zoomy-core 0.1.1__py3-none-any.whl → 0.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of zoomy-core might be problematic. Click here for more details.
- zoomy_core/decorators/decorators.py +25 -0
- zoomy_core/fvm/flux.py +97 -0
- zoomy_core/fvm/nonconservative_flux.py +97 -0
- zoomy_core/fvm/ode.py +55 -0
- zoomy_core/fvm/solver_numpy.py +305 -0
- zoomy_core/fvm/timestepping.py +13 -0
- zoomy_core/mesh/gmsh_loader.py +301 -0
- zoomy_core/mesh/mesh.py +1192 -0
- zoomy_core/mesh/mesh_extrude.py +168 -0
- zoomy_core/mesh/mesh_util.py +487 -0
- zoomy_core/misc/custom_types.py +6 -0
- zoomy_core/misc/gui.py +61 -0
- zoomy_core/misc/interpolation.py +140 -0
- zoomy_core/misc/io.py +401 -0
- zoomy_core/misc/logger_config.py +18 -0
- zoomy_core/misc/misc.py +216 -0
- zoomy_core/misc/static_class.py +94 -0
- zoomy_core/model/analysis.py +147 -0
- zoomy_core/model/basefunction.py +113 -0
- zoomy_core/model/basemodel.py +512 -0
- zoomy_core/model/boundary_conditions.py +193 -0
- zoomy_core/model/initial_conditions.py +171 -0
- zoomy_core/model/model.py +63 -0
- zoomy_core/model/models/GN.py +70 -0
- zoomy_core/model/models/advection.py +53 -0
- zoomy_core/model/models/basisfunctions.py +181 -0
- zoomy_core/model/models/basismatrices.py +377 -0
- zoomy_core/model/models/core.py +564 -0
- zoomy_core/model/models/coupled_constrained.py +60 -0
- zoomy_core/model/models/old_smm copy.py +867 -0
- zoomy_core/model/models/poisson.py +41 -0
- zoomy_core/model/models/shallow_moments.py +757 -0
- zoomy_core/model/models/shallow_moments_sediment.py +378 -0
- zoomy_core/model/models/shallow_moments_topo.py +423 -0
- zoomy_core/model/models/shallow_moments_variants.py +1509 -0
- zoomy_core/model/models/shallow_water.py +266 -0
- zoomy_core/model/models/shallow_water_topo.py +111 -0
- zoomy_core/model/models/shear_shallow_flow.py +594 -0
- zoomy_core/model/models/sme_turbulent.py +613 -0
- zoomy_core/model/models/swe_old.py +1018 -0
- zoomy_core/model/models/vam.py +455 -0
- zoomy_core/postprocessing/postprocessing.py +72 -0
- zoomy_core/preprocessing/openfoam_moments.py +452 -0
- zoomy_core/transformation/helpers.py +25 -0
- zoomy_core/transformation/to_amrex.py +238 -0
- zoomy_core/transformation/to_c.py +181 -0
- zoomy_core/transformation/to_jax.py +14 -0
- zoomy_core/transformation/to_numpy.py +115 -0
- zoomy_core/transformation/to_openfoam.py +254 -0
- zoomy_core/transformation/to_ufl.py +67 -0
- {zoomy_core-0.1.1.dist-info → zoomy_core-0.1.2.dist-info}/METADATA +1 -1
- zoomy_core-0.1.2.dist-info/RECORD +55 -0
- zoomy_core-0.1.2.dist-info/top_level.txt +1 -0
- zoomy_core-0.1.1.dist-info/RECORD +0 -5
- zoomy_core-0.1.1.dist-info/top_level.txt +0 -1
