights!(deltas)
|
56
|
+
@bias -= deltas.bias_deltas
|
57
|
+
@weights -= deltas.weight_deltas
|
58
|
+
self
|
59
|
+
end
|
60
|
+
|
61
|
+
def weight_deltas(inputs, deltas)
|
62
|
+
WeightDeltas.new(deltas, deltas.dot(1, size, inputs, num_inputs, 1))
|
63
|
+
end
|
64
|
+
|
65
|
+
def to_hash(network = nil)
|
66
|
+
{ type: self.class.to_s,
|
67
|
+
outputs: size,
|
68
|
+
neurons: neuron_hash,
|
69
|
+
f: activation_function.name
|
70
|
+
}
|
71
|
+
end
|
72
|
+
|
73
|
+
def neuron_hash
|
74
|
+
@weights.each_slice(num_inputs).with_index.collect do |neuron_weights, i|
|
75
|
+
{ num_inputs: num_inputs,
|
76
|
+
weights: neuron_weights.to_a,
|
77
|
+
bias: @bias[i]
|
78
|
+
}
|
79
|
+
end
|
80
|
+
end
|
81
|
+
|
82
|
+
def add_neurons!(new_size)
|
83
|
+
if new_size != @size
|
84
|
+
w = CooCoo::Vector.zeros(num_inputs * new_size)
|
85
|
+
w[0, @weights.size] = @weights
|
86
|
+
w[@weights.size, num_inputs] = @activation_function.initial_weights(num_inputs, 1)
|
87
|
+
@weights = w
|
88
|
+
|
89
|
+
@bias = CooCoo::Vector.ones(new_size).set(@bias)
|
90
|
+
@bias[-1] = @activation_function.initial_bias(1)[0]
|
91
|
+
|
92
|
+
@size = new_size
|
93
|
+
end
|
94
|
+
|
95
|
+
self
|
96
|
+
end
|
97
|
+
|
98
|
+
def add_inputs!(new_size)
|
99
|
+
if new_size != num_inputs
|
100
|
+
w = CooCoo::Vector.zeros(new_size * size)
|
101
|
+
w.set2d!(new_size, @weights, num_inputs, 0, 0)
|
102
|
+
w.set2d!(new_size, @activation_function.initial_weights(size, 1), 1, new_size - 1, 0)
|
103
|
+
@weights = w
|
104
|
+
@num_inputs = new_size
|
105
|
+
end
|
106
|
+
|
107
|
+
self
|
108
|
+
end
|
109
|
+
|
110
|
+
def update_neuron_from_hash!(neuron_index, h)
|
111
|
+
if neuron_index > size
|
112
|
+
add_neurons!(neuron_index)
|
113
|
+
end
|
114
|
+
|
115
|
+
@weights[neuron_index * num_inputs, num_inputs] = h[:weights]
|
116
|
+
@bias[neuron_index] = h[:bias]
|
117
|
+
end
|
118
|
+
|
119
|
+
def update_from_hash!(h)
|
120
|
+
add_neurons!(h[:outputs])
|
121
|
+
add_inputs!(h[:neurons][0][:num_inputs])
|
122
|
+
|
123
|
+
h[:outputs].times do |i|
|
124
|
+
update_neuron_from_hash!(i, h[:neurons][i])
|
125
|
+
end
|
126
|
+
|
127
|
+
self
|
128
|
+
end
|
129
|
+
|
130
|
+
def ==(other)
|
131
|
+
other.kind_of?(self.class) &&
|
132
|
+
size == other.size &&
|
133
|
+
bias == other.bias &&
|
134
|
+
weights == other.weights &&
|
135
|
+
activation_function == other.activation_function
|
136
|
+
end
|
137
|
+
|
138
|
+
class << self
|
139
|
+
def from_hash(h, network = nil)
|
140
|
+
self.new(h[:neurons][0][:num_inputs],
|
141
|
+
h[:outputs],
|
142
|
+
ActivationFunctions.from_name(h[:f] || 'Identity')).
|
143
|
+
update_from_hash!(h)
|
144
|
+
end
|
145
|
+
end
|
146
|
+
end
|
147
|
+
end
|
148
|
+
|
149
|
+
if __FILE__ == $0
|
150
|
+
require 'coo-coo/network'
|
151
|
+
require 'coo-coo/linear_layer'
|
152
|
+
|
153
|
+
activation = ENV.fetch('ACTIVATION', 'Logistic')
|
154
|
+
net = CooCoo::Network.new
|
155
|
+
fc_layer = CooCoo::FullyConnectedLayer.new(4, 2, CooCoo::ActivationFunctions.from_name('Identity'), CooCoo::Vector.ones(4 * 2), CooCoo::Vector.ones(2))
|
156
|
+
net.layer(fc_layer)
|
157
|
+
net.layer(CooCoo::LinearLayer.new(2, CooCoo::ActivationFunctions.from_name(activation)))
|
158
|
+
|
159
|
+
inputs = [ [ 1.0, 0.0, 0.0, 0.0 ],
|
160
|
+
[ 0.0, 0.0, 1.0, 0.0 ],
|
161
|
+
[ 0.0, 1.0, 0.0, 0.0],
|
162
|
+
[ 0.0, 0.0, 0.0, 1.0 ]
|
163
|
+
].collect do |v|
|
164
|
+
CooCoo::CUDA::Vector[v]
|
165
|
+
end
|
166
|
+
targets = [ [ 1.0, 0.0 ],
|
167
|
+
[ 0.0, 1.0 ],
|
168
|
+
[ 0.0, 0.0 ],
|
169
|
+
[ 0.0, 0.0 ]
|
170
|
+
].collect do |v|
|
171
|
+
CooCoo::CUDA::Vector[v]
|
172
|
+
end
|
173
|
+
|
174
|
+
inputs.zip(targets).cycle(ENV.fetch('LOOPS', 100).to_i).each do |(input, target)|
|
175
|
+
output, hidden_state = net.forward(input, Hash.new)
|
176
|
+
puts("#{input} -> #{target} #{target.inspect}")
|
177
|
+
puts("\toutput: #{output}")
|
178
|
+
|
179
|
+
err = (output.last - target)
|
180
|
+
puts("\terr: #{err}")
|
181
|
+
#err = err * err * 0.5
|
182
|
+
delta, hidden_state = net.backprop(input, output, err, hidden_state)
|
183
|
+
puts("\tdelta: #{delta}")
|
184
|
+
puts("\terror: #{err}")
|
185
|
+
puts("\txfer: #{net.transfer_errors(delta)}")
|
186
|
+
|
187
|
+
net.update_weights!(input, output, delta * 0.5)
|
188
|
+
end
|
189
|
+
|
190
|
+
new_net = CooCoo::Network.new()
|
191
|
+
h = fc_layer.to_hash
|
192
|
+
h[:type] = 'CooCoo::VectorLayer'
|
193
|
+
h[:neurons].each do |n|
|
194
|
+
n[:f] = activation
|
195
|
+
end
|
196
|
+
new_net.layer(CooCoo::Layer.from_hash(h))
|
197
|
+
|
198
|
+
puts("\nInput\tFully\tVector\tTarget")
|
199
|
+
inputs.zip(targets).each do |(input, target)|
|
200
|
+
oa, hsa = net.forward(input, Hash.new)
|
201
|
+
ob, hsb = new_net.forward(input, Hash.new)
|
202
|
+
|
203
|
+
puts("#{input} -> #{oa.last}\t#{ob.last}\t#{target}")
|
204
|
+
end
|
205
|
+
end
|
@@ -0,0 +1,38 @@
|
|
1
|
+
require 'coo-coo/option_parser'
|
2
|
+
|
3
|
+
module CooCoo
|
4
|
+
class GenerationScript
|
5
|
+
EvalBinding = Struct.new(:log)
|
6
|
+
EvalBinding.class_eval do
|
7
|
+
CooCoo = ::CooCoo
|
8
|
+
|
9
|
+
def get_binding
|
10
|
+
binding
|