- {zoomy_core-0.1.1.dist-info → zoomy_core-0.1.2.dist-info}/WHEEL +0 -0
- {zoomy_core-0.1.1.dist-info → zoomy_core-0.1.2.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,377 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import numpy as np
|
|
3
|
+
import sympy
|
|
4
|
+
from sympy import integrate, diff, Matrix
|
|
5
|
+
from sympy.abc import z
|
|
6
|
+
from time import time as get_time
|
|
7
|
+
|
|
8
|
+
from scipy.optimize import least_squares as lsq
|
|
9
|
+
|
|
10
|
+
from library.zoomy_core.model.models.basisfunctions import Legendre_shifted
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class Basismatrices:
|
|
14
|
+
def __init__(self, basis=Legendre_shifted(), use_cache=True, cache_path=".cache"):
|
|
15
|
+
self.basisfunctions = basis
|
|
16
|
+
self.use_cache = use_cache
|
|
17
|
+
self.cache_dir = cache_path
|
|
18
|
+
self.cache_subdir = f"basismatrices/{basis.name}/{basis.level}"
|
|
19
|
+
|
|
20
|
+
def load_cached_matrices(self):
|
|
21
|
+
main_dir = os.getenv("ZOOMY_DIR")
|
|
22
|
+
path = os.path.join(os.path.join(main_dir, self.cache_dir), self.cache_subdir)
|
|
23
|
+
failed = False
|
|
24
|
+
try:
|
|
25
|
+
self.phib = np.load(os.path.join(path, "phib.npy"))
|
|
26
|
+
self.M = np.load(os.path.join(path, "M.npy"))
|
|
27
|
+
self.A = np.load(os.path.join(path, "A.npy"))
|
|
28
|
+
self.B = np.load(os.path.join(path, "B.npy"))
|
|
29
|
+
self.D = np.load(os.path.join(path, "D.npy"))
|
|
30
|
+
self.Dxi = np.load(os.path.join(path, "Dxi.npy"))
|
|
31
|
+
self.Dxi2 = np.load(os.path.join(path, "Dxi2.npy"))
|
|
32
|
+
self.DD = np.load(os.path.join(path, "DD.npy"))
|
|
33
|
+
self.D1 = np.load(os.path.join(path, "D1.npy"))
|
|
34
|
+
self.DT = np.load(os.path.join(path, "DT.npy"))
|
|
35
|
+
except:
|
|
36
|
+
failed = True
|
|
37
|
+
return failed
|
|
38
|
+
|
|
39
|
+
def save_cached_matrices(self):
|
|
40
|
+
main_dir = os.getenv("ZOOMY_DIR")
|
|
41
|
+
path = os.path.join(os.path.join(main_dir, self.cache_dir), self.cache_subdir)
|
|
42
|
+
os.makedirs(path, exist_ok=True)
|
|
43
|
+
np.save(os.path.join(path, "phib"), self.phib)
|
|
44
|
+
np.save(os.path.join(path, "M"), self.M)
|
|
45
|
+
np.save(os.path.join(path, "A"), self.A)
|
|
46
|
+
np.save(os.path.join(path, "B"), self.B)
|
|
47
|
+
np.save(os.path.join(path, "D"), self.D)
|
|
48
|
+
np.save(os.path.join(path, "Dxi"), self.Dxi)
|
|
49
|
+
np.save(os.path.join(path, "Dxi2"), self.Dxi2)
|
|
50
|
+
np.save(os.path.join(path, "DD"), self.DD)
|
|
51
|
+
np.save(os.path.join(path, "D1"), self.D1)
|
|
52
|
+
np.save(os.path.join(path, "DT"), self.DT)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
def _compute_matrices(self, level):
|
|
57
|
+
start = get_time()