11
|
+
end
|
12
|
+
end
|
13
|
+
|
14
|
+
attr_reader :opts
|
15
|
+
|
16
|
+
def initialize(path, log)
|
17
|
+
@path = path
|
18
|
+
@log = log
|
19
|
+
load(path)
|
20
|
+
end
|
21
|
+
|
22
|
+
def load(path)
|
23
|
+
env = EvalBinding.new(@log)
|
24
|
+
@generator, @opts = eval(File.read(path), env.get_binding, path)
|
25
|
+
@path = path
|
26
|
+
self
|
27
|
+
end
|
28
|
+
|
29
|
+
def parse_args(argv)
|
30
|
+
@opts.parse!(argv)
|
31
|
+
end
|
32
|
+
|
33
|
+
def call(argv, *args)
|
34
|
+
argv = parse_args(argv)
|
35
|
+
[ argv, @generator.call(*args) ]
|
36
|
+
end
|
37
|
+
end
|
38
|
+
end
|
@@ -0,0 +1,140 @@
|
|
1
|
+
require 'coo-coo/dot'
|
2
|
+
|
3
|
+
module CooCoo
|
4
|
+
class Grapher
|
5
|
+
def initialize()
|
6
|
+
end
|
7
|
+
|
8
|
+
def populate(name, network, edge_widths = nil)
|
9
|
+
Dot::Graph.new(:digraph, :label => name, :ranksep => 3) do |g|
|
10
|
+
populate_inputs(network.num_inputs, g)
|
11
|
+
populate_layers(network.layers, edge_widths, g)
|
12
|
+
populate_outputs(network.num_outputs, network.num_layers - 1, edge_widths, g)
|
13
|
+
end
|
14
|
+
end
|
15
|
+
|
16
|
+
def populate_layers(layers, edge_widths, g)
|
17
|
+
layers.each_with_index do |l, i|
|
18
|
+
populate_layer(l, i, edge_widths && edge_widths[i], g)
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
def populate_inputs(num, g)
|
23
|
+
g.add_subgraph("cluster_inputs", :label => "Inputs", :rank => "same") do |sg|
|
24
|
+
inputs = num.times.collect do |i|
|
25
|
+
"input_#{i}"
|
26
|
+
end
|
27
|
+
|
28
|
+
sg.add_block("") do |ssg|
|
29
|
+
inputs.each_with_index do |name, i|
|
30
|
+
ssg.add_node(name, :label => i)
|
31
|
+
end
|
32
|
+
ssg.add_edge(inputs, :style => "invis")
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
36
|
+
|
37
|
+
def populate_layer(layer, layer_index, edge_widths, g)
|
38
|
+
g.add_subgraph("cluster_layer_#{layer_index}", :label => "Layer #{layer_index}") do |sg|
|
39
|
+
sg.add_subgraph("layer_#{layer_index}", :rank => "same") do |ssg|
|
40
|
+
nodes = layer.neurons.each_with_index.collect do |n, ni|
|
41
|
+
name = "neuron_#{layer_index}_#{ni}"
|
42
|
+
populate_neuron_node(name, ni, ssg)
|
43
|
+
name
|
44
|
+
end
|
45
|
+
ssg.add_edge(nodes, :style => "invis")
|
46
|
+
end
|
47
|
+
|
48
|
+
layer.neurons.each_with_index do |n, ni|
|
49
|
+
populate_neuron_link(n, ni, layer_index, edge_widths, sg)
|
50
|
+
end
|
51
|
+
end
|
52
|
+
end
|
53
|
+
|
54
|
+
def populate_neuron_node(neuron_id, neuron_index, g)
|
55
|
+
g.add_node(neuron_id, :label => neuron_index)
|
56
|
+
end
|
57
|
+
|
58
|
+
def populate_neuron_link(neuron, neuron_index, layer_index, edge_widths, g)
|
59
|
+
neuron.weights.each_with_index do |w, wi|
|
60
|
+
w = (edge_widths && edge_widths[wi]) || (w / 10.0)
|
61
|
+
#w = w / 10.0
|
62
|
+
|
63
|
+
if layer_index == 0
|
64
|
+
g.add_edge([ "input_#{wi}", "neuron_#{layer_index}_#{neuron_index}" ],
|
65
|
+
:penwidth => pen_scale(w.abs),
|
66
|
+
:color => pen_color(w))
|
67
|
+
else
|
68
|
+
g.add_edge([ "neuron_#{layer_index - 1}_#{wi}", "neuron_#{layer_index}_#{neuron_index}"],
|
69
|
+
:penwidth => pen_scale(w.abs),
|
70
|
+
:color => pen_color(w))
|
71
|
+
end
|
72
|
+
end
|
73
|
+
end
|
74
|
+
|
75
|
+
def pen_color(x)
|
76
|
+
x = pen_scale(x)
|
77
|
+
color = NMatrix[[ 0, 0, 0 ]]
|
78
|
+
|
79
|
+
if x > 0.01
|
80
|
+
color = NMatrix[[ 1, 0, 0 ]]
|
81
|
+
elsif x < 0.01
|
82
|
+
color = NMatrix[[ 0, 0, 1 ]]
|
83
|
+
end
|
84
|
+
|
85
|
+
'#' + color.to_a.collect { |n| (n.abs * 255).to_i.to_s(16).rjust(2, "0") }.join
|
86
|
+
end
|
87
|
+
|
88
|
+
def populate_outputs(num_outputs, last_layer, edge_widths, g)
|
89
|
+
g.add_subgraph("cluster_outputs", :label => "Outputs") do |sg|
|
90
|
+
num_outputs.times do |o|
|
91
|
+
sg.add_node("output_#{o}", :label => o)
|
92
|
+
end
|
93
|
+
end
|
94
|
+
|
95
|
+
num_outputs.times do |o|
|
96
|
+
w = edge_widths && edge_widths[-1][o] || 1.0
|
97
|
+
g.add_edge([ "neuron_#{last_layer}_#{o}", "output_#{o}" ],
|
98
|
+
:penwidth => pen_scale(w.abs),
|
99
|
+
:pencolor => pen_color(w))
|
100
|
+
end
|
101
|
+
end
|
102
|
+
|
103
|
+
def pen_scale(x)
|
104
|
+
x / 10.0
|
105
|
+
end
|
106
|
+
end
|
107
|
+
|
108
|
+
class OutputGrapher < Grapher
|
109
|
+
def populate(name, network, input_and_outputs)
|
110
|
+
super(name, network, input_and_outputs)
|
111
|
+
end
|
112
|
+
|
113
|
+
def pen_scale(x)
|
114
|
+
2.0 * x
|
115
|
+
end
|
116
|
+
end
|
117
|
+
|
118
|
+
end
|
119
|
+
|
120
|
+
if __FILE__ == $0
|
121
|
+
require 'coo-coo'
|
122
|
+
net = CooCoo::Network.load(ARGV[0])
|
123
|
+
dw = CooCoo::Dot::Writer.new
|
124
|
+
ng = CooCoo::OutputGrapher.new
|
125
|
+
input = if ARGV[1]
|
126
|
+
ARGV[1].split.collect(&:to_f).to_nm([1, net.num_inputs])
|
127
|
+
else
|
128
|
+
m = NMatrix.zeros([1, net.num_inputs])
|
129
|
+
m[0] = 1.0
|
130
|
+
m
|
131
|
+
end
|
132
|
+
target = NMatrix.zeros([1, net.num_outputs])
|
133
|
+
target[0] = 1.0
|
134
|
+
target[-1] = 1.0
|
135
|
+
outputs = net.forward(input)
|
136
|
+
deltas = net.backprop(outputs, target)