|
|
58
|
+
# object is key here, as we need to have a symbolic representation of the fractions.
|
|
59
|
+
self.phib = np.empty((level + 1), dtype=object)
|
|
60
|
+
self.M = np.empty((level + 1, level + 1), dtype=object)
|
|
61
|
+
self.A = np.empty((level + 1, level + 1, level + 1), dtype=object)
|
|
62
|
+
self.B = np.empty((level + 1, level + 1, level + 1), dtype=object)
|
|
63
|
+
self.D = np.empty((level + 1, level + 1), dtype=object)
|
|
64
|
+
self.Dxi = np.empty((level + 1, level + 1), dtype=object)
|
|
65
|
+
self.Dxi2 = np.empty((level + 1, level + 1), dtype=object)
|
|
66
|
+
|
|
67
|
+
self.DD = np.empty((level + 1, level + 1), dtype=object)
|
|
68
|
+
self.D1 = np.empty((level + 1, level + 1), dtype=object)
|
|
69
|
+
self.DT = np.empty((level + 1, level + 1, level + 1), dtype=object)
|
|
70
|
+
|
|
71
|
+
for k in range(level + 1):
|
|
72
|
+
self.phib[k] = self._phib(k)
|
|
73
|
+
for i in range(level + 1):
|
|
74
|
+
self.M[k, i] = self._M(k, i)
|
|
75
|
+
self.D[k, i] = self._D(k, i)
|
|
76
|
+
self.Dxi[k, i] = self._Dxi(k, i)
|
|
77
|
+
self.Dxi2[k, i] = self._Dxi2(k, i)
|
|
78
|
+
|
|
79
|
+
self.DD[k, i] = self._DD(k, i)
|
|
80
|
+
self.D1[k, i] = self._D1(k, i)
|
|
81
|
+
for j in range(level + 1):
|
|
82
|
+
self.A[k, i, j] = self._A(k, i, j)
|
|
83
|
+
self.B[k, i, j] = self._B(k, i, j)
|
|
84
|
+
self.DT[k, i, j] = self._DT(k, i, j)
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def compute_matrices(self, level):
|
|
88
|
+
failed = True
|
|
89
|
+
if self.use_cache:
|
|
90
|
+
failed = self.load_cached_matrices()
|
|
91
|
+
if failed or (not self.use_cache):
|
|
92
|
+
self._compute_matrices(level)
|
|
93
|
+
self.save_cached_matrices()
|
|
94
|
+
|
|
95
|
+
def enforce_boundary_conditions_lsq(self, rhs=np.zeros(2), dim=1):
|
|
96
|
+
level = len(self.basisfunctions.basis) - 1
|
|
97
|
+
constraint_bottom = [self.basisfunctions.eval(i, 0.0) for i in range(level + 1)]
|
|
98
|
+
constraint_top = [
|
|
99
|
+
diff(self.basisfunctions.eval(i, z), z).subs(z, 1.0)
|
|
100
|
+
for i in range(level + 1)
|
|
101
|
+
]
|
|
102
|
+
A = Matrix([constraint_bottom, constraint_top])
|
|
103
|
+
|
|
104
|
+
I = np.linspace(0, level, 1 + level, dtype=int)
|
|
105
|
+
I_enforce = I[1:]
|
|
106
|
+
rhs = np.zeros(2)
|
|
107
|
+
# rhs = np.zeros(level)
|
|
108
|
+
I_free = np.delete(I, I_enforce)
|
|
109
|
+
A_enforce = A[:, list(I_enforce)]
|
|
110
|
+
A_free = np.array(A[:, list(I_free)], dtype=float)
|
|
111
|
+
AtA = A_enforce.T @ A_enforce
|
|
112
|
+
reg = 10 ** (-6)
|
|
113
|
+
A_enforce_inv = np.array((AtA + reg * np.eye(AtA.shape[0])).inv(), dtype=float)
|
|
114
|
+
|
|
115
|
+
def f_1d(Q):
|
|
116
|
+
for i, q in enumerate(Q.T):
|
|
117
|
+
# alpha_enforce = q[I_enforce+1]
|
|
118
|
+
alpha_free = q[I_free + 1]
|
|
119
|
+
b = rhs - np.dot(A_free, alpha_free)
|
|
120
|
+
# b = rhs
|
|
121
|
+
result = np.dot(A_enforce_inv, A_enforce.T @ b)
|
|
122
|
+
alpha = 1.0
|
|
123
|
+
Q[I_enforce + 1, i] = (1 - alpha) * Q[I_enforce + 1, i] + (