|
137
|
+
err = net.transfer_errors(deltas)
|
138
|
+
graph = ng.populate(ARGV[0], net, [ input ] + outputs)
|
139
|
+
dw.write(graph, $stdout)
|
140
|
+
end
|
@@ -0,0 +1,286 @@
|
|
1
|
+
require 'nmatrix'
|
2
|
+
|
3
|
+
module CooCoo
|
4
|
+
module Image
|
5
|
+
class Base
|
6
|
+
attr_reader :width, :height, :bpp, :background
|
7
|
+
attr_accessor :repeat_x, :repeat_y
|
8
|
+
|
9
|
+
def initialize(width, height, bpp = 1, pixels = nil, background = nil, repeat_x = false, repeat_y = false)
|
10
|
+
@width = width
|
11
|
+
@height = height
|
12
|
+
@bpp = bpp
|
13
|
+
@span = @width * @bpp
|
14
|
+
@background = background || bpp.times.collect { 0 }
|
15
|
+
@repeat_x = repeat_x
|
16
|
+
@repeat_y = repeat_y
|
17
|
+
@pixels = pixels || Array.new(@width * @height * @bpp, 0)
|
18
|
+
end
|
19
|
+
|
20
|
+
def [](x, y, byte = nil)
|
21
|
+
if (@repeat_x == false && (x < 0 || x >= width)) ||
|
22
|
+
(@repeat_y == false && (y < 0 || y >= height))
|
23
|
+
p = @background
|
24
|
+
if byte
|
25
|
+
p[byte]
|
26
|
+
else
|
27
|
+
p
|
28
|
+
end
|
29
|
+
else
|
30
|
+
i = pixel_index(x, y, byte || 0)
|
31
|
+
if byte
|
32
|
+
@pixels[i] || @background[byte]
|
33
|
+
else
|
34
|
+
p = @pixels[i, @bpp]
|
35
|
+
if p && !p.empty?
|
36
|
+
p
|
37
|
+
else
|
38
|
+
@background
|
39
|
+
end
|
40
|
+
end
|
41
|
+
end
|
42
|
+
end
|
43
|
+
|
44
|
+
def []=(x, y, v)
|
45
|
+
@bpp.times do |byte|
|
46
|
+
c = v
|
47
|
+
if v.respond_to?(:[])
|
48
|
+
c = v[byte]
|
49
|
+
end
|
50
|
+
@pixels[*pixel_index(x, y, byte)] = c
|
51
|
+
end
|
52
|
+
end
|
53
|
+
|
54
|
+
def *(transform)
|
55
|
+
TransformedImage.new(self, transform)
|
56
|
+
end
|
57
|
+
|
58
|
+
def filter(f)
|
59
|
+
TransformedImage.new(self, nil, f)
|
60
|
+
end
|
61
|
+
|
62
|
+
def to_a
|
63
|
+
@pixels.each_slice(@span).collect do |row|
|
64
|
+
if @bpp > 1
|
65
|
+
row.each_slice(@bpp).to_a
|
66
|
+
else
|
67
|
+
row.to_a
|
68
|
+
end
|
69
|
+
end
|
70
|
+
end
|
71
|
+
|
72
|
+
private
|
73
|
+
def pixel_index(x, y, byte = 0)
|
74
|
+
(byte || 0) + ((x.round % @width) * @bpp) + ((y.round % @height) * @span)
|
75
|
+
end
|
76
|
+
end
|
77
|
+
|
78
|
+
class TransformedImage
|
79
|
+
def initialize(image, transform, filter = nil)
|
80
|
+
@image = image
|
81
|
+
@transform = transform
|
82
|
+
@filter = filter
|
83
|
+
end
|
84
|
+
|
85
|
+
def width
|
86
|
+
@image.width
|
87
|
+
end
|
88
|
+
|
89
|
+
def height
|
90
|
+
@image.height
|
91
|
+
end
|
92
|
+
|
93
|
+
def bpp
|
94
|
+
@image.bpp
|
95
|
+
end
|
96
|
+
|
97