|
|
124
|
+
alpha
|
|
125
|
+
) * result
|
|
126
|
+
return Q
|
|
127
|
+
|
|
128
|
+
def f_2d(Q):
|
|
129
|
+
i1 = [[0] + [i + 1 for i in range(1 + level)]]
|
|
130
|
+
i2 = [[0] + [i + 1 + 1 + level for i in range(1 + level)]]
|
|
131
|
+
Q1 = Q[i1]
|
|
132
|
+
Q2 = Q[i2]
|
|
133
|
+
Q1 = f_1d(Q1)
|
|
134
|
+
Q2 = f_1d(Q2)
|
|
135
|
+
Q[i1] = Q1
|
|
136
|
+
Q[i2] = Q2
|
|
137
|
+
return Q
|
|
138
|
+
|
|
139
|
+
if dim == 1:
|
|
140
|
+
return f_1d
|
|
141
|
+
elif dim == 2:
|
|
142
|
+
return f_2d
|
|
143
|
+
else:
|
|
144
|
+
assert False
|
|
145
|
+
|
|
146
|
+
def enforce_boundary_conditions_lsq2(self, rhs=np.zeros(2), dim=1):
|
|
147
|
+
level = len(self.basisfunctions.basis) - 1
|
|
148
|
+
constraint_bottom = [self.basisfunctions.eval(i, 0.0) for i in range(level + 1)]
|
|
149
|
+
constraint_top = [
|
|
150
|
+
diff(self.basisfunctions.eval(i, z), z).subs(z, 1.0)
|
|
151
|
+
for i in range(level + 1)
|
|
152
|
+
]
|
|
153
|
+
A = Matrix([constraint_bottom, constraint_top])
|
|
154
|
+
|
|
155
|
+
I = np.linspace(0, level, 1 + level, dtype=int)
|
|
156
|
+
I_enforce = I[1:]
|
|
157
|
+
rhs = np.zeros(2)
|
|
158
|
+
# rhs = np.zeros(level)
|
|
159
|
+
I_free = np.delete(I, I_enforce)
|
|
160
|
+
A_enforce = A[:, list(I_enforce)]
|
|
161
|
+
A_free = np.array(A[:, list(I_free)], dtype=float)
|
|
162
|
+
|
|
163
|
+
def obj(alpha0, lam):
|
|
164
|
+
def f(alpha):
|
|
165
|
+
return np.sum((alpha - alpha0) ** 2) + lam * np.sum(
|
|
166
|
+
np.array(np.dot(A, alpha) ** 2, dtype=float)
|
|
167
|
+
)
|
|
168
|
+
|
|
169
|
+
return f
|
|
170
|
+
|
|
171
|
+
def f_1d(Q):
|
|
172
|
+
for i, q in enumerate(Q.T):
|
|
173
|
+
h = q[0]
|
|
174
|
+
alpha = q[1:] / h
|
|
175
|
+
f = obj(alpha, 0.1)
|
|
176
|
+
result = lsq(f, alpha)
|
|
177
|
+
Q[1:, i] = h * result.z
|
|
178
|
+
return Q
|
|
179
|
+
|
|
180
|
+
def f_2d(Q):
|
|
181
|
+
i1 = [[0] + [i + 1 for i in range(1 + level)]]
|
|
182
|
+
i2 = [[0] + [i + 1 + 1 + level for i in range(1 + level)]]
|
|
183
|
+
Q1 = Q[i1]
|
|
184
|
+
Q2 = Q[i2]
|
|
185
|
+
Q1 = f_1d(Q1)
|
|
186
|
+
Q2 = f_1d(Q2)
|
|
187
|
+
Q[i1] = Q1
|
|
188
|
+
Q[i2] = Q2
|
|
189
|
+
return Q
|
|
190
|
+
|
|
191
|
+
if dim == 1:
|
|
192
|
+
return f_1d
|
|
193
|
+
elif dim == 2:
|
|
194
|
+
return f_2d
|
|
195
|
+
else:
|
|
196
|
+
assert False
|
|
197
|
+
|
|
198
|
+
def enforce_boundary_conditions(
|
|
199
|
+
self, enforced_basis=[-2, -1], rhs=np.zeros(2), dim=1
|
|
200
|
+
):
|
|
201
|
+
level = len(self.basisfunctions.basis) - 1
|
|
202
|
+
constraint_bottom = [self.basisfunctions.eval(i, 0.0) for i in range(level + 1)]
|
|
203
|
+
constraint_top = [
|
|
204
|
+
diff(self.basisfunctions.eval(i, z), z).subs(z, 1.0)
|
|
205
|
+
for i in range(level + 1)
|
|
206
|
+
]
|
|
207
|
+
A = Matrix([constraint_bottom, constraint_top][: len(enforced_basis)])
|
|
208
|
+
|
|
209
|
+
# test to only constrain bottom
|
|
210
|
+
# A = Matrix([constraint_bottom])
|
|
211
|
+
# enforced_basis = [-1]
|
|
212
|
+
# rhs=np.zeros(1)
|
|
213
|
+
|
|
214
|
+
I = np.linspace(0, level, 1 + level, dtype=int)
|
|
215
|
+
I_enforce = I[enforced_basis]
|
|
216
|
+
I_free = np.delete(I, I_enforce)
|
|
217
|
+
A_enforce = A[:, list(I_enforce)]
|
|
218
|
+
A_free = np.array(A[:, list(I_free)], dtype=float)
|
|
219
|
+
A_enforce_inv = np.array(A_enforce.inv(), dtype=float)
|
|
220
|
+
|
|
221
|
+
def f_1d(Q):
|
|
222
|
+
for i, q in enumerate(Q.T):
|
|
223
|
+
alpha_enforce = q[I_enforce + 1]
|
|
224
|
+
alpha_free = q[I_free + 1]
|
|
225
|
+
b = rhs - np.dot(A_free, alpha_free)
|
|
226
|
+
result = np.dot(A_enforce_inv, b)
|
|
227
|
+
alpha = 1.0
|
|
228
|
+
Q[I_enforce + 1, i] = (1 - alpha) * Q[I_enforce + 1, i] + (
|
|
229
|
+
alpha
|
|
230
|
+
) * result
|
|
231
|
+
return Q
|
|
232
|
+
|
|
233
|
+
def f_2d(Q):
|
|
234
|
+
i1 = [[0] + [i + 1 for i in range(1 + level)]]
|
|
235
|
+
i2 = [[0] + [i + 1 + 1 + level for i in range(1 + level)]]
|
|
236
|
+
Q1 = Q[i1]
|
|
237
|
+
Q2 = Q[i2]
|
|
238
|
+
Q1 = f_1d(Q1)
|
|
239
|
+
Q2 = f_1d(Q2)
|
|
240
|
+
Q[i1] = Q1
|
|
241
|
+
Q[i2] = Q2
|
|
242
|
+
return Q
|
|
243
|
+
|
|
244
|
+
if dim == 1:
|
|
245
|
+
return f_1d
|
|
246
|
+
elif dim == 2:
|
|
247
|
+
return f_2d
|
|
248
|
+
else:
|
|
249
|
+
assert False
|
|
250
|
+
|
|
251
|
+
"""
|
|
252
|
+
Compute phi_k(@xi=0)
|
|
253
|
+
"""
|
|
254
|
+
|
|
255
|
+
def _phib(self, k):
|
|
256
|
+
return self.basisfunctions.eval(k, self.basisfunctions.bounds()[0])
|
|
257
|
+
|
|
258
|
+
"""
|
|
259
|
+
Compute <phi_k, phi_i>
|
|
260
|
+
"""
|
|
261
|
+
|
|
262
|
+
def _M(self, k, i):
|
|
263
|
+
return integrate(
|
|
264
|
+
self.basisfunctions.weight(z) * self.basisfunctions.eval(k, z) * self.basisfunctions.eval(i, z), (z, self.basisfunctions.bounds()[0], self.basisfunctions.bounds()[1])
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
"""
|
|
268
|
+
Compute <phi_k, phi_i, phi_j>
|
|
269
|
+
"""
|
|
270
|
+
|
|
271
|
+
def _A(self, k, i, j):
|
|
272
|
+
return integrate(
|
|
273
|
+
self.basisfunctions.weight(z) * self.basisfunctions.eval(k, z)
|
|
274
|
+
* self.basisfunctions.eval(i, z)
|
|
275
|
+
* self.basisfunctions.eval(j, z),
|
|
276
|
+
(z, self.basisfunctions.bounds()[0], self.basisfunctions.bounds()[1]),
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
"""
|
|
280
|
+
Compute <(phi')_k, phi_j, int(phi)_j>
|
|
281
|
+
"""
|
|
282
|
+
|
|
283
|
+
def _B(self, k, i, j):
|
|
284
|
+
return integrate(
|
|
285
|
+
self.basisfunctions.weight(z) * diff(self.basisfunctions.eval(k, z), z)
|
|
286
|
+
* integrate(self.basisfunctions.eval(j, z), z)
|
|
287
|
+
* self.basisfunctions.eval(i, z),
|
|
288
|
+
(z, self.basisfunctions.bounds()[0], self.basisfunctions.bounds()[1]),
|
|
289
|
+
)
|
|
290
|
+
|
|
291
|
+
"""
|
|
292
|
+
Compute <(phi')_k, (phi')_j>
|
|
293
|
+
"""
|
|
294
|
+
|
|
295
|
+
def _D(self, k, i):
|
|
296
|
+
return integrate(
|
|
297
|
+
self.basisfunctions.weight(z) * diff(self.basisfunctions.eval(k, z), z)
|
|
298
|
+