|
+
def *(transform)
|
98
|
+
t = if @transform
|
99
|
+
TransformChain.new(@transform, transform)
|
100
|
+
else
|
101
|
+
transform
|
102
|
+
end
|
103
|
+
TransformedImage.new(@image, t, @filter)
|
104
|
+
end
|
105
|
+
|
106
|
+
def to_a
|
107
|
+
height.times.collect do |y|
|
108
|
+
width.times.collect do |x|
|
109
|
+
self[x, y]
|
110
|
+
end.flatten
|
111
|
+
end
|
112
|
+
end
|
113
|
+
|
114
|
+
def [](x, y, byte = nil)
|
115
|
+
x, y = *transform(x, y)
|
116
|
+
p = @image[x, y, byte]
|
117
|
+
filter(p, x, y)
|
118
|
+
end
|
119
|
+
|
120
|
+
def filter(pixel, x, y)
|
121
|
+
if @filter
|
122
|
+
@filter.call(pixel, x, y)
|
123
|
+
else
|
124
|
+
pixel
|
125
|
+
end
|
126
|
+
end
|
127
|
+
|
128
|
+
def transform(x, y)
|
129
|
+
if @transform
|
130
|
+
@transform.call(x, y)
|
131
|
+
else
|
132
|
+
[ x, y ]
|
133
|
+
end
|
134
|
+
end
|
135
|
+
end
|
136
|
+
|
137
|
+
class Transform
|
138
|
+
def call(x, y)
|
139
|
+
[ x, y ]
|
140
|
+
end
|
141
|
+
|
142
|
+
def *(other)
|
143
|
+
TransformChain.new(self, other)
|
144
|
+
end
|
145
|
+
end
|
146
|
+
|
147
|
+
class TransformChain < Transform
|
148
|
+
def initialize(first, second)
|
149
|
+
@first = first
|
150
|
+
@second = second
|
151
|
+
end
|
152
|
+
|
153
|
+
def call(x, y)
|
154
|
+
p = @second.call(x, y)
|
155
|
+
p2 = @first.call(*p)
|
156
|
+
#puts("#{self.inspect} #{x} #{y} -> #{p} -> #{p2}")
|
157
|
+
p2
|
158
|
+
end
|
159
|
+
end
|
160
|
+
|
161
|
+
class Clipper < Transform
|
162
|
+
def initialize(width, height)
|
163
|
+
@width = width
|
164
|
+
@height = height
|
165
|
+
end
|
166
|
+
|
167
|
+
def call(pixel, x, y)
|
168
|
+
if x < 0 || x >= @width || y < 0 || y >= @height
|
169
|
+
Array.new(pixel.size, 0.0)
|
170
|
+
else
|
171
|
+
pixel
|
172
|
+
end
|
173
|
+
end
|
174
|
+
end
|
175
|
+
|
176
|
+
class Translate < Transform
|
177
|
+
def initialize(tx, ty)
|
178
|
+
super()
|
179
|
+
@tx = tx
|
180
|
+
@ty = ty
|
181
|
+
end
|
182
|
+
|
183
|
+
def call(x, y)
|
184
|
+
[ x - @tx, y - @ty ]
|
185
|
+
end
|
186
|
+
end
|
187
|
+
|
188
|
+
class Scale < Transform
|
189
|
+
def initialize(sx, sy)
|
190
|
+
super()
|
191
|
+
@sx = sx
|
192
|
+
@sy = sy || sx
|
193
|
+
end
|
194
|
+
|
195
|
+
def call(x, y)
|
196
|
+
[ (x / @sx).floor, (y / @sy).floor ]
|
197
|
+
end
|
198
|
+
end
|
199
|
+
|
200
|
+
class Rotate < Transform
|
201
|
+
def initialize(ox, oy, radians)
|
202
|
+
super()
|
203
|
+
@ox = ox
|
204
|
+
@oy = oy
|
205
|
+
@radians = radians
|
206
|
+
end
|
207
|
+
|
208
|
+
def call(x, y)