* diff(self.basisfunctions.eval(i, z), z),
|
|
299
|
+
(z, self.basisfunctions.bounds()[0], self.basisfunctions.bounds()[1]),
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
"""
|
|
303
|
+
Compute <(phi')_k, (phi')_j * xi>
|
|
304
|
+
"""
|
|
305
|
+
def _Dxi(self, k, i):
|
|
306
|
+
return integrate(
|
|
307
|
+
self.basisfunctions.weight(z) * diff(self.basisfunctions.eval(k, z), z)
|
|
308
|
+
* diff(self.basisfunctions.eval(i, z), z) * z,
|
|
309
|
+
(z, self.basisfunctions.bounds()[0], self.basisfunctions.bounds()[1]),
|
|
310
|
+
)
|
|
311
|
+
"""
|
|
312
|
+
Compute <(phi')_k, (phi')_j * xi**2>
|
|
313
|
+
"""
|
|
314
|
+
def _Dxi2(self, k, i):
|
|
315
|
+
return integrate(
|
|
316
|
+
self.basisfunctions.weight(z) * diff(self.basisfunctions.eval(k, z), z)
|
|
317
|
+
* diff(self.basisfunctions.eval(i, z), z) * z * z,
|
|
318
|
+
(z, self.basisfunctions.bounds()[0], self.basisfunctions.bounds()[1]),
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
"""
|
|
322
|
+
Compute <(phi)_k, (phi')_j>
|
|
323
|
+
"""
|
|
324
|
+
|
|
325
|
+
def _D1(self, k, i):
|
|
326
|
+
return integrate(
|
|
327
|
+
self.basisfunctions.weight(z) * self.basisfunctions.eval(k, z) * diff(self.basisfunctions.eval(i, z), z),
|
|
328
|
+
(z, self.basisfunctions.bounds()[0], self.basisfunctions.bounds()[1]),
|
|
329
|
+
)
|
|
330
|
+
|
|
331
|
+
"""
|
|
332
|
+
Compute <(phi)_k, (phi'')_j>
|
|
333
|
+
"""
|
|
334
|
+
|
|
335
|
+
def _DD(self, k, i):
|
|
336
|
+
return integrate(
|
|
337
|
+
self.basisfunctions.weight(z) * self.basisfunctions.eval(k, z)
|
|
338
|
+
* diff(diff(self.basisfunctions.eval(i, z), z), z),
|
|
339
|
+
(z, self.basisfunctions.bounds()[0], self.basisfunctions.bounds()[1]),
|
|
340
|
+
)
|
|
341
|
+
|
|
342
|
+
"""
|
|
343
|
+
|
|
344
|
+
Compute <(phi')_k, (phi')_j>
|
|
345
|
+
"""
|
|
346
|
+
|
|
347
|
+
def _DT(self, k, i, j):
|
|
348
|
+
return integrate(
|
|
349
|
+
self.basisfunctions.weight(z) * diff(self.basisfunctions.eval(k, z), z)
|
|
350
|
+
* diff(self.basisfunctions.eval(i, z), z)
|
|
351
|
+
* self.basisfunctions.eval(j, z),
|
|
352
|
+
(z, self.basisfunctions.bounds()[0], self.basisfunctions.bounds()[1]),
|
|
353
|
+
)
|
|
354
|
+
|
|
355
|
+
|
|
356
|
+
class BasisNoHOM(Basismatrices):
|
|
357
|
+
def _A(self, k, i, j):
|
|
358
|
+
count = 0
|
|
359
|
+
# count += float(k > 0)
|
|
360
|
+
count += float(i > 0)
|
|
361
|
+
count += float(j > 0)
|
|
362
|
+
# if count > 1:
|
|
363
|
+
if (i == 0 and j == k) or (j == 0 and i == k) or (k == 0 and i == j):
|
|
364
|
+
return super()._A(k, i, j)
|
|
365
|
+
return 0
|
|
366
|
+
|
|
367
|
+
def _B(self, k, i, j):
|
|
368
|
+
count = 0
|
|
369
|
+
# count += float(k > 0)
|
|
370
|
+
count += float(i > 0)
|
|
371
|
+
count += float(j > 0)
|
|
372
|
+
# if count > 1:
|
|
373
|
+
# if not (i==0 or j==0):
|
|
374
|
+
if (i == 0 and j == k) or (j == 0 and i == k) or (k == 0 and i == j):
|
|
375
|
+
return super()._B(k, i, j)
|
|
376
|
+
return 0
|
|
377
|
+
# return super()._B(k, i, j)
|