|
209
|
+
c = ::Math.cos(@radians)
|
210
|
+
s = ::Math.sin(@radians)
|
211
|
+
|
212
|
+
x = x - @ox
|
213
|
+
y = y - @oy
|
214
|
+
|
215
|
+
nx = x * c - y * s
|
216
|
+
ny = x * s + y * c
|
217
|
+
|
218
|
+
nx = nx + @ox
|
219
|
+
ny = ny + @oy
|
220
|
+
|
221
|
+
[ nx.floor, ny.floor ]
|
222
|
+
end
|
223
|
+
end
|
224
|
+
end
|
225
|
+
end
|
226
|
+
|
227
|
+
|
228
|
+
if __FILE__ == $0
|
229
|
+
def print_image(img)
|
230
|
+
img.height.times do |y|
|
231
|
+
puts(img.to_a[y].collect { |c| (c > 0.5)? 'X' : '.' }.join)
|
232
|
+
end
|
233
|
+
end
|
234
|
+
|
235
|
+
img = CooCoo::Image::Base.new(16, 16)
|
236
|
+
img.height.times do |i|
|
237
|
+
img[i, 0] = 1.0
|
238
|
+
img[0, i] = 1.0
|
239
|
+
end
|
240
|
+
|
241
|
+
puts("Image")
|
242
|
+
print_image(img)
|
243
|
+
|
244
|
+
t = CooCoo::Image::Translate.new(-3, -5)
|
245
|
+
puts("Translated")
|
246
|
+
print_image(img * t)
|
247
|
+
|
248
|
+
s = CooCoo::Image::Scale.new(2.0, 2.0)
|
249
|
+
puts("Scaled 2.0")
|
250
|
+
print_image(img * s)
|
251
|
+
|
252
|
+
s = CooCoo::Image::Scale.new(2.0, 2.0)
|
253
|
+
puts("Scaled 2.0 and transformed")
|
254
|
+
print_image(img * s * t)
|
255
|
+
puts("Translated and scaled 2.0")
|
256
|
+
print_image(img * t * s)
|
257
|
+
|
258
|
+
s = CooCoo::Image::Scale.new(0.5, 0.5)
|
259
|
+
puts("Scaled 0.5")
|
260
|
+
print_image(img * s)
|
261
|
+
|
262
|
+
r = CooCoo::Image::Rotate.new(img.width / 2.0, img.height / 2.0, ::Math::PI / 4.0)
|
263
|
+
puts("Rotated #{::Math::PI / 4.0} #{180.0 / 4.0}")
|
264
|
+
print_image(img * r)
|
265
|
+
|
266
|
+
r = CooCoo::Image::Rotate.new(0.0, 0.0, ::Math::PI / 3.0)
|
267
|
+
puts("Rotated #{::Math::PI / 3.0} #{180.0 / 3.0}")
|
268
|
+
print_image(img * r)
|
269
|
+
|
270
|
+
t = CooCoo::Image::Rotate.new(img.width / 2.0, img.height / 2.0, ::Math::PI / 3.0) * CooCoo::Image::Translate.new(3, 3)
|
271
|
+
puts("Rotated #{::Math::PI / 3.0} #{180.0 / 3.0}")
|
272
|
+
print_image(img * t)
|
273
|
+
|
274
|
+
c = CooCoo::Image::Clipper.new(8, 8)
|
275
|
+
puts("Clipped")
|
276
|
+
print_image(img.filter(c))
|
277
|
+
print_image(img.filter(c) * r)
|
278
|
+
|
279
|
+
RotationSteps = 7.0
|
280
|
+
(RotationSteps.to_i + 1).times do |i|
|
281
|
+
r = CooCoo::Image::Rotate.new(img.width / 2.0, img.height / 2.0, i * 2.0 * ::Math::PI / RotationSteps)
|
282
|
+
puts("#{i} Rotated #{i * 2.0 * ::Math::PI / RotationSteps} #{i * 360.0 / RotationSteps}")
|
283
|
+
print_image(img * r * s)
|
284
|
+
print_image(img * s * r)
|
285
|
+
end
|
286
|
+
end
|